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Abstract

The accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS) is
assessed against several higher order, zig zag and layerwise theories generated by us-
ing the invariant axiomatic framework denoted as Generalized Unified Formulation
(GUF). These theories are also compared against the elasticity solution developed
for the case of a sandwich structure with high Face to Core Stiffness Ratio. GUF
allows to use an infinite number of axiomatic theories (Equivalent Single Layer
theories with or without zig zag effects and Layerwise theories as well) with any
combination of orders of the displacements and it is an ideal tool to precisely assess
the range of applicability of the Variational Asymptotic Plate and Shell Analysis
or other theories in general. In fact, all the axiomatic theories generated by GUF
are obtained from the kernels or fundamental nuclei of the Generalized Unified For-
mulation and changing the order of the variables is “naturally” and systematically
done with GUF. It is demonstrated that VAPAS achieves accuracy comparable to
a fourth (or higher) order zig-zag theory or lower-order layerwise theories with the
least number degrees of freedom. The differences between the axiomatic Zig-zag
models and VAPAS are also assessed. Range of applicability of VAPAS will be dis-
cussed in detail and guidelines for new developments based on GUF and VAPAS
are provided.
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1 Introduction

1.1 Background and Motivation

Most of the aerospace structures can be analyzed using shell and plate mod-
els. Accurate theoretical formulations that minimize the CPU time without
penalties on the quality of the results are then of fundamental importance.

The so-called axiomatic models present the advantage that the important
physical behaviors of the structures can be modeled using the “intuition” of
eminent scientists. The drawback of this approach is that some cases are not
adequately modeled because the starting apriori assumptions might fail. Also,
each existing approach presents a range of applicability and when the hy-
potheses used to formulate the theory are no longer valid the approach has to
be replaced with another one usually named as “refined theory” or “improved
theory”. In the framework of the mechanical case, the Classical Plate Theory
(CPT), also known as Kirchoff theory [22], has the advantage of being simple
and reliable for thin plates. However, if there is strong anisotropy of the me-
chanic properties, or if the composite plate is relatively thick, other advanced
models such as First-order Shear Deformation Theory (FSDT) are required
[31, 26, 25]. Higher-order Shear Deformation Theories (HSDT) have also been
used [35, 21, 41], giving the possibility to increase the accuracy of numerical
evaluations for moderately thick plates. But even these theories are not suffi-
cient if local effects are important or accuracy in the calculation of transverse
stresses is sought. Therefore, more advanced plate theories have been devel-
oped to include zig-zag effects [27, 23, 4, 3, 1, 2, 32, 33, 14, 10, 24, 18]. In some
challenging cases the previous type of theories are not sufficiently accurate.
Therefore, the so-called Layerwise theories [13, 28, 34, 30, 9, 7, 8, 36, 19, 29, 11]
have been introduced. In these theories the quantities are layer-dependent and
the number of required Degrees of Freedom is much higher than the case of
Equivalent Single Layer Models.

The first author introduced an invariant methodology named as Generalized
Unified Formulation [16] in which an infinite number of axiomatic models can
be included in just one formulation. All the combinations of orders (for ex-
ample cubic order for the in-plane displacements and parabolic order for the
out-of-plane displacement) are possible. Equivalent Single Layer Models (with
or without zig-zag effects) and layerwise models can be analyzed. All these for-
mulations derive from the expansion of six 1×1 arrays which are invariant with
respect to the type of theory (e.g. Equivalent Single Layer or Layerwise) and
orders adopted for the displacement variables. This fact makes the Generalized
Unified Formulation an ideal tool to test and compare other possible formula-
tions. In particular, this paper assesses the Variational Asymptotic Plate and
Shell Analysis (VAPAS) introduced by the second author and his-coworkers
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and compares it with some of the infinite theories that can be generated from
the six invariant arrays of the Generalized Unified Formulation. All the results
are compared against the elasticity solution developed by the first author. A
sandwich plate is analyzed. Different aspect ratios are considered. Different
Face to Core Stiffness ratios (FCSRs) are adopted. It is demonstrated that
VAPAS gives accurate results at least as a fourth-order axiomatic zig-zag the-
ory but with a much smaller number of Degrees of Freedom, except for some
sandwich plates with huge FCSRs. The range of applicability of the various
theories generated with GUF and VAPAS is discussed.

2 Variational Asymptotic Plate and Shell Analysis

Mathematically, the approximation in the process of constructing a plate the-
ory stems from elimination of the thickness coordinate as an independent
variable of the governing equations, a dimensional reduction process. This sort
of approximation is inevitable if one wants to take advantage of the relative
smallness of the thickness to simplify the analysis. However, other approxima-
tions that are not absolutely necessary should be avoided, if at all possible.
For example, for geometrically nonlinear analysis of plates, it is reasonable
to assume that the thickness, h, is small compared to the wavelength of de-
formation of the reference plane, l. However, it is unnecessary to assume a
priori some displacement field, although that is the way most plate theories
are constructed. As pointed out by Ref. [5], the attraction of a priori hypothe-
ses is caused by our inability to extract the necessary information from the
3D energy expression.

According to this line of logic, Yu and his co-workers adopted the variational
asymptotic method (VAM) [5], to develop a new approach to modeling com-
posite laminates [39, 40, 38, 37]. These models are implemented in a computer
program named VAPAS. In this approach, the original 3D anisotropic elastic-
ity problem is first cast in an intrinsic form, so that the theory can accom-
modate arbitrarily large displacement and global rotation subject only to the
strain being small. An energy functional can be constructed for this nonlinear
3D problem in terms of 2D generalized strain measures and warping functions
describing the deformation of the transverse normal:

Π = Π(ϵ11, ϵ12, ϵ22, κ11, κ12, κ22, w1, w2, w3) (1)

Here ϵ11, ϵ12, ϵ22, κ11, κ12, κ22 are the so-called 2D generalized strains [20] and
w1, w2, w3 are unknown 3D warping functions, which characterize the differ-
ence between the deformation represented by the 2D variables and the actual
3D deformation for every material point within the plate. It is emphasized
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here that the warping functions are not assumed a priori but are unknown 3D
functions to be solved using VAM. Then we can employ VAM to asymptoti-
cally expand the 3D energy functional into a series of 2D functionals in terms
of the small parameter h/l, such that

Π = Π0 +Π1
h

l
+Π2

h2

l2
+ o(

h2

l2
) (2)

where Π0, Π1, Π2 are governing functionals for different orders of approxima-
tion and are functions of 2D generalized strains and unknown warping func-
tions. The unknown warping functions for each approximation can be obtained
in terms of 2D generalized strains corresponding to the stationary points of the
functionals, which are one-dimensional (1D) analyses through the thickness.
Solutions for the warping functions can be obtained analytically as shown in
Ref. [39] and Ref. [37]. After solving for the unknown warping functions, one
can substitute them back into the energy functionals in Eq. 1 to obtain 2D
energy functionals for 2D plate analysis. For example, for the zeroth-order
approximation, the 2D plate model of VAPAS is of the form

Π0 = Π0(ϵ11, ϵ12, ϵ22, κ11, κ12, κ22) (3)

It should be noted that the energy functional for the zeroth-order approx-
imation, Π0, coincides to that of CLT but without invoking the Kirchhoff
hypothesis and the transverse normal is flexible during deformation.

