Utah State University DigitalCommons@USU

All Graduate Plan B and other Reports

Graduate Studies

5-1967

Application of Multivariate Analysis in Predicting Water Yields in Utah

Leei-Luoh Wang Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Part of the Civil Engineering Commons

Recommended Citation

Wang, Leei-Luoh, "Application of Multivariate Analysis in Predicting Water Yields in Utah" (1967). *All Graduate Plan B and other Reports*. 578. https://digitalcommons.usu.edu/gradreports/578

This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

APPLICATION OF MULTIVARIATE ANALYSIS

IN PREDICTING WATER YIELDS IN UTAH

by

Leei-Luoh Wang

A report submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Civil Engineering

Plan B

UTAH STATE UNIVERSITY Logan, Utah

ACKNOWLEDGEMENT

I wish to express my deep indebtedness to my thesis director, Professor A. Leon Huber for his guidance and valuable suggestions during this study, and I am also indebted to Dr. Jay M. Bagley, Chairman of my graduate committee, for his continuous encouragement and suggestion of using the multivariate analysis for this investigation. Special appreciation is expressed to Dr. Alvin A. Bishop for acting as graduate committee member.

Thanks are given James Milligan and Dr. Stewart Williams for assigning the geology weighting coefficients, and to Western Data Processing Center for using their facilities.

I am deeply grateful to my wife, Chung-Jen for her encouragement, understanding, and devotion to the family during the period of my graduate study.

Leei-Luoh Wang

TABLE OF CONTENTS

Da

							age
INTRODUCTION							1
PREVIOUS WORK AND PRESENT STATUS							2
DESCRIPTION OF THE STATISTICAL PROCEDURES							5
Multiple Regression Analysis							5
Principal Component Analysis	•	•	•	•	•	•	6
COLLECTION OF DATA			•				9
Runoff Data							9
Precipitation and Physiographic Data	•	•	·	•	•	• • • •	9
RESULTS OF STATISTICAL ANALYSIS							14
Multiple Regression Analysis							14
Principal Component Analysis							23
DISCUSSION							41
CONCLUSIONS AND RECOMMENDATIONS			•				50
LITERATURE CITED							54
APPENDIXES							56
Appendix A			, i				57
Appendix B							66
Appendix C							76

LIST OF TABLES

Tabl	le		Page
1.	Basic data used in the study		10
2.	Summary of multiple correlation coefficients for various regression equations (stepwise) relating mean water yield to climatic and physiographic factors in the Great Salt Lake Division		15
3.	Summary of multiple correlation coefficients for various regression equations (stepwise) relating mean water yield to climatic and physiographic factors in the Uinta Division		16
4.	Summary of multiple correlation coefficients for various regression equations (stepwise) relating mean water yield to climatic and physiographic factors in the Southern Division		17
5.	Summary of multiple correlation coefficients for various regression equations (stepwise) relating mean water yield to climatic and physiographic factors in the Uinta Division		18
6.	Summary of regression equations relating climatic physiographic factors to runoff in the Great Salt Lake Division		19
7.	Summary of regression equations relating climatic and physiographic factors to runoff in the Uinta Division		20
8.	Summary of regression equations relating climatic and physiographic factors to runoff in the Southern Division		21
9.	Summary of regression equations relating climatic and physiographic factors to runoff in the State .		22
10.	Summary of eigenvectors of the orthogonal factors for the watersheds in the Great Salt Lake Division		24
11.	Summary of eigenvectors of the orthogonal factors for the watersheds in the Uinta Division		25
12.	Summary of eigenvectors of the orthogonal factors for the watersheds in the Southern Division		26

LIST OF TABLES (continued)

lab.	le				Page
13.	Summary of eigenvectors of the orthogonal factors for the watersheds in the State	•			27
14.	Values of each orthogonal factor for the 26 watersheds in the Great Salt Lake Division .				28
15.	Values of each orthogonal factor for the 34 watersheds in the Uinta Division				29
16.	Values of each orthogonal factor for the 24 watersheds in the Southern Division				30
17.	Values of each orthogonal factor for the 84 watersheds in the State				31
18.	Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of Great Salt Lake Division				33
19.	Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of Uinta Division .				34
20.	Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of Southern Division				35
21.	Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of State				36
22.	Reduction in residual sum of squares due to using orthogonal factors and multiple correlation coefficient of the stepwise				
23.	equations		•	·	37
	using orthogonal factors and multiple correlation coefficients of the stepwise equations				38
24.	Reduction in residual sum of squares due to using orthogonal factors and multiple correlation				
	coefficients of the stepwise equations				39

LIST OF TABLES (continued)

Tab1	e				Page
25.	Reduction in residual sum of squares due to using orthogonal factors and multiple correla coefficients of the stepwise equations .	tion •	n •		40
26.	Comparison of reduction in variance of water yield by each orthogonal factor and physiogra information each factor contains	phio •	-		42
27.	Comparison of correlation coefficients derive from multiple regression (MR) and principal component regression (PC) for equal number of terms in the equations	d			43
28.	Comparison of water yield obtained by Princip Component Analysis using the iso-grams (Figur with multiple regression equations given in S Report 18, Utah Agricultural Experiment Stati	al e 1) peci on) ial		49
29.	Values assigned to the geological formations				57
30.	Percent of area covered by geological formations for the Great Salt Lake Division				66
31.	Percent of area covered by geological formations for the Uinta Division				69
32.	Percent of area covered by geological formations for the Southern Utah Division				73
33.	Percent of total area covered by type of vegetation for the Great Salt Lake Division				76

LIST OF FIGURES

Fi	lgur	re		Page
	1.	Iso-gram of orthogonal factors 1, 4, and 5 for the Great Salt Lake Division	•	48
	2.	Factor loading on the first and second principal component for a two-cluster system of variables		52

INTRODUCTION

The basic hydrologic data required to determine the water yield are usually unavailable for small basins and streams while increasing emphasis is being placed on their development. Therefore, some methods and techniques for estimating the amount of water available for development of these small units is needed.

The purpose of this study is to use the concepts and techniques of statistical analysis to develop equations which are useful in estimating the water yield of watersheds for which no stream flow records are available. The approach is an extension of earlier studies at Utah State University (1, 10) in which physiographic and topographic parameters were related to mean annual runoff of Utah watersheds. Previous studies used multiple regression techniques primarily. The work reported herein utilizes the same data as in the earlier work but analysis is based on the multivariate technique of principal component analysis. Results and evaluations derived from the principal component analysis are compared with those obtained from multiple regression analysis.

PREVIOUS WORK AND PRESENT STATUS

The increased use of statistical methods in hydrology in recent years has perhaps been most apparent in research papers reporting results based on multiple regression techniques. The hydrologist uses these techniques because he is working largely with uncontrolled experiments.

Nixon and Schwab (14) developed a rational approach for estimating the water yield for watersheds in southern Iowa, from five watershed characteristics, climate, land use, land slope, soil and management and conservation practices. To estimate the water yield for any watershed, the median annual water yield is multiplied by a rating factor of the watershed. Spreen (20) correlates the precipitation in western Colorado to elevation of the station, maximum land slope, exposure of the station to the inflow of air masses, and the orientation of this exposure. A study to develop simple equations for estimating mean annual runoff from Utah data was initiated in 1958. In this study, factors which are easily obtained from maps and published data were selected to correlate with the mean water yield of a watershed. Watersheds with gaging stations above all major diversions were used in the study and assumed the watersheds were representative of those to which the equations would be applied. Results of this work for the northern part of the state were reported in a thesis by Jeppson (10). Later Bagley, Jeppson and Milligan (1) extended the analysis to cover the entire state and applied the relation thus developed in obtaining regional runoff inventories.

Sharp, Gibbs, Owen and Harris (<u>17</u>) discuss the limitations of the multiple regression approach in water yield studies. They include in their presentation comments both on the association of errors and on the apparently erroneous results which may be obtained when the independent variables are highly correlated.

The premises upon which multiple regression and correlation analysis is based are as follows:

 No errors exist in the independent variables, errors occur only in the dependent variable.

2. The independent variables are statistically independent.

 The variance of the dependent variable (runoff) does not change with changes in magnitude of the independent variables.

 The observed values of the dependent variable are uncorrelated events.

5. The population of the dependent variable (runoff) is normally distributed about the regression line for any fixed level of the independent variables under consideration.

The first two assumptions are obviously violated by hydrologic data, for measurements of all variables, both dependent and independent, contain certain amounts of error. A glance at the correlation matrix of nearly any hydrological data used in multiple regression reveals that most variables exhibit some and often high degrees of correlation. The fact that small values of precipitation are associated with low values of runoff which exhibit a low variance while large precipitation events generate runoff events with large variance cause doubt in the third assumption for at least this related physiographic parameter. The fourth assumption is violated in the case of runoff data

because streamflow is often related to the antecedent flow. Studies on the distribution of runoff events reveal that they do not follow a normal distribution thus causing the last assumption to be violated.

Although many of the assumptions upon which multiple regression analysis are based are violated, it is widely used because it does provide an easy way to evaluate a large number of factors simultaneously and also the extent of the violations may not affect the results appreciably. However, with the wide availability of high speed computers, a much larger variety of procedures is available that may remove some of the uncertainties resulting from violations of the assumptions implicit in multiple regression analysis. These procedures involve a wide field of statistical analysis known as multivariate analysis. One of the procedures known as principal component analysis has been cited in recent literature (5, <u>21</u>) as a possible improvement to the ordinary multiple regression approach of relating various hydrologic phenomena because it transforms the original independent variables which in reality may be highly correlated into a set of new factors called principal components which are truly orthogonal.

DESCRIPTION OF THE STATISTICAL PROCEDURES

Multiple Regression Analysis

When information is available on two or more related variables, it is natural to seek a way of expressing the form of the functional relationship, and to know the strength of the relationship. The regression method is used to determine the "best" functional relation among the variables. The criterion used to determine the "best" is that linear function which minimizes the sum of the squared deviations between the predicted and observed values of the dependent variable.

The general form of an ordinary multiple regression model is

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_m X_m + e \dots$$
(1)

Where

Y = observed value of water yield

X's are the factors related to the water yield

 $b_0 = constant$ term of the regression equation

b1, b2, ..., bm = regression coefficients

e = error or amount of deviation between the predicted and observed Y. The procedure for obtaining the unknown coefficients may be found in most textbooks on statistics (<u>15</u>, <u>18</u>).

An index to the "goodness of fit" of the derived expression is given by the fraction of the original deviation in the dependent variable eliminated by the regression equation and is represented by R^2 where

$R^2 = \frac{\text{Sum of squares due to regression}}{\text{Total sum of squares}}$

The closer R approaches 1 the more accurate the estimate of the regression equation will be.

Principal Component Analysis

Principal component analysis is a method by which the information (measured by statistical variance in the sample space) contained in the matrix of predictor variables (in this study the matrix of physiographic observations) is transformed into another matrix of factors which are linearly independent and are called orthogonal factors. The set of orthogonal factors which contain all of the significant information of the original data matrix are called principal components.

For example, if all the data are linear functions of one of the variates, then one variate expresses all of the information contained in the entire array or sample space and conversely if all of the data are linearly independent no amount of linear mathematical rearrangement can reduce the number of variates needed to express all of the information contained in the original array. Most hydrologic data lie between these two examples where it might be possible to eliminate a few of the original independent variates because they contribute little or nothing to the information contained in the remaining group.

The technique which yields the set of transformations which define the orthogonal factors has been discussed in recent books (3, 4, 9)and papers (5, 19, 21, 22) and is briefly outlined as follows:

where ${\bf r}_{ij}$ represents the correlation matrix, I denotes the unit matrix and λ is an undetermined scalar multiplier.

Equation 2 yields an m-rooted polynomial in λ where m is the rank of the correlation matrix r_{ij} . If there are no linearly dependent variables in the original array then m also is the same as the number of original variates in the sample space. The roots of equation 2 are called characteristic roots or eigenvalues of the matrix. For each root, there exists a corresponding vector, v_j , (j = 1, 2, ..., m), called an eigenvector, whose elements comprise the solution to the simultaneous equations implied by Equation 2. That is

1										_	 -	1		
	$(1-\lambda_i)$	r ₁₂	r ₁₃	•	•	•	•	•	•	rlm	v _{li}		0	
	r ₂₁	$(1-\lambda_i)$	r ₂₃	•	۰	•	•	•		r _{2m}	v2i		0	
		•	•		•	•	۰		•	•		=		
			•	•	•	۰	•	•	•	•			•	
			•	•	•	•	•	•	•	•	•			
	r _{ml}	r _{m2}			•	•				$(1-\lambda_i)$	vmi		0	(3)
L										_	L			

If the original variates denoted by x_j are standardized, i.e. measured about their respective sample means and divided by their respective standard deviations, the principal components, D_i , are defined by

The D_i are uncorrelated (by definition) and have variance λ_i where λ_i is the ith root of the characteristic equation. It can be shown that for the case in which r_{ij} is positive-definite, which all correlation matrices must be, that

and

where P_i is the precentage of variation accounted for by the ith principal component. Therefore, the eigenvector corresponding to the largest eigenvalue defines the principal component that accounts for the largest percent of variation in the original sample space. The eigenvector corresponding to the next largest eigenvalue yields the principal component that accounts for the next largest percent of variation in the sample space. And so on until all variation is accounted for.

There are various ways of obtaining solutions to the above equations which are not discussed here, but most computer centers have library programs that will calculate eigenvalues and corresponding eigenvectors.

COLLECTION OF DATA

Runoff Data

Most of the runoff data were obtained from the publications of the U. S. Geological Survey. A few runoff records of selected watersheds were obtained from the files of the Salt Lake City Water Department. Names of the stream gaging stations which are used in this study are listed in Table 1. In this report, both the gaging station and the watershed are designated by the same name. The annual runoff refers to the water year beginning October 1 of the preceding year to September 30 of the current year.

Since the runoff records for various watersheds cover different periods of time, stations of short record were extended by correlating them with longer records from other stations in the area, in order to enable compatible analysis. The average annual runoff expressed as a uniform depth over the watershed for the 30 year period from 1931 to 1960 was selected for this study to conform to the precipitation data obtained from the Weather Bureau.

Precipitation and Physiographic Data

Precipitation and physiographic data were obtained from Special Report 18, Utah Agricultural Experiment Station with the exception that the drainage areas were revised according to the 1965 Surface Water Supply of Utah published by the U. S. Geological Survey and a Table 1. Basic data used in the study

	Area	E	E _M	D	ss.	As	S _{L(N-S)}	S _{L(E-W)}	SL	L	X	FS	G	V	PAN	P _{O-A}	Y
	sq mi	ft	ft	mi/mi ²	ft/ft	degrees	ft/ft	ft/ft	ft/ft			ft			in	in	in
(Great Salt Lake Div.)																	
Woodruff Cr. Farmington Cr. Holmes Cr. Parrish Cr. Rick Cr.	65.00 10.00 2.49 2.08 2.35	7910 7462 7582 7049 7351	9050 9070 9400 9259 8000	.881 .505 1.480 1.210 .425	.0166 .1135 .2660 .2310 .2780	247 95 85 75 75	.220 .385 .485 .225 .073	.218 .221 .425 .386 .363	.315 .306 .454 .306 .218	111°24' 111°50' 111°52' 111°50' 111°51'	41°26' 40°59' 41°03' 40°56' 40°57'	.46 .74 .86 .86	62.51 96.80 99.99 98.65 97.75	17.27 17.20 14.56 17.60 18.20	26.00 40.20 32.10 32.90 32.70	19.00 31.40 26.70 24.30	5.44 15.95 19.11 9.83
Centerville Cr. City Cr. Blacksmith Fork E. Fk. Little Bear R. Hardscrabble Cr.	3.15 19.20 260.00 50.00 28.10	6944 7408 7068 7239 7188	8800 9200 9000 9000 8800	.620 .593 .537 .449 .620	.2980 .0753 .0189 .0308 .0403	85 65 125 115 180	.312 .356 .183 .195 .258	.287 .182 .187 .226 .287	.299 .272 .186 .210 .272	111°50' 111°49' 111°36' 111°40' 111°45'	40°56' 40°50' 41°36' 41°28' 40°54'	.73 .94 .65 .55 .61	97.75 67.60 69.64 71.64 78.43	17.91 17.28 17.11 17.41 16.70	33.40 35.50 23.60 27.10 29.70	24.70 24.90 16.90 20.10 24.70	10.42 10.56 6.04 10.33 13.50
Mill Cr. nr. Bountiful Stone Cr. South Fork Ogden R. Lost Cr. Big Cr.	8.79 4.48 148.00 133.00 52.20	7382 7084 7225 7343 7335	9248 8600 8800 8400 8800	.652 .819 .830 .549 .881	.1260 .2500 .0410 .0231 .0166	90 90 75 30 243	.372 .374 .229 .212 .379	.229 .265 .264 .197 .261	.308 .320 .245 .205 .315	111°48' 111°49' 111°35' 111°21' 111°21'	40°52' 40°54' 41°20' 41°15' 40°35'	.83 .73 .79 .37 .38	84.71 98.84 60.38 63.60 59.17	17.20 17.63 17.32 16.45 17.56	36.10 32.50 19.00 26.50 19.70	27.20 23.40 13.10 20.10 13.00	9.36 9.31 3.06 9.71 3.72
Birch Cr. Hobble Cr. American Fork Fort Cr. Dry Cr.	17.00 105.00 51.10 6.55 9.82	7719 7036 8459 7329 8789	9065 11068 11400 11000 11200	.601 .570 .755 1.050 2.380	.0271 .0225 .0525 .1890 .1930	270 45 40 0 40	.065 .275 .440 .447 .397	.080 .335 .391 .099 .363	.072 .305 .415 .273 .380	111°23' 111°28' 111°37' 111°47' 111°43'	41°30' 40°14' 40°29' 40°30' 40°31'	.34 .50 .84 1.05 1.28	64.22 71.34 70.31 38.05 68.06	17.92 14.57 12.95 11.02	21.70 26.20 40.30 27.90 37.40	14.20 20.90 32.60 23.20 32.70	4.87 4.57 14.00 15.42 26.62
Big Cottonwood Cr. Parleys Cr. Mill Cr. nr. SLC Emigration Cr. Little Cottonwood Cr. Logan River	50.00 50.10 21.70 18.00 27.40 218.00	8586 6950 7814 6439 8943 7542	11319 8620 10242 8600 11319 9600	.710 .614 .530 .730 .746 .600	.0587 .0281 .0637 .0400 .0778 .0200	80 60 80 60 85 20	.366 .221 .453 .323 .544 .200	.412 .280 .347 .350 .326 .200	.404 .251 .397 .336 .434 .200	111°40' 111°42' 111°42' 111°45' 111°45' 111°41' 111°35'	40°38' 40°45' 40°41' 40°48' 40°34' 41°52'	.69 .74 .68 .53 1.38 .86	75.55 65.13 69.33 64.63 70.17 68.78	12.29 17.04 16.31 17.33 5.62 15.57	41.80 30.20 36.90 27.40 45.20 32.20	32.70 21.70 30.40 20.20 33.90 24.50	17.36 6.21 8.31 4.05 29.12 14.49
(Uinta Division) Little Brush Cr. Brush Cr. Ashley Cr. Ashley Cr. bel. T.C. South Fk. Ashley Cr.	28.00 23.00 101.00 27.00 20.00	9140 9490 9442 9968 10404	10400 10600 12020 10509 12020	.370 .235 .407 .222	.0237 .0567 .0401 .0198	328 340 340 300 275	.134 .163 .146 .099	.117 .311 .149 .070	.125 .232 .147 .085	109°33' 109°33' 109°42' 109°42'	40°45' 40°45' 40°33' 40°46'	.379 .219 .740 .300	88.51 83.87 73.58 73.87		25.80 27.00 25.20 29.80	14.00 14.30 14.00 14.80	7.33 4.46 12.19 10.24
East Fk. Dry Fk. E. Fk. Dry Fk. at mout N. Fk. Dry Fk. Dry Fork Whiterocks River	12.00 h18.00 12.00 48.00 115.00	9894 9468 9825 10215 10215	11200 11200 12200 12200 12280	.416 .412 .642 .380 .561	.0439 .0622 .1020 .0362 .0357	0 0 340 330 330	.092 .134 .160 .155 .203	.198 .214 .148 .145 .198	.133 .142 .173 .154 .150 .201	109°46' 109°46' 109°50' 109°54' 110°00'	40°40' 40°40' 40°40' 40°42' 40°42'	.419 .400 .700 .618 .635 .994	72.12 83.64 81.34 84.60 60.23 72.77		27.60 26.10 27.70 30.00 32.80	18.20 15.10 14.70 14.10 17.16 20.00	12.14 8.69 5.13 6.59 9.45 12.68
Whiterocks R. ab. PC Carter Cr. Farm Cr. Clover Cr. Uinta R. ab. Clover Cr	90.00 19.00 22.00 9.50 132.00	10626 10080 9050 10449 10966	12280 12020 10200 12000 13400	.578 .290 .412 .722 .587	.0390 .0622 .0676 .1370 .0374	330 225 320 0 350	.194 .153 .252 .119 .302	.189 .130 .298 .188 .210	.191 .141 .276 .152 .256	110°00' 109°53' 110°00' 110°08' 110°15'	40°44' 40°51' 40°38' 40°40' 40°44'	.666 .631 .681 .706 .725	70.31 68.07 75.34 64.58 59.35		34.50 28.10 21.70 38.90 35.60	18.70 18.40 11.90 15.20 20.90	13.86 5.50 3.68 3.00

