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We Get the Point

Together with Leica Geosystems, we offer the 
complete LiDAR workflow from capturing to 
delivering. Learn more about point clouds in 
ERDAS IMAGINE®, LPS, ERDAS APOLLO and 
Intergraph’s GeoMedia® at www.erdas.com/lidar. 
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E3De.  Discover the Next Dimension of Your Data.

Visual Information Solutions E3De
©2011, EXELIS Visual Information Solutions

The world around us is not flat. You often need a solution that allows you to get information from 
more than just two dimensional imagery and data. Introducing E3De™, an interactive geospatial 
software environment that allows you to extract important situational awareness from three 
dimensional data – providing you with more information about an area of interest than ever 
before. E3De has advanced tools to utilize raw LiDAR point cloud data and create photorealistic 
3D visualizations, extract 3D features from a scene, or produce 3D products and layers. 
Derived results can be included in your GIS, fused with 2D data for further analysis, and more.  
When you analyze the world in all three dimensions, you discover the full potential of your 
data and can make better, more informed decisions. Learn more at www.ittvis.com/E3De. 

u  See how to extract 3D features from LiDAR data with E3De.
 Booth 205 at the 2011 ASPRS Pecora Symposium in Herndon, Virginia.
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This month’s cover shows elevation data from large-area lidar data 
collections as well as derived information products and orthophotos. 

Three pairs of images show lidar elevation data with orthophotos 
(top and bottom pairs) or with a lidar intensity image (middle pair) 
for the same area. The upper pair (collected by Photo Science for the 
Vicksburg District U.S. Army Corps of Engineers) shows orthopho-
tos and elevation data for a segment of the Mississippi River along 
“The Delta” emphasizing the mainline levee system that provides 
fl ood protection for areas along the Mississippi River. The middle 
images (collected in Michigan by Woolpert for USGS) show lidar in-
tensity and elevation data depicting the complex data returns in fl ood 
plains and riparian zones and the refi ned elevation data products. The 
lower pair shows elevation data and orthophotos for the lower part 
of “The Delta” where levees and fl ood control structures protect the 
Yazoo Basin from backwater fl ooding that occurs when the Missis-
sippi River is at high stages. These views of lidar and derived data 
products were generated in Topo Analyst, a new product from Spatial 
Information Solutions (SIS) of Starkville, MS, a spin out from Mis-
sissippi State University. 

For additional information, contact Spatial Information Solutions (cgohara@spatialis.com) or visit 
http://www.spatialis.com/.
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 1113 Quantifying Urban Landscape Water Conservation 
Potential Using High Resolution Remote Sensing 
and GIS
Fayek A. Farag, Roger K. Kjelgren, and Joanna Endter-
Wada
Urban landscaped areas in two suburbs of Salt Lake 
City, Utah were quantified through remote sensing and 
subsequent geographic information systems analysis that 
integrated localized reference evapotranspiration and 
municipal property and water billing data to determine 
amounts of urban landscape irrigation water that 
potentially could be conserved.

 1123 Estimating Aboveground Carbon of Moso Bamboo 
Forests Using the k Nearest Neighbors Technique 
and Satellite Imagery
Guomo Zhou, Xiaojun Xu, Huaqiang Du, Hongli Ge, 
Yongjun Shi, and Yufeng Zhou  
The k Nearest Neighbors technique with the new SCID 
metric was used to estimate aboveground carbon of 
Moso bamboo forests.

1133 Daily MODIS Data Trends of Hurricane-induced 
Forest Impact and Early Recovery
Elijah Ramsey III, Joseph Spruce, Amina Rangoonwala, 
Yukihiro Suzuoki, James Smoot, Jerry Gasser, and  
Terri Bannister
MODIS and 25 m optical and radar satellite data 
integrated for tracking daily wetland forest trends 

 1145 A Volumetric Approach to Population Estimation 
Using Lidar Remote Sensing
Zhenyu Lu, Jungho Im, and Lindi Quackenbush 
The applicability of lidar data for population estimation at 
the census block level using various modeling techniques 
based on the volume of the residential buildings that 
were delineated using a modified building detection 
algorithm.

 1157 Automatic Georeferencing of Aerial Images Using 
Stereo High-Resolution Satellite Images
Jaehong Oh, Charles K. Toth, and Dorota A. Grejner-
Brzezinska
A new method for automated aerial image geo-
referencing based on image-to-image matching, using 
stereo high-resolution satellite images as reference data.

 1169 Detection of Swimming Pools by Geographic 
Object-based Image Analysis to Support West Nile 
Virus Control Efforts
Minho Kim, James B. Holt, Rebecca J. Eisen, Kerry 
Padgett, William K. Reisen, and Janet B. Croft
Automatic detection of swimming pools was conducted 
using geographic object-based image analysis with very 
high spatial resolution satellite imagery, i.e., GeoEye-1, 
to aid in West Nile Virus control efforts.
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Visit iFlyUltraCam.com 
to see the PMC video. 
Or scan tag and watch on 
your mobile phone.

Download the free tag reader app at http://gettag.mobi.

With plans to establish a high-resolution aerial image library of China and customers 
across 30 different government departments, Peace Map Co., Ltd. (PMC) needs a quality 
digital photogrammetric system to effectively serve their large market. That’s why PMC 
chooses Microsoft UltraCam for their digital-image acquisition. 
Mr. Xiang knows that the cost to fl y missions is his greatest operational expense. Thanks to 

the large image footprint and stable performance of the UltraCam, he has seen a signifi cant 
increase in effi ciency compared to other digital aerial cameras. The continual innovation of 
the UltraCam helps PMC deliver breathtaking images to customers, reduce costs, and plan 
for steady growth into the future.

The UltraCam Eagle is the latest technological advance, featuring an ultra-large image 
footprint and revolutionary enhancements for high-quality imagery at unprecedented 
effi ciencies. For details, visit www.UltraCamEagle.com.

Xiang Yu,
Peace Map Co., Ltd.
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Evolution in Aerial Lidar Data Accuracy 
Verifi cation and Review

Rapid advances in aerial lidar technologies, growth in useful applications of the 
data from lidar acquisition projects, and increasing demand for improved elevation 
data and derived information products combine to drive the need for consistent 
and unifi ed specifi cations as well as effi cient, cost effective, and standardized lidar 
data accuracy and verifi cation methods which are aligned with those specifi cations. 
According to version 13 of the U.S. Geological Survey National Geospatial Program 
“Lidar Guidelines and Base Specifi cation”1

“The U.S. Geological Survey National Geospatial Program (NGP) has cooperated 
in the collection of numerous lidar datasets across the nation for a wide array 
of applications. These collections have used a variety of specifi cations and 
required a diverse set of products, resulting in many incompatible datasets 
and making cross-project analysis extremely diffi cult. The need for a single 
base specifi cation, defi ning minimum collection parameters and a consistent 
set of deliverables, is apparent.

Beginning in late 2009, an increase in the rate of lidar data collection due to 
American Reinvestment and Recovery Act (ARRA) funding for The National 
Map makes it imperative that a single data specifi cation be implemented to 
ensure consistency and improve data utility. Although the development of this 
specifi cation was prompted by the ARRA stimulus funding, the specifi cation 
is intended to remain durable beyond ARRA funded NGP projects.”

Lidar acquisition projects are evolving to include partnering of federal, state, county, 
and local participants. Partnering at multiple levels (federal, state, and local) on 
projects enables leveraging of funding resources while also requiring adjustments in 
the project acquisition data requirements and specifi cation so that products deliver 
maximum benefi ts to the customers and the public and meet the combined require-
ments of the project partners. Differing participation can have signifi cant impacts on 
the project specifi cations and requirements for their testing and verifi cation. Major 
federal agencies such as the U.S. Geological Survey (USGS), the Federal Emergency 
Management Agency (FEMA), the U.S. Army Corps of Engineers (USACE), and the 
National Oceanic and Atmospheric Administration (NOAA) are providing leadership 
in developing specifi cations for lidar projects that are becoming increasingly a part 
of project requirements and specifi cations. 

Vendor partnering for complex or large projects is also becoming commonplace. 
Projects that combine data from aerial rotary and fi xed wing acquisitions of lidar and 
orthophotography, as well as terrestrial and mobile lidar, are delivering products that 
fuse data to include the best aspects of each sensor system involved. Such projects 
(Figure 1) will become more common as high resolution multi-scale, multi-source data 
are more effectively integrated with mapping and engineering software solutions. As 
the data become more complex, gathered from multiple sources, and collected to suit 
multi-scale applications, the methods for verifying the data must evolve to provide 
“best-practice” solutions that may be implemented across data sets, regardless of 
vendor specifi c systems or data types.

1. USGS, 2010. “U.S. Geological Survey National Geospatial Program: Lidar Guidelines and Base Specifi cation,” 
version 13 (http://lidar.cr.usgs.gov/USGS-NGP Lidar Guidelines and Base Specifi cation, v13 ILMF.pdf).

Cross-Walking “Lidar Guidelines 
and Base Specifi cation” to Data 

Lifecycle Verifi cation Approaches
by Charles O'Hara
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continued on page 1076

of deliverable products verifi cation, these tests are performed 
after-the-fact. Unless there are specifi c interim deliverables 
defi ned as project milestones, there are no mechanisms for 
engaging the producer and customer in ”real time” verifi ca-
tion of incremental products as data fl ow through the project. 
These emerging guidelines imply that lidar data must be tested 
and verifi ed at key project phases by vendors to ensure that 
data meet eventual delivery guidelines and specifi cations. 
Specifi cations present a framework for verifying products 
developed across the lidar project lifecycle process or face 
the prospect that downstream products will ultimately fail 
due to fl aws that were not addressed in earlier acquisition, 
calibration, and processing phases.

This article suggests that there is a pressing need for an 
effective cross-walking that maps lidar data and derived 
information product guidelines and specifi cations to project 
data lifecycle phases. As an initial step in that direction, this 
article proposes a simple cross-walking that identifi es key 
phases of a typical lidar project life cycle and corresponding 
verifi cation steps that may be conducted as gateways for 
assuring that products will meet specifi cations. Additionally, 
a collection of recent lidar projects is highlighted in summary 
with a brief description of the projects, technical challenges, 
and aspects of accuracy or quality characteristics. Some key 
tests and methods are presented that offer potential to be 
considered as part of a collection of industry best practices 
for key phases of lidar data verifi cation. 

Cross-Walking Specifi cations to Lidar Data 
Project Lifecycle Phases

Verifying lidar products as an industry standard practice 
currently emphasizes testing fi nished end products. This 
approach can lack rigor if testing focuses only on final 
delivered products which include uncertainties more ideally 
addressed in earlier phases of the data product's lifecycle. 
An approach to lidar data verifi cation is presented which 
cross-walks guidelines and specifi cations to key phases of 
a typical lidar project. Four basic phases are proposed for 
a lidar project in which testing and verifi cation tasks are 
suggested as starting points to address ”gateway”’ questions 
that may be answered prior to subsequent tasks in the lidar 
data project lifecycle. 

Phase 1 – Flight Planning, Operations, and Lidar Data Acquisition

Gateway Question: Are fl ight operations complete; have data 
been collected fully covering the project area without voids 
within fl ightlines, gaps between fl ightline data swaths, and 
at the pulse spacing and density specifi ed?

Preliminary planning and data acquisition produce data 
which are converted to LAS fi les. The following tasks are 
presented as a possible subset for which best practice methods 
may be developed and addressed during this phase to comply 
with guidelines and specifi cations:   
• Collection Area: Determine whether the data sets from ini-

tial fl ightlines completely and adequately cover the defi ned 
project area as well as any designated buffer area.

• Overlap: Generate swath boundary fi le polygons. Intersect 
adjacent boundary fi les and quantify percentage of swath 
width in the overlap to determine whether adjacent 
fl ightline swath data suffi ciently overlap (Figure 2). 

• Spacing and Density: Quantify point cloud spacing and 
density and determine if data are spaced at suffi cient 
density to meet project requirements (Figure 2). 

• Gaps and Voids: Identify gaps in data, voids that must be 
fi lled, or areas where additional fl ightlines are required. 
Employ vector boundaries containing holes as well as pulse 

Figure 1. Surveyed checkpoint locations shown on intensity image de-
rived from helicopter-based lidar acquired by Tuck Mapping as part of a 
multi-source lidar demonstration project conducted for the Texas Depart-
ment of Transportation. (Data provided and used with the permission of 
Tuck Mapping)

Across the mapping industry, data vendors have made 
enormous investments in aircraft, lidar instruments, inertial 
measurement units and GPS navigation systems, as well as 
project planning and data production processing capabilities. 
Accompanying these investments in tangible assets, data pro-
ducers have made further investments in both their production 
processes and personnel to develop and adhere to highly techni-
cal workfl ows, data processing, and internal quality control and 
assurance for delivering data products which will be acceptable 
to their customers. Despite the emergence of increasingly 
thorough guidelines and specifi cations for data and derived 
products, as well as vendors’ production criteria, there exists 
a lack of commonly accepted best practices and standardized 
methods for verifying compliance to specifi cations. 

Lidar – The Project Lifecycle Disconnect

A fundamental disconnect exists between lidar project data 
production and product delivery approaches, which inhibits the 
development of best practices that may be implemented across 
the project data production lifecycle. Lidar data and derived 
products are typically delivered at the end of the project; review, 
verifi cation, and acceptance by customers typically await the 
delivery of fi nal products. End-of-project delivery and verifi ca-
tion approaches do not provide vendors with incentives for 
verifying, documenting, or delivering incremental products. 
At the same time, wide variation in the current ”state-of-the-
practice” for end-of-project delivery and verifi cation highlights 
the fact that there are no mutually agreed-upon best practices 
or commodity software tools for verifying and accepting fi nal 
products let alone practices and tools which could be accepted 
as suffi cient, best practices for authoritatively testing incremen-
tal products against specifi cations and requirements.

New guidelines and specifi cations include unprecedented 
attention to the accuracy, quality, correctness, compliance, 
and completeness of lidar point cloud data which include 
fl ightline swath data, tiled data products, and fi nal classifi ed 
tiled LAS data. The new specifi cations for lidar data and 
derived information products require testing of various data 
products developed during phases of the data project. As part 
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count rasters to quantify the spatially varying distribution 
of pulses.

• LAS Compliance: Test LAS fi les for size, multiple returns, 
scan angle, intensity, compliance to standard, contents, 
and for completeness of required information for header, 
variable length records, and data values.

Benefi ts: Completing these tasks in a timely and effi cient 
manner is vital so that lidar equipment may be effectively 
used and so that any gaps, voids, or areas missed in initial 
fl ightlines may be acquired in conditions as similar as possible 
to those present during initial collections.

Phase 2 – Flightline Swath Data Calibration and Early Processing

Gateway Question: Are acquired data calibrated for instru-
ment and systematic errors and have fl ightline swath LAS 
residual errors been minimized such that relative error within 
and between fl ightlines meets accuracy requirements?

Lidar fl ightline data has been acquired, converted to LAS 
format, and calibrated to remove system errors and systematic 
bias between fl ightlines. Relative accuracy of data must be 
tested by systematically investigating LAS elevations in the 
areas of overlap between adjacent fl ightlines. According to the 
USGS version 13 specifi cation, “Accuracy for the lidar point 
cloud data is to be reported independently from accuracies 
of derivative products. Point cloud data accuracy is to be 
tested against a TIN constructed from bare earth lidar points.”1 
Therefore, verifi cation of relative in-swath and between-swath 
accuracy should comprise the following tasks:

• Bare Earth: Preliminary classifi cation of fl ightline swath 
data (or temporarily tiled in a reversible manner to enable 
compute effective preliminary classifi cation) for bare earth 
lidar pulse returns.