Higher-order approximations can be used to construct refined models. For
example, the approximation through second order (h2/l2) should be used to
handle transverse shear effects. However, there are two challenging issues as-
sociated with the second-order approximation:

• The energy functional asymptotically correct up through the second order
is in terms of the CLT generalized strains and their derivatives. This form
is not convenient for plate analysis because the boundary conditions cannot
be readily associated with quantities normally specified on the boundary of
plates.

• Only part of the second-order energy corresponds to transverse shear defor-
mation, and no physical interpretation is known for the remaining terms.

VAPAS uses exact kinematical relations between derivatives of the general-
ized strains of CLT and the transverse shear strains along with equilibrium
equations to meet these challenges. Minimization techniques are then applied
to find the transverse shear energy that is closest to the asymptotically cor-
rect second-order energy. In other words, the loss of accuracy between the
asymptotically correct model and a generalized Reissner-Mindlin model is min-
imized mathematically. For the purpose of establishing a direct connection be-
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tween 2D Reissner-Mindlin plate finite element analysis, the through-thickness
analysis is implemented using a 1D finite element discretization in the com-
puter program VAPAS, which has direct connection with the plate/shell ele-
ments in commercial finite element packages and can be conveniently used by
application-oriented engineers.

In comparison to most existing composite plate modeling approaches, VAPAS
has several unique features:

• VAPAS adopts VAM to rigorously split the original geometrically-exact,
nonlinear 3D problem into a linear, 1D, through-the-thickness analysis and
a geometrically-exact, nonlinear, 2D, plate analysis. This novel feature al-
lows the global plate analysis to be formulated exactly and intrinsically as
a generalized 2D continuum over the reference plane and routes all the ap-
proximations into the through-the-thickness analysis, the accuracy of which
is guaranteed to be the best by use of the VAM. The optimization procedure
minimizes the loss of information in recasting the model to the generalized
Reissner-Mindlin form.

• No kinematical assumptions are invoked in the derivation. All deformation
of the normal line element is correctly described by the warping functions
within the accuracy of the asymptotic approximation.

• VAPAS does not rely on integration of the 3D equilibrium equations through
the thickness to obtain accurate distributions of transverse normal and shear
strains and stresses.

• VAPAS exactly satisfies all continuity conditions, including those on both
displacement and stress, at the interfaces as well as traction conditions on
the top and bottom surfaces.

• The resulting plate/shell analysis is geometrically exact, far beyond von-
Karman type nonlinearity commonly used in the literature, needed for
highly flexible applications.

3 Considered Axiomatic Plate Theories: the Generalized Unified
Formulation

3.1 Classification of the Theories

The main feature of the Generalized Unified Formulation (GUF) is that the
descriptions of Layerwise Theories, Higher-order Shear Deformation Theories
and Zig-Zag Theories of any combination of orders do not show any formal
differences and can all be obtained from six invariant kernels. So, with just
one theoretical model an infinite number of different approaches can be consid-
ered. For example, in the case of moderately thick plates a higher order theory
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could be sufficient but for thick plates layerwise models may be required. With
GUF the two approaches are formally identical because the kernels are invari-
ant with respect to the type of theory.

In the present work the concepts of type of theory and class of theories are
introduced. The following types of displacement-based theories are discussed.
The first type is named as Advanced Higher-order Shear Deformation The-
ories (AHSDT). These theories are Equivalent Single Layer models because
the displacement field is unique and independent of the number of layers. The
effects of the transverse normal strain εzz are retained.
The second type of theories is named as Advanced Higher-order Shear Defor-
mation Theories with Zig-Zag effects included (AHSDTZ). These theories are
Equivalent Single Layer models and the so called Zig-Zag form of the displace-
ments is taken into account by using Murakami’s Zig-Zag Function (MZZF).
The effects of the transverse normal strain εzz are included. The third type
of theories is named Advanced LayerWise Theories (ALWT). These theories
are the most accurate ones because all the displacements have a layerwise de-
scription. The effects of the transverse normal strain εzz are included as well.
These models are necessary when local effects need to be described. The price
is of course (in FEM applications) in higher computational time. An infinite
number of theories which have a particular logic in the selection of the used
orders of expansion is defined as class of theories. For example, the infinite
layerwise theories which have the displacements ux, uy and uz expanded along
the thickness with a polynomial of order N are a class of theories. The infinite
theories which have the in-plane displacements ux and uy expanded along the
thickness with order N , the out of plane displacement expanded along the
thickness with order N − 1 are another class of theories.

3.2 Basic Idea and Theoretical Formulation

Both layerwise and Equivalent Single Layer models are axiomatic approaches
if the unknowns are expanded along the thickness by using a chosen series of
functions.
When the Principal of Virtual Displacements is used, the unknowns are the
displacements ux, uy and uz. When other variational statements are used the
unknowns may also be all or some of the stresses and other quantities as well
(multifield case).
The Generalized Unified Formulation is introduced here considering a generic
layer k of a multilayered plate structure. This is the most general approach
and the Equivalent Single Layer theories, which consider the displacement
unknowns to be layer-independent, can be derived from this formulation with
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Fig. 1. Multilayered plate: notations and definitions.