Uinta R. bel. Gilbert Yellowstone Cr. bel. S. Cr.	33.00 99.00	11452 10854	13400 13498	.830 .775	.0525 .0323	280 350	.222	.151 .272	.187 .254	110°18' 110°26'	40°48' 40°42'	483 .863	64.77 68.54	39.40 35.10	22.50 19.90	16.67
Yellowstone Cr.	131.00	10519	13498	.664	.0272	345	.219	.234	.227	110°26'	40°40'	1.130	50.07	32 80	18 40	13 88
Lake Fork	78.00	10809	13299	.770	.0442	350	.271	.220	.245	110°35'	40°41'	788	56 49	35 90	21 60	17 43
Rock Cr. nr. Mt.	149.00	10163	12525	.640	.0232	330	.260	.276	.268	110°44'	40°37'	1 055	66 67	33 30	20.20	1/ 00
Home							1010		1200	110 44	40 57	1.055	00.07	55.50	20.20	14.90
Rock Cr. nr. Hanna	120.00	10694	12525	.620	.0359	0	.261	.263	.262	110°45'	40°39'	.756	66.74	34.60	21.20	17.38
Duchesne River	39.00	9920	12400	.610	.0313	5	.203	.234	.218	110°52'	40°42'	.640	59.59	35.10	22.80	18.24
Provo River	29.60	9682	11800	1.970	.0357	40	.129	.113	.121	110°59'	40°39'	.470	59.46	34.40	23.10	22 64
Weber River	163.00	9063	11600	.633	.0248	80	.278	.294	.286	111°05'	40°45'	.906	61.30	33 00	21 40	16 15
Wolf Cr.	9.00	9030	9800	.600	.0525	300	.268	.108	.203	110°57'	40°29'	.542	51.63	24.70	21.00	11.34
W. Fk. Duchesne R.	61.00	8901	10400	. 380	.0217	270	194	059	114	110°00!	40°271	662	5/ 22	26 10	10.00	10 /7
W. Fk. Duchesne R.	47.00	9134	10400	.600	.0390	270	199	.039	1/1	1110 06'	40 27	.003	54.22	20.40	19.20	11.00
below D.					.0550	270	.1.).	.000	.141	111 00	40 27	.430	54.49	27.30	20.70	11.09
Water Hollow	15.00	8569	10600	.615	.0413	285	.234	.191	.213	110°04'	40°15'	617	7 97	16 00	21 40	1 26
White River	53.00	8304	9400	.235	.0172	350	.196	193	195	1110021	300571	331	81 22	27 00	19 70	4.20
North Fk. White R.	23.00	8407	9800	. 393	.0235	20	.146	182	164	110°58'	300571	375	70 20	20.50	10./0	2.50
Minnia Maul Co	20.00	0154					1210	. 101	.104	110 50	55 51	. 515	19.39	29.30	19.40	5.59
Contar Ga at Mail	30.00	8456	9505	.382	.0314	245	.200	.359	.279	110°36'	39°48'	.450	70.62	18.40	11.60	2.76
Carter Cr. at Mouth	110.00	8866	12020	.320	.0994	258	.121	.158	.139	109°43'	40°51'	.844	69.15	24.20	13.20	6.33
Brown Duck Cr.	15.00	10370	11600	.714	.0770	290	.227	.165	.196	109°33'	40°35'	.580	72.85	31.30	21.80	8.22
Hades Cr.	7.50	9897	11400	.390	.1250	35	.446	.357	.401	110°50'	40°34'	.883	74.14	32.00	19.30	16.28
(Southern Division)																
Summit Cr.	14.60	8841	10913	1.200	.0897	160	.362	.403	. 382	110°46'	300351	740	75 60	26 50	16 70	10 34
Price River	62.00	8670	9680	.230	.0133	245	.194	.181	.188	111°10'	39°47'	.450	62.52	28.40	21,10	9.76
Gooseberry Cr.	16.40	8881	9680	.726	.0158	0	.248	.210	. 222	1110181	390431	850	62 23	31 70	23.00	15 22
Pleasant Cr.	16.00	8830	10600	1.430	.0951	120	. 291	. 241	.266	1110231	300331	780	63 93	31 80	21 00	16 26
Huntington Cr.	188.00	8944	10760	.655	.0218	335	.293	.254	.273	111°20'	39°32'	.660	66.24	24.50	19.30	6.62
0-11-0															19190	0102
Cottonwood Cr.	205.00	8887	11300	.546	.0321	310	.226	.238	.232	111°16'	39°20'	1.000	58.43	 24.70	17.40	6.11
Ferron Cr.	157.00	8736	10980	.513	.0322	305	.216	.214	.215	111°21'	39°10'	.900	62.98	21.50	15.70	4.98
Muddy Cr.	105.00	8850	11000	.474	.0370	295	.219	.137	.175	111°22'	39°02'	.850	65.28	27.80	17.30	4.40
Twin Creek	5.90	8482	10400	1.750	.0806	120	.404	.278	.341	111°18'	39°30'	.760	63.29	26.30	17.80	22.56
lvie Creek	50.00	7650	11400	.672	.0431	260	.179	.250	.215	111°29'	38°44'	.480	58.48	18.20	11.00	1.03
Chalk Cr. nr. Fillmore	e 58.70	7807	10082	.778	.0632	110	.292	.274	.283	112°18'	38°58'	.540	60.37	22.10	16.50	7.83
Indian Creek	4.70	8915	11100	.770	.0769	180	.298	.218	.257	109°31'	37°50'	.350	79.97	27.50	21.00	7.26
Center Cr.	60.00	8109	11229	.464	.0493	180	.238	.256	.247	112°48'	37°46'	1,200	66.16	23.10	13.20	3.68
Beaver River	82.00	9146	12173	.688	.0487	85	.223	.186	.204	112°21'	38°17'	1 090	61 52	27 60	19.00	8 30
Sevier River	340.00	8295	11229	.671	.0093	250	.100	.109	.104	112°36'	37°36'	.850	57.13	22.00	13.70	4.17
Castle Cr.	7.58	7914	11150	.780	.0147	127	.261	252	256	110°15'	380341	000	77 40	24 20	12 20	1 00
Mill Cr. nr. Moab	74.90	7478	12600	.411	.0408	120	.164	151	157	1100261	2002/1	1 020	51 20	17 50	13.30	1.00
North Cr.	90.00	8130	10600	. 537	.0351	325	188	198	103	1110/01	270521	1.030	28 10	17.50	9.00	2.40
Pine Cr.	78.00	7536	10400	. 593	.0459	350	159	200	195	1110201	37 33	.870	30.19	22.30	13.40	1.10
Coal Creek	80,90	8959	10600	.532	0356	120	226	246	225	1120551	37 32	.930	55.79	21.80	10.00	.80
E Ek Bouldor Cr	21 /0	10506	11/00		.0350	120	. 224	.240	.235	112 33	31 39.	.900	39.3/	23.70	18.00	4.99
F Fk Deer Cr	1 00	10330	10000	. 381	.0498	350	.132	.084	.108	111°27'	38°05'	.700	65.72	32.10	19.50	15.77
Hoppingille Cr	1.90	9240	10000	1.380	.0963	5	.168	.060	.114	111°23'	38°01'	.450	45.07	31.00	19.50	10.65
N Fk Virgin P	29.00	7226	9196	.559	.0203	50	.230	.190	.210	111°52'	37°38'	.480	54.74	19.80	11.10	2.31
M. FR. VIIGIN R.	350.00	/45/	10200	.636	.0272	0	.193	.234	.214	112°53'	37°24'	.900	53.17	 24.70	19.60	3.93

revised geology factor was obtained based on a new geology map of the State and new weighting coefficients assigned by James Milligan and Dr. Stewart Williams. The new weighting coefficients and the proportion of each watershed covered by the respective geologic formations based on the above are given in Appendix A and B respectively.

The various parameters and the symbols used to denote them are given as follows:

P _{wy}	Water year precipitation in inches
P _{oa}	October to April precipitation in inches
Е	Mean elevation in feet
Em	Maximum elevation in feet
D	Drainage density in mi/mi ²
Ss	Slope of the main stream in ft/ft
A _s	Aspect in degrees clockwise from south
S _{1(n-s)}	Average land slope in a north-south direction in ${\tt ft}/{\tt ft}$
S _{1(e-w)}	Average land slope in an east-west direction in ft/ft
s ₁	Average land slope in ft/ft
L	Longitude of watersheds center in degrees
Х	Latitude of watersheds center in degree
Fs	Slope factor in feet
G	Weighted geology factor in dimensionless units
V	Weighted vegetative factor in dimensionless units
Y	Annual watershed runoff in inches

Detailed definitions of and computational examples for obtaining the physiographic parameters may be found in Utah Agricultural Experiment Station Special Report 18. The basic data used for this

study is given in Table 1.

The analysis of the data was done using the same segregation of the data into three hydrologic divisions, the Great Salt Lake, the Uinta, and the Southern, that are described in Special Report 18. This was done because preliminary analysis using statewide data gave results that indicated more homogeneous grouping of the data was required in order to be of acceptable precision.

RESULTS OF STATISTICAL ANALYSIS

Multiple Regression Analysis

The multiple regression analysis was done using the facilities of Western Data Processing Center. The praticular library program selected for this analysis was BMD02R, "Stepwise Regression," prepared by the Health Aciences Computing Facility of the Department of Preventive Medicine and Public Health, School of Medicine, University of California, Los Angeles. This program computes a sequence of multiple linear regression equations in a stepwise manner. At each step one variable is added to the regression equation. The variable added is the one which will, in combination with those variables previously included in the regression, reduce the unexplained variance the most in a single step. Output from the computer contains the regression equation applicable at each step. The multiple correlation coefficients for various stepwise regression equations for the three divisions and the entire state are tabulated in Table 2, 3, 4, and 5 respectively. The stepwise multiple regression equations for the Great Salt Lake division are shown in Table 6, and those for the Uinta division, Southern division, and the entire state are shown in Table 7, 8 and 9 respectively.

			and a second second second			
Equation	number	Variable in regression equation	Correlation coefficient	Variable entered	Variable removed	No. of variables included
	1	Fc	0.850	Fe		1
:	2	F _c , E	0.914	E		2
	3	F _c , E, L	0.929	L		3
4	4	F., E. L. V	0.940	v		4
1	5	F., E. L. V. X	0.959	х		5
(6	F _a , E, L, V, X, D	0.965	D		6
	7	F., E. L. V. X. D. G	0.969	G		7
	8	F., E. L. V. X. D. G. S.	0.972	S.		8
	9	F., E. L. V. X. D. G. S., P.		L		-
		- <u>S</u> , , , , , , , , , <u>,</u> , <u>,</u> , <u>,</u> <u>,</u> <u></u>	0.977	P _{O-A}		9
1	0	E, L, V, X, D, G, S _L , P _{O-A}	0.977		Fs	8
1	1	E, L, V, X, D, G, S _L , P _{O-A} , E _M	0.982	EM		9
1	2	E, L, V, X, D, G, S _L , P _{O-A} , E _M , P _{WY}	0.985	Pwy		10
1	3	E, L, V, X, D, G, S_T , P_{O-A} , E_M , P_{UV} , A_S	0.986	As		11
1	4	E, L, V, X, D, G, S_T , P_{O-A} , E_M , P_{UV} , A_S , $S_{U(N-S)}$	0.986	S _{I (N-S})		12
1	5	E, L, V, X, D, G, S ₁ , P ₀ , A, E _M , P ₁₁₇ , A _c , S ₁ (N c), S ₁ (F H)	0.987	$S_{I}(E_{II})$		13
1	6	E, L, V, X, D, G, S, Po, A, E, P, P_{VII} , A, S, (N, O), S, (E, V), Fo	0.987	E(E-w) F		14
1	7	E, L, V, X, D, G, S ₁ , P_{O-A} , E_W , P_{UV} , A_c , $S_1(N-S)$, $S_1(C-U)$, F_c , S_c	0.987	5		15
		Γ O-A M WI S $\Gamma(M-2)$ $\Gamma(G-M)$ S S				

Table 2. Summary of multiple correlation coefficients for various regression equations (stepwise) relating mean water yield to climatic and physiographic factors in the Great Salt Lake Division.

Equation number	Independent variable in regression equation	Correlation coefficient	Variable entered	Variable removed No. of variables included
1	P _{O-A}	0.676	P	1
2	P _{O-A} , E _M	0.782	U-A E	2
3	P _{O-A} , E _M , D	0.806	D	3
4	P _{O-A} , E _M , D, S _S	0.830	S	4
5	P_{O-A} , E_{M} D, S_{S} , $S_{L(N-S)}$	0.862	S S (N C)	5
6	P_{O-A} , E_{M} , D, S _S , $S_{L(N-S)}$, X	0.895	L(N-S) X	6
7	P_{0-A} , E_{M} , D, S _S , S _{L(N-S)} , X, A _S	0.910	A	7
8	P_{O-A} , E_M , D, S _S , S _L (N-S), X, A _S , S _L (E-U)	0.922	S S_ ()	8
9	P_{O-A} , E_M , D, S _S , $S_{L(N-S)}$, X, A _S , $S_{L(E-M)}$, G	0.931	-L(E-W) G	9
10	P_{O-A} , E_M , D, S _S , $S_{I(N-S)}$, X, A _S , $S_{I(E-M)}$, G, L	0.938	I.	10
11	P_{O-A} , E_M , D, S _S , $S_{I(N-S)}$, X, A _S , $S_{I(E-W)}$, G, L, F _O	0.939	F	11
12	P_{O-A} , E_M , D, S _S , $S_{I(N-S)}$, X, A _c , $S_{I(E-W)}$, G, L, F _c , S _z	0.939	¹ S	12
13	P_{0-4} , E_M , D, S _c , $S_{T(M-S)}$, X, A_c , $S_{T(T-M)}$, G, L, F_c , S _c , E	0 939	L	12
14	$P_{0-A}, E_{M}, D S_{S}, S_{L(N-S)}, X, A_{S}, S_{L(E-W)}, G, L, F_{c}, S_{T}, E, P_{m}$	0.939	Р	13
	L(E-W)		WY	14

Table 3. Summary of multiple correlation coefficients for various regression equations (stepwise) relating mean water yield to climatic and physiographic factors in the Uinta Division.

Equation number		Correlation coefficient	Variable entered	Variable removed No. of variables included
1	P _{WY}	0.730	P _{WY}	1
2	P _{WY} , D	0.833	D	2
3	P _{WY} , D, X	0.867	Х	3
4	P _{WY} , D, X, E	0.876	E	4
5	P _{WY} , D, X, E, A _S	0.882	As	5
6	P _{WY} , D, X, E, A _S , E _M	0.886	E _M	6
7	P_{WY} , D, X, E, A _S , E _M , S _{L(E-W)}	0.888	S _{L(E-W)}	7
8	P_{WY} , D, X, E, A _S , E _M , S _{L(E-W)} , S _L	0.892	S _T	8
9	P_{WY} , D, X, E, A _S , E _M , S _L (E-W), S _L , L	0.900	L	9
10	P_{WY} , D, X, E, A _S , E _M , S _L (E-W), S _L , L, P _{O-A}	0.900	P _{O-A}	10
11	P_{WY} , D, X, E, A _S , E _M , S _L (E-W), S _L , L, P _{O-A} , S _L (N-S)	0.901	S _{L(N-S)}	11
12	P_{WY} , D, X, E, A_S , E_M , $S_{L(E-W)}$, S_L , L, P_{O-A} , $S_{L(N-S)}$, F_S	0.901	Fs	12

TABLE 4. Dominiary or multiple correlation coerricients for various regression equations (stepwise) related mean water yield to climatic and physiographic factors in the Southern Division.

Equation number	Independent variable in regression equation	Correlation coefficient	Variable entered	Variable removed	No. of variables included
1	P _{LIV}	0.731	P _{WY}		1
2	P _{LUY} , D	0.809	D		2
3	P _{WY} , D, E	0.824	E		3
4	P_{WY} , D, E, P_{O-A}	0.850	P _{O-A}		4
5	P_{WY} , D, E, P_{O-A} , X	0.858	X		5
6	P_{WY} , D, E, P_{O-A} , X, F_S	0.868	FS		6
7	P_{WY} , D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$	0.870	S _{L(N-S)}		7
8	P_{WY} , D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$, S_L	0.875	SL		8
9	P_{WY} , D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$, S_L , G	0.877	G		9
10	P _{WY} , D, E, P _{O-A} , X, F _S , S _{L(N-S)} , S _L , G, L	0.881	L		10
11	D, E, P _{O-A} , X, F _S , S _{L(N-S)} , S _L , G, L	0.881		P _{WY}	9
12	D, E, P _{O-A} , X, F _S , S _{L(N-S)} , S _L , G, L, S _S	0.883	s _s		10
13	D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$, S_L , G, L, S_S , A_S	0.885	AS		11
14	D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$, S_L , G, L, S_S , A_S , $S_{L(E-W)}$	0.885	S _{L(E-W)}		12
15	D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$, S_L , G, L, S_S , A_S , $S_{L(E-W)}$, E_M	0.886	EM		13
16	D, E, P_{O-A} , X, F_S , $S_{L(N-S)}$, S_L , G, L, S_S , A_S , $S_{L(E-W)}$, E_M , P_{WY}	0.886	P _{WY}		14

Table 5. Summary of multiple correlation coefficients for various regression equations (stepwise) related mean water yield to climatic and physiographic factors in the State.

Eq.	Eq.							Independ	lent Vari	ables					and the product of the	INCLUSION OF BRIDE	The second se
no.	const.	P _{WY}	Р _{О-А}	E	^Е М	D	SS	A _S	S _{L(N-S)}	S _{L(E-W)}	SL	L	Х	FS	G	V	R
1	- 5.15													22.1464			0.850
2	- 33.14			4.2151										17.2329			0.914
3	-1176.89			5.7152								10.1788		11 6122			0.929
4	-1518.80			4.6540								13 4264		7 0880		0 5080	0.929
5	-2450.50			4.5558								20 3271	4 1889	3 0061		1 0750	0.940
6	-2591.11			4.2832		2.0563						21 5203	4.1005	1 0/21		-1.0/30	0.939
7	-2057.97			3.6616		2.0383						16 8201	4.4443	2 1280	0.0520	-1.148/	0.965
8	-2274.06			4.0407		2,6183					- 0 9912	10.0291	4.2535	3.1389	0.0539	-1.2545	0.969
9	-1585.71		0.3655	1.7723		3 6651					- 9.0012	10.9003	3.7061	1.2959	0.0655	-1.4099	0.972
10	-1598.37		0.3667	1 7763		3 6827					-15.6326	12.6051	4.5909	0.1190	0.0612	-1.5009	0.977
11	- 894.35		0.5905	1 1250	-1 6/52	6 2661					-15./2/1	12.7161	4.6010		0.0610	-1.5066	0.977
12	-1093.86	-0 3702	0 0256	1 02/5	1 0105	4.3441					~1/.7156	6.9338	3.6728		0.0468	-1.7593	0.982
12	1019.07	-0.3702	0.9336	1.0345	-1.8105	3.3637					-17.1310	8.7230	3.6677		0.0545	-1.7888	0.985
1.	-1018.97	-0.36/8	1.0111	1.0786	-1.8234	3.5805		0.0066			-18.6741	8.1354	3.5676		0.0507	-1.8719	0.986
14	- 931.48	-0.3843	1.0338	1.1622	-1.8851	3.6152		0.0063	3.2857		-22.5377	7.3921	3.4374		0.0574	-1.8456	0.986
15	- 948.01	-0.3571	1.0107	1.2135	-1.8920	3.6396		0.0079	9.3685	8.2247	-35.3273	7.4982	3.5340		0.0476	-1.8258	0.987
16	- 845.64	-0.4059	1.0372	1.1926	-1.8065	3.2702		0.0088	9.4044	8.2058	-34.1444	6.5905	3.4480	1.5396	0.0511	-1.7496	0.987
17	- 969.07	-0.4303	1.0114	1.4556	-1.7604	3.2847	-2.3977	0.0082	9.0947	7.2683	-32.8566	7.7295	3.3039	1.8547	0.0626	-1.7315	0.987

Table 6. Summary of regression equations relating climatic physiographic factors to runoff in the Great Salt Lake Division

Eq.	Eq.						Inde	pendent	Variable	5				and a call of the second		The Constant of the Party of th
no.	const.	PWY	^Р 0-А	E	^E M	D	SS	A _S	S _{L(N-S)}	S _{L(E-W)}	SL	L	Х	F _S	G	R
1	- 8.743		1.0635													0 676
2	- 26.065		0.8310		1.8603											0.076
3	- 22.855		0,6617		1.6549	4.1000										0.782
4	- 20.901		0.5205		1.8377	4,6963	-38,185									0.806
5	- 19.309		0.2022		1.8162	6.3064	-54,100		21 6726							0,830
6	-299.064		0.1971		0.7585	6.9836	-65 728		27 1720							0.862
7	-303.300		0.0900		0.9434	6 6369	-78 8767	-0.0071	20 5601				7.1/34			0.895
8	-237.401		-0.2260		1 4192	7 0850	-90 1770	-0.0071	30.3001				7.3174			0.910
9	-214.734		-0.1284		1 /617	7 2051	-09.1//9	-0.0111	40.0023	-17.1467			5.7311			0.922
10	-582.560		-0 2002		1.6000	7.3931	-07.0338	-0.0102	48.3329	-18.8961			5.0101		0.0578	0.931
11	-615 570		-0.2002		1.6022	6.5963	-/8.3146	-0.0073	40.7394	-17.8665		2.5703	7.0527		0.0828	0.938
12	621 510		-0.2498		1.8199	6.5237	-78.1364	-0.0074	42.3057	-17.6467		2.8150	7.1861	-1.6357	0.0787	0.939
12	-021.510		-0.2548		1.8434	6.4583	-78.2988	-0.0075	31.1284	-28.5170	21.7926	2.8615	7.2046	-1.6824	0.0789	0.939
13	-614.400		-0.2515	-0.1387	1.9308	6.4665	-78.4289	-0.0075	31.2540	-28.9888	22.5274	2.7990	7.2066	-1.8413	0.0793	0.939
14	-585.770	0.0359	-0.2720	-0.3228	1.9321	6.4975	-79.4255	-0.0076	31.4088	-29.9147	24.1151	2.5906	7.1025	-1.9209	0.0734	0.939

Table 7. Summary of regression equations relating climatic and physiographic factors to runoff in the Uinta Division.