• Between Swath Relative Accuracy: Quantify areas of overlap 
between adjacent swaths, segment overlap into desired sub-
units, and identify common points per subunit for extracting 
Z-values from TINs constructed from bare earth returns in 
the immediate vicinity of the points (Figure 3).

• Within Swath Relative Accuracy: Identify areas within 
swath of single (fi rst and only) returns and uniform surface 
characteristics for quantifying relative accuracy within that 
swath. 

Relative accuracy testing is conducted using raster and vector 
methods, but methods must emphasize using point cloud 
data, bare earth classed points, and Z-values extracted from 
TINs. The use of boundaries, overlap extraction, using point 
cloud data and TINs to extract set Z-values from each swath 
corresponding to a common location is superior to raster-
to-raster comparisons which compute Z-difference. These 
Z-difference rasters compute a difference surface from two 
preliminary surface models that are of limited confi dence. 
Lacking an agreed upon best practice in this area, the use 
of the Z-difference surface for estimating RMSE Z between 
the two adjacent swaths is currently an accepted aspect 
of the “state-of-the-practice”. This practice may remain a 
“supplemental” relative accuracy test, but should be replaced 
by fully automated vector methods that might be similar to 
the overlap, segmentation, and centroid generation approach 
shown in Figure 3.

Figure 2. Boundary polygons created from lidar swaths (strips) shown in upper image quantify  completeness of coverage, intersected overlap areas 
shown in the middle image with estimated centerline and outer 10% of the fl ightline swath shown for quantifying adequate overlap, and pulse count 
raster shown in the lower image created from fi rst returns shows pulse distribution and voids or gaps in data.

continued from page 1075
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Benefi ts: Verifying that lidar fl ightline swath data are cali-
brated and that residual relative error within and between 
adjacent swaths falls within the tolerances of guidelines 
and specifi cations helps facilitate further classifi cation and 
processing of tiled LAS data. 

Phase 3 – Tiled Lidar Data Accuracy and Classifi cation

Gateway Question: Have LAS data been properly tiled and 
classifi ed and do point cloud data for LAS in open spaces 
and other land cover types meet absolute accuracy specifi ca-
tions? 

The following tasks are presented as a possible subset 
for which best practice methods may be developed and 
addressed during this phase to comply with guidelines and 
specifi cations:   
• Tiling Scheme: A single, non-overlapping tiling scheme 

will be developed and used for all tiled deliverables and 
must be an even integer multiple of the cell size of any 
raster deliverable (Figure 4).

• Tiled LAS Deliverables Compliance: LAS data should be 
tested against the requirement that all tiled deliverables 
comply with the tiling scheme without added overlap and 
seamlessly edge-match without gaps in the horizontal or 
vertical.

• Absolute Accuracy Testing: Tiled LAS fi les are tested 
using surveyed checkpoints in required landcover types 
to determine fundamental vertical accuracy (FVA) of LAS 
data in open space landcover areas. Supplemental vertical 
accuracies (SVAs) are compiled for other landcover types, 
and consolidated vertical accuracy (CVA) is quantifi ed for 
all of the checkpoints (Figure 4). Best practice methods 
may also be defi ned for horizontal accuracy testing which 
may be derived from comparison between lidar intensity 
images and ortho photos. Per ASPRS guidelines, FVA is 
computed as 1.96 * RMSE Z = FVA at the 95% confi dence 
level. SVA and CVA quantities are computed as the 95th 
percentile of the error quantities.

• Classifi cation Accuracy and Consistency: Large open space 
areas are identifi ed and point cloud data are tested for 
classifi cation accuracy and consistency within large areas 
and among points that should be consistently classifi ed.

Benefi ts: Verifying the absolute accuracy of tiled LAS data, as 
well as the accuracy and consistency of the point cloud clas-
sifi cation, enables further steps to create and verify derived 
products such as DEMs and hydro-fl attened surfaces. Failure 
to assure the accuracy of LAS data and classifi cation at this 
phase may cause downstream problems. This is particularly 
true if LAS absolute accuracy is not rigorously verifi ed and 
if DEM data produced at later stages are tested and found to 
not meet specifi cations. 

Phase 4 – Final Products and Delivery

Gateway Question: Do LAS point cloud, DEM data, and all 
derived information products meet requirements for accuracy, 
hydro-fl attening, documentation and are all products accom-
panied by required metadata and project reports?

The following tasks are presented as a possible subset 
for which best practice methods may be developed and 
addressed during this phase to comply with guidelines and 
specifi cations:   
• DEM Testing: DEM products are tested for tile agreement, 

lack of edge effects for tile boundaries, complete coverage, 
as well as absolute accuracy testing. 

• Hydro-Flattening: DEM data are also tested for Hydro-
Flattening for waterbodies.

• Breakline Verifi cation: Breaklines for waterbodies are veri-
fi ed and elevations of lakes, 2-D streams, and 1-D streams 
are tested. 

• Enhanced Visual Checks: Visualization methods are 
required for review of lidar point cloud data, colored by 
elevation or classifi cation as well as to consider them in the 
context of breaklines data (Figure 5). Classifi cation of point 
cloud data in the vicinity of breaklines may be evaluated 
as well as the relative vertical position of breaklines with 
respect to point cloud elevations to ensure that lake break-
lines do not “fl oat above” the nearby land and to generally 
verify the vertical relationships between breaklines, point 
cloud data, and derived surfaces.

Figure 3. Lidar overlap areas are evaluated for quantifying relative error between swaths. Current methods largely use elevation surfaces created per 
swath and compute a difference surface. The graphic illustrates the segmentation of each overlap polygon and the generation of points (approxi-
mate segment centroids) which may be used to extract Z-values from TINs created from bare earth points from the individual swaths. The Z-values 
may be used for offset analysis and calculation of RMSE Z.

continued on page 1078

Figure 4. Tile index for a multi-county project which includes 2,151 tiles 
to cover the project area. Each tile is the same size (5,000 ft × 5,000 ft), 
contains attributes for data products, and provides an exact boundary 
for tiled and classifi ed LAS data as well as bare earth DEMs, intensity im-
ages and other derived information products. LAS data have been eval-
uated using SIS Topo Analyst and verifi ed to have a fundamental vertical 
accuracy of .284' or approximately 8.65 cm. (Data provided courtesy of 
USGS Center for Lidar Information, Coordination, and Knowledge)
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• Products, Documents, Reports, and Metadata: There is a 
complex set of deliverable components in a lidar data project. 
Checksheets and methods are needed to compile a complete 
list of deliverable products and to verify them against require-
ments and specifi cations. Best practice methods are needed 
that might include a project data directory structure for data 
and derived information products, as well as a possible 
project documents, reports, and metadata repository to assure 
proper organization and delivery of fi nal products. 

Benefits: Standardizing the organization and delivery of 
components of project products will help assure consistent 
products that may be effectively tested against guidelines 
and specifi cations. Implementing streamlined capabilities 
that enable real-time testing of incremental products during 
the lidar project life cycle will ensure that post production 
tests of end products will meet product specifi cations and 
requirements and will help improve the accuracy and quality 
of lidar data and derived information products. 

Focus Projects

Spatial Information Solutions (SIS) has compiled a collection 
of recently acquired sample lidar data sets from federal agen-
cies as well as industry lidar data producers. In some cases, 
data were provided along with surveyed checkpoints which 
were used in the SIS software product, Topo Analyst, to verify 
accuracy and perform other quantitative and qualitative checks 
on the data sets. A brief description of the data sets, a view of 
the data and fundamental accuracy characteristics follow for 
a set of highlighed focus projects. 

Channel Islands, California (USGS)
The USGS funded a lidar collection for the Channel Islands 
off the coast of California. The project presented challenges in 
terms of diffi culty of access, lack of ability to establish ground 
survey base stations, and the rugged terrain and steep cliffs 
on the sides of the islands. These factors combined to add 
diffi culties to aspects of data acquisition and processing. The 
lidar data were collected by helicopter and survey checkpoint 
locations were accessed by helicopter. As shown in fi gure 6, the 
fundamental vertical accuracy on this project was determined 
to be 5.8 cm.

Multi-County Project, Michigan (USGS)
A USGS-funded acquisition project collected lidar data for 
multiple counties in Michigan (Figure 7). This data collection 
illustrates what is becoming more of the norm for lidar acquisi-
tion projects in which data are collected for multiple counties and 
deliverables conform to specifi cations of the USGS and FEMA 
for elevation updates, map data enhancements, and fl ood plain 
mapping updates. Lidar was collected by a fi xed-wing aerial 
platform. Data management and organization of data and derived 
products becomes more of a challenge with large projects, in this 
case comprising over 2,500 tiles of classifi ed LAS data, DEM data, 
and other derived data products. Accuracy of the lidar point 
cloud data was determined to be .284 US Survey Feet (8.66 cm) 
at the 95% confi dence level (FVA) and for the DEM to be .342 US 
Survey Feet (10.42 cm) at the 95% confi dence level (FVA).

Texas DOT Demonstration Project (Industry Collaboration)
In a project aimed at highway transportation data acquisition 
for design and other applications, high-accuracy helicopter and 
terrestrial mobile lidar datasets were acquired for a segment 
of I-30 in Texas. Data were acquired to improve understand-
ing of water accumulation of the interstate segment studied. 
Tuck Mapping fl ew helicopter lidar and other project partners 
collected terrestrial mobile lidar datasets. The lidar collected 
by Tuck Mapping (Figure 8) was found to have an RMSE Z of 
0.039 US Survey Feet (1.19 cm) and a FVA 95% confi dence 
level accuracy of 0.076 US Survey Feet (2.32 cm). 

Figure 5. Breaklines for streams and waterbodies overlying intensity data on the left and hydro-fl attened DEM data on the right. Note the TIN artifacts 
and data irregularities in the left-side image for areas within the breaklines and the smooth surface within the same areas in the right-side image. 
These forms of tests may be a typical part of the advanced visual checks performed on fi nal data sets.

continued from page 1077

Figure 6. View of Channel Islands elevation data and absolute accuracy 
verifi cation testing of LAS data by Fundamental Vertical Accuracy for 
quantifying accuracy to the 95 percent confi dence level.
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Conclusions 

New lidar guidelines and specifi cations imply that incremental 
products must be verifi ed to ensure the accuracy, quality, com-
pliance, and completeness of fi nal products. The implication 
of incremental product verifi cation makes apparent the need 
for a set of best practices, not just for verifying fi nal products, 
but for verifying products developed across the lidar project 
life cycle. Incremental product verifi cation and best practices 
introduce an opportunity to transform industry practices for 
delivery and acceptance of products. Key to the transforma-
tion of industry practices would be the defi nition of specifi c 
interim deliverables defi ned as project milestones as well as 
best practices and mechanisms for engaging the producer and 
customer in “real time” verifi cation of incremental products 
as data fl ow through the project.

Acceptance of incremental products opens the door to 
partial payment of project fees for partial completion of project 
deliverables. This transformation would improve project and 
product visibility and management capabilities for customers 
while improving data producers’ capabilities to improve cash 
fl ow during lengthy and cost-intensive lidar projects at the 
expense of verifying and delivering incremental products. 
The sum of these factors should have the cumulative effects 
of improving projects and products, providing a consistent 
set of best practices, and advancing industry and mapping 
community practices; ultimately leading to improvement in 
lidar data and derived mapping product quality, accuracy, 
and cost-benefi ts.
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Figure 7. View of Michigan project elevation data and absolute accuracy 
verifi cation testing of LAS as well as DEM data by Fundamental Vertical 
Accuracy for quantifying accuracy to the 95 percent confi dence level.

Figure 8. View of Tuck Mapping DOT demonstration project elevation data 
and absolute accuracy verifi cation testing of LAS data by Fundamental Ver-
tical Accuracy for quantifying accuracy to the 95 percent confi dence level.

Figure 9. View of elevation data and absolute accuracy verifi cation testing 
of LAS data by Fundamental Vertical Accuracy for quantifying accuracy to 
the 95 percent confi dence level.

Mississippi River Alluvial Floodplain, Mississippi – 
The Delta (USACE)
The U.S. Army Corps of Engineers has been leading the way in 
developing lidar data for areas of need for fl ood protection, levee 
management, and fl ood control structures, as well as coastal 
areas within their jurisdiction. The Corps also leads the way in 
developing lidar technologies for advanced data acquisition. 
The Vicksburg District Corps acquired lidar data and updated 
ortho photos for the area commonly called “The Delta”. This 
area is the Mississippi River Alluvial Floodplain in the state of 
Mississippi and is an area of both historical and recent severe 
fl ooding. The area covers many counties in Mississippi and the 
lidar dataset required over 11,000 tiles (at 5000 × 5000 feet per 
tile) to cover the project area. The broad geographic extent of the 
Delta (Figure 9), the mostly fl at-lying terrain, and the complex 
nature of the stream networks, waterbodies, oxbow lakes, levees, 
and fl ood control structures created challenges in data collec-
tion and processing. Projects such as this lidar project for “The 
Delta” will provide data and derived products of unprecedented 
accuracy and quality that will strengthen capabilities to plan 
infrastructure and to help protect our nation’s resources and 
population from the potentially disastrous impacts of fl ooding 
and other natural disasters. 
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Executive Summary
The ASPRS Ten-Year Remote Sensing Industry 
Forecast began in 1999 with the goal of pro-
viding the remote sensing-based geospatial 
industry with an iterative, phased snapshot of 
key qualitative and quantitative metrics over 
time. The primary intent of Phase VI of the 
Forecast is to provide additional information 
about the industry in response to questions 
elicited by the results of the first five phases. 
In particular, Phase VI extended its inquiries 
into the areas of workforce issues, technol-
ogy trends, information needs by users, and 
trends in U.S. leadership in the geospatial 
industry. Phase VI of the ASPRS Ten-Year 
Remote Sensing Industry Forecast developed 
a two prong approach to information gather-
ing on the current issues of the industry. This 
approach consists of a Gross Revenue Survey 
(GRS) of private sector firms and an internet 
survey of individual members. This report 
summarizes the results and conclusions of 
these two separate, but complimentary data 
collection components. The Executive Sum-
mary of this report will address both the GRS 
and the internet survey results and conclu-
sions. The specific methodology and results 

of each of the information components will 
be described in detail in  later sections. 

The GRS component is a confidential, 
direct survey of industry private sector 
firms, including the Sustaining Members of 
ASPRS. This survey of revenues and busi-
ness practices was done to complement a 
similar survey done in earlier phases of the 
Forecast to provide a financial snapshot of the 
industry. The GRS was sent to specific high 
level executives during April–May, 2011. 
Fifteen percent of those firms contacted, 
completed the survey in this period. Re-
ported gross revenues of the respondent 
firms ranged from $0.5M to over $300M; 
total firm employee levels ranged from less 
than 10 to nearly 500. Given the general 
distribution of the responses, it is believed 
they represent a reasonable source of private 
sector information.

The internet survey of individual ASPRS 
members was launched between Sep-
tember, 2010 and November, 2010 to the 
approximately 6,000 members of ASPRS, 
which has nearly equal representation from 
the government, private sector and aca-

demia. Members were sent reminder email 
requests to complete the survey three times 
throughout this period. Approximately 450 
ASPRS members responded to the internet 
survey, about seven percent (7%) of the 
target population. Based on self-identified 
job titles and salary ranges, most of the 
respondents to the Phase VI survey are in 
mid-level and upper management positions 
in all employment sectors. 

