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2 J. Régnière et al.

6.1  Introduction

Over the past decades, as significant advances were made in the availability and 

accessibility of computing power, individual-based models (IBM) have become 

increasingly appealing to ecologists (Grimm 1999). The individual-based 

 modeling approach provides a convenient framework to incorporate detailed 

knowledge of individuals and of their interactions within populations (Lomnicki 

1999). Variability among individuals is essential to the success of populations that 

are exposed to changing environments, and because natural selection acts on this 

variability, it is an essential component of population performance.

Initially viewed simply as an alternative modeling technique to classical 

 differential- or difference-based deterministic models of theoretical ecology, IBMs 

are in fact fundamentally different (De Angelis and Mooij 2005). These models 

have four essential characteristics: (1) an organism’s life cycle can be depicted 

in full detail (e.g. thermal responses, behavior, fecundity); (2) variability among 

individuals of the same life stage, be it caused by genetic or environmental dif-

ferences, is accounted for; (3) resources exploited by the modeled organisms are 

explicitly accounted for; and (4) population sizes are represented by integer num-

bers because they are composed of individuals (Uchmanski and Grimm 1996). 

An IBM focuses on the fates of individuals with explicitly different traits, and on 

the biotic and abiotic circumstances to which each responds. The full complexity 

of an organism’s life cycle can therefore be described and modeled. Such mod-

els  provide a helpful framework within which to conceptualize and interconnect 

 natural processes, design research, analyze results, and synergistically combine 

empirical studies and modeling (Van Winkle et al. 1993).

Dealing with individuals simplifies the mathematical formulation of rules and 

relationships that dictate their responses to environmental conditions or to each 

other. Individuals can thus differ in many ways, either genetically or because of 

their environmental context, and it is these differences and their consequences 

that determine the behavior and the effects of populations on their environment. 

The object-oriented programming techniques upon which IBMs rest are particu-

larly well suited to discuss adaptation of organisms to varying environmental 

conditions, because of the property of inheritance from parents and to progeny 

(Warren and Topping 2001). As is true of all objects in this programming para-

digm,  specific traits of parents can be passed on, intact or modified, to progeny 

(children). In a biological context, this occurs when individuals are “copied” at 
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36 Individual-Based Modeling: …

reproduction. Adaptive characteristics that allowed the survival of parents are thus 

inherited by their progeny, modifying the relative frequencies of various individual 

traits according to their survival and fecundity (fitness) under current environmen-

tal conditions. Thus, the frequency distributions of various traits can change in 

simulated populations much as they do in nature.

IBMs are well suited to describing the temperature-dependent processes of 

organisms sensitive to varying environmental conditions, and can help to model 

the responses of populations to a changing climate. Many insect species, including 

those deemed pests due to their significant ecological and economic impact, have 

been influenced by a changing climate (Bale et al. 2002). Prime examples are bark 

beetles in the genus Dendroctonus for which a clear connection between weather 

and population irruptions and subsequent landscape-scale tree mortality has been 

shown (Hansen et al. 2001; Berg et al. 2006; Aukema et al. 2008; Chapman et al. 

2012; Preisler et al. 2012; Hart et al. 2014). Changing climatic conditions are 

also responsible for a range shift in at least one species, Dendroctonus pondero-

sae, the mountain pine beetle (MPB). This irruptive species attacks and kills most 

Pinus species in western North America (Wood 1982). Genetic data suggest that 

MPB migrated north following the postglacial Holocene recolonization of British 

Columbia by several Pinus species (Richardson et al. 2002; Mock et al. 2007; 

Godbout et al. 2008; Samarasekera et al. 2012). Recent warming has increased 

the speed of this MPB migration into new regions in Alberta, British Columbia, 

the Yukon, and Northwest Territories, Canada (Bentz et al. 2010; Safranyik et al. 

2010; Cudmore et al. 2010; de la Giroday et al. 2012), with exposure to at least 

one new host tree species, jack pine (Pinus banksiana) (Cullingham et al. 2011). 

Jack pine extends across the boreal forest of Canada and into the northern part of 

the mid-western United States, and there is concern about the potential for MPB 

to invade eastward across Canada and into central and eastern states (Nealis and 

Cooke 2014). Long-lived high-elevation pines (e.g. P. albicaulis) with life history 

strategies not suited for large-scale disturbance events may also be at risk (Logan 

et al. 2010; Tomback and Achuff 2010). Sustained MPB outbreaks are now occur-

ring in high elevation forests where persistent activity was previously constrained 

by cold temperatures (Amman 1973; Logan and Powell 2001; Bentz et al. 2011a). 

The capacity of MPB to continue expanding into new thermal habitats, however, 

remains unclear.

Issues surrounding the effects of climate on the distribution and perfor-

mance of species have been investigated by a range of methods, including cor-

relative approaches such as climate matching or species distribution modeling 

(Elith and Leathwick 2009) that correlate presence/absence observations with 

climatic and geographic variables and extrapolate the results to novel regimes. 

Mechanistic approaches include more detailed (if less comprehensive) process 

modeling (Sutherst and Bourne 2009; Régnière et al. 2012a). In this chapter, we 

present a prototype mechanistic IBM that describes in detail the fitness (popula-

tion growth rate) responses of MPB to temperature, based on understanding of the 

insect’s developmental and survival responses to temperature, and on the resulting 
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consequences through its interactions with host trees. We realize that many aspects 

of MPB life history and the role of hosts at tree and stand scales are not accounted 

for within this prototype. However, this “working” model allows us to investigate 

climate change effects on the invasiveness of MPB and provides a useful dem-

onstration for the general application of an IBM approach to insect disturbance 

modeling.

6.2  The Insect

The behavior and ecology of MPB have been extensively studied (see Safranyik 

and Carroll 2006). Most populations across the insect’s range are univoltine (one 

generation per year) although 2–3 years can be required in colder environments 

or years (Amman 1973; Bentz et al. 2014). Bivoltinism (i.e. two generations in 

1 year) appears to currently be limited in MPB due to evolved developmental 

thresholds that serve to reduce cold-induced pupal mortality (Bentz and Powell 

in press). MPBs develop through four larval instars before pupating and becom-

ing adults. Except for a brief adult flight period, the entire lifecycle is spent in 

the phloem, and the host tree is typically killed as part of successful offspring 

production. Adults emerge from trees in the summer months to attack new hosts 

using a coordinated attack mediated by beetle-produced pheromones. A well-

synchronized adult emergence facilitates mass attack, and is important in the 

development of MPB outbreaks because the insects must overcome host defenses 

to successfully colonize healthy trees (Raffa et al. 2008). Temperature directly 

influences MPB development rate (Bentz et al. 1991; Régnière et al. 2012b), and 

stage-specific development thresholds help synchronize adult emergence (Powell 

and Logan 2005). Mortality due to extreme cold also conditions MPB population 

success (Safranyik and Linton 1998). Cues of declining temperature initiate glyc-

erol synthesis and lower supercooling points (SCP), increasing MPB larval cold 

tolerance (Bentz and Mullins 1999). Before this acclimation occurs or when it is 

disrupted by warm periods, significant mortality can occur following cold snaps. 