Eq.	Eq.						In	dependent V	ariables							
no.	const.	P _{WY}	P _{O-A}	E	E _M	D	s ^s s	A _S	S _{L(N-S)}	S _{L(E-W)}	SL	L	Х	FS	G	R
1	- 17.71	0.9918		_												0.730
2	- 17.61	0.7966				6.6210										0.833
3	- 85.22	0.7228				5.8236							1.8153			0.867
4	- 88.86	0.4907		1.5504		6.4473							1.7082			0.876
5	- 98.58	0.3392		2.4125		5.7982		-0.0070					1.9146			0.882
6	- 92.41	0.2093		3.0889	-0.7131	5.8428		-0.0073					1.8907			0.886
7	- 97.75	0.1871		2.9892	-0.7172	6.1110		-0.0074		- 5.3040)		2.0910			0.888
8	- 88.97	0.2077		2.6495	-0.6043	5.0436		-0.0063		- 32.2645	33.1928		1.8662			0.892
9	-215.55	0.2756		2.0300	-0.2363	4.6891		-0.0043		- 52.3086	53.5927	1.0164	2.1879			0.900
10	-213.60	0.1675	0.1347	2.0576	-0.1657	4.8664		-0.0044		- 52.7234	52.9772	1.0087	2.1482			0.900
11	-213.92	0.1900	0.1291	2.0175	-0.1657	4.6885		-0.0049	-54.288	-107.099	161.455	0.9860	2.2268			0.901
12	-200.08	0.1619	0.1372	2.1542	-0.3274	4.7550		-0.0052	-68.945	-121.384	189.970	0.8679	2.2278	0.7191		0.901

Table 8. Summary of regression equations relating climatic and physiographic factors to runoff in the Southern Division.

Eq.	Eq.						Indep	endent Va	riables							VIII CONTRACTOR CONTRACTOR
no.	const.	Pwy	P _{O-A}	E	^Е м	D	s s	Α	S _{L(N-S)}	S _{L(E-W)}	SL	L	Х	FS	G	R
1	- 11.241	0.7286														0 721
2	- 12.770	0.6457				5.8553										0.751
3	- 18.439	0.5814		0.8291		6.3221										0.809
4	- 23.683	0.1793	0.5119	1.6835		5.4617										0.024
5	- 50.696	0.1242	0.5082	1.7550		5.7277							0 6946			0.850
6	- 62.792	0.0793	0.4876	1.8237		5.4816							0.9629	3 6508		0.869
7	- 62.772	0.0873	0.4385	1.8748		5.2751			4.6228				0.9515	3 2014		0.000
8	- 63.709	0.1061	0.4224	1.7112		5.3814			16.0537		-16.3283		1.0245	3 5626		0.875
9	- 64.1219	0.0292	0.4755	1.8754		5.5215			18.3887		-20.0629		0 9712	3 0720	0 0221	0.073
10	-187.742	0.0066	0.4384	2.3382		5.3973			19.9707		-22.0191	0.9931	1 2289	3 5152	0.0331	0.077
11	-188.352		0.4438	2.3532		5.3979			19.9889		-22.0679	0.9967	1 2320	3 5314	0.0447	0.001
12	-185.726		0.4541	2.2564		5.8812	- 9.2246		20.8500		-23,3081	0.9607	1 2480	4 1156	0.0455	0.881
13	-181.308		0.4385	2.3419		5.6994	- 9.3932	-0.0027	21.1435		-23.4718	0.9212	1.2537	4.1227	0.0625	0.005
14	-185.755		0.4431	2.3324		5.7697	- 9.6819	-0.0023	30.9700	11.6722	-44.3254	0.9501	1.2868	3 9579	0.0597	0.885
15	-165.501		0.4409	2.5845	-0.3468	5.8292	-10.4255	-0.0024	31.5949	12,5369	-45.2524	0.7988	1 2315	4 6116	0.0562	0.995
16	-167.855	-0.0218	0.4579	2.6305	-0.3351	5.8190	-10.4451	-0.0025	31.5100	12.3352	-45.0893	0.8126	1.2434	4.6484	0.0586	0.886

Table 9. Summary of regression equations relating climatic and physiographic factors to runoff in the State.

Principal Component Analysis

The particular principal component analysis computer program used in this study was BMD02M, "Regression on Principal Components," from the program library of Western Data Processing Center. This program computes the principal components of standardized data and regresses the dependent variable on the principal components.

Tables 10, 11, 12 and 13 show the eigenvectors of the orthogonal factors for the watersheds in the Great Salt Lake division, Uinta division, Southern division, and the entire state respectively. These eigenvectors are the linear transformation necessary to define each orthogonal factor. The orthogonal factors for the three divisions and the entire state are shown in Tables 14, 15, 16 and 17 respectively. The coefficients of regression equations using orthogonal factors for standardized independent variables for the Great Salt Lake division are tabulated in Table 18 and those for the Uinta, Southern and entire state are tabulated in Tables 19, 20 and 21 respectively. The output also contains the reduction in residual sum of squares due to using orthogonal factors and correlation coefficients of the stepwise regression equations. These are shown in Tables 22, 23 and 24 for the three divisions and in Table 25 for the entire state.

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14	Factor 15	
P _{WY}	-0.3301	-0.0784	-0.0254	-0.2525	-0.3646	-0.0124	-0.0433	-0.1810	-0.1055	-0.0945	-0.0526	-0.1176	-0.3560	-0.0701	-0.6960	
P _{O-A}	-0.3495	-0.0483	-0.0280	-0.1822	-0.2628	0.0355	-0.0298	-0.2533	-0.2171	0.0209	0.0764	0.1203	-0.2404	-0.4491	0.6153	
Е	-0.2330	0.3213	-0.2543	0.1128	-0.4133	0.1832	0.0534	0.0866	-0.1101	-0.4769	0.1162	0.2529	0.4084	0.2546	0.0255	
EM	-0.2724	0.3517	0.0464	-0.0472	0.0357	0.1449	0.2694	0.0879	-0.3668	0.5930	0.2665	-0.3067	0.1398	0.1566	-0.0361	
D	-0.1815	0.0481	-0.1479	0.7426	0.2259	0.1130	-0.0649	-0.3841	-0.2297	0.0863	-0.2514	0.1509	-0.1149	-0.0480	-0.1196	
ss.	-0.1636	-0.4203	0.0501	0.3973	0.0085	-0.0623	0.3460	0.4485	-0.0615	-0.2132	0.4409	-0.0972	-0.1678	-0.1695	-0.0380	
AS	0.1998	0.0881	-0.5773	0.1092	-0.2693	-0.3548	0.4039	-0.2303	0.3510	0.1981	0.0697	-0.1276	-0.0191	-0.0944	0.0146	
SL(N-S)	-0.2932	0.1029	-0.0664	-0.0417	0.2149	-0.6719	-0.1891	0.1675	-0.1634	-0.0598	-0.1323	-0.0464	0.3971	-0.3417	-0.1061	
SL(E-W)	-0.2341	-0.1550	-0.4200	-0.1492	0.3328	0.4767	-0.2134	-0.0182	0.3391	0.0604	0.2268	-0.0544	0.2470	-0.2937	-0.1309	
SL	-0.3159	0.0195	-0.3353	-0.0951	0.2962	-0.2375	-0.2187	0.0535	0.0536	-0.1150	0.1133	-0.0988	-0.4152	0.5714	0.2138	
L	-0.2138	-0.4274	0.2287	-0.0145	-0.0816	-0.2224	-0.0103	-0.3307	0.1511	0.2854	0.2902	0.4353	0.2902	0.2970	-0.0555	
Х	0.2776	-0.0052	-0.1569	0.2231	-0.3700	-0.0579	-0.6815	0.2214	-0.1300	0.2844	0.2996	0.0032	-0.0667	-0.0416	-0.0304	
FS	-0.3043	-0.0291	0.3065	0.2707	-0.2717	0.0229	-0.1834	-0.0741	0.4350	-0.0270	-0.1691	-0.5884	0.1573	0.0803	0,1724	
G	-0.0880	-0.4985	-0.3093	-0.0687	-0.1906	0.1135	0.0756	0.3312	-0.1915	0.2442	-0.5739	0.0029	0.1347	0.1635	0.0941	
v	0.2776	-0.3330	-0.1196	-0.0766	0.0631	-0.0120	-0.0411	-0.4258	-0.4531	-0.2760	0.1751	-0.4632	0.2544	0.1073	0.0488	
	P_{WY} P_{O-A} E m_{D} S_{S} A_{S} $S_{L(N-S)}$ S_{L} E K F_{S} G V	$\begin{array}{c c} & Factor \\ 1 \\ \hline \\ P_{0-A} & -0.3495 \\ E & -0.2300 \\ \hline \\ F_M & -0.2724 \\ D & -0.1815 \\ \hline \\ S_S & -0.1636 \\ A_S & 0.1998 \\ \hline \\ S_{L(N-S)} & -0.2341 \\ \hline \\ S_L & -0.3159 \\ L & -0.2138 \\ X & 0.2776 \\ \hline \\ F_S & -0.0433 \\ \hline \\ G & -0.0880 \\ \hline \\ V & 0.2776 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Factor Factor Sactor	Factor Factor Sactor	Factor Factor Sactor	Factor Factor Sactor Sactor<	Factor Factor Sactor Sactor<

Table 10. Summary of eigenvectors of the orthogonal factors for the watersheds in the Great Salt Lake Division.

		Factor	Factor	Factor	Factor	Factor	Factor	Factor	Factor							
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	P _{WY}	0.3771	0.2097	-0.0928	0.2159	0.3327	0.1059	0.0748	0.2845	0.1769	0.4342	0.0944	0.3808	0.4199	0.0093	
2	P _{O-A}	0.3241	-0.1431	-0.3993	0.0062	0.1397	0.2652	0.1584	-0.0054	-0.1132	-0.4063	0.6102	0.0339	-0.2185	-0.0116	
3	E	0.3682	0.3187	0.0293	-0.0504	0.1788	0.1532	-0.0426	-0.1685	0.3601	-0.1466	-0.4370	0.1561	-0.5546	-0.0128	
4	EM	0.4064	0.2603	0.0218	-0.1277	-0.0264	-0.2259	-0.0163	0.0066	0.2656	-0.0813	-0.1033	0.7355	0.2655	0.0205	
5	D	0.2497	0.0064	-0.3317	0.2821	-0.1501	-0.1773	-0.7597	-0.0363	-0.2849	-0.0867	-0.1413	0.0673	0.0612	-0.0106	
6	SS	0.0591	0.0973	0.3337	0.3420	-0.6013	0.4741	-0.1332.	0,2236	0.1849	0.0743	0.2091	-0.0575	-0.1256	-0.0037	
7	AS	-0.0465	0.0831	0.0201	-0.7641	0.0483	0.2149	-0.4406	0.2210	-0.0166	0.2492	0.2149	0.0362	-0.0980	-0.0053	
8	SL(N-S)	0.3017	-0.3373	0.1810	-0.1550	0.0361	0.4344	0.0675	0.0418	-0.2692	-0.1766	-0.3904	-0.0892	0.3124	-0.4244	
9	SL(E-W)	0.1574	-0.2819	0.4530	0.0882	0.1841	-0.2928	-0.1995	-0.3253	0.1413	0.1694	0.3515	0.0839	-0.1460	-0.4630	
10	SL	0.2590	-0.3539	0.3662	-0.0177	0.1237	0.0704	-0.0943	-0.1711	-0.0719	-0.0140	-0.0041	0.0258	0.0610	0.7775	
11	L	0.1277	-0.4553	-0.2959	0.1128	0.0172	-0.0154	0.1062	0.2298	-0.0133	0.5499	-0.1564	-0.3482	-0.4067	0.0075	
12	х	0.2183	0.4117	0.0795	-0.0469	-0.1559	0.0364	0.2310	-0.3851	-0.6277	0.3597	0.0725	-0.0355	-0.1199	0.0012	
13	FS	0.3371	-0.0549	0.1769	-0.1951	-0.3301	-0.5101	0.2150	0.4968	-0.1451	-0.1708	-0.0301	0.2865	-0.1357	-0.0076	
14	G	-0.1532	0.2270	0.3342	0.2628	0.5164	0.0182	-0.1192	0.4536	-0.3565	-0.1490	0.0253	-0.2430	-0.2188	-0.0016	

Table 11. Summary of eigenvectors of the orthogonal factors for the watersheds in the Uinta Division.

		Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14
1	PWY	0.2552	0.4708	-0.0433	-0.1833	-0.1158	-0.0660	-0.0580	-0.1262	-0.0982	-0.1225	-0.3682	-0.1545	-0.6757	-0.0070
2	P _{O-A}	0.2693	0.3999	-0.0647	-0.1116	-0.2875	0.0158	-0.0663	-0.3779	0.3432	0.5035	0.1255	0.2492	0.2709	0.0014
3	E	0.1610	0.4682	0.2635	-0.2161	-0.0087	0.0895	0.2247	0.1878	-0.1357	-0.2883	0.4658	-0.3940	0.2756	-0.0006
4	EM	-0.1120	-0.0642	0.4925	-0.3184	0.4610	-0.1440	-0.0540	0.1061	0.3328	0.3393	0.2189	0.0039	-0.3424	0.0027
5	D	0.3367	-0.0188	-0.2855	-0.0959	0.3818	0.1687	-0.1700	0.2071	-0.5004	0.5092	-0.0467	-0.1702	0.0977	0.0027
6	Ss	0.2873	0.0624	-0.1664	-0.1465	0.5618	0.2571	0.2126	-0.0677	0.3606	-0.3539	-0.2979	0.2211	0.1991	0.0058
7	AS	-0.1380	0.0434	0.4727	0.1353	-0.0605	0.6512	0.3207	-0.1609	-0.2704	0.1750	-0.1929	0.1762	-0.0676	0.0061
8	SL(N-S)	0.4282	-0.2236	0.0165	-0.0044	-0.0281	-0.0135	0.0149	-0.1161	-0.2375	-0.1945	0.4539	0.4597	-0.2541	0.4201
9	SL(E-W)	0.2802	-0.4274	0.0796	-0.0981	-0.2010	0.0941	0.1643	-0.1677	0.2476	0.0937	-0.1645	-0.5761	0.0345	0.4321
10	S _I	0.3758	-0.3526	0.0620	-0.0570	-0.1169	0.0501	0.1090	-0.1501	0.0114	-0.0451	0.1515	-0.0651	-0.1114	-0.7979
11	L	-0.1301	-0.0950	-0.3133	-0.5228	-0.3391	0.1836	0.3436	0.5063	0.1022	0.1079	0.0031	0.2094	-0.1213	0.0051
12	х	0.2947	-0.0007	0.2709	0.1720	-0.2102	0.2946	-0.5715	0.5115	0.2424	-0.1045	-0.1145	0.0785	0.0377	-0.0048
13	Fs	-0.1411	-0.1515	0.1916	-0.6635	-0.0805	-0.0051	-0.4147	-0.2779	-0.2699	-0.1980	-0.1834	0.0893	0.2664	-0.0053
14	G	0.2867	-0.0052	0.3613	0.0305	-0.0761	-0.5620	0.3258	0.2490	-0.1731	0.0877	-0.3910	0.2107	0.2403	0.0007

Table 12. Summary of eigenvectors of the orthogonal factors for the watersheds in the Southern Division.

		Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14
1	P _{WY}	-0.2350	-0.4532	0.0388	0.2776	0.1101	0.2781	0.0882	0.2072	0.0987	0.0235	0.0226	0.1076	0.7054	0.0150
2	P _{O-A}	-0.3472	-0.2251	-0.0121	0.2593	0.3029	0.2365	-0.1429	0.2481	0.0510	0.1450	-0.4514	-0.1692	-0.5268	-0.0091
3	E	0.2022	-0.5174	-0.1314	0.0055	-0.0390	-0.0761	0.1420	0.1453	0.0064	0.1972	0.3810	0.5418	-0.3856	-0.0041
4	EM	0.1572	-0.4421	-0.3528	-0.0938	-0.1283	-0.0391	0.1919	-0.1227	-0.0421	0.0357	0.1290	-0.7346	-0.0249	-0.0143
5	D	-0.2317	-0.0372	-0.2192	0.3387	-0.0620	-0.7568	-0.0566	0.0721	0.3631	-0.2436	-0.0606	0.0198	0.0253	0.0138
6	s s	-0.2825	-0.0607	0.1668	0.1970	-0.5983	-0.1346	-0.3373	-0.0160	-0.3794	0.4549	0.0705	-0.0580	0.0277	-0.0124
7	A _S	0.2696	-0.1776	-0.0374	-0.4099	-0.0302	-0.0222	-0.7083	0.3768	0.2633	0.0009	-0.0588	-0.0489	0.1185	0.0197
8	S _{L(N-S)}	-0.3691	-0.0927	-0.1466	-0.2549	0.2440	-0.1117	-0.1250	0.1147	-0.5452	-0.3398	0.2002	0.0257	-0.0062	0.4648
9	S _{L(E-W)}	-0.3431	0.0143	0.0081	-0.4991	-0.0929	-0.0743	0.2872	-0.0874	0.3843	0.4243	-0.1570	0.0527	0.0375	0.4149
10	SL	-0.4012	-0.0219	-0.0749	-0.4160	0.1219	-0.1179	0.0568	0.0296	-0.0942	0.0206	0.0504	0.0514	0.0418	-0.7810
11	L	-0.2469	0.3819	-0.2396	0.1567	0.0592	0.2635	-0.1004	0.2016	0.3078	0.1388	0.6561	-0.1679	-0.0858	0.0124
12	Х	-0.1021	-0.2464	0.4775	0.0212	0.3443	-0.0857	-0.3046	-0.5897	0.1906	0.0122	0.2976	-0.0914	-0.0607	0.0163
13	FS	-0.1917	-0.1033	-0.4595	-0.0144	-0.3357	0.3713	-0.2400	-0.4863	0.1430	-0.3001	-0.1408	0.2548	-0.0584	-0.0098
14	G	-0.1714	-0.1332	0.5055	-0.1141	-0.4445	0.1465	0.1855	0.2555	0.1882	-0.5163	0.1257	-0.1139	-0.2061	-0.0086

Table 13. Summary of eigenvectors of the orthogonal factors for the watersheds in the State.