Because of the limited nature of these 
surveys, the results cannot be used to de-
finitively predict future trends, but rather to 
provide information and insights that can 
be used by industry, academia, and govern-
ment in hiring, education and training, and 
policy making. 

Industry Size and Growth
Total 2010 gross revenues for the remote 
sensing related portion of the geospatial 
industry are estimated at $7.039 Billion 
(Figure 1). This estimate is made using 
actual revenues reported during the Gross 
Revenue Survey of Phase VI. A comparison 
of the Phase VI data with projections de-

continued on page 1082
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veloped during Phases I–III of the Forecast 
(2001–2002) highlight a strong consistency 
in the rates of projected growth when com-
paring those from the 2001–2002 period 
with the 2010–2011 period. While the years 
2011–2022 are projected using only the 
predicted growth levels provided by industry 
respondents in the most recent survey, the 
high level of consistency between the original 
projections and the latest data gives a high 
degree of confidence in the projections for 
the future. History would indicate the latest 
projections for the period 2011–2012 may 
actually be conservative.

Workforce Issues and  
Implications
Findings in Phase VI related to educational 
and workforce issues indicate that the industry 
has ample room for workers to enhance their 
employability by improving their geospatial 
educational level, especially with GIS applica-
tions that incorporate remote sensing. The GRS 
private firm respondents indicated that 34% 
anticipated they would have problems hiring 
qualified workers in the U.S. Sixty-six percent 
did not anticipate problems finding qualified 
employees. The internet survey results indicate 
that the educational community is not provid-
ing graduates with sufficient training in several 
skills, including geospatial applications tools, 
Lidar, photogrammetry, and verbal and writing 
skills. Spatial database understanding, Geodet-
ic Science and Computer Programming were 
cited as important areas for future employees. 
The lack of sufficient verbal and written com-
munication skills is a chronic problem faced by 
other industries as well, and corresponds with 
indications of a broad failing throughout all 
levels of the U.S. educational community.

The results suggest that U.S. academic 
institutions are attracting a large number of 
very qualified students from across the globe. 
In most cases, the students that can qualify 
to study in the U.S. are among the best 
students from a nation. This influx of foreign 
talent fosters improved graduate research in 
the U.S. system, and for those students who 
remain in the U.S. after graduation, an influx 
of talent into the geospatial industry. 

An implication of these trends involves the 
basic research foundation of the geospatial 
industry. In an industry so linked to scientific 
and technological research and innovation, 
basic research is crucial to the future of the 
industry. Due to the nature of the geospatial 
industry in the U.S. (see Phase III–IV reports), 
a limited amount of basic geospatial research 

Figure 1. Estimate of remote sensing industry gross revenues.

is done in the government (especially the 
civilian area) and private sectors. The univer-
sity academic sector is the primary basis of 
research and the source of researchers for the 
U.S. Thus, the longer term trend of increasing 
foreign-born graduate students will affect the 
foundation of geospatial research in the U.S. 
in ways that may conflict with immigration, 
national security and educational policies. 
This will affect the long term innovation and 
competitiveness of the industry in an increas-
ingly international marketplace.

The hiring of employees who could obtain 
security clearances is a significant, but not 
critical issue. Most respondents reported 
limited problems in hiring employees who 
could be cleared. 

Industry retention of trained employees 
is a major problem. Phase’s I–III found that 
many firms and agencies had a relatively high 
turnover of newer employees (less than five 
years). Responses to the Phase IV survey indi-
cated that lack of advancement and adequate 
compensation are the two primary reasons 
for job dissatisfaction. Phase VI echoes the 
previous results regarding retention of em-
ployees. In the growing, competitive fields of 
high technology requiring skilled, educated 
employees, the remote sensing industry may 
not be providing sufficient compensation 
and advancement opportunities compared 
to other high technology opportunities to 
retain the needed workforce. 

Further, with the exception of a few large 
Fortune 500 firms, the generally smaller size 
of geospatial firms compared to other high 

technology fields may limit opportunities 
for advancement and the highest compen-
sation. These results may also reflect the 
competition for trained civilian geospatial 
and remote sensing employees by the non-
civilian contractor firms in the military and 
security arenas, which are not well sampled 
in Phases IV and VI.

International Issues 
The issue of outsourcing of resources, pri-
marily labor, for geospatial projects is a large 
economic and policy issue. Phase VI asked 
respondents to indicate whether more geo-
spatial work is being performed or procured 
outside of the U.S. than 10 years ago. Respon-
dents were asked to address two issues: 1) 
U.S.-based projects using foreign labor or 2) 
U.S. firms and agencies expanding into inter-
national markets. Definitely, respondents felt 
that more outsourcing of resources, including 
labor for U.S. projects was taking place. Many 
respondents to the internet survey indicated 
that the international market for U.S. firms 
was expanding as well. These results were 
bolstered by the GRS where the percent of 
business activities that are undertaken by 
U.S.-based organizations in non-U.S. or for-
eign areas was reported to be approximately 
7.5% during 2010 and is projected to increase 
slightly to approximately 10% by 2020.

When governmental contracts are let, a 
mix of products and services may be re-
quested in the request for proposal. These 
standardized product deliverables can be 
provided using international lower cost 

continued from page 1081
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labor. This process may cause further U.S. 
commercial provider consolidation, as well 
as, a U.S. skills shortfall.

Most of the respondents rated the U.S. as 
being equivalent to other nations in the ma-
jority of scientific/technology areas. A large 
number of respondents indicate that the U.S. 
is leading in key areas of Applications GIS 
Tools, Remote Sensing Tools, Hyperspectral, 
Consumer Mapping and Software as a Ser-
vice, Lidar, Aerial and Satellite Data Capture, 
and Web Programming. They indicated that 
the U.S. was behind in Mathematics and 
Multi-lingual Skills. 

The current skills advantage in the U.S. is a 
benefit to the U.S. domestic industry. Software 
development and consumer mapping may see 
future growth in offshore migration. This skills 
advantage, as yet, is not a large industry driver. 
Lidar technologies are a larger driver versus 
Hyperspectral, however offshore Lidar data 
processing is on the rise. Hyperspectral, which 
has shown promise in past Forecasts and fos-
tered skills development in academia, has yet 
to have a large impact on our industry.

There has been a large change in the indus-
try with the addition of consumer mapping 
and its associated technologies. The federal 
government is slow in its ability to release 
new “for the nation” programs. This fact, 
convolved with reductions in federal revenue 
base, is clearly affecting technology spending. 
This slowing of spending will directly affect 
the drive in new technology development.

Federal Government Policy
Governmental policy was not a primary fo-
cus of the Phase VI survey, but respondents 
have a generally favorable view of the role 
of government in the geospatial industry. 
Results indicate a change in the perception 
of government policy as being beneficial or 
neutral versus previous results indicating a 
more negative impact of government on 
the industry.

Government spending, while likely to 
decline in the future, is targeting basic 
programs driving sharing and leveraging 
data and processes. This is to some degree 
being supplanted by commercial firms using 
alternative methods of financial monetiza-
tion. A future area of study should review 
the impacts of this change.
The ASPRS Forecast was initiated in 1999–

2000 to provide comprehensive data about 
the remote sensing geospatial industry, and 
reliable, unbiased assessments of the indus-
try’s future. The remote sensing industry is 
viewed as those commercial firms, not-for-
profit organizations, governmental agencies 
and academic institutions involved in the 
capture, production, distribution, and ap-
plication of remotely sensed geospatial data 
and information. In recent years the com-
plexion of the industry has changed from the 
remote sensing industry to a more integrated 
image-based geospatial industry (Figure 2). 
New advancements facilitate the application 
of remote sensing and geospatial science to 
many previously unrealized disciplines, from 
the sciences to a myriad of applications.

Phase VI of the ASPRS Ten-Year Remote 
Sensing Industry Forecast of the remote sens-
ing and geospatial industry seeks to extend 
the results of the first five phases1 and de-
termine trends noted in the first phases. The 
Phase VI survey was extended explicitly to 
address questions of future workforce need 
and preparation, issues of employability of 
new entrants to the workforce and trends in 
the U.S. role in the geospatial science and 
technology community. Given the limited 

nature of the survey, the results cannot be 
used to make explicit predictions, but do 
provide important information and indicate 
trends of interest. 

In particular, ASPRS carried out the 
Phase VI survey in order to obtain current 
information and future expectations from a 
representative sample of the U.S. community 
regarding;

“Use” of and “needs” for specific require-•	
ments in geospatial information 
Workforce hiring needs and requirements•	
Role of U.S. in S&T trends•	
The role of government policy in the geo-•	
spatial industry
Gross Revenue Trends in the geospatial •	
remote sensing industry

These objectives formed the basis of a 
questionnaire that extended information 
gained from similar topics and questions in 
Phase I-V and questions designed to elicit 
new information. The initial portion of this 
report is description of the survey process 
and interpretation of the study sample. After 
this overview of results in selected areas, the 
responses for private and educational sector 
respondents are separated and discussed.

Remote Sensing Industry Definition

Platforms & Sensors

Data
Collection

Data Processing

Business Segments

Support
Elements
• Hardware
• Software
• Etc.

Industry
Intermediaries

• VARs
• Consultants
• Etc.

End-UserPhase VI maintains previous Forecast business and
end user segments, but now includes citizen mapping
and internet information applications.

Figure 2. Business Segments and New Market Entrants for Phase VI.

Purposes of the ASPRS Ten-Year Remote Sensing Industry 
Forecast 2000–2011

continued on page 1084
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Two Components of Phase VI of 
the Forecast
The basis for Phase VI results and interpre-
tations are an internet survey to individual 
members and a confidential, direct Gross 
Revenue Survey (GRS) of private sector, 
image-based geospatial firms. This approach 
is deemed the best to gather information 
and trends on issues across all employment 
sectors, as well as get a more detailed view 
of private sector activities. 

Internet Survey of Individual Mem-
bers
The internet-based survey was developed 
with input from the Phase VI sponsors, the U.S. 
Geological Survey (USGS) and the U.S. Na-
tional Geospatial Intelligence Agency (NGA) in 
the summer, 2010. The survey was pretested 
on respondents from the three primary em-
ployment sectors in August, 2010. The survey 
was released in September, 2010 and closed 
to participation in November, 2010. 

The internet survey was administered to 
the membership of ASPRS; approximately 
6000 individuals, 86% of whom list the U.S.A 
as primary residence. Forty percent of the 
ASPRS members are employed in private 
sector, 20% Academic, 20% Government 
(all levels) and 20% list as other.

The membership of ASPRS represents the 
spectrum of geospatial information disci-
plines and interest areas with 31% being in 
the GIS technical division, 34% in the Remote 
Sensing division, 26% in Photogrammetry 
and 9% of the membership being in the 
Primary Data Acquisition and Professional 
Practice Divisions

The number of respondents to the internet 
survey varied depending on the individual 
question, but 420–450 complete and us-
able responses were obtained for most of 
the questions in the survey. Members were 
notified by email three times throughout this 
period with a request to complete the on-line 
survey. This response number amounts to 
slightly over 7% of the target population.

Gross Revenue Survey
The Gross Revenue Survey was a direct elec-
tronic and postal survey of the private sector 
firms only. The population of firms contacted 
to complete the survey was developed from 
the ASPRS Sustaining Members list supple-
mented by firms engaged in citizen-based 
commercial geospatial activities. Also, large 
technology and information firms participat-
ing in the geospatial arena were sent surveys. 

Each survey was posted and sent electroni-
cally to a specific high level management 
person in the firm. This person was contacted 
directly by email and phone as follow-up to 
help insure completion of the survey with 
the best information possible. The survey 
was conducted on behalf of ASPRS by the 
University of Utah Center for Public Policy 
and Administration (CPPA). Each firm was 
contacted by mail, telephone and through 
email in April-May, 2011. Recognizing the 
highly sensitive nature of the information be-
ing collected, all survey forms were returned 
to CPPA. CPPA removed all identifying infor-
mation from the survey forms, which were 
provided to the Forecast Team for analysis. 

Limitations on Interpretation
This report summarizes responses to the in-
ternet and confidential direct gross revenue 
survey. The report presents general trends 
occurring in the industry, not specific statisti-
cal information with confidence sufficient for 
prediction. Generally, the sample size for 
the internet survey has approximately a (±) 
4.8 confidence interval at 95% confidence 
level. The sufficiency of the sample size is-
sue is confounded by the inability to control 
properly for assumptions of sampling theory 
(random, unbiased samples) that would 
allow rigorous statistical procedures. The 
internet delivery of the survey does not allow 
rigorous sampling protocols as it depended 
on voluntary response from the respondent 
population. The GRS was targeted to the 
selected firms in the private sector with a 
15% response rate. Both of these survey in-
struments primarily represent the trends and 
views of respondents from the civilian sector 
of the geospatial-remote sensing industry. 
Interpretations should be viewed with the 
survey limitations in mind. Although there 
was no means to randomize sampling within 

the three employment sector stratifications, 
the results provide a useful stratification 
according to government, private and aca-
demic sectors.

Phase VI Internet Survey  
Results
The profile of the respondents to the Phase 
VI internet survey aligned with the ASPRS 
survey and the larger geospatial community 
in several ways. The respondent’s primary 
employment sectors (Question 36) are 39% 
for the commercial-private sector; 28% for 
government at all levels; 30% in academic 
institutions, with 1-2% in both community 
college education and non-profit NGOs. 
This provides a representative basis for the 
analysis, approximately equaling the sector 
diversity of the ASPRS study population. 
More importantly, the results of the survey 
also represent the three primary employ-
ment sectors of the greater remote sensing 
community.

Approximately 34% of respondents have 
listed geography as one of their primary 
disciplines. This was followed by 30% in re-
mote sensing, 28% in GIS and 23% “other”, 
which includes numerous other disciplines 
from atmospheric science to urban planning 
(Figure 3). This result is consistent with the 
results in previous phases of the Forecast, 
where comprehensive academic programs 
in remote sensing and geospatial informa-
tion are centered in geography departments, 
but employees in government and private 
sector achieve degrees in numerous other 
disciplines, as well.

Thirty-eight percent have master’s de-
grees, 27% have a Ph.D., and 20% of the 
respondents have undergraduate degrees 
with approximately 10% having certificates, 
technical or two year college credentials.

Question 4 (Figure 4) asked respondents in 

Figure 3. Educational degree areas of respondents

In what discipline is your degree/certificate? Check all that apply.
continued from page 1083
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which sector of the industry do they primarily 
work. Most work in General Mapping (24%), 
with approximately 16% working in the 
National Security/Defense, Environmental 
and Civilian Government. Seventeen percent 
listed “other “as their primary sector.

As Figure 5 (Question 35) indicates, the 
majority of respondents have salaries greater 
than $50,000 per year with 27% in the 
$50,000-75,000 range, 35% in the $75,000– 
$150,000 range and 6% over $150,000. 
Most of the respondents, 70% of the 440 who 
responded to Question 5, have eight years or 
more experience in the geospatial industry, 
with 36% having 20 or more years of experi-
ence. These values indicate the respondents 
are in the mid-level and upper management 
positions in the various employment sectors, 
which should be the group most informed 
and able to provide survey responses. 

Workforce Issues:  Need,  
Level of Education and  
Specializations
This section of the survey attempts to de-
termine the level of demand for geospatial 
workers and the nature of the preparation 
necessary to fill future workforce demand. 
Question 49 asked whether their organiza-
tion plans to replace employees in the next 
five years. Forty-five percent of the respon-
dents indicate that their organization would 
be hiring in this time period. Twenty-five 
percent indicated no replacement hiring and 
30% did not know.