Reproductively active MPB adults also supercool to some extent (Lester and Irwin 

2012). In areas where MPB population growth has historically been limited by 

cold mortality, warm temperatures associated with climate change have increased 

population success and may allow continued population expansion (Stahl et al. 

2006; Sambaraju et al. 2012).

6.3  The Model

The influence of climate on MPB population success has been the subject of 

considerable modeling attention. Empirically driven, statistical approaches have 

been proposed (Safranyik et al. 1975; Aukema et al. 2008; Preisler et al. 2012; 
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56 Individual-Based Modeling: …

Reyes et al. 2012), and mechanistic models have also been developed (Bentz et al. 

1991; Gilbert et al. 2004; Régnière and Bentz 2007; Powell and Bentz 2009), to 

analyze the role of temperature in MPB population outbreaks using historic and 

future climate data (Logan and Bentz 1999; Logan and Powell 2001; Hicke et al. 

2006; Bentz et al. 2010; Safranyik et al. 2010). While empirical models have 

good descriptive power for the range of conditions for which they were derived, 

they need to be used with caution under unobserved multivariate contexts such 

as encountered when crossing ecoregional boundaries. In contrast, mechanistic 

models are more suitable for predicting MPB population success in novel climate 

regimes. Previous mechanistic model development, however, has used frameworks 

that don’t allow inclusion of processes other than the influence of temperature on 

insect development time. For example, Powell and Bentz (2009) were successful 

in linking phenology, temperature, and population growth rates; although their 

approach is based on cohorts, it is unsuited to linking with other aspects of MPB 

life history such as cold tolerance (Régnière and Bentz 2007). MPB has no obli-

gate diapause stage. The age distribution of overwintering populations, and there-

fore, winter survival are thus largely determined by summer phenology. Modeling 

cold tolerance requires an individual beetle’s history of cold exposure. An IBM 

can potentially succeed where other modeling approaches have failed because it 

allows life history traits relevant to beetle success to be projected onto individuals 

(i.e. age-specific development time, exposure to cold, fecundity), and collaboration 

among individuals to overwhelm host responses can be incorporated. We develop 

an IBM that integrates the influence of temperature on insect development time 

and cold mortality, and their consequences on the interaction between MPB and its 

host trees.

Our model allows two operating modes: incipient or outbreak. In the out-

break mode, attacking brood adults lay eggs in successfully attacked trees, and 

their progeny are allowed to produce successive generations. Only in the first 

year is an input initial attack pattern provided; subsequent timing and intensity of 

attacks are determined by the timing of brood adult emergence. This can lead to 

overlapping generations (e.g. when the semivoltine descendents of year n−1 and 

univoltine descendents of year n overlap to attack trees in year n + 1). As in a 

real-world outbreak, very rapidly so many beetle objects are available that brood 

trees are overwhelmed almost with impunity as only a small proportion of attacks 

are warded off by tree defenses. In incipient mode, new attacks in a single focus 

tree are initiated each year, and the number of successful attacks generated by the 

progeny of this initial attack in the subsequent year or two (depending on voltin-

ism) is recorded. Thus, each initial attack is allowed only a single generation. The 

incipient mode thus describes the process whereby an incipient population subsists 

on limited, ephemeral resources, and is unable to develop to the outbreak phase 

by mass attacking new hosts. This mode predicts the circumstances under which 

incipient populations can become outbreak populations, while the outbreak mode 

describes the effect of temperature on the natural course of an outbreak. In both 

cases, population growth rate (R) is expressed as the ratio of successful attacks in 

successive years or generations.
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6.3.1  Objects

This IBM is nonspatial, in the sense that trees and insects do not have specific 

locations in space, and movement is assumed to occur throughout (and only 

within) the modeled forest. The model contains four kinds of objects: a forest, two 

kinds of host trees, and beetles.

The forest is a “container object” that tracks the number and states of tree and 

beetle individuals. The forest has a total size, Fs (km2), with tree density Fd (trees 

km−2) used solely to determine the number of available host trees. There are two 

types of trees: focus and brood, all the same size, differing only in their defen-

sive capability. An area, F0 (km2), of forest containing defenseless focus trees 

receives initial beetle attacks. Brood trees are attacked by adults emerging from 

these focus trees, and from previously attacked brood trees. Brood trees can ward 

off attacks at a constant daily rate of a0 (beetles m−2 of bark per day), and support 

a maximum number of attacks amax (beetles m−2 of bark), reflecting maximum 

colonization density of individual trees. Brood trees whose defense capacity (a0) 

is exceeded are killed, and their numbers accumulate Fk over time t (years). Insect 

objects are contained either in focus or brood trees. In this model, only females are 

modeled. In MPB, sex ratio varies systematically over the course of an outbreak 

(Amman and Cole 1983). While this would be an interesting parameter to explore 

because of possible sex-differential mortality and maternal choice of sex ratios, we 

chose to use a constant 60 % female sex ratio to create female eggs.

Each insect object is distinct in three characteristics, expressed relative to the 

population mean: eight uncorrelated stage-specific development rates, potential 

fecundity, and larval cold tolerance. Individuals develop, reproduce, and survive 

independent of one another, except when the newly emerged adults attack new 

hosts. At that time, the number of adults attacking on a given day determines the 

probability of survival given host tree defenses. Because the number of individual 

beetles becomes very large, especially when the model runs in outbreak mode, a 

“super-individual” approach (Scheffer et al. 1995) is used in which beetle objects 

represent several individuals with the same characteristics (development rates, age, 

potential, and realized fecundity).

6.3.2  Development, Reproduction, Variability

Descriptions of MPB thermal responses in development and oviposition were 

taken from Régnière et al. (2012b). Development and oviposition are simulated 

by a unimodal rate equation with a distinct set of parameters for each life stage 

and for egg laying. At creation, each individual is assigned relative development 

rates in each of the seven life stages and relative fecundity, represented by eight 

random numbers that are drawn from lognormal distributions with means of 1. 

Development in successive life stages and oviposition are summed at each time 
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step (4 h). Individuals change stages when their physiological age (starting at 0 for 

eggs) reaches a new unit (1: instar 1, 2: instar 2, 3: instar 3, 4: instar 4; 5: pupae, 6: 

teneral (unemerged) adult, 7: ovipositing adult) with two exceptions. Teneral adult 

emergence can be delayed without further aging if temperature remains below 

an emergence threshold, Te = 18  (Safranyik and Carroll 2006). Adults emerg-

ing on any given day collectively attack new trees and become ovipositing adults. 