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14	Factor 15
Woodruff Cr.	0.5083	0.3421	-0.3980	0.1202	-0.0872	-0.0714	0.0371	-0.0665	0.0134	-0.0689	0.0381	-0.0247	-0.0928	0.0621	0.0286
Farmington Cr.	-0.1833	-0.3129	-0.0144	-0.2204	-0.2592	-0.1876	-0.0084	-0.0410	-0.1516	0.0034	-0.1034	0.0366	-0.0275	-0.0238	0.0166
Holmes Cr.	-0.5662	-0.3954	-0.3184	0.2909	0.1975	-0.1099	-0.1379	0.1280	0.0007	0.0681	0.0077	0.0668	0.0321	0.0229	0.0197
Parrish Cr.	-0.1613	-0.5148	-0.0837	0.1845	0.0807	0.1859	0.0215	-0.0279	0.0009	0.0979	-0.0149	-0.0519	-0.0136	0.0132	-0.0340
Rick Cr.	0.0813	-0.6684	0.0623	0.0047	-0.1977	0.3038	0.1069	0.0711	0.1763	-0.1167	0.0908	-0.0172	0.0168	-0.0025	0.0241
Centerville Cr.	-0.0506	-0.5796	0.0105	0.0197	-0.0046	-0.0843	0.1145	0.1457	-0.0486	-0.0136	0.0534	-0.0383	-0.0418	-0.0309	-0.0116
City Cr.	-0.0497	-0.0676	0.2786	-0.0842	-0.1158	-0.1746	-0.0197	-0.1541	-0.0130	-0.0762	-0.0185	-0.0471	0.0494	0.0498	-0.0295
Blacksmith Fork	0.6236	0.0630	0.1018	0.0468	-0.1030	0.0145	-0.0950	0.0252	0.0339	0.1261	-0.0033	-0.0135	0.0400	0.0334	0.0131
E. Fk. Little Bear R.	0.4856	-0.0110	0.0456	-0.0767	-0.1105	0.0312	-0.0762	-0.0129	-0.0067	0.0834	0.0571	0.0593	0.0337	0.0214	-0.0028
Hardscrabble Cr.	0.2006	-0.1072	-0.1308	-0.1228	-0.0339	-0.0655	0.0918	-0.1629	0.1270	0.0737	-0.0351	0.0733	0.0094	-0.0278	0.0494
Mill Cr. nr. Bountiful	-0.1325	-0.2156	0.0622	-0.0898	-0.1100	-0.1624	0.0185	-0.0560	-0.0699	-0.0212	-0.0518	-0.0316	0.0076	0.0155	0.0056
Stone Cr.	-0.0674	-0.5019	-0.0345	0.0719	0.0358	-0.1674	0.0663	0.1097	-0.0632	-0.0374	-0.0597	0.0027	-0.0002	0.0114	-0.0175
South Fk. Ogden R.	0.7149	0.2560	0.1442	0.0062	0.2123	0.1388	-0.0914	0.2150	-0.0669	-0.1845	-0.0813	0.0902	0.0093	0.0055	0.0036
Lost Cr.	0.3350	0.0552	0.0967	0.0880	0.0363	0.0910	-0.1786	-0.0616	0.0445	-0.0337	-0.0045	-0.0590	0.0060	-0.0160	0.0169
Big Cr.	0.6579	0.3416	-0.4254	0.1594	0.2052	-0.2410	-0.0876	0.0598	0.0530	-0.0158	0.0268	-0.0748	0.0301	-0.0383	-0.0204
Birch Cr.	1.0301	0.3275	-0.1126	0.1730	-0.3286	0.0341	0.3172	-0.0166	-0.0434	0.0277	-0.0086	0.0303	0.0222	-0.0276	-0.0303
Hobble Cr.	0.0244	0.2557	0.0583	-0.2741	0.4173	0.2225	0.2395	0.0918	-0.0466	0.1149	-0.0949	-0.0711	-0.0025	0.0125	0.0233
American Fork	-0.7105	0.3255	-0.1139	-0.2549	0.0318	0.1138	-0.0007	0.0070	-0.0873	-0.0433	0.0416	-0.0337	0.0274	-0.0012	0.0032
Fork Cr.	-0.3100	0.3540	0.6719	0.2741	0.1654	-0.2537	0.1671	0.0528	-0.0005	0.0349	0.1171	0.0240	-0.0197	-0.0007	0.0143
Dry Cr.	-0.9804	0.2496	-0.0379	0.6208	0.0292	0.1859	0.0154	-0.1995	-0.0827	-0.0460	-0.0530	0.0121	0.0081	-0.0176	0.0053
Big Cottonwood Cr.	-0.6493	0.2720	-0.2421	-0.2769	-0.0733	0.1709	0.0457	0.0119	-0.0563	0.0250	0.0967	0.0807	-0.0104	0.0155	-0.0405
Parleys Cr.	0.2126	-0.0652	0.1975	-0.1347	0.1176	0.0824	-0.0269	-0.1622	0.1165	-0.0577	-0.0527	0.0067	-0.0193	-0.0068	-0.0201
Mill Cr. nr. SLC	-0.3629	0.0923	-0.1172	-0.3041	0.0793	-0.0994	-0.0315	-0.0689	-0.0845	-0.0656	0.1014	-0.0326	0.0298	-0.0252	0.0264
Emigration Cr.	0.1871	-0.1477	0.0548	-0.1610	0.4224	-0.0501	-0.1221	-0.1382	0.1027	0.0261	0.0188	0.0546	-0.0412	-0.0152	-0.0337
Little Cottonwood Cr.	-1.0916	0.5125	0.0024	-0.0754	-0.3028	-0.1056	-0.0314	0.1790	0.2658	0.0093	-0.0892	-0.0124	-0.0106	-0.0049	-0.0126
Logan River	0.2544	0.1401	0.2424	0.0147	-0.3042	0.1670	-0.3341	0.0711	-0.1136	0.0903	0.0216	-0.0295	-0.0422	-0.0245	0.0029

Table 14. Values of each orthogonal factor for the 26 watersheds in the Great Salt Lake Division.
Table 15. Values of each orthogonal factor for the 34 watersheds in the Uinta Division.

Stations	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14	
Little Brush Cr.	-0.5210	0.3082	0.0357	-0.0855	0.1316	0.0059	-0.0278	-0.0174	-0.1866	-0.0035	-0.0295	0.0116	0.0422	0,0007	-
Bruch Cr.	-0.3378	0.1021	0.3859	-0.0167	0.1853	0.1160	-0.1269	-0.2386	-0.0295	0.1181	0.1314	0.0081	-0.0125		
Ashley Cr.	-0.2629	0.2112	0.0965	-0.1844	-0.0766	-0.1503	-0.0345	0.0863	0.0157	-0.0706	-0.0307	-0.0456	0.0480	0.0019	
Ashley Cr. below Trout Cr.	-0.4629	0.4281	-0.1531	-0.0952	0.1297	0.0644	0.1053	-0.0765	-0.0014	0.0732	-0.0797	0.0767	0.0031	0.0045	
South Fork Ashley Cr.	-0.1043	0.3584	-0.1135	-0.1059	0.1410	0.1192	0.1248	-0.0562	0.0229	-0.0291	-0.0489	-0.0288	0.0373	0.0001	
East Fork Dry Fork	-0.3184	0.2720	0.0757	0.3013	0.0966	-0.1216	0.0881	-0.1500	0.0263	-0.0581	-0.0300	-0.0238	-0.0439	-0.0016	
East Fk. Dry Fk. at mouth	-0.2301	0.1498	0.2202	0.2639	-0.0746	-0.1756	0.1171	-0.0376	-0.0411	-0.1017	-0.0214	0.0070	-0.0163	0.0006	
North Fork Dry Fork	-0.1490	0.3294	0.1992	0.0358	-0.1810	0.0846	-0.1936	0.1604	-0.0028	0.0068	-0.0049	-0.1127	-0.0247	0.0011	
Dry Fork	-0.0494	0.2500	-0.0588	-0.1933	-0.0244	-0.0294	0.0517	-0.0431	0.0856	0.0061	-0.0077	0.0128	0.0141	0.0027	
Whiterocks River	0.2297	0.1340	0.0548	-0.1684	0.0401	-0.1191	0.0213	0.1377	-0.0622	-0.0802	0.0616	0.0875	-0.0262	-0.0011	
Whiterocks River above P.C.	0.1696	0.2238	0.0054	-0.1078	0.1109	0.0167	-0.0413	0.0030	0.0278	0.0161	0.0005	0.0514	-0.0050	-0.0009	
Carter Cr.	-0.0772	0.3021	0.0019	-0.0412	-0.1079	0.0486	0.1577	-0.0359	-0.0047	-0.0427	0.0469	-0.0393	-0.0543	0.0008	
Farm Cr.	-0.2429	-0.1976	0.4923	-0.0915	-0.1015	-0.0100	-0.1347	-0.0730	-0.1496	0.0459	-0.0679	0.0394	-0.0074	-0.0004	
Clover Cr.	0.1434	0.3252	0.1144	0.4913	-0.3129	0.0486	-0.0006	0.1038	0.2430	0.1370	-0.0069	0.1073	0.0139	0.0008	
Uinta R. above Clover Cr.	0.4919	0.0483	0.0315	-0.2206	0.1113	0.1123	-0.0138	-0.0468	0.0485	-0.0191	-0.0444	-0.0365	0.0646	-0.0000	
Uinta R. below Gilbert Cr.	0.4581	0.3046	-0.2042	0.0172	0.1390	0.2014	-0.0791	-0.0491	0.0984	0.0224	-0.0077	-0.0453	-0.0072	0.0015	
Yellowstone Cr. bel. S. Cr.	0.4834	0.0500	0.0753	-0.1513	0.1400	-0.1130	-0.1272	0.0166	0.0328	0.0281	0.0163	-0.0382	-0.0368	0.0026	
Yellowstone Cr.	0.4436	0.0101	0.0121	-0.2867	-0.0882	-0.2657	0.0013	0.0525	0.0800	0.0218	-0.0343	0.0261	0.0076	0.0025	
Lake Fork	0.5142	-0.0105	-0.0581	-0.1608	0.0452	0.0531	-0.0794	0.0079	0.0563	0.0314	0.0008	-0.0187	0.0068	-0.0018	
Rock Cr. nr. Mt. Home	0.4182	-0.1740	0.0901	-0.1906	0.0999	-0.1763	-0.0114	0.1109	-0.0568	0.0256	0.0175	0.0319	-0.0435	-0.0010	
Rock Cr. nr. Hanna	0.4318	-0.1330	0.0286	0.2066	0.1455	-0.0654	0.1448	-0.0852	0.0271	-0.0476	-0.0745	-0.0271	-0.0370	0.0013	
Duchesne River	0.3042	-0.1105	-0.1701	0.2221	0.1006	-0.0791	0.1885	-0.1117	0.0124	0.0297	0.0752	-0.0446	0.0096	0.0036	
Provo River	0.2273	0.0609	-0.7142	0.4655	-0.0808	-0.1333	-0.3897	-0.0442	-0.1819	-0.0060	-0.0258	0.0058	-0.0162	-0.0030	
Weber River	0.3445	-0.3865	0.0296	0.0972	0.0546	-0.1593	0.1604	-0.0393	-0.2055	0.0839	0.0632	0.0208	0.0478	0.0018	
Wolf Cr.	-0.1380	-0.3366	-0.2422	-0.0943	-0.1561	0.2413	0.0144	0.0226	-0.1274	-0.0050	-0.0378	0.0376	-0.0338	0.0255	
West.Fork Duchesne River	-0.2712	-0.1568	-0.3774	-0.1456	-0.0992	0.0125	0.1863	0.1412	-0.0519	0.0391	-0.0691	0.0034	-0.0122	-0.0248	
West Fork Duchesne River below Dry H.	-0.2029	-0.1872	-0.3993	-0.0290	-0.0679	0.1518	0.0352	0.0467	-0.0297	0.0651	-0.0189	-0.0292	-0.0403	-0.0056	
Water Hollow	-0.1359	-0.6409	-0.3628	-0.2732	-0.4514	0.0059	0.0089	-0.2587	0.1317	-0.0520	0.0519	0.0040	0.0093	-0.0022	
White River	-0.5139	-0.4438	-0.1080	-0.0527	0.3089	0.1023	-0.0418	0.2060	0.0527	0.0435	0.0778	-0.0175	-0.0052	0.0026	
North Fork White River	-0.4447	-0.3613	-0.2137	0.3261	0.2443	-0.0500	0.0957	0.1558	0.1136	-0.0500	0.0485	-0.0074	0.0352	0.0045	
Minnie Maud Cr.	-0.5585	-0.6396	0.3221	0.0022	0.1129	-0.1686	-0.2356	-0.0530	0.1870	-0.0225	-0.0757	-0.0016	-0.0024	-0.0002	
Carter Creek at mouth	-0.2598	0.2846	0.2438	-0.0273	-0.4089	-0.1035	0.0671	0.0859	-0.0526	0.0406	0.0926	-0.0721	0.0247	0.0037	
Brown Duck Cr.	0.1077	0.1701	0.0234	0.0169	-0.0113	0.2298	-0.1287	0.0225	0.0011	-0.2151	0.0941	0.0877	0.0094	-0,0067	
Hades Cr.	0.5132	-0.5442	0.6370	0.2759	-0.0949	0.3055	0.0976	0.0565	-0.0794	-0.0311	-0.0622	-0.0194	0.0188	-0.0054	

Stations	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14
Summit Cr.	0.9094	-0.4211	0.1254	-0.1616	0.0436	0.0974	0.1698	0.0834	0.0681	-0.0586	-0.0587	-0.1117	-0.0061	0.0018
Price River	0.0207	0.3664	0.0806	0.4312	-0.4577	0.0370	-0.0667	0.0503	0.1255	-0.0129	-0.0504	0.0207	-0.0255	-0.0061
Gooseberry Cr.	0.3355	0.3234	-0.1420	0.0062	-0.4334	-0.1873	-0.3625	-0.0162	0.0078	-0.0302	0.0075	-0.0673	0.0120	0.0080
Pleasant Cr.	0.7122	0.2099	-0.1379	-0.1574	0.1606	0.1310	-0.1391	0.0004	0.0321	0.0475	-0.1340	0.0304	-0.0058	-0.0024
Huntington Cr.	0.2581	-0.0296	0.3269	0.1618	-0.2537	0.1530	0.0415	0.0209	-0.0366	0.0951	0.1284	0.0292	-0.0097	-0.0002
Cottonwood Cr.	-0.0282	-0.0159	0.3643	-0.0833	-0.0984	0.1677	-0.1297	-0.0469	0.0109	-0.0072	0.0289	-0.0402	0.0225	-0.0025
Ferron Cr.	-0.1266	-0.0777	0.3126	0.0502	-0.0737	0.1093	-0.0378	0.0511	-0.0274	-0.0314	0.0163	0.0202	0.1257	-0.0011
Muddy Cr.	-0.1094	0.2701	0.2659	0.0197	-0.0547	0.0234	-0.0436	0.0422	-0.0628	-0.0589	-0.0626	0.1368	-0.0493	0.0044
Twin Cr.	0.8590	-0.2677	-0.1726	-0.0484	0.1955	0.1633	-0.1293	0.0388	-0.2090	0.0418	0.0876	0.0628	-0.0102	-0.0015
Ivie Cr.	-0.2631	-0.3770	0.0940	0.3142	0.1995	0.0929	0.1168	0.1946	0.1294	0.0954	-0.0353	-0.0801	-0.0269	0.0024
Chalk Cr. nr. Fillmore	0.2618	-0.3271	-0.2710	0.1263	-0.0902	0.0639	0.1156	0.1146	0.1495	-0.0353	0.0193	0.0893	0.0100	0.0011
Indian Cr.	0.5027	0.2305	0.1900	0.3636	0.3097	-0.3066	0.2897	-0.2887	0.0590	0.0560	0.0347	0.0407	0.0200	0.0026
Center Cr.	-0.1962	-0.3641	0.0624	-0.4357	-0.0442	-0.1007	0.1599	-0.0127	-0.0349	-0.1194	-0.1006	0.0751	0.0069	0.0001
Beaver River	-0.0488	0.1567	0.1112	-0.5165	0.0889	-0.1664	-0.0579	0.0460	0.1069	0.0431	0.1075	0.0229	-0.0506	-0.0011
Sevier River	-0.7412	0.1191	-0.0362	-0.0907	0.0303	-0.0497	0.0829	0.2034	-0.1469	0.1892	-0.0390	0.0104	0.0224	0.0026
Castle Cr.	0.0942	-0.3023	0.2730	0.1474	0.0391	-0.3897	-0.1290	-0.0642	-0.2008	0.0243	-0.0830	-0.0808	-0.0214	-0.0035
Mill Cr. nr. Moab	-0.6149	-0.3255	0.2566	0.0504	0.4721	-0.1708	-0.3573	0.0093	0.1478	-0.0731	0.0458	0.0194	0.0058	-0.0006
North Cr.	-0.4865	-0.1220	-0.0845	0.0213	0.0209	0.3256	0.0183	-0.1507	-0.0671	-0.0591	0.0636	-0.0586	-0.0690	0.0008
Pine Cr.	-0.5022	-0.1325	-0.1576	0.0207	0.0254	0.4006	-0.0538	-0.2913	0.0057	0.0412	-0.0764	0.0007	0.0179	0.0016
Coal Cr.	-0.0976	-0.0189	-0.1376	-0.3758	-0.2248	-0.0826	0.1910	-0.0368	0.0047	-0.0404	0.0833	-0.0616	0.0293	-0.0009
East Fork Boulder Cr.	-0.2443	0.8664	0.3303	-0.0905	0.0665	0.0278	0.2550	0.0416	-0.0419	-0.0731	-0.0113	-0.0418	-0.0139	-0.0012
East Fork Deer Cr.	0.0554	0.7178	-0.6470	0.0683	0.4458	0.0512	-0.0647	0.0801	-0.0073	-0.0470	0.0140	-0.0414	0.0271	-0.0011
Henrieville Cr.	-0.3235	-0.3423	-0.5128	0.4093	-0.1236	-0.1853	0.1146	0.0561	-0.1157	-0.1264	0.0379	0.0125	-0.0083	-0.0008
North Fork Virgin R.	-0.2266	-0.1367	-0.4939	-0.2308	-0.2434	-0.2050	0.0163	-0.1253	0.1031	0.1392	-0.0234	0.0126	-0.0029	-0.0025

Table 16. Values of each orthogonal factor for the 24 watersheds in the Southern Division.

Table 17.	Values	of	each	orthogonal	factor	for	the	84	watersheds	in	the	State.
-----------	--------	----	------	------------	--------	-----	-----	----	------------	----	-----	--------