some simple formal techniques[16]. Consider a theory denoted as Theory I, in
which the displacement in x direction uk

x has four Degrees of Freedom. Here
by Degrees of Freedom it is intended the number of unknown quantities that
are used to expand a variable. In the case under examination four Degrees of
Freedom for the displacement uk

x means that four unknowns are considered.
Each unknown multiplies a known function of the thickness coordinate z.
Where the origin of the coordinate z is measured is not important. However,
from a practical point of view it is convenient to assume that the middle plane
of the plate is also the plane with z = 0. This assumption does not imply
that there is a symmetry with respect to the plane z = 0. The formulation is
general.
For layer k the following relation holds: zbotk ≤ z ≤ ztopk . zbotk is the global
coordinate z of the bottom surface of layer k and ztopk is the global coordinate
z of the top surface of layer k (see Figure 1). hk = ztopk −zbotk is the thickness
of layer k and h is the thickness of the plate.
In the case of Theory I, uk

x is expressed as follows:

uk
x (x, y, z)=

known︷ ︸︸ ︷
fk
1 (z) ·

unknown#1︷ ︸︸ ︷
uk
x1
(x, y)+

known︷ ︸︸ ︷
fk
2 (z) ·

unknown#2︷ ︸︸ ︷
uk
x2
(x, y)

+ fk
3 (z)︸ ︷︷ ︸
known

·uk
x3
(x, y)︸ ︷︷ ︸

unknown#3

+ fk
4 (z)︸ ︷︷ ︸
known

· uk
x4
(x, y)︸ ︷︷ ︸

unknown#4

zbotk ≤ z ≤ ztopk (4)

The functions fk
1 (z), f

k
2 (z), f

k
3 (z) and fk

4 (z) are known functions (axiomatic
approach). These functions could be, for example, a series of trigonometric
functions of the thickness coordinate z. Polynomials (or even better orthogonal
polynomials) could be selected. In the most general case each layer has different
functions. For example, fk

1 (z) ̸= fk+1
1 (z). The next formal step is to modify

the notation.
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The following functions are defined:

xF k
t (z) = fk

1 (z)
xF k

2 (z) = fk
2 (z)

xF k
3 (z) = fk

3 (z)
xF k

b (z) = fk
4 (z)

(5)

The logic behind these definitions is the following. The first function fk
1 (z)

is defined as xF k
t . Notice the superscript x. It was added to clarify that the

displacement in x direction, uk
x, is under investigation. The subscript t iden-

tifies the quantities at the “top” of the plate and, therefore, are useful in the
assembling of the stiffness matrices in the thickness direction (see Ref. [16]).
The last function fk

4 (z) is defined as xF k
b . Notice again the superscript x. The

subscript b means “bottom” and, again, its utility is discussed in Ref. [16].
The intermediate functions fk

2 (z) and fk
3 (z) are defined simply as xF k

2 and
xF k

3 . To be consistent with the definitions of equation 5, the following unknown
quantities are defined:

uk
xt
(x, y) = uk

x1
(x, y) uk

xb
(x, y) = uk

x4
(x, y) (6)

Using the definitions reported in equations 5 and 6, equation 4 can be rewritten
as

uk
x (x, y, z)=

known︷ ︸︸ ︷
xF k

t (z) ·
unknown#1︷ ︸︸ ︷
uk
xt
(x, y) +

known︷ ︸︸ ︷
xF k

2 (z) ·
unknown#2︷ ︸︸ ︷
uk
x2
(x, y)

+ xF k
3 (z)︸ ︷︷ ︸

known

·uk
x3
(x, y)︸ ︷︷ ︸

unknown#3

+ xF k
b (z)︸ ︷︷ ︸

known

·uk
xb
(x, y)︸ ︷︷ ︸

unknown#4

zbotk ≤ z ≤ ztopk (7)

It is supposed that each function of z is a polynomial. The order of the ex-
pansion is then 3 and indicated as Nk

ux
. Each layer has in general a different

order. Thus, in general Nk
ux

̸= Nk+1
ux

. If the functions of z are not polynomials
(for example, this is the case if trigonometric functions are used) then Nk

ux
is

just a parameter related to the number of terms or Degrees of Freedom used
to describe the displacement uk

x in the thickness direction. The expression rep-
resenting the displacement uk

x (see equation 7) can be put in a compact form
typical of the Generalized Unified Formulation presented here. In particular
it is possible to write:

uk
x (x, y, z) =

xF k
αux

(z) · uk
xαux

(x, y) αux = t, l, b; l = 2, ..., Nk
ux

(8)

where, in the example, Nk
ux

= 3. The thickness primary master index α has
the subscript ux. This subscript from now on will be called slave index. It is
introduced to show that the displacement ux is considered. An infinite number
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of theories can be included in equation 8. It is in fact sufficient to change
the value of Nk

ux
. It should be observed that formally there is no difference

between two distinct theories (obtained by changing Nk
ux
). It is deduced that

∞1 theories can be represented by equation 8.
The other displacements uk

y and uk
z can be treated in a similar fashion. The

Generalized Unified Formulation for all the displacements is the following:

uk
x = xFtu

k
xt
+ xFlu

k
xl

+ xFbu
k
xb

= xFαux
uk
xαux

αux = t, l, b; l = 2, ..., Nux

uk
y =

yFtu
k
yt +

yFmu
k
ym + yFbu

k
yb
= yFαuy

uk
yαuy

αuy = t,m, b; m = 2, ..., Nuy

uk
z =

zFtu
k
zt +

zFnu
k
zn + zFbu

k
zb
= zFαuz

uk
zαuz

αuz = t, n, b; n = 2, ..., Nuz

(9)

In equation 9, for simplicity it is assumed that the type of functions is the
same for each layer and that the same number of terms is used for each layer.
This assumption will make it possible to adopt the same Generalized Unified
Formulation for all types of theories, and layerwise and equivalent single layer
theories will not show formal differences. This concept means, for example,
that if displacement uy is approximated with five terms in a particular layer k
then it will be approximated with five terms in all layers of the multilayered
structure.
Each displacement variable can be expanded in ∞1 combinations. In fact, it is
sufficient to change the number of terms used for each variable. Since there are
three variables (the displacements ux, uy and uz), it is concluded that equation
9 includes ∞3 different theories. In equation 9 the quantities are defined in
a layerwise sense but it can be shown that the same concept is valid for the
Equivalent Single Layer cases too (see Ref. [16]).
It can be shown that when a theory generated by using GUF has the orders
of the expansions of all the displacements equal to each other, the results
are numerically identical to the ones that can be obtained by using Carrera’s
Unified Formulation (see Ref. [11]). This is a logical consequence of the fact
that GUF can be considered as an extension and generalization of CUF (see
more details in Ref. [17]).