Ovipositing adults die once they have laid 95 % of their potential fecundity (aver-

age 82 eggs/female), which simulates old age mortality.

6.3.3  Survival

A constant “attrition” rate s, representing all mortality not specifically described, 

is applied at the creation of new eggs. The main cause of dynamic mortality in 

the model is exposure to cold. All eggs, pupae, and teneral adults are assumed 

to be killed as soon as temperature drops below −18 . Larval cold tolerance is 

 modeled following Régnière and Bentz (2007). The probability distribution of 

cold tolerance is a population trait that varies over time in response to temperature. 

The proportion of the larval population in one of three states, each with its SCP 

distribution, is calculated from the daily series of minimum/maximum tempera-

tures. A composite distribution of SCP is compiled each day. Probability of cold 

mortality is based on this distribution and daily minimum temperature. The maxi-

mum mortality rate experienced by larvae is applied to each super-individual at the 

end of larval development.

In ovipositing adults, cold tolerance varies seasonally and is modeled in rela-

tion to time of year, independent of temperature. For this purpose we fitted a 

cosine function of calendar date to the observations of Lester and Irwin (2012, 

their Fig. 5a; SCPa = −20.2− 6.09 cos

[

2π

(

t

/

365
)1.365

]

; R2 = 0.946). Adults 

exposed to a temperature ≤SCPa die immediately.

6.3.4  Attack

The beetle population is initialized using a Gaussian distribution of attacks over 

time on the forest’s defenseless focus trees. Mean date (t0) and standard deviation 

(σ0) of the initial attacks are specified as inputs. The number of females per m2 of 

bark in this initial attack is n0 + amax(F0 × Fd − 1), so that when a single focus 

tree (F0 = 1/Fd) is used, the model simulates an incipient outbreak with an initial 

density of n0 females m−2 of bark. Females in the initial attack lay eggs, generat-

ing the brood adults that will attack new host trees at emergence.

When an adult emerges from a tree, it joins the day’s collection of emerging 

adults (ne) that generate that day’s new attack on surviving host trees in the stand. 

All successfully attacked trees are killed. To limit population growth, a proportion 
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Sl of emerging beetles succeeds at finding live hosts to attack while the remainder 

is lost. This loss is a function of the proportion of the trees in the forest that have 

already been attacked and killed:

where Fk is the number of trees in the forest that have already been attacked, and 

Fs × Fd is the total number of trees in the forest. The exponent α ≥ 1 specifies 

how rapidly resource depletion inhibits host encounter. We use α = 40, large 

enough so that the effect of resource exhaustion occurs abruptly as tree mortality 

approaches 100 %. Thus, in the simulations produced here, α is used only to pro-

duce a sudden limit to growth.

Total emerging adults attacking new hosts is na = Slne. Our model assumes that 

beetles are perfect host finders, consistently aggregating on available hosts and 

reaching maximum attack density on those trees before switching. The number of 

trees attacked is determined by:

The daily number of attacking beetles killed by tree defenses is

In an incipient outbreak, where beetles emerge from a single focus tree, the pro-

portion of attacking beetles killed by host defenses can be fairly high, as A can 

easily exceed na on any given day. But once Fa becomes large enough in a devel-

oping outbreak, survival from host defenses is determined solely by the ratio 

a0/amax.

6.4  Calibration/Validation

6.4.1  Seasonality of Adult Emergence

We compared output of our model with field observations to verify that the seasonal-

ity it predicted was close to reality. Beetle development time and associated phloem 

temperatures were monitored in the field at a range of latitudes and elevations 

(Fig. 6.1; Bentz et al. 2014). Beetle attacks and the subsequent emergence of brood 

adults were monitored on individual host trees every 1–4 days during the entire 

attack period. Hourly phloem temperature records were obtained from the north and 

south aspects of tree boles, just under the outer bark, 1.8 m above ground. Hourly 

mean air temperature was recorded at each site. These measurements were made 

continuously from initiation of attacks to adult emergence 1 or 2 years later.

(6.1)Sl = 1−

(

Fk

Fs × Fd

)

α

(6.2)Fa = max

(

1,
na

amax

)

(6.3)A = a0Fa,
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Our model requires as input daily minimum and maximum temperatures, 

and these were extracted from the observed hourly temperature records. We 

 calculated bark temperatures by averaging north- and south-aspect daily mini-

mum and maximum observations and developed a phloem microclimate filter 

to transform daily minimum and maximum air temperature (Tn, Tx) into phloem 

temperature (T ′

n
, T

′

x
). Because phloem temperatures are not usually available, 

and air temperatures modified with the microclimate filter will be used in model 

application, we present model test results obtained with this input, except when 

otherwise mentioned. For each set of MPB attack and emergence observations 

(i.e. location and year), the attack data were summarized by calculating the 

mean and standard deviation of attack dates, used as model inputs. The model 

interpolates between successive minima and maxima and runs on a 4-hr time 

step (Allen 1976).

Fig. 6.1  Map of western 

North America illustrating 

sampling locations for 

validation of adult emergence 

phenology (circles, Table 2; 

Bentz et al. 2014) and 

simulation of population 

growth rates between 1950 

and 2012 (squares, sizes 

proportional to elevation)
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The dates when 10, 50, and 90 % emergence were observed in the field were 

compared to model-predicted dates. Because an IBM is inherently stochastic, 

each simulation was replicated 30 times and results averaged. The dates predicted 

by the model, using the published parameters for development rates, variability, 

and fecundity (Régnière et al. 2012b), were well-correlated with observations 

(r = 0.87), but the model-predicted events an average of 12.0 days later than 

observed, and the observed–predicted regression line had a slope of 0.76 (sig-

nificantly less than 1; Fig. 6.2a). Based on these results, we made two modifi-

cations to the model. To restrict the duration of the oviposition period, the total 

number of eggs laid was limited to 50 % of individuals’ potential fecundity, set 

to Ē0 = 82 eggs per female (Régnière et al. 2012b). This reduction was obtained 

by trial and error, and may reflect adult mortality not otherwise explicitly consid-

ered in the model. To better represent the observed variability of the adult emer-

gence period, we also reduced the variability of development rates of all immature 

stages by half, again by trial and error. It is quite possible that the methods used 

to determine insect development rates under laboratory conditions (see Régnière 

et al. 2012b) exaggerated their normal variability. These changes increased the 

observed–predicted correlation (r = 0.94), made the bias nonsignificant (aver-

age 1.2 days), and increased the observed–predicted regression slope to 0.8 (still 

significantly less than 1). Given the input initial attack patterns (left column of 

Fig. 6.3) and observed air temperatures modified for bark microclimate, modeled 

Fig. 6.2  Relationship 

between observed and 

simulated dates of 10, 50, and 

90 % cumulative emergence 

of univoltine adults in 8 

site-years in the western 

United States between 2002 

and 2012. a Unmodified 

model; b modified model; 

parameters that describe 

fecundity and development 

time variance were altered. 