Stations	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14
(Great Salt Lake Division)														
Woodruff Cr. Farmington Cr. Holmes Cr. Parrish Cr. Rick Cr.	-0.0189 -0.3766 -0.6707 -0.4302 -0.2961	0.1153 -0.0542 -0.0277 0.0477 0.0997	0.1061 0.1858 0.1112 0.1773 0.2944	-0.0458 0.0760 -0.0762 0.0577 0.1096	0.1621 0.0532 -0.1751 -0.2319 -0.3100	-0.1032 0.1830 -0.1708 -0.0477 0.1644	-0.0738 -0.0481 -0.0820 -0.0381 -0.0707	0.0026 0.1129 0.0420 -0.0121 -0.0473	0.0824 -0.0416 -0.0242 0.1162 0.0976	-0.0074 -0.0903 -0.0068 0.0449	0.0229 -0.0040 0.0382 -0.0252	0.0199 -0.0220 -0.0082 -0.0304	0.0138 -0.0014 -0.0371 0.0088	-0.0884 -0.0013 0.0036 0.0015
Centerville Cr.	-0.4091	0.0575	0.2600	0.0685	-0.2262	0.0538	-0.1181	0.0326	-0.0970	0.0759	0.0272	-0.0386	0.0144	-0.0009
City Cr.	-0.2351	0.0465	0.0138	0.0967	0.0929	0.1324	-0.0656	-0.0399	-0.0574	-0.0764	0.0034	0.0311	0.0436	-0.0006
Blacksmith Fork	0.0467	0.2055	0.1505	0.0373	0.0822	0.0334	-0.0373	-0.1156	0.0649	-0.0591	0.0306	-0.0143	-0.0072	0.0040
East Fork Little Bear R.	-0.0194	0.1629	0.1763	0.0303	0.1057	0.0629	-0.0073	-0.0555	0.0601	-0.0046	0.0184	-0.0208	-0.0017	0.0057
Hardscrabble Cr.	-0.1639	0.1174	0.1408	-0.0283	0.0966	0.0594	-0.0328	0.0424	0.0877	-0.0189	-0.0344	-0.0106	-0.0117	0.0067
Mill Cr. nr. Bountiful	-0.3352	0.0049	0.1072	0.0587	0.0191	0.1078	-0.0655	0.0341	-0.0504	-0.0640	0.0048	-0.0072	0.0132	-0.0059
Stone Cr.	-0.4121	0.0656	0.2270	0.0442	-0.1700	0.0007	-0.1074	0.0483	-0.0942	-0.0183	0.0507	-0.0098	0.0106	-0.0001
South Fork Ogden River	0.0878	0.2994	0.1749	0.0142	0.1220	-0.0815	0.0500	-0.1122	-0.0314	-0.0026	0.0567	0.0293	-0.0149	0.0039
Lost Cr.	-0.1160	0.1683	0.0676	0.0362	0.0842	-0.0106	-0.0199	-0.1230	0.0773	-0.0211	-0.0205	0.0361	0.0019	0.0070
Big Cr.	-0.0350	0.2177	0.1050	-0.1761	0.1821	-0.2037	-0.0808	-0.0417	-0.0195	-0.0527	0.0832	0.0160	0.0266	0.0160
Birch Cr.	0.3091	0.2018	0.2101	0.1346	0.0681	-0.0370	-0.1172	-0.0281	0.0883	-0.0107	0.0519	-0.0312	0.0002	0.0075
Hobble Cr.	-0.1255	0.1264	0.0472	-0.0998	0.0858	-0.0071	0.1448	-0.0195	0.0130	0.0180	-0.0222	-0.1281	-0.0047	0.0013
American Fork	-0.4542	-0.1610	-0.0810	-0.0751	0.1603	0.0795	0.0957	0.0416	-0.0045	0.0274	-0.0436	-0.0422	-0.0028	0.0026
Fort Cr.	-0.2417	0.0687	-0.2005	0.1937	0.0254	-0.0651	-0.1658	-0.1532	-0.2569	-0.0047	0.0303	-0.0560	0.0061	-0.0031
Dry Cr.	-0.6138	-0.1889	-0.2399	0.1767	-0.0948	-0.2509	-0.0803	-0.0373	0.1222	-0.0250	-0.0759	0.0208	-0.0458	0.0031
Big Cottonwood Cr.	-0.4204	-0.1743	0.0055	-0.0716	0.1445	0.0843	0.1059	0.0864	0.0569	0.0791	-0.0388	-0.0570	0.0107	-0.0116
Parleys Cr.	-0.1352	0.1774	0.0756	0.0329	0.1035	0.0717	0.0264	-0.0637	0.0722	-0.0004	-0.0489	0.0323	0.0404	0.0047
Miller nr. SLC	-0.3967	-0.0497	0.0110	-0.0914	0.1863	0.0853	0.0330	0.0587	-0.0641	0.0286	-0.0229	-0.0334	0.0060	0.0065
Emigration Cr.	-0.2352	0.2298	0.0958	-0.0894	0.1447	-0.0429	0.0483	-0.0334	0.0207	0.0191	-0.0214	-0.0049	0.0530	0.0078
Little Cottonwood Cr.	-0.5525	-0.2742	-0.2064	-0.0515	0.1088	0.1867	-0.0379	-0.0157	-0.0581	-0.0832	-0.0273	0.0482	0.0168	0.0015
Logan River	-0.0979	0.0520	0.0931	0.1411	0.1246	0.1233	0.0041	-0.1404	0.0798	-0.0508	-0.0164	-0.0061	-0.0125	0.0031
(Uinta Division)														
Little Brush Cr.	0.3270	-0.0574	0.2588	-0.0315	-0.0403	-0.0217	-0.0180	0.0460	0.0021	-0.1029	-0.0256	0.0027	-0.0026	0.0014
Brush Cr.	0.1906	-0.0831	0.2689	-0.2136	-0.0292	-0.0627	0.0504	0.0701	0.0191	0.0786	-0.0207	0.0091	0.0242	0.0083
Ashley Cr.	0.3015	-0.1201	0.0605	-0.0638	-0.0877	-0.0004	-0.0532	-0.0590	0.0016	-0.0588	-0.0303	-0.0246	-0.0065	-0.0011
Ashley Cr. bel. Trout Cr.	0.4025	-0.1015	0.2251	0.0634	0.0284	0.0220	-0.0085	0.0545	-0.0259	-0.0191	0.0056	0.0356	0.0253	0.0009
South Fork Ashley Cr.	0.3033	-0.2149	0.1246	0.0402	0.0406	0.0274	0.0080	0.0452	-0.0581	-0.0162	0.0208	-0.0199	-0.0033	0.0007
East Fork Dry Fork	0.2158	-0.0715	0.2148	0.0673	-0.0601	-0.0225	0.2212	-0.0652	-0.0156	0.0087	0.0043	0.0119	-0.0423	-0.0015
E. Fk. Dry Fk. at mouth	0.1448	-0.0557	0.1423	0.0245	-0.1081	0.0049	0.1700	-0.1454	-0.0366	-0.0248	-0.0186	0.0291	-0.0438	-0.0051
North Fork Dry Fork	0.2351	-0.1781	0.1208	-0.0194	-0.1615	-0.0666	-0.0603	0.0045	-0.0042	-0.0470	0.0246	-0.0435	0.0001	-0.0014
Dry Fork	0.2914	-0.1917	0.0205	-0.0095	0.0134	0.0130	-0.0489	-0.0235	-0.0112	0.0294	-0.0105	-0.0047	0.0119	0.0003
Whiterocks River	0.1275	-0.2629	-0.0366	-0.0479	-0.0481	0.0595	-0.0617	-0.0468	0.0524	-0.0585	-0.0382	0.0248	-0.0070	-0.0009
Whiterocks R. above P. C.	0.1789	-0.2724	0.0237	-0.0252	-0.0012	-0.0013	-0.0229	0.0251	0.0318	0.0001	0.0080	0.0145	0.0265	0.0023
Carter Cr.	0.2559	-0.1664	0.0817	0.0346	-0.0238	0.0363	-0.0077	-0.0540	-0.0565	0.0195	-0.0070	-0.0171	-0.0452	-0.0029
Farm Cr.	0.1006	0.0045	0.1087	-0.2508	-0.0754	-0.0726	-0.0378	-0.0557	-0.0183	-0.0077	-0.0048	0.0690	-0.0034	0.0008
Clover Cr.	0.0933	-0.2144	0.0470	0.1975	-0.1227	-0.0229	0.1271	-0.1085	-0.0411	0.1004	0.0426	0.0508	0.1049	-0.0016
Uinta R. above Clover Cr.	0.0974	-0.3431	-0.0988	-0.0879	0.0690	-0.0115	-0.0448	0.0271	-0.0251	0.0256	0.0409	-0.0220	0.0207	0.0019

Uinta R. below Gilbert Cr. Yellowstone Cr. bel. S. cr. Yellowstone Cr. Lake Fork Rock Cr. nr. Mt. Home	0.1438 0.0680 0.1286 0.0720 0.0148	-0.3823 -0.3320 -0.2797 -0.3172 -0.2393	-0.0193 -0.1041 -0.2180 -0.1325 -0.1287	0.0907 -0.1031 -0.0777 -0.0434 -0.1245	0.0630 -0.0143 -0.0047 0.0550 -0.0060	-0.0536 -0.0173 0.0279 -0.0244 0.0521	0.0092 -0.0151 -0.0784 -0.0649 -0.0491	0.0933 -0.0007 -0.1174 0.0217 -0.0454	0.0070 0.0961 0.0654 0.0292 0.0878	0.0451 0.0101 0.0213 0.0413 -0.0236	0.0617 0.0297 -0.0001 0.0348 0.0092	-0.0389 -0.0224 0.0045 -0.0189 0.0182	0.0216 0.0138 0.0289 0.0239 0.0056	0.0015 0.0014 0.0007 0.0036 0.0022	
Rock Cr. nr. Hanna Duchesne River Provo River Weber River Wolf Cr.	-0.0375 0.0114 0.0568 -0.1010 0.1338	-0.2151 -0.1622 -0.1234 -0.0944 0.0323	-0.0539 -0.0323 -0.0526 -0.0784 0.0106	0.0222 0.0973 0.3804 -0.0367 0.0322	0.0447 0.0897 0.0710 0.0730 0.1221	0.0193 0.0314 -0.2685 0.0459 -0.0391	0.1812 0.1593 0.0753 0.0787 -0.1498	-0.0710 -0.0615 0.0250 -0.1028 0.0437	-0.0197 0.0003 0.1450 0.0262 -0.0759	0.0348 0.0734 -0.0419 0.0101 0.0112	0.0620 0.0210 -0.0028 0.0029 0.0008	0.0190 -0.0332 -0.0439 0.0061 0.0367	-0.0345 -0.0089 -0.0041 0.0123 -0.0470	-0.0026 -0.0008 0.0047 0.0010 -0.0119	
West Fork Duchesne River W. Fk. Duchesne River below Dry H.	0.2510 0.2042	0.0258 0.0106	0.0045 0.0349	0.1021 0.1122	0.0896 0.1145	0.0706 -0.0156	-0.1171 -0.0954	-0.0072 0.0633	-0.0425 -0.0295	0.0237 -0.0293	0.0074 0.0203	0.0074 -0.0101	-0.0227 -0.0258	0.0142 0.0059	
Water Hollow White River North Fork White River	0.1873 0.1574 0.0981	0.1471 0.0791 0.0875	-0.2053 0.1869 0.1747	-0.0180 -0.0854 0.1028	0.2229 0.0486 0.0344	-0.1104 0.0637 0.0622	-0.1691 -0.0397 0.1622	-0.0985 0.1619 0.0454	-0.0832 0.0282 -0.0045	0.2096 -0.0219 -0.0106	-0.0801 -0.0068 -0.0102	0.0021 -0.0070 -0.0051	-0.0696 0.0013 -0.0109	0.0032 0.0040 -0.0010	
Minnie Maud Cr. Carter Cr. at mouth Brown Duck Creek Hades Creek	0.1084 0.2620 0.1335 -0.2727	0.1733 -0.0775 -0.2443 -0.1481	0.1097 0.0721 0.0752 -0.0212	-0.2622 -0.0228 0.0139 -0.1905	-0.0266 -0.1507 -0.0128 -0.0338	-0.0847 0.0168 -0.0661 0.0167	0.0734 -0.0628 -0.0407 0.1006	-0.0020 -0.1581 0.0491 -0.0752	0.0279 -0.0415 -0.0431 -0.1620	0.0624 -0.0015 -0.0091 0.0388	-0.0175 -0.0383 -0.0562 0.0874	0.0566 -0.0428 0.0223 0.0648	-0.0150 0.0054 -0.0364 -0.0151	0.0035 -0.0036 -0.0008 -0.0028	
(Southern Division)															
Summit Cr. Price River Gooseberry Cr. Pleasant Cr. Huntington Cr.	-0.2503 0.1420 -0.0665 -0.1592 0.0357	0.0372 0.0699 0.0393 -0.0174 0.0284	-0.0895 0.0707 -0.0582 -0.1108 -0.0649	-0.1821 -0.0019 0.1129 0.1014 -0.1473	-0.0736 0.1079 0.0750 -0.0260 0.0369	-0.1676 0.0918 0.0660 -0.1440 -0.0274	0.0698 -0.0082 0.0975 0.0036 -0.0506	0.0413 0.0990 -0.0245 0.0476 0.0930	0.0539 -0.0094 0.0020 0.0311 0.0258	0.0059 0.0423 -0.0371 -0.0206 -0.0176	0.0747 -0.0250 -0.0389 -0.0157 0.0088	0.0132 0.0205 0.0944 0.0286 -0.0002	-0.0032 -0.0075 -0.0233 0.0147 -0.0409	0.0043 0.0022 0.0069 0.0027 0.0040	
Cottonwood Cr. Ferron Cr. Muddy Cr. Twin Cr. Ivie Cr.	0.0905 0.1362 0.1532 -0.2257 0.1851	0.0242 0.0874 0.0272 0.0546 0.2226	-0.1621 -0.1192 -0.0981 -0.1524 -0.0716	-0.1053 -0.1046 0.0049 -0.0164 -0.1182	-0.0448 -0.0644 -0.0474 -0.0094 -0.0627	0.0511 0.0342 0.0899 -0.2939 -0.1049	-0.0669 -0.0578 -0.0653 0.0097 0.0319	-0.0223 -0.0014 0.0592 0.0276 0.0373	0.0406 0.0256 -0.0071 -0.0035 0.0150	-0.0093 -0.0289 -0.0577 -0.0940 0.0444	-0.0196 0.0016 0.0114 0.0139 0.0180	0.0152 0.0076 0.0038 0.0415 -0.1019	-0.0174 -0.0410 0.0100 0.0109 0.0236	0.0004 -0.0002 0.0028 0.0045 0.0009	
Chalk Cr. nr. Fillmore Indian Cr. Center Cr. Beaver River Sevier River	-0.0663 0.0485 -0.0021 0.0134 0.2695	0.2412 -0.0458 0.2099 0.0518 0.2343	-0.0749 0.0351 -0.2727 -0.2717 -0.2304	-0.0557 -0.0586 -0.0947 0.0778 0.0991	0.0110 -0.0715 -0.1781 -0.1029 -0.1073	-0.0694 -0.1209 0.1472 0.1108 0.0815	0.0591 0.1280 0.0251 0.0679 -0.0099	0.0596 0.2097 -0.0051 -0.0026 0.0836	-0.0251 -0.1513 0.0377 0.0111 0.0845	0.0417 -0.0410 -0.0434 -0.0270 -0.0377	0.0666 -0.1530 0.0801 0.0618 0.0506	-0.0276 -0.0172 -0.0036 -0.0267 -0.0468	-0.0140 -0.0184 -0.0011 -0.0468 -0.0077	0.0021 -0.0043 -0.0030 -0.0044 -0.0004	
Castle Cr. Mill Cr. nr. Moab North Cr. Pine Cr. Coal Cr.	0.0434 0.2702 0.1977 0.1768 -0.0107	0.0765 0.1588 0.2124 0.2286 0.1861	-0.0795 -0.1945 -0.2559 -0.2616 -0.2557	-0.1150 -0.0355 -0.0566 -0.0388 -0.0005	-0.1169 -0.1486 -0.0379 -0.0478 -0.0755	-0.0440 0.0176 0.0280 0.0372 0.1336	0.1247 0.0530 -0.0798 -0.1246 0.0748	-0.0320 -0.1858 0.0357 0.0196 0.0743	-0.0216 -0.1014 -0.0002 0.0262 0.0365	-0.1542 -0.0577 0.0603 0.0733 0.0276	-0.0910 -0.0761 -0.0277 -0.1055 0.0716	0.0053 -0.0903 0.0251 0.0098 0.0448	0.0286 0.0159 0.0587 0.0519 -0.0405	-0.0031 -0.0079 0.0017 0.0015 -0.0019	
East Fork Boulder Cr. East Fork Deer Cr. Henrieville Cr. North Fork Virgin R.	0.2797 0.1135 0.1224 -0.0346	-0.0741 0.1060 0.3874 0.3077	-0.1096 -0.1308 -0.0807 -0.2428	0.1067 0.3718 -0.0021 0.0883	-0.0847 -0.0096 -0.0046 -0.0340	0.1386 -0.1561 -0.0326 0.1172	-0.0464 0.0732 0.1338 0.1272	0.2055 0.1293 0.0683 0.0419	0.0079 -0.0751 -0.0897 0.0213	0.0208 0.0434 -0.0099 0.0280	0.0305 -0.0207 0.0103 -0.0138	0.0436 0.0611 0.0235 -0.0103	-0.0102 0.0361 0.0431 -0.0175	-0.0017 -0.0008 -0.0006 -0.0034	32

PROFILE TO A STREET	-						
Eigenvalues							
6.9073	2.7798	1.2493	1.1085	0.9981	0.6247	0.4392	0.3081
0.2288	0.1405	0.1005	0.0598	0.0256	0.0161	0.0136	
Cumulative p	roportic	n of tot	al varia	nce			
0.46	0.65	0.73	0.80	0.87	0.91	0.94	0.96
0.98	0.99	0.99	1.00	1.00	1.00	1.00	
Coefficients	of regr	ession e	quations	using o	rthogona	1 factor	s for
standardized	indepen	dent var	iables				
Interce	pt	11	.2896147				
Coeff. of f	actor						
1		-10	.2974011				
2		1	.7805960				
3		0	.9707227				
4		8	.1026753				
5		-12	.2108486				
6		0	.9754322				
7		- 4	.5785820				
8		2	.4763687				
9		8	.3478537				
10		9	.0991750				
11		- 6	.2375371				
12		23	.9732006				
13		2	4812390				
14		-24	9401248				
1		- 1					

Table 18. Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of Great Salt Lake Division.

Eigenvalues							
4,0654	3.0708	2,2714	1.3791	0.9748	0.6313	0.5479	0.3749
0.3312	0.1446	0.1043	0.0734	0.0295	0.0016	015175	0.5745
Cumulative p	roportic	n of tot	al varia	nce			
0.20	0 51	0 (7	0 77	0.0/	0 00	0.00	0.05
0.29	0.51	0.67	0.77	0.84	0.89	0.92	0.95
0.97	0.99	0.99	1.00	1.00	1.00		
Coefficients	of regr	ession e	quations	using o	rthogona	1 factor	s for
standardized	indepen	dent var	iables				
Interce	Dt	10	.6141164				
Coeff. of f	actor						
1		11	.3946134				
2		0	.6443955				
3		- 6	.5398867				
4		0	.5471651				
5		6	.7261587				
6		- 2	.4584332				
7		- 0	.5257256				
8		- 1	.2042626				
9		-16	.1577375				
10		1	.2859127				
11		-16	.7057650				
12		-15	.7376238				
13		9	.9445006				
14		8	.2388368				

Table 19. Egienvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of Uinta Division.

the second s							the second se
Figorwaluog							
Eigenvalues							
4.3656	2.7176	1.8616	1.3870	1.2540	0.8349	0.6360	0.3364
0.2406	0.1431	0.1073	0.0841	0.0316	0.0002		
Cumulative p	roportio	n of tot	al varia	nce			
0.31	0.51	0.64	0.74	0.83	0.89	0.93	0.96
0.97	0.98	0.99	1.00	1.00	1.00		
Coefficients	of regr	ession e	quations	using c	rthogona	1 factor	s for
standardized	indepen	dent var	Iables				
Intercent	+	7	1929160				
Coeff. of fac	ctor	'	.1727100				
1		9	.0950645				
2		7	.1816297				
3		- 1	.7783582				
4		- 3	.3103988				
5		0	.5661619				
6		2	.7362303				
7		- 5	.4512215				
8		8	.7245253				
9		- 6	.2346119				
10		- 0	.8841201				
11		6	.6727305				
12		6	.0857539				
13		0	.4831579				
14		-75	.3204069				

Table 20. Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of Southern Division.

2.5024 0.2557	1.8628 0.1597	1.0758 0.1156	0.9170 0.0661	0.7935 0.0095	0.6240	0.5112
oportio	n of tot	al varia	nce			
0.52 0.97	0.65 0.99	0.73 0.99	0.79 1.00	0.85 1.00	0.89	0.93
of regro independ	ession e dent var	quations iables	using o	rthogona	1 factor	s for
t ctor	9	.8457116				
	-11 -20 -5 14 8 -55 2 8 -111 9 14 -28 -28	.9651089 .9651089 .5595341 .8529350 .0916208 .3157883 .1644294 .6158484 .6158484 .5779911 .0135244 .0799360 .6991757 .2978663				
	2.5024).2557 sportion).52).97 of regruindepend : tor	2.5024 1.8628 0.2557 0.1597 portion of tot 0.52 0.65 0.97 0.99 of regression e independent var -11 -25 14 8 -5 -5 2 8 -11 9 14 -28 44	2.5024 1.8628 1.0758 0.2557 0.1597 0.1156 portion of total varia 0.52 0.65 0.73 0.97 0.99 0.99 of regression equations independent variables 9.8457116 tor -11.9483027 -20.9651089 - 5.5595341 14.8529350 8.0916208 - 5.3157883 - 5.1644294 2.6158484 8.5779911 -11.0135244 9.0799360 14.6991757 -28.2978663 44.4225082	2.5024 1.8628 1.0758 0.9170 0.2557 0.1597 0.1156 0.0661 portion of total variance 0.52 0.65 0.73 0.79 0.97 0.99 0.99 1.00 of regression equations using of independent variables : 9.8457116 tor -11.9483027 -20.9651089 - 5.5595341 14.8529350 8.0916208 - 5.3157883 - 5.1644294 2.6158484 8.5779911 -11.0135244 9.0799360 14.6991757 -28.2978663 44.4225082	2.5024 1.8628 1.0758 0.9170 0.7935 0.2557 0.1597 0.1156 0.0661 0.0095 portion of total variance 0.52 0.65 0.73 0.79 0.85 0.97 0.99 0.99 1.00 1.00 of regression equations using orthogona independent variables : 9.8457116 tor -11.9483027 -20.9651089 - 5.5595341 14.8529350 8.0916208 - 5.3157883 - 5.1644294 2.6158484 8.5779911 -11.0135244 9.0799360 14.6991757 -28.2978663 44.4225082	2.5024 1.8628 1.0758 0.9170 0.7935 0.6240 0.2557 0.1597 0.1156 0.0661 0.0095 portion of total variance 0.52 0.65 0.73 0.79 0.85 0.89 0.97 0.99 0.99 1.00 1.00 of regression equations using orthogonal factor independent variables 9.8457116 tor -11.9483027 -20.9651089 - 5.5595341 14.8529350 8.0916208 - 5.3157883 - 5.1644294 2.6158484 8.5779911 -11.0135244 9.0799360 14.6991757 -28.2978663 44.4225082

Table 21. Eigenvalues, cumulative proportion of total variance, and coefficients of regression equations for the analysis of State.

Residual sum sq. 28.3118286 Total sum sq. 1087.7168427									
Orthogonal	factors	Reduction in sum of squares	Accumulative reduction in sum of squares	Correlation coefficients					
1		732.4214401	732.4214401	0.821					
5		148.8196507	881.2410908	0.900					
4		72.7763968	954.0174876	0.937					
12		34.3862939	988.4037815	0.953					
9		15.9436042	1004.3473857	0.961					
10		11.6338952	1015.9812809	0.966					
14		9.9867220	1025.9680029	0.971					
7		9.2077668	1035.1757697	0.976					
2		8.8135710	1043.9893407	0.980					
15		7.6879613	1051.6773020	0.983					
11		3.9088088	1055,5861108	0.985					
8		1.8896822	1057.4757930	0.986					
3		1.1772424	1058.6530354	0.987					
6		0.5943731	1059.2474085	0.987					
13		0.1576801	1059.4050886	0.987					

Table 22. Reduction in residual sum of squares due to using orthogonal factors and multiple correlation coefficients of the step-wise equations.