3.3 Acronyms Used to Identify a Generic Theory Obtained by Using GUF

Three types of displacement-based theories can be obtained. As stated above,
the first type is named Advanced Higher-order Shear Deformation Theories
(AHSDT). A AHSDT theory with orders of expansion Nux , Nuy and Nuz for
the displacements ux, uy and uz respectively, is denoted as EDNuxNuyNuz

. “E”
stands for “Equivalent Single Layer” and “D” stands for “Displacement-based”
theory.
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Fig. 2. Test Case 1. Geometry of the plate sandwich structure.

With similar logic, it is possible to define acronyms for the second type (Ad-
vanced Higher-order Shear Deformation Theories with Zig-Zag effects included
(AHSDTZ)) and for the third type of theories (Advanced LayerWise Theories
(ALWT)). The acronyms are EDZNuxNuyNuz

and LDNuxNuyNuz
(more details

can be found in Ref. [16]). For example, a AHSDTZ theory with cubic orders
for all the displacements is indicated as EDZ333 whereas a ALWT theory with
parabolic orders for all the displacements is indicated as LD222.

4 Results

Two test cases are analyzed in this work.

4.1 Description of Test Case 1

Test case 1 is a sandwich plate (see Figure 2) made of two skins and a core
[hlower skin = h/10; hupper skin = 2h/10; hcore = (7/10)h]. It is also Elower skin

Eupper skin
=

5/4. The plate is simply supported and the load is a sinusoidal pressure applied
at the top surface of the plate (m = n = 1). Different Face-to-Core Stiffness
Ratio (FCSR) are proposed here:

• Face-to-Core Stiffness Ratio = FCSR = Elower skin

Ecore
= 101; a/h = 4, 10, 100

• Face-to-Core Stiffness Ratio = FCSR = Elower skin

Ecore
= 105; a/h = 4, 100
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Fig. 3. Test Case 2 (see also [12])

As far as Poisson’s ratio is concerned, the following values are used: υlower skin =
υupper skin = υcore = υ = 0.34. The middle plane of the plate is a rectangle with
b = 3a. In this test case there is no symmetry with respect to the plane z = 0.

4.2 Description of Test Case 2

This test case is represented by a symmetric sandwich structure. The case has
been taken from reference [12] and all the details can be obtained from Figure
3.

4.3 Test Case 1: Numerical Results and Discussion

The following non-dimensional quantities are introduced:

ûx = ux
Ecore

zP th( a
h)

3 ; ûy = uy
Ecore

zP th( a
h)

3 ; ûz = uz
100Ecore

zP th( a
h)

4 ;

σ̂zx = σzx
zP t( a

h)
; σ̂zy =

σzy

zP t( a
h)
; σ̂zz =

σzz
zP t ;

σ̂xx = σxx

zP t( a
h)

2 ; σ̂yy =
σyy

zP t( a
h)

2 ; σ̂xy =
σxy

zP t( a
h)

2 ;

(10)

All the results have been compared with the solution obtained by solving the
“exact” problem [15]. The exact value is indicated with the terminology “elas-
ticity” and is the reference value corresponding to the solution of the differ-
ential equations that govern the problem according to the three-dimensional
elasticity theory. The details of this elasticity solution are here omitted for
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brevity. The relative error Err% used in the tables is defined as follows:

Err% = 100 · Result current theory − Result elasticity solution

Result elasticity solution
(11)

Tables 1 and 2 compare a ALWT, AHSDT, AHSDTZ and VAPAS with VAPAS0
denoting the zeroth-order approximation of VAPAS according to Eq. 3. As
shown in Table 1, VAPAS0 has a similar prediction for transverse deflection
as ED111 for a thick plate (a/h = 4) for both FCSR = 10 and FCSR = 105.
It is noted that ED111 is very similar to CLT with a flexible transverse normal.
For thin plates with mild modulus contrast, VAPAS0 has an accuracy similar
to higher-order theories without zigzag effects (ED444, ED555, ED777). For thin
plates with big modulus contrast (FCSR = 105), VAPAS0 has an accuracy
similar to ED444. VAPAS results for the deflection prediction are generally
better than VAPAS0 and has an accuracy comparable to higher-order theo-
ries with zig-zag effects such as EDZ444 and higher. The only anomaly case
is that for thick plates with the big modulus contrast, VAPAS results are not
meaningful. This could be explained that VAPAS is not constructed for such
an extreme case. Note in Eq. 2, only the geometrical small parameter h/a is
used for the asymptotical expansion, yet for this extreme case, the modulus
contrast is a much smaller parameter than h/a. Hence, it is suggested that
VAPAS is not suitable for thick sandwich plates with huge modulus contrast.
Note for the sandwich plate with a/h = 100 and FCSR = 105, VAPAS pre-
dicts reasonably well. Later we will use more examples to demonstrate that for
moderate modulus contrast, VAPAS actually has a very good prediction. Sim-
ilar observations can be made about the stress prediction as shown in Table 2.
It is worthy to point out that VAPAS plate model only uses three DOFs for its
zeroth-order approximation and five DOFs for its first-order approximation.
The 2D plate element of VAPAS is the same as a FOSDT and is more efficient
than all other theories listed in the tables. In other words, VAPAS presents
a great compromise between the accuracy of the results and the number of
DOFs. Tables 3-11 present a relatively thick sandwich plate with FCSR = 10.
The out-of-plane stresses are not unknowns of the displaced-based theories
based on GUF (this is not the case if a mixed variational theorem is used).
Therefore, they can be calculated a posteriori by using Hooke’s law or by
integrating the equilibrium equations of the three-dimensional elasticity the-
ory. The first approach is usually not satisfactory for ESL theories. Therefore,
all the axiomatic results presented in this work report the transverse stresses
calculated by integrating the equilibrium equations. In all cases it is possible
to see that VAPAS has an accuracy comparable or superior to AHSDTZ. For
this particular case we tested, VAPAS has a similar accuracy as, or for most
cases better, than EDZ555 for displacement prediction and in-plane stress and
transverse normal stress prediction and its accuracy is similar to LD222. For
transverse shear stresses, VAPAS predicts similar values as EDZ555. It is wor-
thy to note that VAPAS achieves these accurate predictions without integrat-
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a/h 4 100