Solid lines equality; dotted 

lines regression

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

A
u

t
h

o
r
 P

r
o

o
f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Layout: T1 Standard SC Book ID: 316349_1_En Book ISBN: 978-3-319-19809-5

Chapter No.: 6 Date: 5 June 2015 7:54 PM Page: 11/30

116 Individual-Based Modeling: …

Fig. 6.3  Comparison of observed and simulated mountain pine beetle emergence in seven locations 

and years. The figure is divided in three columns. On the left are the observed (white circle) and 

Gaussian (dotted line) attack patterns (model input) for each plot-year. In the center are the observed 

(black circle all orientations; black triangle south bole; white triangle north bole) and simulated 

(Dash line) univoltine adult emergence patterns in the following summer. On the right, in the case 

of sites CA2 and UT1, are semivoltine adult emergence patterns 2 years after the initial attack. The 

dashed line in the right panel for UT1 was generated using north bole temperatures as model input
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univoltine adult emergence patterns generally agree well with observations (center 

and right columns in Fig. 6.3), although emergence timing of semivoltine adults 

was less accurate (Fig. 6.3k). The need to reduce developmental variability and 

oviposition period to obtain a better fit with field observations suggests that 

important development and mortality processes may be missing in our model. 

Nevertheless, observed and simulated development times ranged from 400 to 

800 days; a precision of <15 days over such a long simulation period is sufficient 

to predict climate impacts on MPB seasonality and performance.

6.4.2  Fitting to Observed Annual Growth Rates

Estimates of observed MPB outbreak growth rates obtained from aerial detec-

tion surveys conducted by United States Forest Service for the Sawtooth National 

Recreation Area (SNRA), Idaho, were described in Powell and Bentz (2009). 

We collected MPB-infested tree phloem and air temperature data at multiple 

sites between 18 July 1992 and 15 October 2004, using the methods described in 

Sect. 6.3.1, from four sites in the SNRA, forming a continuous thermal record of 

daily minimum and maximum temperatures. Assuming that the density of trees is 

relatively constant, the area growth rate (calculated as the ratio of area affected 

in year n + 1/area affected in year n) approximates the growth rate in number of 

MPB-infested trees.

Additional daily minimum and maximum air temperature data for the period 

lacking phloem temperature observations between 1986 and 2010 were obtained 

from the nearest weather stations in the National Climatic Data Center daily 

observations databases, using distance-weighted averaging and thermal gradient 

approach of BioSIM (Régnière et al. 2014). These records were then transformed 

with a multiple regression relating daily air temperature minima and maxima to 

observed 1992 phloem temperatures:

This provided a means to complete our time series of daily minimum and maxi-

mum phloem temperature to cover the period 1986–2010.

Using this daily minimum and maximum phloem temperature time series as 

input, the model was run in outbreak mode, using a simulated annealing algo-

rithm to estimate the value of the attrition survival parameter (s = 0.43) and ini-

tial infestation size in 1986 (F0 = 0.03 km2) on the basis of minimum sum of 

squared deviations between observed and simulated total forest area killed over 

time. Other parameter values were fixed (Fs = 2800 km2; Fd = 75,000 trees km−2; 

a0 = 5 attacks day−1 m−2; amax = 120 attacks m−2; Te = 18 ; N0 = 60 attacks; 

t0 = 200, σ0 = 5 days, and α = 40).

(6.4)
T
′

n
= 2.55+ 1.00Tn + 0.298(Tx − Tn)

T
′

x
= 1.88+ 1.04Tn + 0.080(Tx − Tn)
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The resulting predicted and observed cumulative forest mortality (km2) were 

highly correlated (r = 0.997; Fig. 6.4a). The annual outbreak area growth rates 

(Fig. 6.4b), however, were not significantly correlated with the simulated annual 

growth rates of successful attacks (r = 0.12, P = 0.67; Fig. 6.4b), although aver-

age observed (1.733 ± 1.014) and simulated (1.757 ± 1.006) growth rates were 

nearly identical (P = 0.95). The model is set up to assume an exact correspond-

ence between the number of successful MPB attacks and tree mortality because 

the density of successful attacks per tree is constant, all trees are equally likely to 

be attacked and killed, and there is no spatial variation in tree density. In nature, 

none of these are constant, and deviations between beetle population performance 

and tree mortality rates may vary accordingly. Growth rates were significantly 

reduced by resource-loss in the last 2 years of the simulated outbreak through Eq. 

(6.1), as the total area killed (Fk) approached total forest size, estimated here at 

Fs = 2800 km2 (black triangle in Fig. 6.4a). Model results indicate that most indi-

viduals in the SNRA during the study period spent winter as larvae (Fig. 6.4c). 

Fig. 6.4  Observed (white circle) and simulated (black circle). a Infestation size (also, value 

of survival from resource-loss Sl black triangle); b annual infestation growth rates; c proportion 

of overwintering individuals in larval stages (black circle) or as ovipositing adults (white circle); 

d proportion of adults emerging in the year of attack (black circle) or in the following year (white 

circle); e winter mortality rate of ovipositing adults (black circle) and average realized  fecundity 

(white circle); f winter mortality of immature stages (eggs: white circle; larvae: black circle; 

pupae: white triangle; teneral adults: black triangle). Year is the year of attack. Generation 5 was 

produced in 1990, with univoltine adults emerging in 1991
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Years with a large proportion of individuals spending winter as ovipositing adults 

corresponded to those with a higher proportion of individuals emerging as adults 

in the same summer as they were oviposited (Fig. 6.4d; r = .86). Winter mortality 

among overwintering adults was the main source of variation in realized fecun-

dity (Fig. 6.4e; r = −0.96). Winter mortality of eggs and pupae was very low 

(Fig. 6.4f) because very few individuals were predicted to spend winter in those 

stages. Larval winter mortality averaged only 20 %, but mortality in the teneral 

adult stage was highly variable, with high mortality rates associated with years 

when a high proportion of individuals reached the ovipositing adult stage in the 

summer of attack (r = 0.66), as many individuals were unable to emerge prior to 

winter. Because in these simulations the initial population was already in outbreak 

mode (0.03 km2 × 75,000 trees km−2 = 2250 trees), the number of MPB attack-

ing was well beyond a tree’s defensive capacity, and the proportion of attacks 

warded off by trees is near constant at 4 % (a0/amax = 5/120).