Residual sum s Total sum sq.	sq. 109.32 921.63	289337 161575	
Othogonal factors	Reduction in sum of squares	Accumulative reduction in <u>sum of squares</u>	Correlation coefficients
1	527.8405991	527.8405991	0.757
3	97.1475506	624.9881497	0.823
9	86.4666100	711.4547597	0.879
5	44.0995560	755.5543157	0.905
11	29.0976365	784.6519522	0.923
12	18.1782041	802.8301563	0.933
6	3.8153185	806.6454748	0.936
13	2.9130340	809.5585088	0.937
2	1.2751397	810.8336485	0.938
18	0.5436573	811.3773058	0.938
4	0.4129002	811.7902060	0.939
10	0.2391188	812.0293248	0.939
17	0.1514230	812.1807478	0.939
14	0.1065151	812.2872629	0.939

Table 23. Reduction in residual sum of squares due to using orthogonal factors and multiple correlation coefficients of the stepwise equations.

Residual sum s Total sum sq.	sq. 318.1 730.0	318.1004333 730.0650253						
Othogonal factors	Reduction in sum of squares	Accumulative reduction in <u>sum of squares</u>	Correlation coefficients					
1	361.1234055	361.1234055	0.703					
2	140.1629982	501.2864037	0.829					
8	25,6033280	526.8897317	0.850					
7	18.8978236	545.7875553	0.865					
4	15.2001107	560.9876660	0.877					
9	9.3538616	570.3415276	0.884					
6	6.2509627	576.5924903	0.889					
3	5.8873065	582.4797968	0.893					
11	4.7786182	587.2584150	0.897					
12	3.1155727	590.3739877	0.899					
14	1.0694409	591.4434286	0.900					
5	0.4019567	591.8453853	0.900					
10	0.1118718	591.9572571	0.900					
13	0.0073675	591.9646246	0.900					

Table 24. Reduction in residual sum of squares due to using orthogonal factors and multiple correlation coefficients of the stepwise equations.

Residual sum s Total sum sq.	sq. 640.43 2982.53	382935 747375	
Othogonal factors	Reduction in sum of squares	Accumulative reduction in sum of squares	Correlation coefficients
2	1099.8857269	1099.8857269	0.607
1	677.0912552	1776.9769821	0.772
4	237.3390694	2014.3160515	0.822
5	60.0377188	2074.3537703	0.834
3	57.5773973	2131.9311676	0.845
13	52.8929381	2184.8241057	0.856
10	31.0157948	2215.8399005	0.862
9	26.7701790	2242.6100795	0.867
12	24.9762173	2267.5862968	0.872
6	22.4226334	2290.0089302	0.876
14	18.8158882	2308.8248184	0.880
7	16.6431761	2325.4679945	0.883
11	13.1705462	2338.6385407	0.885
8	3.4980882	2342.1366289	0.886

Table 25. Reduction in residual sum of squares due to using orthogonal factors and multiple correlation coefficients of the stepwise equations.

DISCUSSION

A summary comparing the results from both types of regression analysis is given in Tables 26 and 27. Table 26 compares the percent of the variation in water yield that each orthogonal factor explains with the percent of information from the original physiographic data matrix that it contains. The orthogonal factors are ranked in descending order with respect to the amount of variance in measured water yield that each would account for. For example, orthogonal factor 1 in the Great Salt Lake Division accounts for, or reduces the variance in measured water yield by 67 percent and contains 46 percent of the information in the physiographic data matrix. It may be noted from Table 26 that the rank of the orthogonal factors with respect to water yield is not well correlated with their rank with respect to the physiographic data. In other words, the fact that a particular orthogonal factor ranks high in explaining variation in the data matrix does not guarantee that it will rank high in explaining variation in some other parameter for which a predictive relationship is sought.

This fact needs particular emphasis because a common procedure in using principal component analysis is to only calculate the orthogonal factors whose eigenvalues are greater than unity and assume that all the significant information is contained therein. The acceptance of this procedure would have resulted in the inclusion of only the first four or five orthogonal factors as the principal components for subsequent regression with water yield. Table 26

	Great Salt Lake Division			Uinta Division			Southern Division				Stat	e
Rank according to runoff correlation	Orthogonal factor	Reduction in variance of water yield	Physiographic infor- mation contained	Orthogonal factor	Reduction in variance of water yield	Physiographic infor- mation contained	Orthogonal factor	Reduction in variance of water yield	Physiographic infor- mation contained	Orthogonal factor	Reduction in variance of water yield	Physiographic infor- mation contained
		(%)	(%)		(%)	(%)		(%)	(%)		(%)	(%)
1 2 3 4 5	1 5 4 12 9	67 14 7 3 1	46 7 7 1 2	1 3 9 5 11	57 11 9 5 3	29 16 2 7 0	1 2 8 7 4	55 12 4 3 2	31 20 3 4 1	2 1 4 5 3	37 23 8 2 2	18 34 8 6 13
6 7 8 9 10	10 14 7 2 15	1 1 1 1	1 0 3 19 0	12 6 13 2 8	2	1 5 0 22 3	9 6 3 11 12	1 1 1	1 6 13 1 1	13 10 9 12 6	2 1 1	1 1 3 0 6
11 12 13 14 15	11 8 3 6 13	1	0 2 8 4 0	4 10 7 14		10 2 3 0	14 5 10 13	} 1	0 9 1 0	14 7 11 8	\$ 1	0 4 2 4
Total		97	100		88	100		81	100		77	100

Table 26. Comparison of reduction in variance of water yield by each orthogonal factor and physiographic information each factor contains.

G No. of	Great Salt Lake Division		Ui Divi	Uinta Division		hern sion	State	
terms	(MR)	(PC)	(MR)	(PC)	(MR)	(PC)	(MR)	(PC)
1	.850	.821	.676	.757	.730	.703	.731	.607
2	.914	.900	.782	.823	.833	.829	.809	.772
3	.929	.937	.806	.879	.867	.850	.824	.822
4	.940	.953	.830	.905	.876	.865	.850	.834
5	.959	.961	.862	.923	.882	.877	.858	.845
6	.965	.966	.895	.933	.886	.884	.868	.856
7	.969	.971	.910	.936	.888	.889	.870	.862
8	.977	.976	.922	.937	.892	.893	.875	.867
9	.982	.980	.931	.938	.900	.897	.881	.872
10	.985	.983	.938	.938	.900	.899	.833	.876
11	.986	.985	.939	.939	.900	.900	.885	.880
12	.986	.986	.939	.939	.901	.901	.885	.883
13	.987	.987	.939	.939	.901	.901	.886	.885
14	.987	.987	.939	.939	.901	.901	.886	.886
15	.987	.987						

Table 27. Comparison of correlation coefficients derived from multiple regression (MR) and principal component regression (PC) for equal number of terms in the equations.

shows that this could have greatly restricted the predictive power of any equations developed using the first four factors only. For example, if only orthogonal factors 1, 2, 3 and 4 had been used for the Great Salt Lake division in obtaining a regression equation for water yield a correlation coefficient of 0.86 would have resulted, whereas using factors 1, 5, 4 and 12 gave a correlation coefficient of 0.95. Similar observations may be made for factors in each of the other divisions. This indicates that when principle component analysis is to be used with regression that enough factors should be derived to account for all of the variance in the data matrix of "independent" variables. Otherwise the information thrown out may be that which is most or quite highly correlated with the dependent variable for which a relationship is sought.

Table 27 gives a comparison of the multiple correlation coefficients of the various equations developed using both ordinary multiple regression and principal component regression. The comparison indicates that principal component regression did not yield better predictive equations that ordinary regression when all variables are included in the predictive equation. In fact, when a single parameter is highly correlated with the water yield, the correlation coefficient of the most highly correlated orthogonal factor may be less than that of a single highly correlated physiographic parameter. This case is shown in Table 27 for the equations developed using data for each division except the Uinta Division. In fact, each of the equations developed using all 84 watersheds in the State derived from ordinary multiple regression had equal or higher correlations than the corresponding equations derived

from principal component analysis. The ordinary multiple regression equations developed from Southern division data had equal or higher correlations until 7 terms had been used and those in the Salt Lake division until 2 terms had been used in the principal component analysis. All principal component equations for the Uinta division had higher correlation coefficients than their corresponding ordinary multiple regression equations. This seems to indicate that as the homogeneity of the "independent" variable or information matrix is reduced the more difficult or less likely it is that any single variable will be entirely contained in any one orthogonal factor. In other words the information a single parameter contains will be more widely distributed throughout the whole set of orthogonal factors. Consequently, no single orthogonal factor may be as highly correlated with the dependent variable as the original single untransformed parameter.

A common objective in the application of principal component regression analysis is to reduce the number of variates in the model, thereby effecting an economy in representation and, as a corollary, to develop a rank list for the importance of the several variates. One disadvantage of the principal component analysis is the difficulty in assessing the real physiographic significance of the new factors represented by the relative magnitudes of each element in the eigenvectors of the eigenvector matrix. In the analysis of the Great Salt Lake division, a 0.953 multiple correlation coefficient is obtained when only four orthogonal factors were included in the regression analysis. By considering just those variables of each factor that

have large coefficients in the eigenvector it appears that the first factor is a general "precipitation" factor, the fifth is "elevationlatitude," the fourth is "drainage density," and the twelveth appears to be a "slope factor-vegetative" factor, however, the values of the other elements of the respective eigenvectors are not insignificant so these interpretations are still quite arbitrary. An examination of the eigenvector elements for the entire study reveals a similar difficulty so an interpretation of the physiographic significance of each orthogonal factor is not attempted here.

The application of the principal component regression equations is more complicated and more tedious than the ordinary ones because the evaluation of each orthogonal factor requires evaluation or measurement of every physiographic parameter used in the analysis. Thus, even if the equation involving only orthogonal factor one for the Great Salt Lake division was deemed suitable, the evaluation of the value of factor one would necessitate the measurement of all 15 of the physiographic parameters used in the ordinary regression analysis, dividing each element of raw data by its standard deviation and then multiplying that result by its respective element in the factor one eignevector. However, in this report, a simple procedure is proposed to simplify the evaluation of each factor. This procedure is to draw an isogram of each orthogonal factor and then determine the factor value from it much as one determines precipitation from an isohyetal map or elevation from a topographic map. Orthogonal factors 1, 5 and 4 for the Great Salt Lake division have been plotted in Figure 1 to illustrate the procedure. The regression of water yield

on these three factors will give a multiple correlation coefficient of 0.937.

The feasibility of using the iso-maps shown in Figure 1 was tested by comparing values of runoff obtained from them with that obtained by using equations given in Special Report 18, Utah Agricultural Experiment Station, for some watersheds in the Great Salt Lake division. The choice of the watersheds used for comparison was primarily a matter of expediency because runoff values for them had been previously computed by Mr. Frank Haws in connection with some other work he was doing. They were thought to be quite suitable for comparison purposes because none of them were used in the development of the regression equations and thus would give some idea concerning the extrapolative power of the two methods. The results are summarized in Table 28 and reveal that the average error from the principal component analysis equations is considerably less than the corresponding error from the multiple regression equations for these watersheds.

It must be emphasized that these results are not conclusive because the iso-maps in Figure 1 are merely first approximations and to be generally used would require a considerable amount of refinement by calculating factor values for watersheds in areas that will provide definition where uncertainties now exist. However, the results do indicate that the principal component equations may be superior for extrapolative purposes.

Figure 1. Iso-gram of orthogonal factors 1, 4, and 5 for the Great Salt Lake Division.

		Equations Special 1	s given in Report 18	Equation first ort fact	contains chogonal cor	Equation first orthogona	contains two 1 factors	Equation of first to orthogonal	ontains hree factors
Stations	Measured water yield 1931-60	Computed water yield	Differ- ence	Computed water yield	Differ- ence	Computed water yield	Differ- ence	Computed water yield	Differ- ence
Three-mile Canyon	7.0	8.0 (21)	- 1.0	9.23	- 2.23	7.77	- 0.77	6.36	0.64
Synderville Canyon	22.4	8.0 (21)	14.4	9.54	12.86	7.88	14.52	6.45	15,95
Willow Draw	6.2	14.2 (21)	- 8.0	10.30	- 4.10	9.03	- 2.83	7.57	- 1.37
Red Pine	3.7	19.5 (22)	-15.8	12.53	- 8.83	11.33	- 7.63	9.77	- 6.07
White Pine	11.5	19.1 (21)	- 7.6	12.01	- 0.51	10.79	0.71	9.23	2.27
Lower Thaynes Canyon	9.1	16.1 (21)	- 7.0	9.14	- 0.04	7.02	2.08	5.60	3.50
Average error			8.967		4.762		4.757		4.967

Table 28. Comparison of water yield obtained by Principal Component Analysis using the iso-grams (Figure 1) with multiple regression equations given in Special Report 18, Utah Agricultural Experiment Station.

CONCLUSIONS AND RECOMMENDATIONS

The principal conclusion that may be drawn from this study is that considerable caution should be exercised in blindly accepting as superior a new and more sophisticated procedure of analyzing data. In this study two methods of analysis were compared, both of which utilized all of the information available from the data. The main difference between them was the information used in successive steps of analysis. The principal component analysis used data at each successive step that was a part of all the physiographic data, whereas the ordinary multiple regression analysis used all the data from each physiographic parameter added at that step.

Some of the principal advantages claimed for the method of principal component analysis were not borne out by the results of this study, in fact the only real advantage that it showed was in its possible extrapolative superiority. Even though this result was not too conclusive, it is reasonable because each orthogonal factor is a combination of all the physiographic data and therefore its value is not totally affected by a large error in any one criterion observation. If this result is verified by further work, it will be an important advantage of the method.

One advantage which is claimed for the method did not materialize, namely that a reduction in predictor variables (physiographic parameters) is realized. In this study, it was shown that all factors should be calculated and included in the principal component

regression analysis. If standard rule of thumb procedures had been accepted concerning the significance of the information contained in the principal component matrix serious limitations would have resulted. For example, analysis of the Great Salt Lake division showed that among the six factors which are most highly correlated with water yield, only factors 1 and 4 had eigenvalues greater than unity. Although the six factors account for only 64 percent of the variation in the physiographic data matrix, they account for nearly 94 percent of the variation in water yield. This points out that factors accounting for a large percentage of variance in the data sample space are not necessarily the same factors that are highly correlated with a dependent variable for which a predictive relationship is sought.

It is often reported that determining the principal components aids in the physical interpretation of the data. However, this was not the experience of this study; in fact, interpreting the physical significance of the orthogonal factors proved so difficult that the attempt was finally abandoned. A possible method of overcoming this problem is by use of what is known as a verimax rotation of the factor weight matrix. The factor weight matrix is simply the eigenvector matrix standardized by multiplying each eigenvector by the square root of its respective eigenvalue.

Figure 2 illustrates a visual interpretation of the factor loading that result from a 2-cluster system of variables projected onto the first and second principal component axes. It can be seen from the figure that the first component has high positive loadings on all variables; the second has high positive and negative loadings with

comparatively few intermediate values. Variable loadings similar to those in Figure 2 are the rule rather than the exception when making principal component analysis of correlation matrices.

Figure 2. Factor loading on the first and second principal component for a two-cluster system of variables (Wallis, 21).

The verimax rotation would simplify the columns (standardized eigenvectors) of the factor weight matrix while maintaining an orthogonal structure. The effect of such a rotation can be visualized for two clusters of variables and two dimensions by referring to Figure 2 and imagining the factor loadings that would result from rotating the planes of the first and second principal components to the X and Y positions. Such a rotation tends to produce correspondence between the factors and the variables, resulting in fewer problems in accessing the physical significance of the various orthogonal factors.

The recommendations for further study in this area are summarized

as follows:

 Extend the analysis to include a verimax rotation of the factor weight matrix and assess the value of this analysis in obtaining physical interpretation of the various orthogonal factors.

2. Further refine the isograms of the orthogonal factors by using the results of verimax rotation if they prove helpful.

3. Further test the extrapolative power of both the principal component regression equations and the ordinary multiple regression equations to conclusively determine their relative merits.

4. Finally derive an improved water yield or runoff map for the State of Utah that utilizes all of the improvements obtained by the foregoing analyses.

LITERATURE CITED

- Bagley, Jay M., Roland W. Jeppson, and Cleve H. Milligan. <u>Water</u> <u>Yields in Utah</u>. Special Report 18, Utah Agricultural Experiment Station, Utah State University. Logan, Utah. 1964.
- Bernard, M. N. "An approach to determine stream flow." American Society of Civil Engineers Trans. 100:347-395. 1935.
- Cooley, William W., and Paul R. Lohnes. <u>Multivariate procedures</u> for the behavioral sciences. New York: John Wiley and Sons, Inc. 1962.
- Dubois, Philip H. <u>Multivariate correlational analysis</u>. New York: Harper and Brothers. 1957.
- Fiering, Myron B. "Multivariate technique for synthetic hydrology." Journal of the Hydraulics Division, ASCE. September, 1964.
- Fok, Yu Si. Streamflow forecasting for Blacksmith Fork River, <u>Utah</u>. Unpublished M.S. thesis, Utah State University Library. 1959.
- Fork, Perry M. <u>Multiple correlation in forecasting seasonal</u> <u>runoff</u>. Denver, Colorado: U. S. Department of Interior, Bureau of Reclamation Engineering Monographs No. 2. April, 1949.
- Golding, Bernard L. and Dana E. Low. "Physical characteristics of drainage basins." <u>Journal of the Hydraulics Division</u>, ASCE, 86(HY3):1-11. March, 1960.
- Harman, H. Harry. <u>Modern factor analysis</u>. Chicago, Illinois: The University of Chicago Press. 1960.
- Jeppson, Roland W. A method for predicting annual surface runoff from watersheds with limited hydrographic data. Unpublished M.S. thesis, Utah State University Library. Logan, Utah. 1960.
- Jeppson, Roland W., and Leon Huber. Curve fitting by minimizing the sum of squared orthogonal deviations. Unpublished paper. Utah State University. Logan, Utah. 1966.
- Langbein, W. B. <u>Topographic characteristics of drainage basins</u>.
 U. S. Department of Interior, U. S. Geological Survey Water Supply Paper 968-C. 1947.

- Linsley, R. K., Max A. Kohler, and J. L. Paulhus. <u>Applied</u> hydrology. New York: McGraw-Hill. 1949.
- 14. Nixon, P. R., and G. O. Schwab. <u>Water yield prediction based on</u> <u>watershed characteristics</u>. Journal paper No. J-2969. Ames, Iowa: The Iowa Agricultural Experiment Station Project No. 1247.
- Ostle, Bernard. <u>Statistics in research</u>. Ames, Iowa: The Iowa State College Press. 1956.
- 16. Reich, B. M. <u>Design hydrographs for very small watersheds from</u> <u>rainfall</u>. CER62BMR41 Civil Engineering Section, Colorado State University, Fort Collins, Colorado. 1962.
- Sharp, A. L., A. E. Gibbs, W. J. Owen, and B. Harris. "Application of multiple regression approach in evaluating parameters affecting water yield of river basins." <u>Journal of Geophysical Research</u>. 65(4):1273-1286. April, 1960.
- Snedecor, George W. <u>Statistical methods</u>. Ames, Iowa: The Iowa State College Press. 1940.
- Snyder, Willard M. "Some possibilities for multivariate analysis in hydrologic studies." <u>Journal of Geophysical Research</u>. 67(2):721-729. February, 1962.
- Spreen, W. C. "A determination of the effects of topography upon precipitation." <u>Transactions American Geophysical Union</u>. 28:285-290. 1947.
- Wallis, James R. "Multivariate statistical methods in hydrology-a comparison using data of known functional relationship." Water Resources Research, vol. 1, no. 4. Fourth quarter, 1965.
- Wallis, James R., and Henry W. Anderson. "An application of multivariate analysis to sediment network design." Publication No. 67 of the I.A.S.H. Symposium Design of Hydrological Networks. p. 357-378.