Elower skin
Ecore

≡ FCSR = 101

Elasticity 3.01123 Err.% 1.51021 Err.% DOF

LD111 2.98058 (−1.02) 1.47242 (−2.50) 12

LD222 3.00982 (−0.05) 1.51021 (0.00) 21

LD555 3.01123 (0.00) 1.51021 (0.00) 48

ED111 1.58218 (−47.5) 1.10845 (−26.6) 6

ED444 2.79960 (−7.03) 1.50989 (−0.02) 15

ED555 2.84978 (−5.36) 1.50996 (−0.02) 18

ED777 2.86875 (−4.73) 1.50999 (−0.01) 24

EDZ111 2.34412 (−22.2) 1.15866 (−23.3) 9

EDZ444 2.97886 (−1.07) 1.51017 (0.00) 18

EDZ555 2.98737 (−0.79) 1.51018 (0.00) 21

EDZ777 2.99670 (−0.48) 1.51019 (0.00) 27

V APAS0 1.5136 (−49.7) 1.50788 (−0.15) 3

V APAS 3.0198 (0.28) 1.5102 (0.00) 5

Elower skin
Ecore

≡ FCSR = 105

Elasticity 1.31593 · 10−02 Err.% 2.08948 · 10−03 Err.%

LD111 9.79008 · 10−03 (−25.6) 1.96509 · 10−03 (−5.95) 12

LD222 1.31471 · 10−02 (−0.09) 2.08948 · 10−03 (0.00) 21

LD555 1.31593 · 10−02 (0.00) 2.08949 · 10−03 (0.00) 48

ED111 1.79831 · 10−04 (−98.6) 1.19941 · 10−04 (−94.3) 6

ED444 1.16851 · 10−03 (−91.1) 1.64835 · 10−04 (−92.1) 15

ED555 4.29224 · 10−03 (−67.4) 1.73120 · 10−04 (−91.7) 18

ED777 1.08119 · 10−02 (−17.8) 2.96304 · 10−04 (−85.8) 24

EDZ111 8.36735 · 10−04 (−93.6) 1.63329 · 10−04 (−92.2) 9

EDZ444 1.26288 · 10−02 (−4.03) 1.16305 · 10−03 (−44.3) 18

EDZ555 1.30409 · 10−02 (−0.90) 1.78411 · 10−03 (−14.6) 21

EDZ777 1.31363 · 10−02 (−0.17) 2.02060 · 10−03 (−3.30) 27

V APAS0 1.6421 · 10−04 (−98.7) 1.6314 · 10−04 (−92.2) 3

V APAS 1.49076 (> 100) 2.4667 · 10−03 (18.0) 5

Table 1
Test Case 1. Comparison of various theories to evaluate the transverse displacements
amplitude (center plate deflection) ûz = uz

100Ecore

zP th( a
h)

4 in z = zupper skinbottom = 3
10h, x =

a/2, y = b/2. 13



a/h 4 Err. 100 Err.

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.32168 Err.% 0.33176 Err.% DOF

LD111 0.31730 (−1.36) 0.32345 (−2.50) 12

LD222 0.32142 (−0.08) 0.33176 (0.00) 21

LD555 0.32168 (0.00) 0.33176 (0.00) 48

ED111 0.33178 (+3.14) 0.33178 (+0.01) 6

ED444 0.33240 (+3.33) 0.33178 (+0.01) 15

ED555 0.32884 (+2.23) 0.33178 (+0.01) 18

ED777 0.32707 (+1.68) 0.33177 (0.00) 24

EDZ111 0.34184 (+6.27) 0.34497 (+3.98) 9

EDZ444 0.32913 (+2.32) 0.33178 (+0.01) 18

EDZ555 0.32755 (+1.82) 0.33177 (0.00) 21

EDZ777 0.32530 (+1.12) 0.33177 (+0.00) 27

V APAS0 0.33178 (+3.14) 0.33178 (+0.01) 3

V APAS 0.31037 (−3.5) 0.33175 (+0.00) 5

Elower skin
Ecore

≡ FCSR = 105

Elasticity 5.40842 · 10−04 Err.% 0.27797 Err.%

LD111 1.05700 · 10−04 (−80.5) 0.26143 (−5.95) 12

LD222 5.37740 · 10−04 (−0.57) 0.27797 (0.00) 21

LD555 5.40842 · 10−04 (0.00) 0.27797 (0.00) 48

ED111 0.33242 (> 100) 0.33242 (+19.6) 6

ED444 0.30529 (> 100) 0.33238 (+16.6) 15

ED555 0.21639 (> 100) 0.33214 (+19.5) 18

ED777 3.96907 · 10−02 (> 100) 0.32865 (+18.2) 24

EDZ111 0.30971 (> 100) 0.33077 (+19.0) 9

EDZ444 6.84336 · 10−03 (> 100) 0.30392 (+9.34) 18

EDZ555 1.87520 · 10−03 (> 100) 0.28655 (+3.09) 21

EDZ777 8.02443 · 10−04 (+48.4) 0.27994 (+0.71) 27

V APAS0 0.33242 (> 100) 0.33242 (+19.6) 3

V APAS 0.30592 (> 100) 0.33238 (+16.6) 5

Table 2
Test Case 1. Comparison of various theories to evaluate the transverse shear stress
σ̂zx = σzx

zP t( a
h)

in z = zupper skinbottom = 3
10h, x = 0, y = b/2. The indefinite equilibrium

equations have been integrated along the thickness except VAPAS0 and VAPAS.14



ing the 3D equilibrium equations. If integration through the thickness is not
used to obtain such values in the displacement-based GUT theories, EDZ555

will be expected to be worse than VAPAS results. For moderate FCSR values
and thick plates (a/h = 4, see Figures 4-7, VAPAS presents results that can
be comparable of the results obtained by using the axiomatic zig-zag theory
EDZ777. This is particularly evident in Figure 7. However, the VAPAS plate
model only requires five DOFs, which is only less than 20% of the computa-
tional cost one would need for EDZ777 (27 DOFs). It is also noted, VAPAS
plate model remains the same as the well-known Reissner-Mindlin elements
universally available in all commercial finite element packages.
The Equivalent Single Layer and Layerwise axiomatic theories presented in
this paper and a virtually infinite number of other theories can be imple-
mented in a single FEM code based on the Generalized Unified Formulation.
Accuracy and CPU time requirements can be easily met with an appropriate
selection of the type of theory and the orders used in the expansions of the
displacements.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity −0.11087 · 10−01 Err.% DOF