6.5  Model Behavior

6.5.1  Seasonality and Elevation

We ran the model at three elevations near Jasper, Alberta, where MPB is well 

established: one point at Jasper (1062 m), two at the same latitude and longitude 

but at fictional elevations: low (400 m) and high (1500 m). Actual weather obser-

vations for the period 2007–2010 were used as input. The nearest Environment 

Canada weather station was chosen for each simulation point using BioSIM 

(Régnière et al. 2014), compensating for differences in coordinates with regional 

latitude, longitude, and elevation thermal gradients.

We ran the model in incipient mode using (1) 60 females/m2 in the initial 

attack, with t0 = 200 (17 July) and σ0 = 5, (2) attrition survival s = 1, and (3) 

adult emergence threshold Te = 18 . Two different simulations were run: (a) no 

winter mortality and (b) winter mortality in all life stages. The distribution of life 

stages and adult emergence over time resulting from these simulations are illus-

trated in Fig. 6.5.

At the fictional low elevation site, ignoring winter mortality, a very small pro-

portion of adults emerged in October of the initial attack year. The majority of 

brood adults emerged the following summer (i.e. univoltine). Some individuals 

developed to the teneral adult stage prior to winter, and the predicted emergence 

of these individuals was as early as April when temperatures exceeded 18 . 

However, most individuals spent the winter in the larval and pupal stages and 

emerged in July. When cold mortality was applied, overwintering eggs, pupae, and 

teneral adults were killed, along with a portion of overwintering larvae. As a result 

of this mortality, the relative importance of the first summer’s late (October) flight 

was inflated. As none of the eggs laid by those late-summer attackers would have 

survived winter, their contribution to the population would be null. Mortality of 
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pupae and teneral adults also eliminated the brood adults that would have emerged 

in early spring, leaving only the individuals that spent winter in the larval stages to 

contribute to the next summer’s brood adult flight in June and July.

Fig. 6.5  Predicted life stage frequencies and attack timing following a Gaussian initial attack 

centered on July 17 (day 200 ± 5 days). Temperature was estimated for three elevations at the 

latitude and longitude of Jasper, Alberta, Canada (52.88°N, −118.07°E): 1500 m (top row of 

4 panels), 1062 m (actual elevation, center row) and 400 m (bottom row). Left column: simula-

tions with no winter mortality. Right column: winter mortality in all life stages
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At the middle elevation (actual elevation of Jasper), all individuals spent win-

ter as larvae, mostly in the 4th instar. Brood adult emergence occurred in July of 

the following summer (univoltine). Mortality due to cold did not change the tim-

ing of adult emergence, although the total number of emerging brood adults was 

reduced. At the highest elevation, the population also overwintered as larvae, and a 

high proportion of individuals emerged in August to October of the following year 

(univoltine). The remaining individuals spent the second winter as teneral adults 

and emerged 2 years after the initial attack (semivoltine). Many of the univoltine 

adults would have overwintered as ovipositing adults. When cold-induced mortal-

ity is added, teneral adults are predicted to die during the second winter, resulting 

in emergence of univoltine beetles only.

These simulations illustrate important consequences of climate on MPB 

dynamics. First, at low elevation locations where summer development is accel-

erated, but with sufficient cold to kill the most sensitive life stages, brood adults 

emerging in late summer of the year of initial attack may not reproduce success-

fully due to mortality of eggs during winter. Ovipositing adults are also likely to 

be killed overwinter. Thus, warmer climates can lead to lower overall population 

fitness as a result of poor synchrony between winter cold and the most cold-

hardy life stages (larvae). However, in still warmer conditions where winters 

are not cold, this effect would disappear. In colder climates with slower summer 

development and a mix of univoltine and semivoltine beetles, winter mortality 

in the teneral and ovipositing adult stages can also result in high mortality dur-

ing the second winter. These results confirm previous research suggesting that 

climates leading to well-synchronized, strictly univoltine phenology are the most 

adaptive for the insect (Amman 1973; Safranyik 1978). As winter temperatures 

warm, however, complete univoltinism does not appear to be mandatory for 

population growth as long as adult emergence remains synchronous (Bentz et al. 

2014).

6.5.2  Latitudinal Gradient

We ran the model over the period 1951–2010 at 15 locations along a latitudinal 

gradient within the geographical range of lodgepole pine (P. contorta), between 

Strawberry Point, Utah, USA (37.45°N, −112.34°E, 2695 m) and Fort Nelson, 

British Columbia (58.78°N, −122.73¨E, 395 m). There was a strong negative 

correlation between elevation and latitude among the sites (r = −0.90; squares, 

Fig. 6.1). The model was run in incipient as well as outbreak mode. Weather 

inputs were provided by BioSIM, from the two daily NCDC weather stations 

nearest to each simulation point, compensating for differences in latitude, longi-

tude, and elevation with local thermal gradients derived from several nearest nor-

mals-generating weather stations. We provided the same Gaussian initial attack 

 pattern (mean: 17 July, standard deviation: 5 days) as input. Each simulation was 

 replicated 30 times and results were averaged to reduce stochastic effects. General 
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Linear Models were used to relate several key output variables (single-generation 

population growth rates R, winter survival Sw, voltinism, fecundity, and attacking 

adult survival from host defenses Sh) to year, latitude L, and elevation E. For this 

analysis, latitude and elevation were combined into a single variable that we called 

“effective latitude” (LE = L + kE) where k transforms elevation into degrees lati-

tude. The value of k was chosen to maximize the correlation between average 

growth rate and LE (1°N per 165 m elevation). This value is similar to that esti-

mated by Bentz et al. (2014) using degree hours >15  required for completion of 

a generation.

Simulated growth rates increased significantly between the 1950–1959 and 

2010–2012 time periods. In both incipient and outbreak modes, effective latitude 

had a negative effect on growth rates, and the increase of population growth rates 

through time was most pronounced at the highest effective latitudes (time × lati-

tude interactions highly significant in both modes; Figs. 6.6a, f). Winter survival 

also increased significantly over time and decreased significantly with effective 

latitude (Figs. 6.6b, g). However, no significant interaction was apparent between 

effective latitude and time period in either incipient or outbreak mode in the effect 

on winter survival. These effects were identical in incipient and outbreak modes. 

Year, effective latitude, and their interaction also significantly affected voltinism in 

the two simulation modes (Figs. 6.6c, h). These results suggest that MPB popula-

tions across the 15 sites in this latitudinal/elevational gradient have been mostly 

univoltine, and increasingly so over the period 1950–2012. This strong tendency 

to univoltinism reflects the choice of our simulation locations, all situated within 

the main distribution of lodgepole pine. The exceptions to univoltinism occurred 

mostly between 1950 and 1980, with 30 % of adults emerging in less than a year 

in Cassia, Idaho, USA (42.1°N, −114.1°E, 1965 m), and 20 % as semivoltine in 

Vernon, British Columbia (50.35°N, −119.11°E, 1452 m). Realized fecundity did 

not change significantly over the simulation period, but dropped significantly with 

effective latitude (Figs. 6.6d, i).