The majority of the respondents (52%) indi-
cate that the undergraduate degree is the pre-
ferred level of education for their workforce 
(Q 9 N=310). The master’s degree was the 
second most preferred level of education at 
21%. Technical training and certificates were 
listed as the preferred level by 12% and 6% of 
the respondents, respectively. Interestingly, 
only 2% of the respondents indicated that 
a Ph.D. is the preferred level of education. 
This certainly indicates support for higher 
education in geospatial workforce develop-
ment, but not at the Ph.D. level. This may be 
an indicator of research funds slowing in a 
stagnant economy. Further study of this situa-
tion, together with a possible association with 
reduced research funding, is warranted.

Question 10 asked the respondents to 
rank the four most critical knowledge and 
skills needed by future employees. Figure 
6 shows the response count of those areas 
listed as the four most critical. Applications 
GIS had the highest response count with 
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Figure 6. Most critical knowledge/skills needed by future employees
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143 respondents listing it as one of the top 
four critical skills. Lidar, Photogrammetry and 
Communications Skills were ranked as the 
next three most critical.

In a related query to Question 10, Ques-
tion 14 asked which areas of expertise 
were most difficult to recruit employees for 
over the last two years. The same four as in 
Question 10 were highest along with Spatial 
Database Understanding, Geodetic Science 
and Computer Programming. 

Figure 7 shows that GIS, Lidar, Photogram-
metry, Spatial Databases and Communica-
tions Skills are the areas that employers are 
finding most difficulty in recruiting employ-
ees. The Lidar, GIS and Spatial Databases are 
not too surprising given the great increase in 
civilian applications in recent years. Photo-
grammetry and Communication Skills are not 
a focus of our current educational preparation 
for students in geospatial areas.

Question 16 asked a similar type of question 
as a means of confirming future areas of knowl-
edge between the responses to the two ques-
tions. Here the education segment can readily 
project its graduating class skills versus those 
needed by industry in the very near future. This 
match is critical to insure the domestic market 
doesn’t experience a shortfall in skills.

The responses to Question 16 shown in 
Figure 8, when viewed with the responses 
to Question 10, reinforce the position that 
required skillsets will not change dramatically 
in the future. The primary areas are Remote 
Sensing Applications, GIS tools, Lidar, and 
Multispectral listed by greater than 40% of the 
respondents. Very closely behind, greater than 
30% cited these areas as research /educational 
foci: Cartography Visualization, Multi-sensor 
Fusion, Photogrammetry, Spatial Database 
Understanding and Spatial Statistical Analysis. 
The single greatest difference in the response 
foci between Questions 10 and 16 was the 
cited need for Verbal and Written Communica-
tion skills. This highlights this need, but it was 
not reinforced in Question 16 responses due 
to the phrasing of Question 16.

The results provide knowledge of where 
the respondents believe the future lies for 
the industry. The important questions are 
whether the industry is developing the in-
frastructure to support these directions and 
whether the educational system is develop-
ing a workforce capable in these areas. It is 
critical for institutions of higher education to 
deliver work ready employees to the govern-
ment and private sector.

Security Clearances
The increased demand for employees who 
can be granted some form of a security clear-
ance is a looming issue for most employers 
in the U.S. In Question 11, respondents were 
asked if their employer or contractors require 
governmental security clearances. With 297 
responses, 54% indicated that clearances 
were needed and 40% responded that none 
were needed. On Question 12, 53% indicated 
that their employer or contractors do not 
have difficulty in recruiting individuals who 
can meet security clearance requirements 
(N=158). While the number of respondents 
is less, this result seems to counter the often 
heard perception from multiple government 
agencies and sponsors of the Forecast that 
employers cannot recruit sufficient numbers of 
employees who can meet clearance require-
ments, namely U.S. citizens with history and 
lifestyle matching the minimums needed for 
successful background testing. Twenty-two 
percent indicated that their employers did 
have problems. The primary reasons cited for 

the difficulties are that the demand for skilled 
individuals who can qualify for clearances is so 
high, with several citing the need to pay new 
employees while the governmental clearance 
process is completed. Please recall that 39% 
of the respondents work in the private sec-
tor and 28% in government, with 16% in the 
Defense/National Security sector. Often a 
specific contract is required for contractors to 
begin the clearance process; if there are fewer 
of these the pool will continue to dwindle. The 
slowing in this sector may have a longer term 
effect on contractors and government entities 
abilities to hire cleared workers.

Workforce Retention Issues
Previous phases of the Forecast indicated that 
often professional/technical staff in agencies 
and firms leave the geospatial field within 
5 years after initial employment. Phase VI 
asked for possible reasons for workforce 
departures. Question 15 asked, in an open 
ended format, for the three primary reasons 
why professional and technical staff leave 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

Figure 7. Area(s) of expertise for which employers experienced increased difficulty recruiting quali-
fied applicants in the past two years.
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Figure 8. The technical focus areas of the respondents organization's educational and/or research 
programs in the remote sensing/geospatial areas for the next five years.
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the geospatial field. Analysis of these 253 
responses used a keyword search of the 
primary reported reasons for staff departures. 
The most often cited primary reason for de-
parture (75) was related to compensation. 
The next most cited primary reason related 
to lack of career advancement opportunities 
(56). These responses are likely those of indi-
viduals who themselves have changed posi-
tions or those of management and coworkers 
familiar with staff who have changed.

Related comments were that compensation 
in other areas for employees with similar skills 
was higher than current job, lack of rewarding 
work and lack of job security. Phase VI results 
confirm the results of past surveys. 

Technical Focus Areas
In the technologies associated with remote 
sensing and geospatial content, a limited 
number standout as areas of focus (Figure 9). 
The Applications of Remote Sensing and GIS 
are seen as the most critical area of attention 
in the next five years. The goal of “solutions” 
carries the industry’s core technologies to 
new users. By developing end solutions 
in the integrated geospatial applications, 
customer solutions are provided with the 
integration of technologies and disparate 
geospatial datasets. 

The second area standing out in technical 
interest is Lidar. With the number of systems 
now in operation and the drive toward end 
solutions Lidar provides many of the needed 
components for the final client solution set. 
These Lidar sets include not only cost effec-
tive elevation data, but new data, such as 3D, 
intensity data and phase content.

It is interesting to note that in previous 
Forecast Phases Hyperspectral and SAR 
were of higher technical weighting than in 
the Forecast Phase VI. Later sections in this 
document discussing data “used” versus 
“needed” quality; however, still show unmet 
content demand in these areas.

Most Important Geospatial Layers 
in Use
As Figure 10 indicates, Orthophoto, El-
evation data, and Base Maps are the three 
primary data sets currently in use. These 
datasets provide the foundation of geo-
referencing, elevation and landscape features 
most needed for the majority of projects. As 
more attention is placed on end solutions, 
the importance of other layers should rise as 
content for new forms of decision support 
may be needed. These layers may play larger 

roles, as unique solution sets will require ad-
ditional dissimilar data from other sources.

Typical Remote Sensing  
Requirements
The importance of data characteristics reveals 
several interesting points (Figure 11). Spatial 
Resolution and Geolocation Accuracy are the 
two key metrics in Phase VI, and historically 
in past ASPRS Ten- Year Remote Sensing In-
dustry Forecasts. However, the attention on 
Geolocation Accuracy would have led more 
to believe in a higher relative prioritization of 
the independent elevation layer. This answer 
shows that elevation as a component to the 
geolocation of an image data set is of far 
greater importance than as a separate layer. 
Elevation data is critical in positioning of an 

image; however, the respondents to this 
survey did not consider the display of inde-
pendent layers, such as contours, as critical as 
others to their general needs. For future stud-
ies a more detailed set of questions around 
Lidar data integration should be considered. 

Additionally, since September 11, 2001 
data currency has been a characteristic of 
importance in the past Forecast results. It 
appears now that either some of the need has 
been fulfilled or it has subsided in criticality.

Background on Data Characteris-
tics: Data Used Today versus Data 
Needed in the Future
Figures 11–14 show responses on the rela-
tive importance of spatial resolution, geo-
locational, and elevation accuracy, image/
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Figure 9. Technical focus areas for organization’s education and research.
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sensor types, primary and secondary data 
sets. The questions had two categories that 
the respondent could select from, “data 
used today”, and “data needed in the fu-
ture”. The legend in each figure depicts the 
statistics between the two categories, and 
in example their respective cross category 
for image types: sensor technology , spatial 
resolution:GSD, or age of data: time, etcet-
era. These figures show the future need of 
each topic along with what is currently used 
today. Below, Figure 12 sensor type used 
today versus the future, is an example of 
how the use versus need series of questions 
are worded and formatted.

Data Characteristics: Spatial  
Resolution
The question on spatial resolution “needed” 
versus the data “used” reflects the continued 
demand for high-resolution data domesti-
cally (Figure 10). A greater separation exists 
between “used” versus “needed” in Phase VI 
compared to past phases. 

The overall trends in the remaining spatial 
resolution data are similar to past studies. 
Phase V, while being international in scope, 
shows similar trends in resolution issues to 
Phase VI. Digital aerial sensors, as well as con-
tinued operation of high-resolution satellite 
systems, are meeting the domestic demand 
for better than half-meter resolution (Figure 
13). A proliferation of new camera vendors 
has evolved developing low cost high resolu-
tion data capture in medium format sensors. 
These devices are now becoming certified by 
mapping agencies to validate systems attri-
butes. By doing so, more vendors may enter 
the mapping market providing new capacity 
at lower cost. An overall trend versus past 
surveys shows that as digital imaging sen-
sors continue to evolve, demand for better 
resolution follows. 

Data Characteristics:  
Geospatial & Vertical Accuracy
As with past industry surveys the best quality 
geospatial locational accuracy data as an end 
deliverable is in high demand (Figure 14). The 
respondents indicate that a greater separation 
exists in Phase VI at the highest quality levels 
compared to past studies. This separation 
likely matches the demand at higher imag-
ing spatial resolution. Technologies fulfilling 
this demand are growing with automated 
aero-triangulation, Lidar, and direct geo-
registration. Each of these technologies drives 
improvement in data overall. Most imaging 

What image/sensor types do you currently WorK With today? What image types do you 

neeD most to do your job? (could be the same - check all that apply)

answer options
Data used 

today
Data needed in 

the Future
response 

count

Digitally captured B/W or Panchromatic 190 140 200

Digitally captured Color 263 211 282

Digitally captured IR 207 190 236

Pan Film analog captured 68 29 71

Color Film analog  captured 96 37 96

Color IR Film analog captured 65 26 69

Lidar 220 243 292

SAR/IFSAR/INSAR 101 139 161

Multispectral 225 209 261

Hyperspectral 94 193 211

answered question 371 371

skipped question 79 79

Figure 12. Current use versus future need sample question.
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Figure 11. Most and least important remote sensing characteristics.
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sensors with superior resolution and dynamic 
range require timely and current positional 
data to complete their data geo-registration 
process. Ground sample distances (GSD) 
of 4" and better are becoming more com-
mon. This offers users the ability to focus on 
smaller and smaller targets, each requiring 
better positional data for production. This is 
apparently continuing to drive this circular 
spiral between enhanced components and 
the increased demand for quality. 

Vertical accuracy source data drives overall 
quality in many imaging systems that are 
classified as DEM-limited in performance 

Data Needed in the Future
Data Used Today

0

20

40

60

80

100

120

140

160

180

200

Less than
15cm

Between
15cm and

50cm

Between
50cm
and 1 
meter

Between
1m and

10m

Between
10m and 

50m

Greater
than 50m

What levels of geo-locational accuracy do you currently WORK WITH 
today? What levels of geo-locational (horizontal) accuracy do you NEED 

most to do your job? (Could be the same - check all that apply)

Figure 14. Geo-locational accuracy use versus need.

(Figure 15). The greatest error source in pixel 
placement for these systems is that associ-
ated with the source elevation data. Phase 
VI of the Forecast shows that technology 
has closed the previous gap in elevation 
data supply versus demand at the 15–50 
cm level. The best levels of performance still 
show unmet demand, the overall match in 
“used” versus “needed” indicates a greater 
shortfall than in previous studies. The adop-
tion of automated elevation extraction and 
Lidar still shows strong potential.

The industry continues its utilization of 
technologies comparable to those of previ-

ous ASPRS surveys. Film based image ac-
quisition, which has shown a steady decline 
since the inception of the Forecast, appears 
to have leveled (Figure 16). Phase VI confirms 
this in comparison with the current U.S. ver-
sus International comparison involving Phase 
V. Phase VI responses continues to track 
with that of film versus digital transition in 
consumer and professional imaging markets. 
Phase VI reaffirms the excess capacity of 
digital imaging sensors versus industry need 
first seen in Phase IV, here we note the trend 
continues in “need” lower than “use”. While 
not a study, question reviewers familiar with 
the sales of data in the profession may note 
that imaging contract pricing has dropped in 
conjunction with vendor consolidation, From 
the author’s perspective, this drop in prices   
is a further indication  of possible overcapac-
ity. Hyperspectral, IFSAR, and Lidar appear 
to still outpace industry demand. Of these, 
Hyperspectral has the largest difference of 
future need compared to current use.

Data Characteristics: Currency
While resolution, accuracy and sensor type 
define the technologies employed, currency 
defines a critical component of the service 
aspect of the geospatial industry. The demand 
for “current” data is slightly increased over 
past studies (Figure 17). The only other change 
noted is at “under one year old” historically 
“used” exceeded “needed”, now parity ex-
ists. This appears to be addressed through 
commercial vendors who now have multiple 
online data access portals with optimal price 
points for new versus archival data.

Historically as data ages to greater than 
one year, its overall demand significantly 
decreases for many applications. This is 
an interesting area for future focus as the 
increasing amount of data hosted online in-
creases the opportunity for change detection. 
As this capability becomes automated, it will 
further drive demand for historical content. 
This is already occurring in consumer online 
mapping sites where historic content is being 
merged with current collection data.

Data Characteristics: Air  
versus Space
The International Phase V study found that the 
ratio of aerial versus satellite data used varied 
on a regional basis; the pattern showed satel-
lite data is utilized more in the developing 
regions of the world. Aerial and satellite data 
perform unique tasks in mapping, visualiza-
tion, detailed target assessment, remote area 

Figure 15. Elevation accuracy use versus need.
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access, and multi-spectral content evaluation. 
Phase VI results indicate noteworthy changes 
in the 2010–2011 timeframe.

Since the survey began a series of data 
conclusions can be drawn:

High-resolution satellites have proven •	
themselves as commercially viable now in 
multiple generations of systems
Consolidation has occurred both in air- and •	
space-based data vendors
The proportional use of satellite data has •	
stabilized
Respondents could chose more than one •	
source for data capture

Figure 18 shows the relative weighting of 
aerial imagery having a slight edge in usage. 
Clearly, ground based data capture is grow-
ing. While not specified in the responses, it 
is presumed these are position orientation-
based mobile systems versus stationary 
close range photogrammetric devices. This 
presumption is based on an increase in the 
number of industry announcements in product 
development and service requests in mobile 
mapping; while not specifically asked in this 
study, it is an area for future study.