LD111 −0.10800 · 10−01 (−2.59) 12

LD222 −0.11085 · 10−01 (−0.01) 21

LD333 −0.11087 · 10−01 (−0.00) 30

LD444 −0.11087 · 10−01 (−0.00) 39

ED111 −0.08627 · 10−01 (−22.2) 6

ED222 −0.11736 · 10−01 (+5.85) 9

ED333 −0.11358 · 10−01 (+2.45) 12

ED444 −0.11316 · 10−01 (+2.07) 15

ED555 −0.11242 · 10−01 (+1.40) 18

EDZ111 −0.08696 · 10−01 (−21.6) 9

EDZ222 −0.11161 · 10−01 (+0.67) 12

EDZ333 −0.11166 · 10−01 (+0.71) 15

EDZ444 −0.11164 · 10−01 (+0.69) 18

EDZ555 −0.11146 · 10−01 (+0.53) 21

V APAS −0.111009 · 10−01 (+0.13) 5

Table 3
Test Case 1. Comparison of various theories to evaluate the in-plane displacement
ûx = ux

Ecore

zP th( a
h)

3 in z = zupper skinbottom = 3
10h, x = 0, y = b/2.

4.4 Test Case 2: Numerical Results and Discussion

The dimensionless displacements used for this study are defined as

ûx = ux
Eskin

zP th
(
a
h

)3 ; ûz = uz
100Eskin

zP th
(
a
h

)4 (12)

Notice the formal difference with the dimensionless quantities introduced in
test case 1: here the elastic modulus used for the non-dimensional quantities
is the elastic modulus of the skin and not the one of the core. The results
are compared against the elasticity solution (see [15] and [17]). Tables 12, 13,
14, and 15 report some results obtained in reference [12] for thick, moderately
thick and thin sandwich structures. The available results have been enriched
with the new case of a/h = 2 and with the elasticity solution. The findings of

16



Fig. 4. Test Case 1. Comparison of various theories to evaluate the in-plane normal
stress σ̂xx = σxx

zP t( a
h)

2 in x = a/2, y = b/2. Note that this stress is not a continuous

function on the thickness direction. Hooke’s law has been used.

Fig. 5. Test Case 1. Comparison of various theories to evaluate the in-plane normal
stress σ̂xx = σxx

zP t( a
h)

2 in x = a/2, y = b/2 (upper-skin). Hooke’s law has been used.

17



a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity −0.36956 · 10−02 Err.% DOF

LD111 −0.36000 · 10−02 (−2.59) 12

LD222 −0.36952 · 10−02 (−0.01) 21

LD333 −0.36956 · 10−02 (−0.00) 30

LD444 −0.36956 · 10−02 (−0.00) 39

ED111 −0.28757 · 10−02 (−22.2) 6

ED222 −0.39120 · 10−02 (+5.85) 9

ED333 −0.37860 · 10−02 (+2.45) 12

ED444 −0.37721 · 10−02 (+2.07) 15

ED555 −0.37473 · 10−02 (+1.40) 18

EDZ111 −0.28986 · 10−02 (−21.6) 9

EDZ222 −0.37204 · 10−02 (+0.67) 12

EDZ333 −0.37220 · 10−02 (+0.71) 15

EDZ444 −0.37213 · 10−02 (+0.69) 18

EDZ555 −0.37153 · 10−02 (+0.53) 21

V APAS −0.37003 · 10−02 (+0.13) 5

Table 4
Test Case 1. Comparison of various theories to evaluate the in-plane displacement
ûy = uy

Ecore

zP th( a
h)

3 in z = zupper skinbottom = 3
10h, x = a/2, y = 0.

reference [12] have been confirmed: the equivalent single layer theories are not
indicated to analyze very challenging sandwich structures especially if the face-
to-core stiffness ratio is very high and the aspect ratio is small (thick plates).
This result is also confirmed in figures 8, 9, and 10. In particular, it is clear
from Figure 10 (which presents several AHSDTZ theories) that even zig zag
theories with considerably high order for the expansion of the variables present
significant error especially in the core region. As previously discussed in Test
Case 1, VAPAS provides excellent results for moderate FCSRs. Specifically for
this example, VAPAS predicts accurately for FCSR=73 and 7.3×104. VAPAS
can provide meaningful results for very large FCSR for only if the aspect ratio
is very large, for example FCSR=7.3×106 and a/h = 10, 100, and FCSR=7.3×
108 and a/h = 100. If FCSR becomes larger and the plate is relatively thick,
VAPAS becomes not predictive, for example when FCSR=7.3×106 and a/h =
2, 4, and FCSR=7.3×108 and a/h = 2, 4, 10. This example again suggests that
VAPAS presents superior performances with respect to the classical equivalent
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 1.74265 Err.% DOF

LD111 1.70908 (−1.93) 12

LD222 1.74247 (−0.01) 21

LD333 1.74265 (−0.00) 30

LD444 1.74265 (−0.00) 39

ED111 1.18207 (−32.2) 6

ED222 1.58561 (−9.01) 9

ED333 1.70006 (−2.44) 12

ED444 1.71032 (−1.85) 15

ED555 1.71796 (−1.42) 18

EDZ111 1.34741 (−22.7) 9

EDZ222 1.73669 (−0.34) 12

EDZ333 1.73805 (−0.26) 15

EDZ444 1.73836 (−0.25) 18

EDZ555 1.73938 (−0.19) 21

V APAS 1.74265 (+0.00) 5

Table 5
Test Case 1. Comparison of various theories to evaluate the transverse displacements
amplitude (center plate deflection) ûz = uz

100Ecore

zP th( a
h)

4 in z = zupper skinbottom = 3
10h, x =

a/2, y = b/2.

single-layer zig-zag models for regular composite laminates when FCSR is
moderate and the plate is not too thick. For thick sandwich plate with large
FCSR, other small parameter considering both FCSR and the aspect ratio
should be considered as suggested in Ref. [6].
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.33146 Err.% DOF

LD111 0.26290 (−20.7) 12

LD222 0.33169 (+0.07) 21

LD333 0.33144 (−0.00) 30

LD444 0.33146 (+0.00) 39

ED111 0.36049 (+8.76) 6

ED222 0.35272 (+6.41) 9

ED333 0.34357 (+3.65) 12

ED444 0.34649 (+4.54) 15

ED555 0.34260 (+3.36) 18

EDZ111 0.35807 (+8.03) 9

EDZ222 0.32847 (−0.90) 12

EDZ333 0.33559 (+1.25) 15

EDZ444 0.33753 (+1.83) 18

EDZ555 0.33678 (+1.60) 21

V APAS 0.33364 (+0.66) 5

Table 6
Test Case 1. Comparison of various theories to evaluate the in-plane normal stress
σ̂xx = σxx

zP t( a
h)