Fecundity was more variable in incipient mode, probably as a result of the 

smaller number of adults surviving host defenses (Figs. 6.6e, j). In incipient mode, 

this factor increased significantly over time and declined with effective latitude, 

with a significant interaction. However, as expected, outbreak-mode survival from 

host defenses was very high and essentially constant. To summarize these results, 

a regression model using log Sw (winter survival), and log Sh (attacking adult 

 survival from host defenses) as predictors explained 98.6 % of the variation in log 

R between years, locations, and simulation modes.

The modeled changes in MPB survival and recruitment rates over time and 

space described here were caused by corresponding changes in observed ther-

mal regimes, in particular extreme minimum and mean annual temperatures 

(Fig. 6.6k, l), and to a lesser extent mean maximum temperatures (Fig. 6.6m). 

There was also a slight increase in precipitation over the years (Fig. 6.6n), but 

because of a gradual increase in mean annual temperature this did not translate to 

a change of aridity, calculated as the annual sum of monthly differences between 

potential evapotranspiration and precipitation (Fig. 6.6o).
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6.6  Climate Change

Simulated past and future (1961–2100) daily minimum and maximum tempera-

tures on a 201 × 193 grid over North America were obtained from the Canadian 

Regional Climate Model (CRCM) version 4.2.0 runs ADJ and ADL (Music and 

Caya 2007). These runs are based on the Intergovernmental Panel on Climate 

Change (IPCC) A2 emissions scenario  (IPCC 2007), which has been realistic 

thus far given actual emissions estimates (Raupach et al. 2007). The IPCC A2 is 

intermediate between Representative Concentration Pathway RCP6 and RPC8.5 

 scenarios (IPCC 2013).

Fig. 6.6  Decadal average model inputs and outputs in incipient and outbreak modes for an array 

of 15 locations in western North America over the period 1951–2012. Sites grouped into five 

effective latitude classes of 2° (number of sites per class in parentheses). Left column incipient 

mode. Center column outbreak mode. Right column weather statistics. a, f Generation growth 

rate; b, g winter survival (all stages); c, h mean number of years to complete a generation 

(development in 1 year is univoltine); d, i realized fecundity; e, j survival from host defenses;  

k extreme annual minimum, l mean annual and m mean maximum air temperature; n annual 

 precipitation; and o aridity index
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From these data, 30-year normals were computed for several decades in 

the interval 1961–2050, and the “delta” method (differences between modeled 

 decadal normals and the reference 1981–2000) was used to generate unbiased dec-

adal sets of 30-year normals into the future. We used as model input 10 years of 

observed daily minimum and maximum temperatures for the decades 1961–1970,  

1981–1990, 2001–2010, and 10 years of daily values generated stochasti-

cally from climate-changed normals (Régnière and St-Amant 2007) for decades  

2021–2030 (normals 2011–2040) and 2041–2050 (normals 2031–2060).

Two sets of model output maps were prepared, one for western North America, 

and one for the whole continent, north of Mexico. The model was run in incipi-

ent and outbreak modes for 10,000 simulation points located randomly across 

western North America, and 30,000 points across the whole of North America 

north of Mexico, with increased point density in mountainous areas. Elevations 

were obtained from digital elevation models (DEM) at 30 arc-second resolution 

obtained from Shuttle Radar Topography Mission SRTM 30 (http://dds.cr.usgs.

gov/srtm/version2_1/SRTM30/; Accessed 6 January 2015). Because of the sto-

chastic nature of the model and of weather inputs when generated from normals, 

each model run was replicated 10 times, and model output was averaged over rep-

licates and years. From these averaged outputs, maps were generated by universal 

kriging with elevation provided by the input DEM as external drift variable. Log 

population growth rates were used for interpolation. Model output was masked 

using polygons that estimate the twentieth century distributions of pine habitat in 

the United States and Canada (all Pinus species mapped by Little 1971).

Predicted MPB population growth rates over the distribution of western pine 

species increased considerably in every decade between 1961–1970 and 2001–

2010, and are predicted to continue increasing under climate change (Fig. 6.7). 

Over the historical period (1961–1970 to 2001–2010), these changes coincided 

with changes in the thermal regime (Fig. 6.6). The maps suggest that numerous 

forested areas, particularly in south-central British Columbia, coastal regions 

and low latitudes and elevations in the United States, have historically had high 
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probability of MPB outbreak development. Periodic MPB outbreaks have been 

observed in these areas (Preisler et al. 2012). However, factors other than temper-

ature that are not accounted for in our model affect MPB population dynamics. 

These include stand density, host tree age and size (Fettig et al. 2007), and mois-

ture conditions that can influence fungal symbionts (Rice et al. 2007), tree defense 

capacity, and phloem drying. The latter factor is a major cause of mortality among 

MPB immature stages (Cole 1981; Safranyik and Carroll 2006). Along our latitu-

dinal gradient, annual precipitation (Fig. 6.6n) and mean temperature combined 

to generate a strong aridity gradient, undoubtedly a factor involved in limiting 

MPB population growth rates in the southern proportion of the insect’s range. 

Also, MPB developmental responses to temperature in the southwest United States 

differ from those in the northern part of the insect’s range (Bentz et al. 2011b) 

from which our model parameters were obtained. Therefore, model predictions are 

less reliable in these areas. Western pine forests at higher elevations in the United 

States and Canada, and at higher latitudes in British Columbia and Alberta his-

torically had a low probability of MPB outbreaks. These areas are predicted to 

become increasingly suitable to MPB with climate change. Many of these areas 

Fig. 6.7  Incipient (a–d) and outbreak (e–h) population growth rates during 1961–1970 (a, e), 

1981–1990 (b, f), 2001–2010 (c, g), and expected in 2021–2030 (d, h). i Map overlaying areas 

affected by mountain pine beetle in western North America, 1997–2011 (red) on the twenti-

eth century distribution of western pines not including jack pine (data compiled by G. Thandi, 

Natural Resources Canada, and provided by: BC Ministry of Forests, Alberta Environment and 

Sustainable Resource Development, USDA Forest Service, Natural Resources Canada). Western 

pine species distribution compiled from U.S. Geological Survey 1999
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are currently experiencing widespread MPB outbreaks (Safranyik et al. 2010; 

Meddens et al. 2012; Fig. 6.7i), and the climate change scenario maps (Fig. 6.7d, 

h) show that this trend can be expected to continue, with increasing risk in the 

Yukon, Northwest Territories, and Alberta.