Governmental Policy on  
Geospatial Industry
When asked whether various levels of govern-
ment affect and impact the geospatial indus-
try, the majority of respondents indicated that 
the federal government has the most effect. 
It is a positive one on the industry (Figure 
19). Again, with the largest response group 
being from the private sector, the indication 
that government has a positive impact is an 
interesting result. Only a handful of years have 
passed since survey respondents considered 
government regulations burdensome. This 
turn in opinion is a good indicator that the fed-
eral government has responded to concerns 
in the profession and the industry.

International Linkages in the  
Geospatial Market
The issue of outsourcing of resources, primarily 
labor, for geospatial projects is an economic and 
policy issue. Our survey asked respondents to 
indicate whether more geospatial work is being 
performed or procured outside of the U.S. than 
10 years ago. This question has three interpre-
tations, 1) U.S.-based projects using foreign 
labor, 2) U.S. firms and agencies expanding into 
international markets, or 3) it could mean that 
more geospatial work is being done by other 

Figure 16. Image sensor types use versus need

What image/sensor types do you currently WORK WITH today?  
What image types do you NEED most to do your job?  

(Could be the same - check all that apply)
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nations  for their own purposes. Assuming 
these interpretations, the clear outcome is that 
international relationships are an increasing part 
of the geospatial marketplace (Figure 20).

Among the respondents to the specific 
source and direction of resources for either 
U.S. or foreign projects, 60% indicated that 
foreign resources were being sourced to 
perform projects in the U.S. (Figure 21). As 
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Figure 19. Do government policies affect the U.S. geospatial industry? 
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Figure 20. Do you find geospatial work being performed or procured more  
frequently outside of the U.S. now than 10 years ago? 
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Figure 21. Respondents were asked to specify the relationship of the foreign linkages 

an indication of the inverse trend, 40% of the 
respondents indicated that foreign projects 
were using U.S.-based resources. The as-
sumption is that the respondents are referring 
to their firm’s or agency’s project work. When 
only the private sector respondents (N=83) 
are separated from the sample, over 71% of 
the respondents indicated that foreign based 
resources were being used in U.S. projects. 

Leadership of the U.S. in the  
Geospatial Industry
The U.S. has been the world leader in the 
development of science and technology 
for aerial and satellite remote sensing and 
geographic information systems. The survey 
asked whether the U.S. is leading, equivalent 
or behind other nations’ capabilities in several 
key geospatial arenas (Figure 19).

Most of the respondents rated the U.S. as 
being equivalent to other nations in the ma-
jority of areas (Figure 22). A large number of 
respondents indicate that the U.S. is leading 
in key areas of Applications GIS Tools, Remote 
Sensing Tools, Hyperspectral, Consumer Map-
ping and Software as a Service, Lidar, Aerial 
and Satellite Data Capture, and Web Program-
ming. They indicated that the U.S. was behind 
in Mathematics and Multi-lingual Skills. The 
implication is that the U.S. firms and agen-
cies will not have the workforce educated 
in mathematics to foster the advancement 
of geospatial science in the future, and the 
U.S. lacks language abilities to advance the 
industry to take advantage of foreign science 
advancements and foreign markets.

Academic/Educational  
Workforce Concerns
This section describes the sample stratified to 
be only those respondents in the academic/
educational sector. The total number who 
identified themselves as academic in Question 
36 is 105. Approximately 35 of these respon-
dents were students and 70 were professors, 
research staff and academic managers.

Question 42 asked the approximate 
percentage of foreign students in various 
geospatial programs (Figure 23). The aca-
demic respondents indicated that 29% of their 
master’s and Ph.D. students are foreign, 9% of 
their undergraduates are foreign and 12% of 
their certificate program students are foreign. 
Given the relatively small number of geospa-
tial academic programs across the U.S., this 
sample, most of which were from different 
institutions, indicates that approximately 
40% of students in these undergraduate and 
graduate programs are foreign.

Figure 24 indicates that the estimate from 
the academic respondents is that the num-
ber of foreign students in their programs is 
increasing. With the relaxation of some of 
the restrictions on foreign student visa al-
location enforced after the 9/11 attacks, this 
estimate corresponds to the increased num-
ber of foreign students studying in the U.S. 
(Open Doors 2009, published by the Institute 
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of International Education (IIE) with funding 
from the U.S. Department of State’s Bureau 
of Educational and Cultural Affairs).

Question 43 asks academic respondents 
to estimate whether their foreign graduates 
will remain in the U.S. to work after gradua-
tion. Figure 25 shows the collective estimate 

Figure 22. Rate each of the following areas in terms of whether the U.S. is leading, equivalent or behind other nations' capabilities.

No Opinion

Behind

Equivalent

Leading

250

200

150

100

50

0

.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Undergraduate Graduate (Masters and Ph.D.) Certificates

Figure 23. Estimate of the percentage of foreign students in your academic geospatial programs.
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Figure 24. Estimate of the trend of foreign student enrollment in your academic geospatial programs  

is that over 50% of the students will remain 
in the U.S.

The results from Questions 41–43, suggest 
that U.S. academic institutions are attracting 
a large number of very qualified students 
from across the globe. In most cases, the 
students that can qualify to study in the U.S. 

are among the best students from a nation. 
This influx of foreign talent fosters improved 
graduate research in the U.S. system, and 
for those students who remain in the U.S. 
after graduation, an influx of talent into the 
geospatial industry. 

A less apparent insight into the fact that 
such a relatively high percentage of graduate 
students are foreign is that other nations have 
a much more robust undergraduate system in 
geospatial related fields, such as geography, 
geodetic science and computer technology. 
Thus, there are many foreign students apply-
ing for U.S. graduate programs who are more 
qualified and prepared for graduate geospa-
tial education than U.S. undergraduates. 

A second insight is that many of the best 
U.S. students graduate with a BS degree in 
a geospatial area and can easily find a job 
in government or a private firm. The U.S. 
undergraduates can receive security clear-
ances more easily and at less expense. Cor-
respondingly, employment rules for foreign 
students (on student visas) do not allow 
them to work in the U.S. on student visas, so 
often they continue on for advanced gradu-
ate degrees. Thus, many master’s and Ph.D. 
programs graduate a high percentage of 
foreign students. 

An implication of these trends involves the 
basic research foundation of the geospatial in-
dustry. In an industry so linked to scientific and 
technological research and innovation, basic 
research is crucial to the future of the industry. 
Due to the nature of the geospatial industry in 
the U.S. (see Phase III– IV reports), limited basic 
geospatial research is done in the government 
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Questions two and three of the GRS request-
ed revenue estimates from the respondents. 
These estimates from the sample were used 
to estimate an industry total. Total 2010 gross 
revenues for the remote sensing industry are 
estimated at $7.039 billion using actual rev-
enues reported during the most recent survey 
(Figure 26). Figure 26 and Figure 1 are identi-
cal. A comparison of the most recent data 
with projections developed during Phases I-III 
of the Forecast (2001-2002) highlight several 
interesting points. There is strong consistency 
in the rates of projected growth when com-
paring those from the 2001-2002 period with 
the most recent (Phase VI-2011) projections 
-- the lines are nearly parallel. Considering that 
the years 2003 – 2012 were only projections 
in the initial Forecast Phases, and that years 
2010 and 2011 were nearly at the extreme of 
the original projection, there is a high degree 
of correlation at the nexus of the two lines. 
Projected 2010 revenues (blue line) and the 
most recently enumerated 2010 revenues (red 
line) are within approximately 15% of each 
other, indicating the original projections were 
accurate. While the years 2011-2022 are pro-
jected using only the predicted growth levels 
provided by industry respondents in the most 
recent survey, the high level of consistency 
between the original projections and the lat-
est data gives a high degree of confidence in 
the out years. History would indicate that the 
latest projections for the period 2011-2012 
may actually be conservative.

Total employment in the remote sensing 
industry surveyed (Question 4) is estimated to 
be over 20,000 with an estimated average sal-
ary and benefits based on the revenue reports 
of just over $120,000. However, these figures 
represent all employees associated with the 
business units reporting gross revenues, and 
should not be interpreted as including only 
remote sensing scientists. A good reference 
point for comparison is not available, as similar 
information was not collected in the earlier 
phases. However, both the total number of 
employees and the average salary and ben-
efits appear to be higher than expected.

The breakout of market segments as 
reported in the Phases I-III surveys was ap-
proximately 66% aerial and 33% satellite. At 
the time, the commercial satellite market was 
in its infancy, and there were limited numbers 
of firms responding with satellite revenues. 
By comparison, the Phase VI survey (Q 5 
and 6) indicates a significant growth in both 
overall revenues, as well as in the proportion 
of revenues attributable to the satellite market 
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Figure 25. Estimate the percentage of foreign students likely to remain in the U.S. for employment 
after graduation 

(especially the civilian area) and private sector, 
compared to the university academic sector. 
Thus, the longer term trend of increasing 
foreign graduate students and graduates will 
affect the foundation of geospatial research in 
the U.S. in ways that may conflict with immigra-
tion, national security and educational policies. 
This will affect the long term innovation and 
competitiveness of the industry in an increas-
ingly international marketplace.

Results of the 2010–2011 Gross 
Revenue Survey
The 2010-2011 Gross Revenue Survey (GRS) 
was administered to 248 firms comprising all 
segments of the remote sensing community 
(image-based geospatial activities). This sur-
vey was targeted to traditional image-based 
geospatial firms and to the newer firms per-
forming exploitation of imagery for citizen-
based applications.

The survey was conducted on behalf of 
ASPRS by the University of Utah Center for 
Public Policy and Administration (CPPA). 
Each firm was contacted by mail, telephone 
and through email in April-May, 2011. Rec-
ognizing the highly sensitive nature of the 
information being collected, all survey forms 
were returned to CPPA. CPPA removed all 
identifying information from the survey forms, 
which were provided to the Forecast Team 
for analysis.

Responses were received from approximate-
ly 15% of the firms surveyed. Reported gross 
revenues ranged from $0.5 million to over 
$300 million; total employee levels ranged 
from less than 10 to nearly 500. Given the gen-
eral distribution of the responses, it is believed 
they represent a reasonable source from which 
to draw the following conclusions [Note--each 
of the summaries below is keyed to the ques-
tion being asked on the survey form]:
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segment. In addition, the “other” category 
is now becoming more significant, possibly 
given the recent inclusion of mobile mapping 
and other ground and airborne geospatial 
image-based services in the industry. 

For 2010, the estimated market segment 
breakout is as follows:

Aerial 40% $2.8B

Satellite 48% $3.4B

Other 12% $0.9B

While it is possible to use the above break-
out to project revenues by market segment 
for the period 2011-2022, given the recent 
trends and the significant changes in the 
industry such projections would not appear 
to be prudent at this time.

Question seven requested that the respon-
dents estimate the percentage of activities 
conducted outside of the U.S. The percent 
of remote sensing business activities being 
conducted offshore are reported/projected 
as follows:

2010 2.29% $160M

2011 2.83% $210M

2015 3.66% $352M

2020 4.35% $534M

While these numbers appear to be relatively 
low, they represent a significant and appar-
ently growing phenomenon. They represent 
between 1200 and 4000 U.S. jobs being 
outsourced on an annual basis. These results 
are consistent with the internet survey portion 
of Phase VI analysis of private firms that led to 
the conclusions that outsourcing of U.S.-based 
projects was increasing significantly.

The percent of business activities that are 
undertaken by U.S.-based organizations in 
non-U.S. or foreign areas (Q8) was reported 
to be approximately 7.5% during 2010 and 
is projected to increase slightly to approxi-
mately 10% by 2020, (Figure 27) as follows:

2010 7.5% $529M

2011 8.0% $588M

2015 8.7% $836M

2020 10.0% $1,226M

The issue of the impact of new entrants 
from the broader IT business and from WWW 
oriented, citizen based applications is impor-
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tant to the future of the geospatial industry. 
When asked what strategies firms are devel-
oping to address changes in the market place 
caused by entry of firms such as Google, and 
the development of citizen imagery use and 
mapping in the remote sensing/geospatial 
market (Q9), responses were distributed 
among the following options:

34% Does not affect future activities
40% Partnership/joint activities with new 

entrants to market
26% Consolidation with other existing 

firms to compete
0% Other
Thus, 66% of the respondent firms are 

adapting to the changing competition and 
market opportunities to take advantage of 
the new citizen-based market. Also, they are 
acting to develop plans to accommodate 
their lines of business given the entry into the 
geospatial marketplace of large, diverse firms, 
such as Google and Microsoft. 

Question 10  of the GRS asked the re-
spondent whether his/her firm anticipates 
problems hiring qualified workers in the U.S. 
Thirty-four percent of the respondants stated 
Yes and 66% did not anticipate problems 
finding qualified employees. The respondents 
were asked to elaborate on strategies and/
or suggestions for meeting future demand 
of qualified employees. Individual com-
ments were aggregated into the following 
categories:

Increasing use of H1 Visas•	
Salary expectations are too high as projects •	
are being contracted for less money
Continued development and support for •	
academic geospatial programs
Train them ourselves•	
Partnering within the profession and relying •	
on U.S.-based contract labor
Employment of  staff with strong geospatial •	
skills, but extensive in-house training and 
hiring foreign nationals is needed
Internships starting early. Firm-based train-•	
ing. Generous education reimbursement.

Question 11. Summary categories, of 
text responses to the question: “What three 
specific science/business areas do you see 
the greatest shortcomings in U.S. geospatial 
capabilities in the next 10 years?”

business

Reduced funding to conduct environmental •	
GIS projects
Costs associated with keeping technology •	
current
Data becoming a commodity•	
Too much Government regulation•	
Potential lack of Federal funding•	
Foreign competition – U.S. tax dollars go-•	
ing overseas
Increase in the use of offshore labor•	
Coastal zone mapping•	
Commercial observation data•	
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technical

Application development•	
Geospatial modeling•	
Current base maps•	
Geospatial management•	
Software to support•	
Photogrammetric technicians•	
Software specialists•	
Labor costs•	
Staffing adequately•	
Project managers with expertise•	

In the Business-focused category of re-
sponses, the evident concerns are sufficient 
funding and pressures that affect pricing of 
geospatial products and services. This is noted 
in comments focusing on many areas of prod-
uct and service monetization related items.

The Technical concerns are related to 
workforce issues of adequate education and 
training in specific specialties and applica-
tions. Also, the need for management level 
expertise for project administration. 

the final question of the grS was an 

open ended question regarding the indus-

try’s future growth areas (Question 12). The 
question was, “What major growth areas do 
you anticipate for our community, and how 
well do you believe we are prepared to meet 
these emerging needs?”  The responses are 
summarized into Business and Technical 
categories.

business

Vertical market expertise in commercial and •	
government sectors
Vertical markets will grow with government •	
policy cooperation
Geospatial products entering new market •	
segments

technical

Sensor processing•	
Mobile mapping•	
Rapid Response•	
Open source•	

Better than 3"  GSD•	
3D•	
QA/QC services•	
Lidar will be well positioned •	

The converse to Question 11 focuses 
here on industry growth opportunities. The 
Business-oriented responses focus on both 
vertical penetration of the existing market 
and broadening the scope of geospatial usage 
across markets and into new markets. 

The remaining open responses are aggre-
gated under a Technology heading. These 
technical growth areas seem to focus on 
getting more out of existing sensor technolo-
gies, rather than new cutting edge sensors 
or platforms. This aligns well to the Business 
responses, both of which seem to indicate 
recognition of the new reality with lessening 
governmental spending and new markets in 
citizen geospatial usage.
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In Memoriam

maurice otto nyquist
1944–2011

Maurice Otto (Maury) Nyquist, 67, 
ASPRS President (1994–1995), died 
September 20, 2011, in Lakewood, 
Colorado, and a private service for 
his family was held in Colorado. 