APPENDIXES

Appendix A

Table 29. Values assigned to the geological formations. (Assigned by James H. Milligan in consultation with J. Stewart Williams)

Symbol	Descriptions	Values
Qay	Relatively younger alluvial deposits, chiefly along active streams.	0.05
Qao	Relatively older alluvial deposits, on terraces above active streams.	0.10
Qas	Alluvial surfaces, mostly sloping and well drained with soil profile suitable for crops.	0.05
0a	Undifferentiated alluvium.	0.20
Qco	Miscellaneous covering deposits, including wind blown material, thin soil and alluvium.	0.10
Qag	Colluvium and alluvium, mostly stony.	0.10
Qgs	Gravel surface, mainly terrace and pediments under- going erosion, may not be associated with active streams.	0.40
Qgm	Glaciated ground morains undifferentiated, includes bare rock as well as moraines of all types.	0.50
Qgo	Glacial outwash; fine and coarse materials laid down by streams beyond glacial margins.	0.20
Qls	Landslides and other surficial masses displaced by gravity.	0.50
Qds,Qdo, Odg	Dunes, Qds, Siliceous; Qdo, Oolitic; Qdg, Gypsiferous	0.20
Qlc	Lake bed sediments, mostly dry clay or dust, poorly drained and with enough salt to prohibit	0.50
01+-	agriculture.	0.10
QILG	Constructional lake shore features, gravery,	0.15
QILS	Marshland mostly freebuater	0.30
Oh	Quaternary basalt.	0.30
Qlcs	Lake bed sediments, mostly clay with very flat surface.	0.40
Qlsa	Lake bed with permanant salt crust.	0.50
Qlo,Qlcb Qbi	,Underwater sediments of Great Salt Lake; Qb, Oolitic bottom; Qlcb, Clay or mud; Qbi, Algal bioherms.	0.50
Tw	Wasatch formation or group, Variegated continental sediments, ranging from limestone to conglomerate.	0.60
Tvil	Joe Lott Tuff.	0.70
Tvmb	Mt. Belknap Rhyolite.	0.75
Tvdh	Dry Hollow Latite.	0.60
Tvrp	Roger Park Breccia.	0.60
Tvbc	Bullion Canyon Volcanics, Oligocene.	0.70
TQa	Axtell Formation, Conglomerate of pebbles to boulders.	0.50
Tsr	Sevier river formation, partly consolidated coarse conglomerate with volcanic debris	0.65
Tfc	Foll creek Conglomerate, pebble, cobble and boulder.	0.45

Symbol	Descriptions	Values
Tgg	Gray Gulch formation, complex aggregation of	0.70
00	pyroclastic rocks with colored sandstone,	
	limestone and shale.	
Tbk	Bald Knoll formation, light gray siltstone.	0.65
Tch	Crazy Hollow formation, sandstone and siltstone.	0.50
Tvg	Goldens Ranch formation, chiefly volcanic con- glomerate with minor limestone.	0.65
Tgu	Green River formation, limestone with minor sand- stone and conglomerate.	0.70
Тс	Colton formation, fluvial beds with channel sandstone	0.60
Tf	Flagstaff limestone, fossiliferous limestone.	0.65
TKnh	North Horn formation, variegated continental beds.	0.60
Ts1,Tu	Salt Lake formation, continental sandstone, shale,	0.70
	marlstone, silt, and pyroclastic rocks.	
Tfo	Fowkes formation, tuffaceous and limy beds.	0.65
TK	Knight Conglomerate, chiefly massive conglomerates, minor sand and silt.	0.60
T? bp	Late Tertiary basaltic and basaltic andesitic	0.50
Ρrp	Late Tertiary rhyolite-dacite-quartz latite	0.60
Tib	Tertiary basic intrusive rocks.	0.70
TKt	Tuscher formation, conglomeratic fluvial sandstone.	0.50
TQu	Tertiary and Quaternary deposits and surfaces.	0.60
T1	Tertiary limestone, exact age uncertain.	0.75
Tcg	Tertiary conglomerate, exact age uncertain.	0.60
Tb	Tertiary brecia, exact age uncertain.	0.75
Tvu	Tertiary volcanic rocks, undifferentiated.	0.70
Τγbf	Late Tertiary basalt and basaltic andesite flows.	0.55
R af	Late Tertiary andesite-trachyte-Latite flows.	0.65
Ъ ар	Late Tertiary andesite-trachyte-latite pyroclastics.	0.50
₨ rf	Late Tertiary rhyolite-dacite-Quartz latite flows.	0.70
T _C ri	Late Tertiary rhyolite-dacite-quartz latite	0.75
'® bf	Early Tertiary basalt and basaltic andesite flows.	0.55
Raf	Early Tertiary andesite-trachyte-latite flows.	0.65
Pan	Early Tertiary andesite-trachyte-latite pyroclastics.	0.55
Toai	Early Tertiary andesite-trachyte-latite ignimbrites.	0.75
Brf	Early Tertiary rhyolite-dacite-quartz flows.	0.70
Teri	Early Tertiary rhyolite-dacite-quartz latite	0.70
-1	ignimbrites.	0.70
Tig	Tertiary granitoid rocks.	0.80
Tip	Tertiary porphyritic intrusive rocks.	0.85
Tvp	Pine valley latite.	0.85
Tvpr	Page Ranch formation.	0.85
Tvr	Rencher formation, mostly rhyolitic ignimbrites.	0.80

Symbol	Descriptions	Values
Tva	Ouichapa formation, mostly rhyolitic ignimbrites.	0.80
Tvi	Ison formation, mostly andesitic-latitic ignimbrites.	0.75
Tvnr	Needles Range formation, mostly latitic ignimbrites.	0.75
Typh	Brian Head formation, mostly latitic ignimbrites.	0.75
Tmc	Muddy Creek formation, clay, silt and sand some	0.75
Line	evaporites.	0.75
Tc1	Claron formation, limestone, some coarse clastics.	0.70
Tgp ₃	Upper unit of parachute creek, Member of Green R. formation.	0.80
Tgp ₂	Middle unit.	0.85
Tgp1	Lower unit.	0.85
Tgs	Older, high level, gravel-colored surfaces of uncertain age.	0.65
Tbp	Browns Park formation, extremely varied formation of gray to buff sandstone, tuffaceous material and conclomerate irrigularity	0.65
Tdr	Duchespe R formation fluvial sandstone and mudstone.	0.55
Thri	Bridge formation fluvial and lake beds	0.70
Tae	Evacuation Cr. member of Green R. formation	0.75
Tggd	Garden Gulch and Douglas Cr. member of Green river	0.75
Tfu	Fort Union formation, non-marine sandstone and siltstone.	0.55
Tu	Uinta formation, fluvial and lake deposits.	0.70
Ku	Cretaceous undivided.	0.75
KKa	Kaiparowits formation, sandstone and sandy shale.	0.60
Kws	Wahweap and Straight cliffed sandstone undivided.	0.60
Kwa	Wahweap sandstone, minor shale.	0.55
Kst	Straight cliffs sandstone, chiefly massive sandstone.	0.55
Ktr	Tropic shale, marine shale and sandstone with coal.	0.75
Kis	Iron Springs formation, coarse sandstone, grit, and conglomerate.	0.70
Kdt	Dakota and Tropic formations undivided.	0.65
Kd	Dakota sandstone, thin beds of conglomerate, sandstone, shale and coal.	0.55
Ki	Indianola formation, conglomerate, sandstone, and siltstone.	0.70
Ksx	Sixmile formation, sandstone, conglomerate.	0.70
Kfu	Funk valley formation, sandstone, shale, conglo- meratic.	0.70
Kav	Allen valley formation, marine shale.	0.80
Kspt	Sanpete formation, sandstone and conglomerate, minor shale.	0.70
Kpr	Price R. formation, sandstone, mudstone, mainly conglomerate.	0.75
Kc	Castlegate sandstone, cliff forming deltaic sandstone.	0.60

Symbol	Descriptions	Values
Kbh	Black Hawk Group, sandstone, shale and coal,	0.65
KTc	Unnamed coglomerate, varied lithology.	0.70
Kec	Echo Canyon conglomerate, sandstone, shale and coglomerate.	0.65
Kw	Wanship formation, marine sandstone and shale.	0.70
Kf	Frontier formation, sandstone, shale and coal.	0.70
Ka	Aspen shale, marine shale.	0.85
KK	Kelvin formation, continental deposits, pre- dominantly red with many conglomerate.	0.70
Ksp	Star Point sandstone, interbedded sandstone and shale, deltaic and marine.	0.70
Kmv	Mesa Verde Group undivided, mixed sandstone, shale.	0.75
Kms	Mancos Shale undivided, non-resistant, marine shale.	0.85
Kmm	Masuk shale member of Mancos shale, marine shale.	0.80
Ke	Emery sandstone, member of Mancos shale, marine.	0.75
Kmbg	Blue Gate shale, member of Mancos shale, calcareous marine shale.	0.80
Kmt	Tununk shale M. of Mancos, marine siltstone, claystone.	0.85
Kfe	Ferron sandstone, M. of Mancos, marine and non-marine sandstone.	0.75
Kcm	Cedar Mt. shale, nodular shale with fluvial sandstone.	0.80
Kdcm	Dakota sandstone and Cedar Mt. shale undivided.	0.75
Kbc	Burro Canyon formation, continental mudstone, sandstone.	0.70
Kdbc	Dakota sandstone and burro Canyon, formation undivided.	0.65
Kcc	Current Cr. formation, fluvial sandstone, siltstone.	0.65
Ker	Kricson formation, cliff-forming sandstone, minor shale.	0.60
Krs	Rock Spring sandstone, sandstone, marine shale and coal.	0.70
КЪ	Blair formation, sandy shale and sandstone.	0.70
Kh	Hilliard shale, marine shale.	0.80
Kmf	Mowry shale and Frontier sandstone undivided.	0.75
Kbr	Bear R. formation, carbonaceous shale and sandstone.	0.75
Kgc	Garley Canyon sandstone, M. of Mancos shale, marine and non-marine sandstone.	0.70
Jna	Navajo sandstone, cross-bedded, eolian sandstone.	0.40
Ju	Jurassic undivided, mostly San Rafael group equivalent.	0.45
Jm	Morrison formation, varied continental sediments.	0.65
Jw	Winsor formation, continental sandstone and siltstone.	0.60
Jb	Bluff sandstone, continental sandstone, salt wash in fluvial.	0.45
Jsu	Summerville formation, non-marine sandstone and sandy shale.	0.55
Je	Entrada sandstone, non-marine siltstone and smooth- weathering sandstone.	0.45

Symbol	Descriptions	Values
Jca	Carmel formation, marine gypsum, shale and sandstone.	0.70
JP?k	Kayenta formation, fluvial and eolian sandstone.	0.45
JR gc	Glen Canyon group, undifferentiated, includes Navajo, Kayenta, and Wingate sandstones and shales.	0.60
Ja	Arapien formation, variegated siltstone, sandstone and limestone, rock salt and gypsum.	0.80
Jtg	Twist Gulch formation, sandstone and siltstone.	0.85
Jat	Twelvemile Canyon formation, shale, sandstone, lime- stone, rock salt, gypsum.	0.80
Jp	Press sandstone, siltstone and sandstone.	0.70
Jtc	Twin Cr. limestone, limestone.	0.65
Jn	Nugget sandstone, cross-bedded, eolian sandstone.	0.45
Jmbb	Brushy basin. M. of Morrison formation, mostly shale.	0.80
Jmw	Westwater Canyon, M. of Morrison formation, fluvial sandstone and mudstone.	0.70
Jmrc	Recapture Cr. M. of Morrison formation, fluvial sandstone and mudstone.	0.70
Jmsw	Salt Wash sandstone, M. of Morrison formation, fluvial sandstone and mudstone.	0.65
Jcu	Curtis formation, chiefly glauconitic sandstone.	0.65
Jem	Moab sandstone, tongue of Entrada sandstone.	0.60
Jst	Stump sandstone, brown-weathering, glauconitic sandstone and shale.	0.65
T ₇ c	Chinle formation, variegated non-marine sediments.	0.80
To s	Shinarump formation, conglomeratic sandstone.	0.60
To m	Moenkopi formation, siltstone and sandstone.	0.80
Ρęt	Thaynes formation, calcareous marine shale, silt- stone and limestone.	0.75
$\mathbb{T}_{Y} \; u$	Triassic undivided, includes Chinle, Shinarump and Moenkopi.	0.80
To mo	Moenave formation, sandstone, siltstone and shale.	0.65
T? a	Ankareh formation, sandstone, siltstone and shale.	0.75
T? w	Woodside shale, siltstone and shale.	0.75
$\mathbb{T}_{\tau'}\texttt{wi}$	Wingate sandstone, massive, cross-bedded, cliff- forming sandstone.	0.45
T cm	Moss Back M. of Chinle formation, conglomeratic fluvial deposits.	0.65
Pqcc	Church Rock M. of Chinle formation, chiefly sandy siltstone.	0.70
Rco	Owl Rock M. of Chinle formation, siltstone and limy siltstone.	0.70
₽ pf	Petrified Forest M. of Chinle formation, bentonitic mudstone, claystone, and siltstone.	0.85
TP mb	Monitor Butte M. of Chinle formation, interbedded mudstone, claystone, sandstone, bentonitic.	0.80
T ₍ ms	Sinbad limestone M. of the Moenkopi formation, thin bedded, marine limestone.	0.75

Symbol	Descriptions	Values
₽g	Gerser formation, limestone with minor sandstone, siltstone, chert.	0.70
₽pl	Plympton formation, mostly dolomite and chert with phosphatic beds.	0.80
₽ka,₽ki	Kaibab limestone, cherty limestone, dolomite and evaporites.	0.70
₽a	Arcturus formation, shaly limestone, dolomite, silty sandstone and gypsum.	0.80
Prs	Riepe Spring formation, limestone, wolf-campian,	0.75
₽t	Toroweap formation, cherty limestone, dolomite and siltstone.	0.80
₽co	Coconino sandstone, cross-bedded, non-marine sand- stone.	0.65
₽h	Hermit formation, sandstone and shale.	0.70
₽pk	Pakoon limestone, mostly dolomitic limestone.	0.75
₽ро	Oquirrh formation, quartzite, limestone, dolomite, sandstone and shale.	0.80
Ppc	Park City formation, chert, phospharite, limestone and shale phosphate rock.	0.80
₽dc	Diamond Cr. sandstone, cross-bedded, sandstone.	0.65
₽k	Kirkman limestone, thin-bedded, brecciated limestone.	0.80
Pun	Permian Rocks undivided.	0.80
Pcr	Rex Chert Member, chert or cherty mudstone.	0.70
₽cmp	Meade Peak Member, shale, mudstone and siltstone, phosphate rocks.	0.65
Pcgr	Grandeur M. dolomite, silty dolomite and cherty.	0.80
₽р	Pequop formation, limestone, fine-grained sandstone, and siltstone.	0.70
₽pu	Permian and Pennsylvanian formations undivided.	0.80
₽T2ho	Hoskinnini, sandy mudstone and siltstone.	0.75
₽cu	Cutler formation undivided.	0.70
₽wr	White Rim sandstone M. of Cutler formation, cross- bedded, non-marine sandstone.	0.55
₽cd	Dechelly sandstone, M. of Cutler formation, cross- bedded, non-marine sandstone.	0.60
Por	Organ Rock tongue, thin-bedded sandstone and shale with minor limestone lenses.	0.70
₽cm	Cedar Mesa sandstone, M. of Cutler formation, cross- bedded, non-marine sandstone with calcareous shale.	0.60
₽pr	Rico formation, equivalent in part to Elephant Canyon formation.	0.65
P ha	Halgaito formation, thin-bedded mudstone and siltstone.	0.75
₽pho	Honaker Trail formation, limestone and sandy silt- stone with chert.	0.80
Pal	Paleozoic rocks, age uncertain.	0.85

Symbol	Descriptions	Values
Pe	Elv formation, limestone, locally very cherty.	0.75
Pt	Talisman Quartzite, fine grained sandstone and guartzite.	0.75
Pc	Callville limestone, thin-bedded, cliff-forming limestone with silty limestone near base.	0.75
Pw	Weber Quartzite, mainly quartzite, some cherty limestone.	0.80
Pm	Morgan formation, cherty limestone and relatively soft sandstone and siltstone.	0.70
Prv	Round Valley limestone, limestone.	0.70
PMmc	Manning Canyon Shale, block shale with minor park limestone, guartzite and grit.	0.80
PMcd	Chainman and Diamond Peak formation, undivided, chert and quartzite conglomerate, siltstone, shale and silty quartzite.	0.85
Pwe	Wells formation, interbedded limestone and calcareous sandstone.	0.75
Pwmu	Morgan and Weber formation undivided.	0.75
Pmu	Pennsylvanian and Mississippian undivided.	0.80
Mc	Chainman shale, shale with lenses of sandstone.	0.80
Mj	Joana limestone, massive fossiliferous limestone.	0.75
Mr	Redwall limestone, limestone with chert.	0.70
Mu,Mb	Brazer limestone, thick-bedded fossiliferous limestone.	0.70
M1,M1p	Lodgepole limestone, thin to medium bedded cherty, fossiliferous limestone.	0.65
Mdo	Doughnut formation, limestone and shale.	0.75
Mgb	Great Blue limestone, pure and cherty limestone.	0.70
Mh	Humbug formation, quartzitic sandstone with minor limestone and dolomite.	0.80
Md	Deseret limestone, limestone or dolomite with chert.	0.75
Mm,Mg	Madison or Gardison limestone, massive fossiliferous limestone and dolomite, minor chert.	0.70
Mun	Undifferentiated Mississippian rocks.	0.80
MDf	Fitchville formation, mostly dolomite, some limy siltstone and quartizite.	0.80
Mom	Ochre Mt. Limestone, thick-bedded, massive, cherty limestone.	0.70
Mw	Woodman formation, calcareous sandstone and sandy limestone.	0.65
Dp	Pilot shale, carbonaceous very soft shale.	0.85
Dg	Guilmette formation, chiefly cliff-forming limestone with much dolomite, sandstone and argillaceous carbonates.	0.80
Dsi	Simonson dolomite, fine to coarse grained dolomite.	0.80
Table 29. Continued

Symbol	Descriptions	Values
Ds	Sevy dolomite, dense, distinctly bedded unfossiliferous dolomite.	0.80
Dj	Jefferson dolomite, dolomite with shale and sand- stone.	0.80
Dwc	Water Canyon dolomite, dense splintery dolomite.	0.75
Du	Devonian formations undivided.	0.80
Dv,Dst	Victoria Quartzite and Stansbusy formation, coarse conglomerate, sandstone, quartzite and silty limestone.	0.85
Dpp	Pinyon Peak formation, limy siltstone and dolomitic limestone.	0.75
Djt	Jefferson formation and three formation undivided, dolomite, limestone, siltstone.	0.75
S1	Laketown dolomite, middle and upper Silurian.	0.80
0s	Silurian and Ordovician undivided, mostly laketown and Fish Haven dolomites.	0.80
Ofh	Fish Haven dolomite, distinctly bedded dolomite.	0.80
0e,0es	Eureka and/or Swan Peak Quartzite, vitreous quartzite and hard sandstone.	0.85
Op	Pogonip formation, limestone, silty limestone, olive shale and intraformational conglomerate.	0,85
Opu	Upper Pogonip, Wahwah, Juab, Kanosh and Lehman forma- tions, fossiliferous silty and sandy limestones and shale.	0.75
0p1	Lower Pogonip, House and Fillmore formations, chiefly impure limestone with abundant intraformational conglomerate.	0.75
Ou	Ordovician formations undifferentiated, chiefly Swan Peak and Fish Haven.	0.80
Osp	Swan Peak Quartzite, unfossiliferous quartzite.	0.85
Ogc	Garden City limestone, silty, cherty limestone with abundant intraformational conglomerate.	0.65
€un	Cambrian undivided, chiefly limestone, some shale, dolomite.	0.80
€uu	Upper Cambrian undivided, chiefly limestone and dolomite.	0.80
€mu	Middle Cambrian undivided, chiefly limestone, some shale.	0.80
-Cnp	Notch Peak formation, cliff-forming limestone.	0.75
€du	Dunderberg shale, shale and thin bedded limestone.	0.85
€or	Orr formation, thin to medium bedded limestone.	0.65
€wk	Weeks formation, mostly laminated limestone and dolomite.	0.70
€mi	Mariun formation, limestone and shalv limestone.	0.75

64

Table 29. Continued

Symbol	Descriptions	Values
-Cw	Wheeler shale, fossiliferous limy shale, equivalent massive limestone in Wahwah range is included.	0.80
€sw	Swasey and Whirlwind formation, massive limestone, limv shale and shale.	0.80
-£d	Dome limestone, grav-weathering massive limestone.	0.80
-Chc	Howell and Chisholm formation, limestone, shaly limestone, and shale.	0.80
€ta	Tatow formation, interbedded limestone, shale, and guartzite.	0.85
-€р	Pioche formation, interbedded phyllitic shale and quartzite.	0.85
-Cpm	Prospect Mt. quartzite, quartzite, some phyllite.	0,90
fo	Onhir shale, olive-green, micaceous shale and limeston	e.0.85
-€t	Tintic quartzite, pure quartzite and sandstone, some conglomerate.	0.75
-£sc	St. Chalres formation, limestone and dolomite.	0.75
£n	Nounan formation, limestone and dolomite,	0.70
£h	Bloomington formation, interbedded limestone and	0.80
0.0	argillceous shale.	0.00
€bl	Blacksmith formation, chiefly thick-bedded dolomite,	0.80
£11	lite formation chiefly silty limestone and shale.	0.80
-€1	Langston formation, interbedded shale, limestone, dolomite.	0.80
-Ebr	Brigham quartzite, quartzite, sandstone.	0.90
Cbs	Bushy guartzite, coarse to find sandstone and shale.	0.70
€ld	Lodore formation, quartzitic sandstone and shale.	0.75
PCi	Precembrian intrusive rocke chiefly granitic	0 95
P€sr	Undifferentiated metasedimentary rocks, chiefly guartzite and argillite.	0.95
P€cr	Undifferentiated crystalline rocks, schist, gneiss, and grainitoid rocks.	0.95
P€dc	Dove Cr. formation, guartzite, schist, limestone,	0.95
PCh	Harrison formation, quartzite, schist and dolomite.	0.95
PCm	Mutual formation, chiefly quartzite.	0.95
PCmf	Mineral Fk. formation, chiefly metamorphosed sediments including boulder clay.	1.00
Р€Ъс	Big cottonwood formation, chiefly quartzite and argillite.	0.95
P€f	Farmington Canvon complex, schist, gneiss, negmatites.	1.00
PCs	Sheeprock Series, argillite and metaconglomerate.	0.90
Bern	Red Pine shale, thin-bedded micaceous shale	0.85
P€lu	Lower undifferentiated part of Uinta group, chiefly guartzite.	0.95
P€rc	Red Cr. formation, metaquartzite, schist and minor basic intrusions.	0.95

Woodruff C	reek						
Jtc	8.60	R≀t	0.76	-Cu	0.19	Dwc	0.62
Jn	2.70	Rt	0.60	-Eun	1.24	MI	0.24
Qay	4.00	Cbr	9.28	Ogc	1.55	Djt	1.38
₽pc	1.78	C1	1.01	0s	2.22	Tk	63.83
Farmington	Creek						
P€f	9200	Tk	8.00				
Holmes Cre	ek						
P€f	100.0						
Parrish Cr	eek						
QLtg	1.50	PEf	98.50				
Ricks Cree	k						
01+-	2 50	DCE	07 50				
QIE	2.50	PEI	97.50				
Centervil1	e Creek						
Qltg	2.50	P€f	97.50				
City Creek							
Tk	40.42	Pw	7.86	€mu	1.75	Tsi	1.40
Kec	1.05	Mun	26,20	€o	1.31	TR ap	3.67
₽ pc	2.18	Du	3.50	€t	2.45	Ktc	0.87
Qltg	2.97	Tqu	4.37				
Blacksmith	Fork						
Æþ	6.80	Mlp	1.17	Qao	2.92		
En	6.06	Mb	0.99	Tk	39.46		
Esc	3.45	-Cb1	3.47	€un	0.36		
Ou	13.14	-Eu	3.29	Ogc	2.16		
Os	3.74	€1	3.30				
Du	2.27	€br	8.43				
E. Fk. Lit	tle Bear 1	River					
Tk	41.50	€1	7.00	€Ъ	3.20	Ou	5.78
Tau	1.50	€u	7.00	-En	3.74	0s	2.52
fbr	12.13	€b1	3.20	-Esc	5.41	Qay	0.36
Du	1.50	Osp	1.50	Ofh	1.50	Dwc	1.73
080	0.43						

Table 30. Percent of area covered by geological formations for the Great Salt Lake Division.