In 2006, MPB populations were observed infesting jack pine in central Alberta 

(Cullingham et al. 2011). This population expansion was aided by long-distance 

dispersal of beetles from epidemic populations west of the Rocky Mountains 

(de la Giroday et al. 2012), and possibly by high reproductive success in naïve 

hosts (Cudmore et al. 2010). The current distribution of MPB-caused tree mor-

tality in Alberta (Fig. 6.7i) corresponds well with predicted population growth 

rates in outbreak mode, for the period 2001–2010 (Fig. 6.7g). By the middle of 

this century, predicted population growth rates will be moderate to high in most of 

Alberta, although moderate to low in the northern and eastern Canadian Provinces 

where it is actually predicted to decline slightly in the future. These results high-

light the differential effect of temperature on MPB cold tolerance and population 

 synchrony. Increasing minimum temperatures may result in higher overwinter sur-

vival, but univoltinism will be disrupted when temperatures are too warm (Bentz 

et al. 2010; Sambaraju et al. 2012; Bentz and Powell in press). MPB outbreak 

potential and population growth is also influenced by stand conditions, measured 

using indices of stand structure, volume, density and composition. Safranyik et al. 

(2010) found that stands east of Alberta generally have low suitability, and when 

combined with our model results suggest that future population growth across the 

boreal forest will be less than that recently observed in British Columbia.

Incipient model results indicate areas where thermal conditions are highly 

conducive to the transition between incipient and outbreak populations, although 

population growth is artificially halted in the model. By the middle of this cen-

tury, model predictions suggest that thermal conditions in much of Alberta and 

northwestern British Columbia will become more suitable for transition from the 

incipient phase, without the need for large surrounding populations. The Canadian 

boreal forest and some high elevations areas in the western United States, however, 

will not necessarily be suitable for this transition (Fig. 6.8b), although if popula-

tion growth is unconstrained due to other factors, populations will be moderately 

successful (Fig. 6.8d). Pine forests in the eastern United States are also predicted 

to have high population growth potential by the middle of this century. Suitability 

of eastern pines for MPB reproduction is unknown, however, and our process 

models of development and cold tolerance are not parameterized for these regions.

6.7  Modeling Conclusions

Our integrated model of phenology and cold tolerance provides a tool to evalu-

ate climate influences on the invasiveness of MPB, a native insect limited in dis-

tribution by climate. Simulations illustrate important consequences of climate on 

MPB dynamics. When run across a latitudinal gradient, winter survival and the 
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ability of adults to overcome host defenses, a consequence of developmental 

timing, explained 98.6 % of the variation in population growth between years, 

locations, and simulation modes. Winter survival and population growth rates 

increased significantly between 1950 and 2012, particularly at the highest effective 

latitudes. When run across an elevation gradient, thermal regimes that resulted in 

univoltinism and larval overwintering were optimal. Warm summers at the lowest 

 elevation accelerated development, resulting in adult emergence the year of attack. 

Oviposition was late enough in the fall, however, that a high proportion of the life 

stages most sensitive to cold were killed during winter, emphasizing the low over-

all population fitness resulting from poor phenological synchrony between win-

ter cold and the most cold-hardy life stages at warmer temperature. Using climate 

projections, simulations suggest that much of the central Canadian boreal  forest 

fits this scenario. Future environmental suitability for population growth and 

expansion, as measured by the influence of temperature on MPB physiological 

processes, will lie between the relatively low suitability values predicted by the 

incipient mode simulations (where host tree defenses play a large role) and the 

higher values predicted in outbreak mode (where host defenses are negligible).

This prototype mechanistic model illustrates the importance of accounting for 

both cold mortality and life-stage-specific phenological details, in full interaction. 

Fig. 6.8  Incipient (a, b) and outbreak (c, d) MPB population growth rates during 1981–1990 

and expected in 2041–2050 in North America north of Mexico. Model output is masked with the 

twentieth century distribution of all pine species (U.S. Geological Survey 1999)
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This is a benefit of this IBM that an aggregated modeling approach could not 

have provided. We acknowledge gaps in our understanding of these processes, 

 including cold tolerance of life stages other than larvae, and constraints on fecun-

dity. Moreover, host tree abundance and connectivity that affect the beetle’s host-

finding and mass attack abilities, and important indirect effects of climate on host 

trees and MPB community associates, are not currently incorporated in the model.

The MPB has been migrating for the past 8000 years, following a northerly 

expansion of its host tree species. As temperature increased, expansion has been 

extraordinarily rapid in the past few decades, so rapid that no loss of genetic vari-

ability was detected in expanding populations (Samarasekera et al. 2012). Our 

model explains the role of weather in this expansion, and predicts that the pace of 

population growth in Alberta and northern BC will continue to increase. Thermal 

conditions across the boreal forest into eastern Canada will not be as favorable 

for population growth. Adaptation in thermally dependent MPB life history traits 

to rapid warming could alter this prediction, and should be a high priority topic 

for future research. Moreover, IBMs provide an excellent framework for includ-

ing adaptive potential. In addition to expansion north and east in Canada, MPB 

could extend its range south into pine forests of Mexico. The MPB is currently 

active in high elevation pine forests of southern Arizona. Genetic differences in 

developmental parameters between northern and southern populations (Bentz et al. 

2011b; Bracewell et al. 2010), however, limit using the current model to predict 

MPB invasiveness in the south. Additional processes such as phloem drying in 

response to aridity (Cole 1981), and developmental parameters specific to southern 

MPB populations, will allow for a comprehensive tool to predict MPB invasive-

ness across the range of pines.

6.8  IBM as Generalized Modeling Approach for Insect 

Disturbance Modeling

An ongoing argument in ecological literature relates to the generality and utility 

of simple versus complex models. Evans et al. (2013) wrote “Modellers of bio-

logical, ecological, and environmental systems cannot take for granted the maxim 

‘simple means general means good’. We argue here that viewing simple models 

as the main way to achieve generality may be an obstacle to the progress of eco-

logical research. We show how complex models can be both desirable and general, 

and how simple and complex models can be linked together to produce broad-

scale and predictive understanding of biological systems”. The data requirements 

of complex models also are a topic of controversy in the literature (e.g. Lonergan 

et al. 2014; Evans et al. 2014). We do not intend to answer these issues in detail 

here.