Born May 30, 1944, in Fairmont, 
Minnesota to Carl Arther and Wilda 
Nyquist, he earned a bachelor of 
science in biology from Hamline 
University in 1966, a master of arts in 
biology from Mankato State University 
in 1968 and a PhD in zoology from 
Washington State University in 1973.

In 1974, after working for a year as an assistant professor of zool-
ogy at Washington State, Nyquist joined the National Park Service in 
Lakewood, Colorado and served as a manager from 1979–1993. He 
worked for the National Biological Service in Denver as a manager 
and scientist from 1993-1996. Then, he worked for the U.S. Geologi-
cal Survey (USGS) Biological Resources Division from 1996 until he 
retired in 2004.

Nyquist earned a national and international reputation as a scientist 
and environmentalist. He was Faculty Affiliate of the College of Natural 
Resources at Colorado State University in Fort Collins (2001–2004); he 
was a member of many academic, government and private industry 
peer review committees; and, he contributed scientific articles to 
many professional journals.

Very active in the Federal Geographic Data Committee, Nyquist 
served as agency representative. He was chairman of its biological 
data working group and a member of its standards working group 
and coordination group. He also was director of production for the 
interactive computer exhibit on remote sensing at the Denver Mu-
seum of Natural History.

“I had gotten an email from Maury on August 25, which was very 
upbeat, and then another on August 30 saying he wasn't good.  I'm 
really sorry to see him go.  I really enjoyed working with him, both 
in and outside of ASPRS.  We'll really miss him.”  
Cliff Greve, ASPRS Past President

“Maury was a great member of ASPRS.  I remember him reaching out 
and involving me in a number of ASPRS activities early in my career.  
He was always encouraging and upbeat with a great sense of humor.  
He is one of my many heroes in ASPRS and I will miss him.”  
Russell Congalton, ASPRS Past President

“When Maury was president of ASPRS, I did not know him very well, 
and, of course, I was in awe of him, as I still am.  That year at the 
Alaska surveying conference, there was a break, and he turned to 
me and said, ‘There is a great store of native art here, do you want 
to go look at it?’  So we did, and I got to know him a little.  I was 
just amazed that such a leader in our field could be so kind to such 
a flunky as me.  He was a prince.”  
Kass Green, ASPRS Past President

He received numerous awards for his government service, includ-
ing a manager’s award from the National Park Service in Lakewood in 
1981 and a performance commendation award in 1988. He also was 
presented with an excellence of service team award from the U.S. 
Department of the Interior in 1999, and was named a NRA research 
grantee in 1972.

Nyquist was a leader in a number of professional organizations. He 
was named a Fellow of the American Society for Photogrammetry and 
Remote Sensing (ASPRS) in 1997. He served as the ASPRS Assistant 
Director and then Director of the Remote Sensing Applications Division 
from 1987–1991. In 1992 he was elected as the ASPRS National Vice 
President where he went up through the chairs to eventually serve as 
National President in 1994. Nyquist also served on the ASPRS National 
Board of Directors and the Executive Committee from 1988 –1990.

In addition, he was a member of The Wildlife Society as well as the 
American Congress on Surveying and Mapping’s Joint Satellite Mapping 
and Remote Sensing Committee. He was active in the GRASS Users 
Group, serving on its steering committee from 1986–2004 and as its trea-
surer from 1987–2004. Nyquist was a leader for the ELAS Users Group 
as its chairman from 1986–1987 and its co-chairman from 1985–1986. 
He was also a member of the national research society, Sigma Xi.

Nyquist lived by a personal philosophy that he adopted from 
Aldo Leopold’s A Sand County Almanac: “We need to view the 
land as a community to which we belong, instead of a commodity 
for individual gain.”

He is survived by his mother; his wife Mary Magee, whom he mar-
ried in 1977; four children—Gretchen Salisbury (Shaun), Beth Nyquist, 
Krista Mullin (Bob) and Kyle Olson (Kim); and two grandchildren—Evan 
Mullin and Emerson Olson. 

Donations in Nyquist’s memory may be made to Trout Unlimited, 
1300 North 17th Street, Suite 500, Arlington, VA 22209-3801, or 
your favorite charity.

“Before his diagnosis, Marilyn and I, together with Tom and Amy 
Budge, had several occasions to renew our ASPRS camaraderie with 
Maury.  After his devastating diagnosis, we often asked ourselves 
how he was faring; and now are saddened by his passing. His last 
communiqué was very well stated and, to us, up-beat against the 
inevitable.  He was a good-hearted and wonderful friend whom we 
shall sorely miss.  We extend our best wishes to his family, and are 
thankful to have been able to know and work with him.”
Stan Morain, ASPRS Past President

“Maury was a good friend with a warm smile and a big heart.  He was 
a proud father, and a man who enjoyed his fishing, his beer and his 
pipe.  He was involved in many remote sensing projects throughout 
his career and contributed significantly to the profession, and espe-
cially to ASPRS.  He will be greatly missed.”  
Roger Hoffer,  ASPRS Past President

“Maury left his mark on ASPRS and he will be missed by all.” 
Roger Crystal, ASPRS Past President
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“Considerable evidence indicates that about 600,000 years ago, humans 
inhabited what has since become the desolate Sahara of northern Niger. 
Long before the arrival of French influence and control in the area, Niger 
was an important economic crossroads and the empires of Songhai, 
Mali, Gao, Kanem, and Bornu, as well as a number of Hausa states 
claimed control over portions of the area. During recent centuries, the 
nomadic Tuareg formed large confederations, pushed southward, and, 
siding with various Hausa states, clashed with the Fulani Empire of 
Sokoto, which had gained control of much of the Hausa territory in the 
late 18th century. In the 19th century, contact with the West began 
when the first European explorers – notably Mungo Park (British) and 
Heinrich Barth (German) – explored the area searching for the mouth 
of the Niger River. Although French efforts at pacification began before 
1900, dissident ethnic groups, especially the desert Tuareg, were not 
subdued until 1922, when Niger became a French colony” (Niger – 
Country Studies, U.S. Dept. of State, 2011 ). 
 “Before the Sahara started swallowing Niger around 2500 BC, it sup-
ported verdant grasslands, abundant wildlife and populations thriving 
on hunting and herding. Long after the desert pushed those popula-
tions south, Niger became a fixture on the trans-Saharan trade route. 
Between the 10th and 18th centuries, West African empires, such as the 
Kanem-Borno, Mali and Songhaï flourished here, trafficking gold, salt, 
and slaves. The French strolled in late in the 1800s, meeting stronger-
than-expected resistance. Decidedly un-amused, they dispatched the 
punitive Voulet-Chanoîne expedition, destroying much of southern 
Niger in 1898–99. Although Tuareg revolts continued, culminating 
in Agadez’s siege in 1916-17; the French had control.
 French rule wasn’t kind. They cultivated traditional chiefs’ power, 
whose abuses were encouraged as a means of control, and the 
enforced shift from subsistence farming to high-density cash crops 
compounded the Sahara’s ongoing migration. In 1958 France offered 
its West African colonies self-government in a French union or im-
mediate independence. Countless votes conveniently disappeared, 
enabling France to claim that Niger wished to remain within its sphere 
of influence. Maintaining close French ties, Niger’s first president, 
Hamani Diori, ran a repressive one-party state. After surviving several 
coups, he was overthrown by Lieutenant Colonel Seyni Kountché after 
food stocks were discovered in ministerial homes during the Sahel 
drought of 1968–74. Kountché established a military ruling council. 
Kountché hit the jackpot in 1968 when uranium was discovered near 
Arlit. Mining incomes soon ballooned, leading to ambitious projects, 
including the ‘uranium highway’ to Agadez and Arlit. By the 1990s, 
Nigerians were aware of political changes sweeping West Africa and 
mass demonstrations erupted, eventually forcing the government into 
multiparty elections in 1993. However, a military junta overthrew the 
elected president, Mahamane Ousmane, in 1996. In 1999, during 

Grids & Datums
Republic of NigeR

by Clifford J. Mugnier, C.P., C.M.S.

widespread strikes and economic stagnation, president Mainassara 
(1996 coup leader) was assassinated and democracy re-established. 
Peaceful elections in 1999 and 2004 witnessed victory for Mamadou 
Tandja”(Niger – Lonely Planet,  2011 ). 
 Bordered by Algeria (956 km) (PE&RS, October 2001), Benin (266 
km) (PE&RS, July 2003), Burkina Faso (628 km) (PE&RS, January 2005), 
Chad (1,175 km), Libya (354 km) (PE&RS, June 2006), Mali (821 km) 
(PE&RS, October 2010), and Nigeria (1,497 km) (PE&RS, February 
2009); Niger has predominately desert plains and sand dunes, flat 
to rolling plains in the south and hills in the north. The lowest point 
is the Niger River (200 m), and the highest point is Idoûkâl-n-Taghès 
(2,022 m). 
 “Burkina Faso and Mali have jointly submitted a boundary dispute 
to the International Court of Justice (ICJ) for binding adjudication. The 
two states had signed an agreement to send their dispute to the ICJ 
on 24 February 2009 (entering into force on 20 November 2009) but 
the application was filed into the Court’s Registry on 20 July 2010. 
Burkina Faso and Niger have asked the ICJ to determine the course 
of their boundary between two identified endpoints, the survey pillar 
at Tong Tong (14° 25' 04" N, 00° 12' 47" E) in the north to the Boutou 
curve in the south (12° 36' 18" N, 01° 52' 07" E). This constitutes the 
vast majority of the central section of their boundary and the two 
parties made clear that the northern and southern extremities of the 
boundary (from Tong Tong to the tripoint with Mali, and Boutou to the 
tripoint with Benin) have already been demarcated by a Joint Technical 
Commission”(International Boundaries Research Unit, Durham Univ., 
22 July 2010).
 During WWII, the Niger Zone was established as a "British Grid" where: 
the Latitude of Origin (jo) = 13° N, Central Meridian (λo) = 0° (Equator), 
Scale Factor at Origin (mo) = 0.99932, False Easting = 1,800 km, False 
Northing = 500 Km. The limits of the Grid were: North, 16° N,; East, 1° 
30' East; South: 10° N; and West, 14° West. The ellipsoid of reference 
was the Clarke 1880; the datum: ersatz (Lambert Conical Orthomor-
phic Projection Tables, Niger Zone, RESTRICTED, Office of the Chief of 
Engineers, Washington, D.C., 1943). (Later declassified – Ed.)
 In December of 1945, the Institut Géographique National (IGN), 
issued SGC 1312 in which l'A.E.F. and ľl'A.O.F. (French East and West 
Africa) would employ a series of Gauss-Krüger Belts that included Niger. 
By 20 September 1950, that was rescinded in favor of the UTM Grid 
proposed by the U.S. Army Map Service.
 The Chad-Niger Boundary is 1,175 km in length. In the south the 
Nigeria tripoint is situated in Lake Chad at about 13° 42' 53" N, 13° 
38' 20" E, and in the north the Libya tripoint is situated northwest of 
the Tibesti at 23° N and 15° E. Northward the boundary traverses 
Lake Chad, crosses typical sandy and gravelly surfaces, and contin-
ues through a region of rocky ridges and steep-sided hills. There are 
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no known pillars demarcating the boundary (Chad-Niger Boundary, 
International Boundary Study No. 73 – August 1, 1966, Bureau of 
Intelligence and Research, Department of State, USA).
 The Niger-Nigeria Boundary is 1,497 km in length. From the tri-
point with Dahomey on the median line of the Niger River, it extends 
northward and then eastward to the Republic of Chad tripoint at 13° 
42' 29" N, and approximately 13° 38' E. In the extreme eastern sector, 
the boundary follows the thalweg of the eastward fl owing Komadugu 
Yobe for more than 272 km and then continues for about 25.6 km in 
Lake Chad to the Chad tripoint. The boundary is demarcated by pil-
lars and the Komadugu Yobe (Niger-Nigeria Boundary, International 
Boundary Study No. 93 – December 15, 1969, Bureau of Intelligence 
and Research, Department of State, USA).
 Located in the Sahara, the Algeria-Niger boundary is about 956 km 
in length. Northeastward from the tripoint with Mali, it consists of three 
straight-line sectors of 174.4 km, 227.2, and 548.8 km, respectively. 
The boundary is un-demarcated and traverses sparsely populated areas 
(Algeria-Niger Boundary, International Boundary Study No. 99 – May 1, 
1970, Bureau of Intelligence and Research, Department of State, USA).
 The Mali-Niger boundary extends for approximately 816 km be-
tween the Upper Volta and Algeria tripoints. The line is not demarcated 
by pillars. Although it follows several valleys, more than two-thirds of 
the boundary consists of straight-line segments (Mali-Niger Boundary, 
International Boundary Study No. 150 – January 13, 1975, Bureau of 
Intelligence and Research, Department of State, USA).

Stand out from the rest – 
earn ASPRS Certification
ASPRS congratulates these recently Certified and 
Re-certified individuals:

Certified Mapping Scientist Remote Sensing

michael tuffl y, certifi cation #rS196, 
effective 9/24/2011, expires 9/24/2016 

Re-Certified Mapping Scientist GIS/LIS

thomas r. Jordan, certifi cation #r184gS, 
effective 9/6/2011, expires 9/6/2016

Certified Photogrammetric Technologists

Derege W. Kobre, certifi cation # 1505Pt, 
effective 9/24/2011, expires 9/24/2014

Joshua Quint, certifi cation # 1504Pt, 
effective 9/24/2011, expires 9/24/2014

Provisional Certified Photogrammetrist

young-Jin Lee, certifi cation #1506P, 
effective  9/24/2011, expires  9/24/2021 

For more information on ASPRS Certifi cation, visit 
http://www.asprs.org/membership/certifi cation/ 

 The only datum known for Niger has its origin at Point 58 east of the 
town of Dosso and near the border with Nigeria where: Φo = 12° 52' 
44.045" N, Λo = 3° 58' 37.040" E of Greenwich. Thanks to John W. Hager, 

“Azimuth is 97° 30’ 04.237” to C. F. L. 1 from north. Elevation = 266.71. 
Astro observed by IGN in 1968. This was used as a temporary datum 
pending the adjustment of the 12th Parallel to Adindan. It was for the 
section of the 12th Parallel in Niger and Upper Volta. Reference is Final 
Report of the 12th Parallel Survey in the Republic of Niger.”  Surveyed in 
1969 by the French IGN, the ellipsoid of reference is the Clarke 1880 
where: a = 6,378,249.145 m., 1/f  = 293.465. This was used as the 
basis for computation of the 12th Parallel traverse conducted 1966–70 
from Senegal to Chad and connecting to the Adindan triangulation in 
Sudan. Remarkably, references to this datum origin point appear to 
have interchanged the values for Latitude and Longitude, incorrectly 
placing the point somewhere in Cameroon!  According to TR 8350.2, 
the datum shift from Point 58 Datum to WGS84 Datum is: ∆X = –106 
m ±25 m, ∆Y = –129 m ±25 m, and ∆Z = +169 m ±25 m, and is based 
on two points collocated in 1991.


The contents of this column refl ect the views of the author, who is 
responsible for the facts and accuracy of the data presented herein.
The contents do not necessarily refl ect the offi cial views or policies of 
the American Society for Photogrammetry and Remote Sensing and/
or the Louisiana State University Center for GeoInformatics (C4G).

Thank you to all the ASPRS 
regions that participated in 

the Region of the 
Month contest. 

 and the Winner for the Month 
of SEPTEMBER is…

NORTHERN CALIFORNIA 
REGION 

the northern california region sponsored 11 
new members during the month of august. 