Table 30. Continued

Har	dscrabble	e Creek						
	P€f Tk €t -€o	34.50 38.94 13.40 1.67	- C mu Du Pm Pw	0.94 1.46 0.94 0.31	Mun	7.84		
Mil.	1 Creek	nr. Boun	tiful					
	Tk Pef	12.90 40.77	Æt Mun	23.10 8.87	Du €o	4.79 5.67	-Emu	3.90
Stor	ne Creek							
	Qltg	0.31	Tk	2.20	P€f	97.49		
Los	t Creek							
	Jtc Jn	11.29 2.41	Та Таt	0.37 0.81	Tk	85.12		
Sou	th Fork (Ogden Riv	ver					
	€br €1 €un	3.63 0.89 3.40	Djt Dwc Os	4.24 1.88 4.07	Ogc Tk Ml	2.45 71.90 3.98	-€bl €o Mb	0.28 0.47 2.81
Big	Creek							
	Du Qao	10.30 7.10	Ebr Qay	3.30 0.60	Tk	78.70		
Bir	ch Creek							
	Æbr Jtc	11.55 17.80	Jn ⊉pc	1.60 0.53	Tk	68.52		
Hobl	ble Cree	<u>k</u>						
	₽po Qgm Qay	35.78 6.65 2.96	Kpr Qao Tu	23.25 0.35 10.08	₽pc ₽dc ₽K	2.88 2.56 2.79	Tf Tgu	7.53 5.17
Ame	rican For	rk						
	Qgm Tig PMmc	23.92 27.03 4.24	⊉po Mgb Mh	3.14 15.98 3.52	Mun Pemf Pem	7.10 0.72 1.33	Et Eun Qag	6.54 5.15 1.33
For	t Creek							
	Q1tg Ppo	32.58 12.48	Qay Qas	4.32 17.8	Tig Tf	15.78 17.04		

Table 30. Continued

Dry	Creek							
	Tig Qgm	66.13 11.56	Tf Qag	1.14 6.19	Tqu Qltg	13.03 1.95		
Big	Cottonwo	ood Cree	k					
	P€bc	21.53	€un	4.42	Έw	2.61	Oltg	0.15
	Mun	8.96	ΤΕt	4.05	Ogm	28.36	Mh	5.06
	Ъa	1.54	Tig	4.82	Mdo	1.96	Rs	0.34
	Pemf	3.47	Pw	5.02	-Emu	0.74	Pcm	2.61
	₽pc	3.35	Jn	1.54	Ъc	0.43	Prr	0.43
Par	leys Cree	ek						
	Th	12 / 2	vv	7 1.6	The	0.54	The o	2 75
	Kec	8 95	Tau	5 51	Ogm	1.34	RS	3 /9
	Kec	5 37	In	1.05	'B LI	0.48	TR c	4 42
	KW	7 16	Jp	21 50	TB +	8 21	In	7 17
	Qgm	1.18	JEC	21.50	In L	0.21	511	/ • 1/
	10							
Mil	l Creek							
	Pw	18.55	Ogm	26.10	Ъа	6.94	T?s	1.51
	Mdo	1.47	Ppc	12.35	Έt	13.80	C.1 . C.S.	
	Mh	3.00	PrV	3.34	Jn	2.20		
	Mun	2.67	R w	6.67	T? C	1.40		
Eim	gration C	Creek						
	тк	11.66	PDC	1.39	PBS	2.78	01tg	2.00
	Kec	8.88	Rw	0.83	Rc	4.11	40	
	КК	9.44	TR t	5.00	Jn	5.33		
	Jp	7.21	Ra	2.78	Jtc	38.59		
Litt	le Cotto	onwood Ci	reek					
	Pebc	14 60	Mb	0.54	Cup	8 30		
	Tig	36.50	Qgm	40.06	ean	0.50		
Loga	an River							
						10.00	-	6 15
	Mb	4.89	P po	0.31	0s	10.30	tsc	6.15
	Mlp	4.41	Qgm	14.38	Osp	4.54	÷Ь	13.55
	Du	6.92	Ogc	9.31	Tk	16.61	-En	3.92
	Qao	0.85	-61	0.19	€u	0.64	€PT	2.66
	fpr	0.3/						

1. Sec. 1.

Little Brue	h Creek					
Dittle bius	76 52	Mum	2 22			
Tbp	19.01	€1d	2.23			
Brush Creek						
Tbp	34.46	Mun	3.68			
Pem	60.65	€ld	1.21			
Ashley Cree	k					
TbP	30.43	PMmc	0.52	Pw	5.04	
Pem	34.57	Pm	4.90	Qgm	21.84	
Mun	2.07	₽pc	0.63			
Ashley Cree	k below '	frout Cr	·			
Pem	48.60	Qgm	38.10	Tbp	13.30	
South Fork	Ashley C	reek				
Qgm	50.85	Pem	49.15			
East Fork D	ry Fork					
Pem	60.33	PMmc	0.81	Mun	2.14	
Tbp	34.84	Pm	1.88			
East Fork D	ry Fork	at Mouth	<u>.</u>			
Pem	41.62	Pm	15.01	PMmc	9.06	
Pw	1.31	Tbp	22.71	Mun	10.29	
North Fork	Dry Fork					
Pem	65.60	Pm	2.10	Mun	11.82	
Qgm	15.75	PMmc	2.63	Tbp	2.10	
Dry Fork ab	ove Sink	5				
Tbp	18.08	Pw	1.05	Mun	0.60	
₽ pc	1.05	Pem	14.91	Qgm	64.31	
Whiterocks	River					
Pem	47.43	Qgm	45.13			
Tbp	5.24	Pm	0.26			
Mun	1.94					
Whiterocks	River ab	ove P.C.	_			
Qgm	53.53	Pem	44.45	Tbp	2.02	

Table 31. Percent of area covered by geological formations for the Uinta Division.

Table 31. Continued

Car	ter Cree	k nr. Ma	nila					
	Qgm	59.85	Pem	40.15				
Far	m Creek							
	Mun	35.60	Pm	10.18	Tdr	11.00		
	Pem	18.62	Tbp	24.60				
<u>C1c</u>	over Cree	k						
	Pem	3.240	Qgm	67.60				
Uir	nta River	above C	lover Cr	eek				
	Tk	12.09	Jn	1.28	Qay	13.26	Perp	3.56
	Kw	7.34	Rс	0.76	To w	2.50	Pem	3.07
	KK	3.66	Ъa	1.22	P pc	3.95	Qgm	5.24
	Tib	0.08	ΤRt	1.78	Pw	8.85	Dpp	0.14
	Kf	6.06	Jp	0.58	Pm	4.90	Et	0.65
	Ka	0.75	Qls	1.92	PMmc	1.64	Ju	0.75
	Jm	0.61	Qao	2.44	Mu	3.00	Jtc	2.45
	Tiap	2.44	Ml	3.03				
Uir	nta River	below G	ilbert C	Creek				
	Tk	54.31	Tib	0.38	KK	8,20	Ka	1.87
	Kw	13.60	Tiap	0.56	Kf	21.08		
Yel	lowstone	Creek b	elow Swi	ft Creek				
	Ogm	56.82	Pem	35.41	Tdr	0.49		
	Pelu	5.36	Perp	1.29	Qay	0.63		
Yel	lowstone	Creek						
	Tian	69.14	Ka	0.31	Pw	1.59	Tk	0.73
	Oav	13.17	KK	2.17	Tig	0.34	Jtc	0.59
	Ogs	0.13	.Tm	0.10	Kf	5.33	TRC	0.10
	Ppo	0.34		0.08	Jn	1.84	Rs	0.07
	TO W	0.33	In	0.11	TP? LL	0.35	Ъa	0.24
	Rt	0.95	Qao	1.39	Ppc	0.60		
Lak	te Fork							
	TOu	0.22	In	14.78	Pw	3.12	Βt	13.13
	KK	0.41	Itc	7.18	PDC	3.56	Oav	10.30
	In	0.81	Tea	9.21	Tiap	3.34	To w	3.56
	Tee	1 99	Nom	14.32	Tk	7.09	Tig	2.3
	TR C	2.12	Mun	0.87	0ao	1.62	0	
	A 1 -	Aug 2		/				

Table 31. Continued

Rock Cre	ek nr. Moun	tain Hom	ne				
PrV	0.37	Tig	11.55	Pem	1.96	T≷c	1.00
₽ pc	2.70	Qay	2.54	€t	0.85	T?s	0.97
Mun	4.12	Qas	2.35	-£mu	0.43	T? a	1.82
Pw	5.45	Qltg	1.90	Tqu	0.28	农 t	3.74
Qgm	27.90	Pef	0.37	Jtc	4.33	Τęw	1.30
-Eun	5.45	P€bc	11.63	Jn	2.75	Pemf	1.25
Mdo	0.87	Mh	2.12				
Rock Cre	en nr. Hann	a					
Tig	12.39	Emu	0.51	-Eun	1.59	Qgm	24.24
Tqu	0.33	Pemf	1.19	Qay	3.06	Jtc	5.23
₽ pc	3.20	Qas	2.83	Jn	3.32	Pw	4.79
Qlt	g 2.30	To c	1.21	Mun	2.78	Pef	0.45
Rs	1.17	Mdo	1.04	Pebc	14.18	T? a	2.19
Mh Rw	2.55	₽cm	2.36	T≷t	4.50	€t	1.02
Duchesne	River						
Pel	u 20.69	Qgm	78.70	Pem	0.61		
Provo Ri	ver						
Pem	14.68	Perp	3.49	Qgm	78.20		
Pel	u 3.63						
Weber Ri	ver						
Pel	u 2.93	Ml	2.52	Pw	6.02	T _? c	0.64
Pcm	9.81	Mu	2.80	₽ pc	4.20	T? t	0.49
Qgm	28.23	Pm	2.30	T? w	1.68	Dpp	0.09
Per	p 2.83	Jtc	0.47	ΤRa	0.82	€t	0.51
Qay	9.72	Ju	0.26	Ka	0.39	Tk	14.32
Jn	0.22	KK	0.74	Ktc	0.54	Qls	0.52
Jm	0.26	Pwmu	0.84	Kw	4.86	PMmc	0.69
T _i u	0.30						
Wolf Cre	ek						
Tia	p 19.05	T? w	7.13	Qgm	19.05	Pw	3.96
Τζt	17.47	Ppc	11.11	Qay	22.23		
West For	k Duchesne I	River					
Tia	p 15.68	Ъа	2.82	Jtc	9.08	Jm	3.96
Qgm	0.95	TP s	1.28	Qay	6.91	Tgs	25.08
Te w	2.04	Rc	2.82	Jp	6.78	0	
Rt	7.16	Jn	12.80	Jst	2.64		

West	Fork Du	chasne 1	River bel	low Dry H	<u>I.</u>			
	Tiap Qgm	25.64 1.29	Ta Rs	0.25 0.50	Qay Jtc	9.69 8.80	Jp Jst	5.39 1.69
	Jn Kmf	11.85 0.32	Кс	0.86	Tgs	31.64	Jm	2.08
Wate	r Hollow							
	∎po Qay	3.93 7.04	Qas	88.68	Qltg	0.35		
Whit	e River							
	Tu Tgp ₂	11.01 7.27	Tgpl Tggd	68.02 11.29	Tc Qay	1.69 0.72		
Nort	h Fork W	hite Riv	ver					
	Tu Tgp2	13.80 5.82	Tgp1 Tggd	63.28 11.63	Tc Qay	3.64 1.82		
Minn	ie Maud	Creek						
	₽po Kpr	28.32 32.63	Ki Tiap	5.56 9.77	Tknh	23.72		
Carte	er Creek	at Mout	h					
	Qgm	57.45	Pem	42.55				
Brown	n Duck C	reek						
	Mh Qgm Pebc	7.70 25.40 1.48	Cun Pw Tig	11.70 11.37 28.12	Mdo ⊉pc Mun	0.79 3.94 9.86		
Hadas	G Creek							
	Perp Pem	15.62 41.03	Qgm Q1s	33.20 8.78	M1	1.37		

Summit Ci	reek						
Danna C O	50.00	T. 00	4 80	To	8 46	Τf	5 14
i po	1 34	Ma	1 49	Md	1 94	Mh	3 43
Mab	2 86	PMmc	6.86	Nom	0.69	1111	5.45
ngo	2.00	Trate	0.00	Q.B.m	0.09		
Price Riv	ver						
Kbh	26.12	Kc	11.70	Kpr	2.73	Tf	15.98
Tknl	a 43.47						
Goosebern	ry Creek						
Tkpl	63 23	Tf	17.58	Khr	8.43	Kc	8.97
Kbh	1.79		11100	NO1			
Pleasant	Creek						
Tim		Vnr	20 26	Ke	13 57	Kbb	6 78
1 KIII Oav	1 40.94	крг	29.20	KC	13.37	RDII	0.70
Quy	1.45						
Huntingto	on Creek						
Tknł	n 13.20	Tf	0.62	Kpr	22.62	Kc	11.56
Kbh	36.20	Ksp	11.13	Qgs	1.45	Kmin	2.60
Qay	0.62						
Cottonwoo	od Creek						
01s	4,65	Τf	18.18	0av	7.29	Kpr	9.32
Kc	4.73	Kbh	3.16	Ksp	0.90	Qgs	0.37
Ke	0,22	Kmm	0.80	Tknh	49.23		
Ferron Ci	reek						
Τf	27.83	Tknh	46.25	Kpr	6.70	Ogs	0.87
Oav	0.30	Kms	0.57	Kmm	2.39	Kc	9.26
Kbh	13.40						
Muddy Cre	eek						
Τf	14.07	Tknh	44.62	Kpr	24.60	Ke	1.03
Ksp	2.63	Kmm	2.75	Kc	5.15	Qay	0.57
Kbh	4.58						
Twin Cree	<u>k</u>						
Tknł	64.71	Kpr	19.25	Kc	8.02	Kbh	8.02
Ivie Cree	k						
Vm-	0.00	0.2**	1 32	Oge	5 46	019	19.36
KIIIS	1 26	Khh	24 50	Knr	16.71	Tknh	5.96
Tu	12.24	Tf	0.66	0ao	4.30	Tvu	3.64
TW	12024	TT	0.00	que	1.50		

Table 32. Percent of area covered by geological formations for the Southern Utah Division.

Table 32. Continued

Chalk	Creek							
	Tknh Kpr €t Tsr	40.54 1.44 21.64 1.21	Tf G uu Jna Qag	1.93 2.02 6.49 10.24	Qgm €un ॡ s	0.09 11.02 0.49	Q1s -€o Ҡm	0.29 1.53 1.07
India	n Creek							
	Tip	28,25	Qgs	5.65	Jm	12.43	Kms	53.67
Cente	r Creek							
	Tvu Ku	48.78 11.71	Kka Qag	3.49 0.89	Τw	34.57	Kwa	0.56
Beave	r Creek							
	Tvrp T ₂ bf Tvdh	12.17 0.34 19.40	Tvbc Qa	20.99 3.70	Tsr Tvil	19.41 11.47	Q1s Tvmb	12.35 0.17
Sevie	r Creek							
	Qay Kka Tw	1.78 2.80 39.94	T ₂ af Qag Qb	0.56 0.37 18.82	Tvm Tsr Tvbh	5.70 0.65 23.26	Kwa Tqu	3.69 2.43
<u>Castl</u>	e Creek							
	R wi Kms Jnsw	0.94 3.14 3.14	T<≀u TTkJmbb	3.77 1.57 15.73	Qgs Je Tip	2.04 2.67 53.48	Kdbc Jna	10.38 3.14
Mill	Creek n	r. Moab						
1	JR k Qco Jmbb Qgs	6.86 3.42 9.42 3.22	₽ wi Jmsw Qgm ₽ u	0.94 7.50 4.48 0.85	Je Kdbc Kbc Jma	9.86 6.00 0.65 35.26	Jsu Kms Tip	6.63 3.00 1.91
North	Creek							
	Kst Qay	38.49 1.08	Kwa T ₂ bf	3.71 9.45	Qa	46.59	Kka	0.68
Pine	Creek							
1	Qa Kwa	56.94 0.65	T ₂ bf Jm	30.74 0.28	Jca Jb	4.72 0.19	Kst	6.48
Coal	Creek							
	Qb Ju Kdt	4.50 1.80 11.84	Tw Jw Kka	12.43 4.20 17.88	Tvu Kwa	4.20 32.12	Jca Ku	1.60 9.43

S. . . .

Table 32. Continued

East	Fork B	Soulder C	reek					
	Qgs Qgn	3.13 7.15	Qls Tvu	9.58 80.14				
East	Fork D	eer Cree	k					
	Qls	50.67	Qgs	49.33				
Henr	ieville	Creek						
	Tw Qay	2.10 2.10	Kwa	87.75	Ju	0.60	Kdt	7.45
Nortl	n Fork	Virgin R	iver					
	T mo Ju Qb Qls	0.40 4.95 6.38 0.22	Qay Jw Kka Kwa	0.18 1.72 1.61 40.15	J k Kdt Tw	1.38 10.54 1.61	Jna Kst Qa	13.22 4.96 1.52

Appendix C

	erous	leaf		rush	rush	ceoțis ^a	er -
Watershed	Conif trees	Broad. trees	Brush lands	Sageb:	Saltb	Herba	Pinon- junip(
Woodruff Cr.	30	17		53			
Farmington Cr.			100				
Holmes Cr.			30	50		20	
Parrish Cr.			60	40			
Ricks Cr.			50	50			
Centerville Cr.			29	71			
City Cr.			92	8			
Blacksmith Fk.	28	27	7	38			
East Fk. Little Bear R.		30	37	33			
Hardscrabble Cr.		58	42				
Mill Cr. nr. Bountiful			100				
Stone Cr.		7	47	46			
South Fk. Ogden R.		24	54	22			
Lost Cr.	3	29	27	35	6		
Big Cr.	17	18		65			
Brich Cr.		20		80			
Hobble Cr.	23	70				7	
American Fk.	18	23	34			25	
Fort Cr.			50	10		40	
Dry Cr.			65			35	
Big Cottonwood Cr.	46	11	7	14		22	
Parleys Cr.		43	56	1			
Mill Cr. nr. SLC	61	25	14				
Emigration Cr.			87	13			
Little Cottonwood Cr.	17			10		73	
Logan R.	51	13	11	18		1	6

Table 33. Percent of total area covered by type of vegetation for the Great Salt Lake Division

 $^{\rm a}{\rm Also}$ includes desert type, foothill types, mountain types, and barren inaccessible.