We believe that the choice of approach to model insect disturbance is dictated 

by several criteria: the objectives, the prediction precision and extent of specific-

ity sought, the level of detail and specificity available in our understanding of a 
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species’ behavior, and the availability of data. While IBMs such as the one devel-

oped here may seem complex, they are in fact relatively simple because they make 

reference to few abstract concepts or theoretical constructs that can be very dif-

ficult to parameterize. They rely on adequate understanding of just what data are 

needed to capture the essential behavior we need to mimic of nature. As such they 

are data hungry, but only to the extent that the demands placed on their specific-

ity and precision are high. In our individual-based modeling of the responses of 

the spruce budworm (Choristoneura fumiferana Clem.; Cooke and Régnière 1996; 

Régnière et al. 2012a), and its congener the western spruce budworm (C. occi-

dentalis), to climate (Nealis and Régnière 2014), we used an amount of data very 

similar to that required for the present MPB IBM. As has been the case here, we 

achieved fairly high precision in predictions, as well as a good level of understand-

ing of the fundamental interactions between positive and negative influences of 

climate in their ecology. But perhaps the greatest achievement of these models is 

that they allow us to identify areas where we do not know enough or where the 

most pressing data needs exist. They are also easy to expand to include new pro-

cesses and behaviors, because of their object-oriented nature.

For most pests that have significant economic or ecological impact, basic data 

are available for the elaboration of IBMs. The great advantage of insect IBM is 

that their structure is generalizable. Descriptions of thermal responses (devel-

opment of the various life stages, reproduction), of movement, of interactions 

between individuals in competition for resources, and other key processes are 

common to most species. The details (life history strategies, number of life stages, 

developmental parameters, the most influential factors) vary between species. The 

object-oriented programming paradigm underlying IBMs allows for re-use and 

straightforward modification of model structures.

But the IBM approach to disturbance ecology is far more broadly generaliz-

able. Our model deals with individual insects and trees. In the same manner, a dis-

turbance model can focus on forests as collections of individual stands, each with 

its specific traits (size, composition, age, damage level, treatment history, spatial 

location). In the end, no matter the modeling approach used, the requirements for 

detail and data are directly proportional to the specificity of the questions being 

asked, and the degree of precision required of the answers.

6.9  IBM as a Scaling Strategy for Insect Disturbance 

Modeling

The IBM approach used here provided a simple framework for integration across 

temporal and mechanistic scales. It allowed us to predict MPB population growth 

rates, which depend on extreme cold temperatures (at the hourly/daily scale), 

nonlinear developmental responses to temperature (at the weekly/monthly scale), 

effects of developmental variability (at the seasonal scale) and accumulation 

of population momentum to become a full outbreak (at the multi-yearly scale). 
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Description of processes at the scale of individual beetles allowed us to model 

emergent properties at broader scales resulting from superposition of individuals, 

without pre-ordained or coerced aggregative effects.

Our IBM is nonspatial. It operates at the scale of a forest. Individual trees 

within the forest are represented however, and the model could therefore include 

tree-level effects such as individual host demography, stress history, and moisture 

availability. It may be possible to combine the developmental, survival, and repro-

ductive processes included in our model with those describing the kairomonal 

interactions underlying the swarming behavior of adult MPB in another IBM 

developed by Perez and Dragicevik (2011). However, as pointed out by Powell 

and Bentz (2014), spatially explicit prediction at the tree scale is unrealistic. Data 

demands that would allow for accurate predictions from mechanistic models 

increase exponentially as the scale of prediction decreases. These data demands 

include a complete demography and stress status for all trees across a landscape, 

and microclimate variables that dictate the shape and directions of odor plumes 

from individual host trees. Assuming that pattern prediction at the tree scale is not 

required, the IBM approach provides an efficient way to assess the impact of host 

demography and stress on MPB outbreaks at stand scale.

At a broader scale, the IBM presented here could easily be adapted to include 

dispersal of MPB in a matrix of stands comprising a forest or landscape. The cur-

rent limitation on numbers of successful attacks, Eq. (6.3), would need replacing, 

since it is the spatially implicit resolution of a spatially explicit process (searching 

for new hosts). The situation is analogous to the relationship between an earlier 

stand-level outbreak model (Powell and Bentz 2009) and a more recent spatially 

explicit outbreak model (Powell and Bentz 2014). Rather than predict a success-

ful search probability within the stand using Eq. (6.3), MPB in a spatial model 

must be allowed to disperse from their source stands, whereupon their success in 

exceeding attack thresholds can be assessed.

The question of how to disperse beetles accurately is not straight forward. In 

a simple cellular automaton setting, a constant fraction of beetles can be allowed 

to move between adjacent cells. In fact, some large-scale regression approaches 

(e.g. Aukema et al. 2008) include the impact of nearby cells and could be used 

to parameterize a cellular dispersal model. A more complicated approach would 

be to disperse individual beetles in the IBM according to a dispersal kernel, as 

was parameterized by Heavilin and Powell (2008). Individual dispersal distances 

are generated as samples from the dispersal kernel, which allows for accurate 

resolution of dispersal independent of model structure. This differs from a cel-

lular automaton, which inflicts its gridded structure on model results. A more 

nuanced dispersal approach is based on ecological diffusion (Powell and Bentz 

2014) and includes the effects of available hosts, which serves to slow down 

beetle movement in some patches, and presence of non-host areas through which 

beetles disperse much more rapidly. Regardless of dispersal specifics, spatial 

waves of killed trees will progress from patch to patch as local susceptible hosts 

are exhausted and locally produced brood are exported to nearby cells. Exact 

rates of dispersal will depend on the precise details of the dispersal mechanism 
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and density of susceptible host trees, similar to other epidemiology models 

(Heavilin et al. 2007).

At still larger scales, IBMs offer an opportunity for resolving unlikely disper-

sal events with potentially large consequences, as in the dispersal episode that 

led to MPB crossing the Rockies from BC to Alberta (de la Giroday et al. 2012). 

In deterministic spatial modeling approaches it is very difficult to resolve a low-

probability event such as long-distance dispersal via storm cells. In a determin-

istic model of outbreak progression, low-probability events would become small 

magnitude certainties driving unrealistically rapid outbreak propagation. However, 

in an IBM, low-probability events are resolved as infrequent samples of individu-

als. Low-probability events appear as tails in a distribution in deterministic mod-

els, but in an IBM low-probability events are samples of mostly zero. When an 

event that could trigger an outbreak occurs however, individual beetles could be 

dispersed realistically to distant locations, allowing an IBM to simulate continen-

tal-scale events.

The drawback of IBMs in space is the sheer computational scale of keeping 

track of individuals. IBMs lend themselves to parallel approaches, particularly for 

a system such as MPB where the critical effects of temperature on the popula-

tion are all projected onto individuals independently, and relevant calculations can 

occur in parallel. However, continental landscapes involve millions of hosts that 

produce tens of thousands of beetles. Even with a “super-individual” approach, an 

overwhelming number of objects must be tracked. The continental-scale maps that 

we prepared here do not constitute a true scaling-up of the MPB outbreak process, 

as model runs were completely independent of one another from location to loca-

tion. At least for the near future, explicit spatial modeling of MPB outbreaks with 

IBMs is likely to be restricted to forest scales.
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