In recognition of their commitment to the 
Society, they receive the following:
•	A	certifi	cate	from	ASPRS	acknowledging	

their work in membership recruitment.
•	ASPRS	Buck$	vouchers	valued	at	$50	to	

be used toward merchandise in the ASPRS 
Bookstore.

•	This	special	recognition	in	this	issue	of	
PE&RS of their designation as “Region of the 
Month,” a true display of their commitment 
to the Society.

northern california region This is an ongoing 
regional recruitment campaign. We hope other 

regions will be listed here in future months.

continued from page 1097
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Book Review
Land Administration for Sustainable Development
Ian Williamson, Stig Enemark, Jude Wallace and Abbas Rajabifard

ESRI Press Academic, Redlands California, 2010, 487 pp.

ISBN 978-1-58948-041-4

Paperback. $49.95

Reviewed by John Stillwell, Professor, School of Geography, University of Leeds, Leeds, UK

The authors have created a very impressive volume focussing on the 
explanation of concepts and principles that underpin the role of land 
administration within the paradigm of land management. This volume 
also presents a review of the tools and mechanisms for dealing with 
processes leading to the achievement of sustainable land develop-
ment.   The aim of demonstrating the way in which infrastructures 
have been developed to administer the relationship between people 
and land so as to implement management strategies and land poli-
cies, has been realized, with examples from across the full spectrum 
of developed and developing countries. It is this global perspective 
that is one of the strengths of this book, but there are other key 
features too that indicate its excellence, not the least of which is the 
experience that its authors are able to contribute; all are profession-
als in fi elds such as land surveying, chartered engineering or land 
policy law, as well as holding academic posts in universities in either 
Australia or Denmark.

There are many excellent attributes about this book, but I choose to 
mention only three particular dimensions given the limited space for this 
review.  First, the authors tackle a subject of immense importance which 
has responded to dramatic changes over time.  Land administration is 
a subject which has evolved out of the attempts to defi ne the relation-
ship between people and land through land registration. The authors 
highlight the key role of the cadastre throughout while repeatedly 
acknowledging the functions or processes of land tenure, land value, 
land use and land development which collectively defi ne the fi eld. 

Secondly, the book is very well organised and logical in its layout. 
It is organized into fi ve main parts subdividing a collection of fourteen 
chapters. Part 1 (Introducing Land Management) is an introductory 
section comprised of two chapters, the fi rst of which explains the 
universal land management paradigm and the four core administra-
tion functions. Within this chapter the authors explain that there are 
common processes and practices occurring in all countries while 
introducing the concept of the land administration “toolbox” that 
usefully sets out a set of ten principles that practitioners can use to 
help develop and manage assets and resources to secure sustainable 
development. The second chapter provides a chronological account 
of the evolution of land administrative systems from the early forms 
of surveying adopted by the ancient Egyptians through periods when 
cadastres were used as tools for taxation, land marketing and planning 
to the contemporary view of the multipurpose cadastre. 

Part 2 (A New Theory) is comprised of three chapters that can 
be considered as theoretical contributions, although Chapter 3 (The 

Discipline of Land Management) also takes a historical perspective 
in charting the evolution of land policy towards sustainability at the 
international level and the requirement for land administration systems 
(LAS) to embrace the need to manage rights, restrictions and respon-
sibilities as well as rights in property-based commodities.  Chapter 4 
(Land Administration Processes) addresses the core processes of land 
administration and presents examples of tenure processes in particular, 
while Chapter 5 (Modern Land Administration Theory) explains the 
modern theory of land administration and how the core processes 
interact to create effi cient land markets and effective land management. 
Here again the focus is on the national cadastre and how the data it 
contains (parcels, properties, buildings, roads) are an important part 
of the spatial data infrastructure (SDI) upon which a whole range of 
governance services rely for enhanced decision making.  It is a touch 
disappointing that more detail is not provided on the relationship 
(integration) between the digital cadastral information and other digital 
information held in the GIS.   

Part 3 (Building Modern Systems) is comprised of fi ve chapters 
that purport to cover all the dimensions of building a modern LAS.  
Chapters 6 through 9 respectively cover the management of dif-
ferent types of land markets, the role of planning and regulation in 
controlling land use, the concept of the marine cadastre (i.e. marine 
administration), and the integration of the spatial data infrastructure 
with  new technologies. Each chapter delivers valuable information, 
however it would have been useful to have read something in the land 
use management chapter (Chapter 7) on how the developments in 
modern LAS interface with the large body of work on land use simula-
tion and the types of land use models developed by Dick Klosterman 
(What if?) or Keith Clarke (SLEUTH).  Similarly, in Chapter 9 on SDIs 
and technology, it is surprising to fi nd nothing about the European 
Unions’ ongoing preoccupation with interoperability as refl ected in the 
INSPIRE initiative to create a regional SDI. INSPIRE sets out a framework 
and timetable that obliges public sector organizations to publish key 
spatial data sets in ways that support the discovery of the data and 
provide access to these resources via product-neutral visualization 
and downloading services. The fi nal chapter in Part 3  reports on the 
Worldwide Cadastral Template Project, a global comparative analysis 
of cultural and technical  descriptions of national cadastral systems, 
demonstrating the extent of the diversity of systems used by countries 
at different stages of development.

Chapters 11–14 constitute Parts 4 and 5 of the book and are primar-
ily dedicated to implementation strategies, beginning with a chapter 

continued on page 1100
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on capacity-building and institutional development.  The recogni-
tion that capacity-building is required at societal and organizational 
levels as well as at the individual level is critical. There is little doubt 
that huge technical skills shortages exist in many countries of the 
world. However, more importance might have been paid to the is-
sue of ownership and accountability.  In developing a system called 
“LANDADMIN” for the Lands Commission Secretariat (LCS) in Ac-
cra, Ghana, one of the most important considerations for successful 
system implementation was the involvement of the users (LCS staff) 
in the design and development process (Karikari et al., 2003); more 
generally, the need for greater user participation or collaboration is 
one of the lessons learned from the implementation of many planning 
support systems across a range of contexts (Geertman and Stillwell, 
2009).  The following chapter (Chapter 12: The Land Administration 
Toolbox) is considered by the authors to be the central chapter of the 
book because it describes the various “tools of the trade”, using the 
analogy of the “toolbox”.  In this case the tools refer to a wide range 
of measures and methods categorized as “general”, “professional” and 
“emerging”.  This extensive chapter, though not providing compre-
hensive coverage, is crucial in outlining the methodology that allows 
tools to be selected and applied that are context specific.   Thereafter, 
Chapter 13 is dedicated to project management and evaluation in 
relation to land administration projects (LAPs) and explanation of 
“The Project Cycle”, the World Bank model of how to undertake a 
large-scale project which is sustainable.    The book ends with a short 
chapter in Part  5 that highlights the main issues and considers the 
challenges and opportunities that lie ahead.

The third and final thing that I like about this book is its standard 
of presentation. It is very readable. The color photographs and im-
ages enhance the text. There is a useful list of abbreviations at the 
beginning and an even more useful glossary of terms at the end. In 
summary, the authors are to be congratulated for bringing so many 
issues and ideas together into a document that is both fascinating 
yet authoritative; it deserves to be used by widely by scholars and 
practitioners alike.

references
Geertman, S. and Stillwell, J. (eds.), 2009. Planning Support Systems 

Best Practice and New Methods, Springer, Dordrecht.
Karikari, I.,  Stillwell, J. and Carver, S., 2003. Adoption of Geographic 

Information Systems in Accra lands Commission Secretariat, Our 
Common Estate, RICS Foundation, London

BE AN ASPRS MEMBER CHAMPION
ASPRS is recruiting new members and YOU benefit from each new member 
YOU champion. Not only can you contribute to the growth of ASPRS, but 
you can earn discounts on dues and merchandise in the ASPRS Store.

Member Champions by Region from 
January 1, 2011 – September 30, 2011

REMEMBER! To receive credit for a new member, the  
CHAMPION’S name and ASPRS membership number must  
be included on the new member’s application.

CONTACT INFORMATION
For Membership materials, contact us at:  
301-493-0290, ext. 109/104 or email: members@asprs.org.
Individuals who want to join ASPRS may sign up on-line at  
http://www.asprs.org/Join-Now/.

RECRUIT 
· 1 new member, earn a 10% DISCOUNT off your ASPRS 

DUES and $5 in ASPRS BUCK$. 
· 5 new members, earn a 50% DISCOUNT off your ASPRS 

DUES and $25 in ASPRS BUCK$.
· 10 or more new members in a calendar year and receive 

the Ford Bartlett Award, one year of complimentary 
membership, and $50 in ASPRS BUCK$.

All newly recruited members count toward the Region’s tally for the 
Region of the Month Award given by ASPRS.
Those elibible to be invited to join ASPRS under the Member 
Champion Program are:
•  Students and/or professionals who have never been ASPRS members.
• Former ASPRS members are eligible for reinstatement if their 

membership has lapsed for at least three years

ASPRS BUCK$ VOUCHERS are worth $5 each toward the 
purchase of publications or merchandise available through 
the ASPRS web site, catalog or at ASPRS conferences.

Central New York
Lindi J. Quackenbush, CMS 

William M. Stiteler, CMS
Columbia River
Steven P. Lennartz

James E. Meacham, CMS
Brian Miyake 

Eastern Great Lakes
Jim Peters, CP

Florida
Bon A. Dewitt

Brian G. Ormiston  
Xiaojun Yang
Mid-South

Thomas R. Jordan, CP 
New England
Daniel L. Civco  

Russell G. Congalton
Nothern California 

Maggi Kelly 
Nathan P. Jennings

Potomac
Karen L. Schuckman, CP

Barry Haack 
Puget Sound

Eunju Kwak
Rocky Mountain

Michaela Buenemann
Roger H. Hanson, CP  

Mark Stanton 
Saint Louis

Rex G. Cammack
Ming-Chih Hung

Western Great Lakes
 Mary E. Balogh 

Douglas H. Fuller, CP
Member Champions 
By number of new  
members recruited

Recruited from 1 to 4 new 
members

Mary E. Balogh
Rex G. Cammack
Daniel L. Civco

Russell G. Congalton
Bon A. Dewitt

Nathan P. Jennings
Thomas R. Jordan, CP

Barry Haack
Roger H. Hanson, CP

Maggi Kelly
Eunju Kwak 

James E. Meacham, CMS
Brian Miyake

Brian G. Ormiston
Jim Peters, CP

Lindi J. Quackenbush, CMS
Karen L. Schuckman

Mark Stanton
William M. Stiteler, CMS

Xiaojun Yang  
Recruited 5 and more new 

members 
Michaela Buenemann (5)
Douglas H. Fuller, CP (5)

Ming-Chih Hung (6) 
Steven P. Lennartz (23)

continued from page 1099

aSPrS Vice PreSiDentiaL canDiDateS For 2012
This is a notice regarding the Official Nomination for the office of ASPRS Vice 
President for 2012, and the requirements for nomination by petition.  The ASPRS 
Nominating Committee is pleased to announce its candidates for the office of 
ASPRS Vice President, to take office in March 2012.

 chris aldridge Dr. a. Stewart Walker
 Continental Mapping Consultants BAE Systems
 Portland, Oregon San Diego, California

Additional nominees for Vice President from the Private Sector should be submitted 
to the ASPRS Executive Director, 5410 Grosvenor Lane, Suite 210, Bethesda, MD 
20814, no later than 14 weeks prior to the 2012 ASPRS Annual Conference.  These 
nominations must be made by a nominating letter signed by not less than 250 vot-
ing members of ASPRS and must contain a biographical sketch of the nominee.

Deadline for nominations by petition:  December 14, 2011.

aSPrS nominating committee:
Carolyn Merry, Chair

Brad Doorn
Kass Green

Marguerite Madden
Kari Craun
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2nd Annual ASPRS GeoLeague Challenge
to be presented at the ASPRS 2012 Annual Conference  

in Sacramento, California, March 19-23, 2012
Registration ends November 30th, 2011

For complete rules and information, visit http://asprssignature.blogspot.com/

Introduction: The 2011 ASPRS Annual Conference in Milwaukee, Wisconsin was the culmination of the first ever GeoLeague Challenge, where 
five different teams of students competed for the glory of being named the ASPRS GeoLeague Champions!  The student teams were made up 
of both undergraduate and graduate students, each with one faculty mentor. The teams were charged with finding a suitable location in New 
Hampshire for a 90 MW capacity wind farm while minimizing the cost of the project and addressing the impacts that the wind farm may have 
on the chosen location. The teams presented their solutions in three different mediums: a paper, a poster, and a video. Each of these submissions 
were evaluated by our guest judges to determine the winner.

The participating teams in this year’s competition were from Mississippi State University, University of Connecticut, University of Florida, 
University of Nebraska, and University of South Carolina. They each submitted unique and innovative solutions, but in the end, the team from 
the University of South Carolina took second place, and the University of Florida captured first place with its consistently strong performance. 
As the winning team, the University of Florida’s student chapter received $250, and the students who participated received books that were 
graciously donated by ESRI, one year complimentary membership in ASPRS, and their paper submission highlighted in the July issue of Pho-
togrammetric Engineering & Remote Sensing.

Now it’s your turn to enter the 2012 GeoLeague Challenge and compete for fame and prizes. 

Premise: Coastal environments are renowned for their dynamics and 
vulnerability to both natural hazards of both extreme (hurricanes and 
nor’easters) and chronic nature (shoreline erosion and sea-level rise.) 
The rapid development of our coast witnessed by remote sensing of 
land use/land cover change (LULCC) is juxtaposed to these opposing 
forces of development and coastal processes, with wetland ecosystems 
often being squeezed between the two. Coastal resource management 
agencies struggle to acquire and maintain up-to-date geospatial infor-
mation for dynamic features, particularly coastal land use/land cover, 
shorelines, and wetlands. No single remote sensing system (platform, 
sensor, and image processing approach) can meet the demand. Pro-
fessionals trained broadly in available data and their integration and 
spatial analysis are poised to meet these needs, which in the future 
will become ever higher need as the inexorable process of sea-level 
rise and periodic coastal storms continue.

The Challenge: To apply remote sensing and GIS to solve vexing 
problems currently facing Federal, State, and non-profit natural re-
source managers who need timely information in order to develop 
policy and monitor the fate of our vital shore and coastal wetlands. 
Specifically, you are tasked to recommend a “remote sensing remedy,” 
including sensors and spatial analytical techniques (in a cost- and 
time-efficient manner) to create coastal wetland inventories that can 
be efficiently updated at least every 5–10 years.   
Stipulations for this challenge include:
•	The	thematic	accuracy	of	the	product	should	approach	90%	overall
•	Users	 and	 producers	 accuracy	 meeting	 National	 Map	 Accuracy	

Standards, using a minimum mapping unit of approximately 1 ha
•	The	ideal	approach	would	also	include	regional	demonstrations:

- Target mapping of specific invasive species as an additional the-
matic class, e.g., Phragmites australis, (“common reed”) an exten-
sive, exotic species that is spectrally and ecologically similar to 
other intertidal marshes (e.g., Spartina spp.)

- For a West Coast context, Spartina is typically invasive and would 
be a target of high interest.  

- The wetland maps and invasive species should be updated coast-
wide every 5–10 years.