2 in z = zupper skinbottom = 3
10h, x = a/2, y = b/2. Note that this stress is

not a continuous function on the thickness direction. Hooke’s law has been used.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.14662 Err.% DOF

LD111 0.08285 (−43.5) 12

LD222 0.14688 (+0.17) 21

LD333 0.14660 (−0.01) 30

LD444 0.14662 (+0.00) 39

ED111 0.21666 (+47.8) 6

ED222 0.15706 (+7.12) 9

ED333 0.15421 (+5.18) 12

ED444 0.15783 (+7.64) 15

ED555 0.15518 (+5.84) 18

EDZ111 0.21309 (+45.3) 9

EDZ222 0.14239 (−2.88) 12

EDZ333 0.14943 (+1.92) 15

EDZ444 0.15141 (+3.27) 18

EDZ555 0.15095 (+2.95) 21

V APAS 0.14758 (+0.65) 5

Table 7
Test Case 1. Comparison of various theories to evaluate the in-plane normal stress
σ̂yy =

σyy

zP t( a
h)

2 in z = zupper skinbottom = 3
10h, x = a/2, y = b/2. Note that this stress is

not a continuous function on the thickness direction. Hooke’s law has been used.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity −0.69314 · 10−01 Err.% DOF

LD111 −0.67520 · 10−01 (−2.59) 12

LD222 −0.69305 · 10−01 (−0.01) 21

LD333 −0.69314 · 10−01 (−0.00) 30

LD444 −0.69314 · 10−01 (−0.00) 39

ED111 −0.53936 · 10−01 (−22.2) 6

ED222 −0.73372 · 10−01 (+5.85) 9

ED333 −0.71010 · 10−01 (+2.45) 12

ED444 −0.70749 · 10−01 (+2.07) 15

ED555 −0.70283 · 10−01 (+1.40) 18

EDZ111 −0.54366 · 10−01 (−21.6) 9

EDZ222 −0.69779 · 10−01 (+0.67) 12

EDZ333 −0.69808 · 10−01 (+0.71) 15

EDZ444 −0.69795 · 10−01 (+0.69) 18

EDZ555 −0.69684 · 10−01 (+0.53) 21

V APAS −0.69775 · 10−01 (+0.67) 5

Table 8
Test Case 1. Comparison of various theories to evaluate the in-plane shear stress
σ̂xy =

σxy

zP t( a
h)

2 in z = zupper skinbottom = 3
10h, x = 0, y = 0. Note that this stress is not a

continuous function on the thickness direction. Hooke’s law has been used.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.32998 Err.% DOF

LD111 0.32242 (−2.29) 12

LD222 0.32994 (−0.01) 21

LD333 0.32998 (−0.00) 30

LD444 0.32998 (−0.00) 39

ED111 0.33178 (+0.55) 6

ED222 0.33210 (+0.64) 9

ED333 0.33081 (+0.25) 12

ED444 0.33178 (+0.54) 15

ED555 0.33117 (+0.36) 18

EDZ111 0.34444 (+4.38) 9

EDZ222 0.33154 (+0.47) 12

EDZ333 0.33140 (+0.43) 15

EDZ444 0.33124 (+0.38) 18

EDZ555 0.33096 (+0.30) 21

V APAS 0.32836 (−0.50) 5

Table 9
Test Case 1. Comparison of various theories to evaluate the transverse shear stress
σ̂zx = σzx

zP t( a
h)

in z = zupper skinbottom = 3
10h, x = 0, y = b/2. The indefinite equilib-

rium equations have been integrated along the thickness for all the theories except
VAPAS.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.10999 Err.% DOF

LD111 0.10747 (−2.29) 12

LD222 0.10998 (−0.01) 21

LD333 0.10999 (−0.00) 30

LD444 0.10999 (−0.00) 39

ED111 0.11059 (+0.55) 6

ED222 0.11070 (+0.64) 9

ED333 0.11027 (+0.25) 12

ED444 0.11059 (+0.54) 15

ED555 0.11039 (+0.36) 18

EDZ111 0.11481 (+4.38) 9

EDZ222 0.11051 (+0.47) 12

EDZ333 0.11047 (+0.43) 15

EDZ444 0.11041 (+0.38) 18

EDZ555 0.11032 (+0.30) 21

V APAS 0.10945 (−0.49) 5

Table 10
Test Case 1. Comparison of various theories to evaluate the transverse shear stress
σ̂zy =

σzy

zP t( a
h)

in z = zupper skinbottom = 3
10h, x = a/2, y = 0. The indefinite equilib-

rium equations have been integrated along the thickness for all the theories except
VAPAS.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.87231 Err.% DOF

LD111 0.87081 (−0.17) 12

LD222 0.87233 (+0.00) 21

LD333 0.87231 (+0.00) 30

LD444 0.87231 (−0.00) 39

ED111 0.51236 (−41.3) 6

ED222 0.58831 (−32.6) 9

ED333 0.77221 (−11.5) 12

ED444 0.78478 (−10.0 15

ED555 0.81517 (−6.55) 18

EDZ111 0.51803 (−40.6) 9

EDZ222 0.83586 (−4.18) 12

EDZ333 0.83769 (−3.97) 15

EDZ444 0.83847 (−3.88) 18

EDZ555 0.84631 (−2.98) 21

V APAS 0.87354 (+0.14) 5

Table 11
Test Case 1. Comparison of various theories to evaluate the transverse normal stress
σ̂zz = σzz

zP t in z = zupper skinbottom = 3
10h, x = a/2, y = b/2. The indefinite equilib-

rium equations have been integrated along the thickness for all the theories except
VAPAS.
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Fig. 6. Test Case 1. Comparison of various theories to evaluate the transverse shear
stress σ̂zx = σzx

zP t( a
h)

in x = 0, y = b/2. The indefinite equilibrium equations have

been integrated along the thickness.

