

ABSOLUTE CALIBRATION OF THE RAPIDEYE CONSTELLATION -PROGRESS AND PLANS

Andreas Brunn | BlackBridge CalVal

CALCON 2015 | Logan/UT

- Outlook

Outline

- Integrating MOBY Buoy
- First results

- BlackBridge and the RapidEye System
- Absolute Calibration Campaigns
 - Past and Current Campaigns
 - Integrating results

BLACKBRIDGE AND THE RAPIDEYE SYSTEM

Five-Satellite Constellation

Enables daily target revisit

Broad Area Collection

77-km-wide sensor swath, ideal for large-area monitoring and mapping

Large Collection Capacity More than 5 million km² collected daily

High Resolution Imaging 5-meter resolution imagery

Multispectral Imaging

5 spectral bands for improved feature discrimination

Extensive Imagery Archive

More than 6 billion km² of archived imagery

Launch date:	August 29, 2008
No. of satellites:	5
Orbit:	Sun synchronous
Equator crossing time:	11:00
Orbits per day:	14.8 per satellite
Nominal altitude:	630 km
Swath width:	77 km
Imaging capacity:	max. 1,500 km /orbit
System image capture capacity:	more than 5 million km ² /day

Weight:	156.4 kg
Bus:	112.9 kg
Payload:	43.5 kg

Bus built by: SSTL (UK)

Payload built by: Jena Optronik (Germany)

Sensors Onboard the Satellites

Manufacturer:	Jena Optronik, Germany
Model:	JSS56 Spaceborne Scanner
Design:	TMA (Al mirror)
Eff. focal length:	633 mm
Entrance Pupil Ø:	147 mm
f-number:	4.3
CCD:	Atmel (AT71544)
Pixel Size:	6.5 m
Pixels per line:	12,000
Camera dynamic range:	12-bit

BlackBridge Delivering the World

System Overview

BlackBridge | www.blackbridge.com

ABSOLUTE CALIBRATION

BlackBridge | www.blackbridge.com

Field Campaigns

- Field Equipment
 - Sun Photometer
 - Line-of-Sight Photometer
 - Wide Angle Photometer
 - Field Spectrometer

Field Locations

- Railroad Valley
 - Dry Lake Bed
 - Bright
 - Homogeneous
 - High Elevation

Field Locations

- Brookings
 - Prairie
 - Dark
 - Easily Accessible

- Campaigns have been performed with the University of Arizona and South Dakota State University yearly since 2009.
 - 2009-2010 Railroad Valley and Ivanpah Playa (2 sats., 10 collects)
 - 2011 Railroad Valley (5 sats., 5 collects)
 - 2012 Railroad Valley (5 sats., 25 collects)
 - 2013 Brookings (5 sats., 9 collects)
 - 2013 Railroad Valley (5 sats., 5 collects)
 - 2014 Railroad Valley (5 sats., 10 collects)
 - 2014 Brookings (5 sats., 12 collects)
 - 2015 Continuing ...

INTEGRATION

Update Of Calibration Factors Early 2015

Involves:

- Absolute Calibration Results from all 2014 Collects
- Temporal Calibration Results (incl. discontinuity correction)
- Spatial Calibration Results from Side Slither and Dark Images

BlackBridge

- Both sections are corrected with the same temporal correction gain.
- The second,
 smaller section is
 multiplied by a
 discontinuity
 correction gain

Before Discontinuity Correction

Gaps are filled using mean values of the same time (months) of previous years adjusted using preliminary gains and offsets

After Discontinuity Correction

Approx. 2% sensitivity loss over the mission lifetime

AbsCal Results

Blue Band Example

AbsCal Results

NIR Band Example

AbsCal Results

BlackBridge

WHAT'S NEXT ...

2015 Absolute Calibration

- Railroad Valley Site
 - Collaboration with University of Arizona
 - 1 image and simultaneous field collect for each spacecraft in 2015
 - Up to 100 Image takes with all satellites and reference data from the automated calibration site between April 2015 and April 2016
- Brookings
 - Collaboration with South Dakota State University
 - Goal: 2 Image takes per SC with simultaneous field collects until End of October 2015

2015 Absolute Calibration

- MOBY Buoy
 - Method to use MOBY data for absolute calibration is currently under development
- Results of campaigns are evaluated as they come in
- Final combined implementation is expected to be done when all reference information is available

The MOBY Buoy

Marine Optical Buoy

Located 20 km west Lanai HI

1200 m water depth

ReSe Applications Schläpfer

The MOBY Buoy

- Marine Optical Buoy
 - Measures water leaving radiance (-1m)
 - Measures irradiance (+2.5m)
 - NIST calibrated response

Brown et.al., SPIE 2007

BlackBridge Delivering the World Goal: Use MOBY bottom of atmosphere reflectance and irradiance data for validation of RapidEye imagery on the dark end of the brightness range.

- Conditions:
 - The station is moving
 - Water turbidity is large
 - Reflectance based method is limited by the wave registration on the satellite imagery

ReSe

Applications

Schläpfer

Reflectance Based Validation

ReSe Applications Schläpfer

ReSe

Applications Schläpfer

ATCOR processing with 10km visibility:

Aerosol Influence

ReSe

Applications Schläpfer

ATCOR processing with 15km visibility:

It is crucial to find the right atmospheric conditions for the right results.

MOBY Status and Outlook

- RGB bands may be processed to reasonable values using high aerosol contents
- NIR bands show consistently too high values
- water turbidity impede unlimited use of MOBY data for RapidEye validation and calibration

Further steps:

- implement at-sensor radiation based validation
- check sunglint correction approaches

ReSe Applications Schläpfer

andreas.brunn@blackbridge.com dietrich.hoffmann@blackbridge.com sara.bahloul@blackbridge.com cody.anderson@blackbridge.com

daniel@rese.ch

BlackBridge :: Delivering the World

info@blackbridge.com www.blackbridge.com

ReSe Application Schläpfer www.rese.ch