Fig. 7. Test Case 1. Comparison of various theories to evaluate the transverse dis-
placements amplitude (center plate deflection) ûz = uz

100Ecore

zP th( a
h)

4 in x = a/2, y = b/2.
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 101

Elasticity 0.227330 Err% 0.198251 Err% 0.190084 Err% 0.188542 Err%

LM4 [12] NA NA 0.1982 −0.03 0.1901 +0.01 0.1885 −0.02

ED4 [12] NA NA NA |1.61|† NA |0.79|† NA |1.22|†

EMZC3[12] NA NA NA |1.66|† NA |0.74|† NA |1.17|†

LD1 [12] NA NA NA |1.06|† NA |0.16|† NA |0.05|†

LD4 [12] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 0.246804 +8.57 0.201527 +1.65 0.188663 −0.75 0.186228 −1.23

LD222 0.219334 −3.52 0.195992 −1.14 0.189710 −0.20 0.188538 −0.00

LD555 0.227331 +0.00 0.198251 +0.00 0.190084 +0.00 0.188542 +0.00

V APAS 0.191717 −15.67 0.192759 −2.77 0.189362 −0.38 0.188535 −0.00

Table 12
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×101. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [12] the percentage error Err% is calculated with respect to the LM4
theory. In reference [12] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [12]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 104

Elasticity 45.6531 Err% 15.4835 Err% 7.03601 Err% 5.44237 Err%

LM4 [12] NA NA 15.483 −0.00 7.0360 −0.00 5.4424 +0.00

ED4 [12] NA NA NA |7.45|† NA |3.70|† NA |1.58|†

EMZC3[12] NA NA NA |0.60|† NA |4.06|† NA |5.56|†

LD1 [12] NA NA NA |0.91|† NA |0.23|† NA |0.14|†

LD4 [12] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 46.3445 +1.51 15.5229 +0.25 6.96904 −0.95 5.35853 −1.54

LD222 45.6580 +0.01 15.4824 −0.01 7.03572 −0.00 5.44237 −0.00

LD555 45.6531 −0.00 15.4835 +0.00 7.03601 +0.00 5.44237 −0.00

V APAS 46.0669 +0.91 15.4066 −0.50 7.01576 −0.29 5.44215 −0.00

Table 13
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×104. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [12] the percentage error Err% is calculated with respect to the LM4
theory. In reference [12] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [12]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 106

Elasticity 1089.86 Err% 590.538 Err% 149.696 Err% 7.18809 Err%

LM4 [12] NA NA 590.54 +0.00 149.70 +0.00 7.1881 +0.00

ED4 [12] NA NA NA |82.8|† NA |85.2|† NA |20.0|†

EMZC3[12] NA NA NA |12.5|† NA |3.22|† NA |0.03|†

LD1 [12] NA NA NA |14.3|† NA |3.93|† NA |0.19|†

LD4 [12] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 980.437 −10.04 581.360 −1.55 149.543 −0.10 7.19023 +0.03

LD222 1089.20 −0.06 590.446 −0.02 149.695 −0.00 7.18809 +0.00

LD555 1089.86 −0.00 590.538 −0.00 149.696 −0.00 7.18809 +0.00

V APAS 4125.04 > 100% 1017.25 +72.26 166.073 +10.94 7.18898 +0.00

Table 14
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×106. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [12] the percentage error Err% is calculated with respect to the LM4
theory. In reference [12] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [12]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 108

Elasticity 1469.50 Err% 1370.58 Err% 1260.31 Err% 149.506 Err%

LM4 [12] NA NA 1370.6 1260.3 149.51

ED4 [12] NA NA NA |91.8|† NA |98.1|† NA |96.1|†

EMZC3[12] NA NA NA |24.7|† NA |22.5|† NA |3.10|†

LD1 [12] NA NA NA |27.4|† NA |25.2|† NA |3.82|†

LD4 [12] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 1283.34 −12.67 1323.09 −3.47 1251.11 −0.73 149.464 −0.03

LD222 1468.29 −0.08 1370.09 −0.04 1260.23 −0.01 149.507 +0.00

LD555 1469.50 −0.00 1370.58 −0.00 1260.31 +0.00 149.507 +0.00

V APAS 412009 > 100% 101187 > 100% 16120.2 > 100% 166.591 +11.43

Table 15
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×108. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [12] the percentage error Err% is calculated with respect to the LM4
theory. In reference [12] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [12]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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Fig. 8. Test Case 2. Dimension-less displacement ûx = ux
Eskin

zP th( a
h)

3 ;.

E11 skin
E11 core

≡ FCSR = 7.3 × 104. Comparison between AHSDT, AHSDTZ, VAPAS,
and the elasticity solution.

Fig. 9. Test Case 2. Dimension-less displacement ûx = ux
Eskin

zP th( a
h)

3 ;.

E11 skin
E11 core

≡ FCSR = 7.3 × 108. Comparison between AHSDT, AHSDTZ, ALWT,
VAPAS, and the elasticity solution.
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Fig. 10. Test Case 2. Dimension-less displacement ûx = ux
Eskin

zP th( a
h)

3 ;.

E11 skin
E11 core

≡ FCSR = 7.3×108. Comparison between various zig-zag theories AHSDTZ
and the elasticity solution.
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5 Conclusion

The accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS)
is assessed against several higher-order, zig-zag and layerwise theories gen-
erated by using the invariant axiomatic framework denoted as Generalized
Unified Formulation (GUF). Both the axiomatic models generated by GUF
and VAPAS are also compared against the elasticity solution developed for
the case of a sandwich structure with high Face to Core Stiffness Ratio. It
has been shown that the fact that GUF allows to use an infinite number of
axiomatic theories (Equivalent Single Layer theories with or without zig-zag
effects and Layerwise theories as well) with any combination of orders of the
displacements provides an ideal tool to precisely assess the range of applica-
bility of the Variational Asymptotic Plate and Shell Analysis or other theories
in general. It is demonstrated that VAPAS achieves accuracy comparable to a
fourth (or higher) order zig-zag theory or lower-order layerwise theories, while
the plate model uses the least number degrees of freedom. Hence, in compar-
ison to the axiomatic theories, VAPAS has achieved an excellent compromise
between accuracy and efficiency. Except for extreme cases of thick sandwich
with huge modulus contrast, VAPAS can be used as an effective alternative to
avoid expensive 3D finite element analysis for design and analysis of compos-
ite laminated plates. This assessment also points out the need that material
small parameter needs to be considered to generalize the VAPAS modeling
approach to deal with realistic sandwich structures.
GUF can be implemented in a single FEM code and can generate a virtu-
ally infinite number of theories with accuracy that range from the low-order
equivalent single-layer to the high-order layerwise theories and is the ideal
tool for comparisons and assessments of different theories or for the creation
of adaptive structural codes in optimization and probabilistic studies.
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