How to Participate: Form a group of at least 5 ASPRS Student Mem-
bers (undergraduate and/or graduate students) and a faculty advisor in 
your region. If you have trouble meeting this requirement, please feel 
free to contact us. You may also enlist the help of ASPRS members in 
your surrounding communities; however, the students must do all of 
the work; non-students can only provide guidance!

To be eligible to win, please fill out a registration form, located on 
the ASPRS Student Blog (asprssignature.blogspot.com) and the AS-
PRS Student Advisory Council (SAC) Facebook page, and return it 
to the SAC Deputy Chair (abenjamin1@ufl.edu) prior to November 
30, 2011.

How to Present Your Solutions: Your solutions will be presented in a 
session at the 2012 ASPRS Annual Conference in Sacramento, Cali-
fornia. At least one representative from each team will be required to 
attend the conference to present the project. You will be required to 
present 3 things at the conference:
1) A poster that can be hung during the poster session (maximum 

size: 36 in tall by 48 in wide) that gives an overview of your solu-
tion and the process by which you created your solution.

2) A short 5 minute PowerPoint presentation to be made during the 
GeoLeague Challenge Session 

3) A scientific paper (following the guidelines presented by Photo-
grammetric Engineering & Remote Sensing (PE&RS) for Highlight 
Articles online at http://www.asprs.org/PE-RS-Submissions-Poli-
cy-and-Guidelines/PE-RS-Instructions-for-Authors-of-Highlight-
Articles.html  describing in detail your solution to this years’ chal-
lenge, including background on the project, your methods, graphic 
illustrations, and the results pertaining to your solution.

All materials must be submitted by February 27th, 2012.

How to Submit Your Solutions: Your PowerPoint presentation and pa-
per should be uploaded to the ASPRS ftp site no later than 8:00pm 
EST on Monday, February 27, 2012. 

FTP Site: ftp://birdseye.asprs.org
Login: ASPRS/FTP_USER (all caps)
Password: ASPRSgeneral
Please place your materials in the GeoLeague folder with the name 

of your team in the heading (ex. teamname_paper.doc, teamname_pre-
sentation.ppt).

You should bring your poster along with you and set it up at the 
start of the conference. 

Contact: Please contact the ASPRS SAC Deputy Chair with any  
questions you may have!

Adam Benjamin
ASPRS Student Advisory Council Deputy Chair

abenjamin1@ufl.edu
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Hyperspectral Remote Sensing for 
Forestry provides a clear and concise 
description of the role of hyperspectral 
remote sensing for the extraction of 
biophysical / biochemical information 
about forests. This monograph covers 
the fundamental principles related to the 
importance of high spectral resolution 
data for the identification of spectral fea-
tures related to plant biochemistry and 
physiology. Various methods of hyper-
spectral data analysis are discussed, 
with specific attention given to spectral 
indices, spectral mixture analysis and 
canopy reflectance modeling. A number 
of case studies are presented that cover 
applications related to: (i) forest classi-
fication based on species biochemical 
composition; (ii) forest canopy struc-
tural analysis; (iii) spectral unmixing; 
and (iv) fusion of hyperspectral and 
lidar data for species mapping. This 
volume will be of significant interest to 
the remote sensing scientist and practi-
tioner as well as senior undergraduate 
and graduate students interested in 
hyperspectral remote sensing for veg-
etation analyses.

NOW AVAILABLE FROM ASPRS
Hyperspectral Remote 
Sensing for Forestry

107+ pp. Softcover. 2010
ISBN 1-57083-093-2 
Stock # 4584
List Price: $26
ASPRS Members: $21

ORDER ONLINE AT 
http://asprs.org/Publications-Other/Bookstore.html
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ASPRS MEMBERSHIP
Your path to success in the geospatial community

ASPRS would like to welcome the following new members!
At Large

Hussein Elhadi
Andre' Jalobeanu

Mohannad Al-Durgham*
Abdulla Al-Rawabdeh*

Central NY
Robinson Dugan*

Aaron McVay*
Zhen Zhen*

Central US
Dawn Farver*

Columbia River
Kendal McDonald
Jersey Krueger*

Eastern Great Lakes
Stanley Chandra Budhram, CP

Daniel Ngoroi
Qiusheng Wu*
Kirk Zmijewski*

Florida
Richard Pryce

Intermountain
Joan Biediger*

Mid-South
Jason Combs

H. Alexis Londo
Emily Fraser*
Laura Gast*

Joshua Johnson*
Sachidananda Mishra*

Armando Morales*
Cara Valinoti*

North Atlantic
Fenton Wright

Matthew Fagan*
Northern California

Steve Weaver
Adrian Aguirre*

Jim Alford*
Mark Barry*

Chris Erickson*
Rob Jones*

Robert Mulford*
Carlos Quispe*

Theresa Stinchfi eld*
Andrew Tapley

For more information on ASPRS membership, visit http://www.asprs.org/Join-Now/

Tiffany Tatum*
New England

Maria Diuk-Wasser
Xiaowen Song*
Shumei Zhou*
Potomac

Kathryn Clifton
James Huffi nes

Ramon Leonel Perez David
Andrea Pomrenke
Rodrigo Costas*
Michael DeMarr*

Virginia Gorsevski*
Gina Rumbolo*

Heather Williams*
Bum-Chong Yoo*
Puget Sound

Chao Han
Rocky Mountain

Mark Bowersox
David Brostuen, CMS

Courtney Hurst
Robert Jones

Jamie Fuller*
Lisa Lone Fight*
Saint Louis

Douglas Evans
Jeremy Holm*

Brandon Marini*
Southwest US

Aaryn Olsson, Ph.D.
Steve Shelton, CP
Michael Alonzo*

Christopher Galletti*
Catherine Hall*

Jeff Kling*
Allan Yiulun Ng
Kellie Uyeda*

Robert Walker*
Western Great Lakes

Elizabeth Banda*
Naime Celik*

Daryn Hardwick*
Hilary Morgan*
Eray Sevgen*

*indicates student member
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Calendar

OctOber 2011

5-7, PIA11 - Photogrammetric Image 

Analysis, ISPRS working groups I/2, III/1, 

III/4 and III/5, Munich, Germany. For more 
information, visit www.pia11.tum.de.

v 7, Columbia River & Pugent Sound 

Regions 15th Annual Joint Technical Ex-

change, Vancouver Water Resource Educa-
tion Center, Vancouver, Washington. For 
more information, email crr.asprs@gmail.com 
or jeff@glickman.com.

9–12, Archean to Anthropocene – The Past 

is the Key to the Future, The Geological So-
ciety of America, Denver, Colorado. For more 
information, visit http://www.geosociety.
org/meetings/2011/ 

16–19, LiDAR Applications for Assessing 

Forest Ecosystems, SilviLaser 2011 
Conference , University of Tasmania, Hobart, 
Australia. For more information, visit  
www.silvilaser2011.com 

20–21, Advances In RS And GIS Applica-

tions In Forest Fire Management: From Lo-

cal To Global Assessment, 8th International 
Workshop of the EARSeL Special Interest 
Group (SIG) on Forest Fires, Stresa, Italy. 
For more information, visit http://forest.jrc.
ec.europa.eu/earsel

nOvember 2011

14–17, ASPRS 2011 Fall Pecora 

Conference, ASPRS, Herndon, Virginia. For 
more information, visit www.asprs.org. 

14–18, Regional Geographic Conference 

(UGI 2011), Santiago, Chile. For more infor-
mation, visit http://www.ugi2011.cl/. 

21–25, Surveying and Spatial Sciences 

Conference 2011 — Innovation In  

Action – Working Smarter, Wellington, 
New Zealand. For more information, visit 
www.sssc2011.org/

29–30, European Lidar Mapping Forum 

(ELMF), Salzburg, Austria. For more informa-
tion, visit http://www.lidarmap.org/ELMF/.

december 2011

5–9, AGU Fall Meeting 2011, American 
Geophysical Union, San Francisco, California. 
For more information, visit http://www.agu.
org/meetings/. 

january 2012

23–25, International Lidar Mapping Forum 

(ILMF), Denver, Colorado. For more informa-
tion, visit http://www.lidarmap.org/ILMF.aspx. 

february 2012

8–10, EuroCOW 2012 – The Calibration 

and Orientation Workshop, Castelldefels 
(Barcelona), Spain. For more information, 
visit www.ideg.es. 

march 2012

v 13–24, GIS in Action, Portland, Oregon. 
For more information, visit http://www.
orurisa.org/GIS_In_Action

19–23, ASPRS 2012 Annual Conference, 
ASPRS, Sacramento, California. For more 
information, visit http://www.asprs.org. 

april 2012

23–27, SPIE Defense, Security, and Sen-

sing 2012, SPIE, Baltimore, Maryland. For 
more information, visit http://spie.org/
defense-security.xml?WT.mc_id=RCal-DSSW. 

may 2012

v 14–17, Global Geospatial Conference 

2012, Québec City, Canada. For more infor-
mation, visit http://www.gsdi.org/gsdiconf/
gsdi13/

august 2012

25–September 1, The XXII Congress of the 

International Society of Photogrammetry 

& Remote Sensing, ISPRS, Melbourne, 
Australia. Deadline for abstracts: October 
24, 2011. For more information, visit http://
www.isprs2012.org

september 2012

3–7, 9th International Symposium on Tro-

pospheric Profiling, L'Aquila, Ital. For more 
information, visit http://cetemps.aquila.infn.
it/istp. 

OctOber 2012

29–November 1, ASPRS/MAPPS 2012 Fall 

Conference, ASPRS, Tampa, Florida. For 
more information, visit www.asprs.org. 

march 2013

24–28, ASPRS 2013 Annual Conference, 
ASPRS, Baltimore, Maryland. For more infor-
mation, visit www.asprs.org. 

v = indicates a new listing

ASPRS CONFERENCE INFORMATION
· Abstract deadlines   · Hotel information   · Secure on-line registration

www.asprs.org
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Photogrammetric Engineering & Remote Sensing (PE&RS)
January 2013 Special Issue Call for Papers

“The Future of National-Scale Three-Dimensional Landscape Mapping”

Guest Editors:
Jason Stoker, USGS

Gregory Snyder, USGS
Larry Sugarbaker, USGS

A National three-dimensional (3-D) landscape mapping 
program is being considered by the Federal government to 
provide seamless, National-scale landscape 3-D data for 
mapping, monitoring, and other operational and/or sci-
ence uses. The ultimate vision is a program that collects, 
preserves, and makes publicly available 3-D landscape data 
acquired by various lidar instruments and other technolo-
gies to help address pressing issues, such as climate change 
to resource management and flood risk mitigation. To help 
inform program planning, the USGS is leading a National 
Enhanced Elevation Assessment under the auspices of the 
National Digital Elevation Program (NDEP), and in concert 
with many other stakeholders. The Assessment is using an 
inclusive approach, which incorporates public and private 
input to document business requirements supported by 
elevation data and the associated benefits. The Assessment 
will help discover economies of scale, potential multiple 
data uses, and universal business requirements that may be 
met through a more comprehensive national approach for 
improving elevation data in the United States and its ter-
ritories, including coastlines. 

This special issue will broadly highlight the importance of 
3-D data and attempt to address potential issues inherent 
in applying 3-D at the National scale, were these data to be 
available. It will highlight 3-D applications for mapping and 
monitoring including but not limited to the following topics:

• 3-D data collection and information creation- from the 
plot to global levels

• Costs and benefits of a National 3-D monitoring program
• 3-D data needs and applications with National implications
• Advanced information technology developments for 3-D 

data
• Standards and specifications needed for nationally-con-

sistent 3-D data
• Methodologies of quality assurance and quality control of 

3-D data 
• New applications facilitated by the availability of 3-D data

While all submitted papers do not need to be National in 
scope, the results and conclusions must demonstrate the 
importance, utility and/or application to the National scale. 
The special issue will follow a two-step review process. 
Interested authors should prepare a detailed abstract of 
two pages (about 800 words). The abstract should include 
the contact information of the authors, outline the scope 
of the work and its relevance to National 3-D information, 
describe the key principles and procedures of the methods, 
report the main results, and summarize the findings. The 
submitted abstracts will be reviewed by the guest editors. 
Authors of the selected abstracts will be invited to submit 
full manuscripts for peer review based on PE&RS policy. 
All manuscripts are to follow the PE&RS Instructions for 
Authors that are published in each issue of the Journal and 
are available on the ASPRS website (http://www.asprs.org/
pers/Submissions ). Final accepted papers will be collected 
in the special issue.

IMPorTaNT DaTES
Submission of abstracts (~800 words; 2 pages):  

January, 1, 2012
Notification of Abstract Acceptance:   

February 1, 2012:
Manuscripts Due:  

March 1, 2012
Guest Editor Notify author of Decision:  

June, 1, 2012
Final Papers Due:  

July1, 2012
Special issue:  
January, 2013

Please submit your abstracts by email directly to: 
Jason Stoker 

Physical Scientist
USGS Earth Resources Observation and Science (EROS)

Mundt Federal Building
47914 252nd St.

Sioux Falls, SD 57198
jstoker@usgs.gov

605-594-2579
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Industry News
Business
LizardTech® has reached an agreement with 
Esri CIS in Russia to become an authorized 
reseller for its GeoExpress®, Express Server® 
and LiDAR Compressor™ geospatial imaging 
products. Esri CIS, headquartered in Mos-
cow, Russia, will sell LizardTech’s software 
products to companies and organizations in 
the nine countries of the Commonwealth of 
Independent States (CIS), including Russia, 
Kazakhstan and Belarus. LizardTech’s line of 
geospatial software products includes Geo-
Express, which enables geospatial profes-
sionals to compress and manipulate satellite 
and aerial imagery, Express Server for high-
performance delivery and publication and 
LiDAR Compressor, which turns giant point 
cloud datasets into efficient MrSID® files. For 
information, visit www.lizardtech.com.

Woolpert announced it was recently selected 
by Des Moines Water Works (DMWW) in 
Iowa for a five-year, $2.5 million contract to 
develop an asset management system for the 
water utility company. Woolpert will assist 
DMWW to establish best management prac-
tices, implement the Infor™ Enterprise Asset 
Management (EAM) system, and integrate 
the EAM with key business support systems. 
Implementation of this system will help 
reengineer and transform DMWW’s busi-
ness processes and information systems to 
increase efficiencies for its staff and custom-
ers. Woolpert’s multi-phased approach will 
include planning, data conversion, system 
configuration, testing, application develop-
ment, systems integration and training. For 
information, visit www.woolpert.com.

Contracts
AeroMetric has completed 36 miles of 
High Accuracy Mapping along I-88 for the 
Illinois Tollway. I-88 is undergoing a mill 
and resurfacing program, and the design 
engineers required a high precision base map 
to prepare their construction documents. 
By employing a helicopter mapping solu-
tion, AeroMetric offered the team a creative 
and innovative approach to transportation 
corridor surveying. This is the first time the 
Illinois Tollway has used helicopter-based 
high accuracy mapping lidar technology for 
a corridor survey. This solution will encourage 
transportation authorities nationwide to make 
use of leading edge technology when map-
ping their corridors. AeroMetric used Tuck 
Mapping Solutions’ state-of-the-art eagleeye® 
corridor mapping systems. This enabled the 
team to acquire very low altitude, high accu-
racy lidar data sets, topographic maps, 3D 
planimetric maps and 3-inch resolution digital 
orthophoto imagery for the entire corridor. For 
information, visit www.aerometric.

Critigen was awarded a Prime Contract on 
the U.S Navy’s SeaPort Enhanced (SeaPort-e) 
contract. The contract is an indefinite-delivery/
indefinite-quantity multiple award contract 
under which the government estimates a 
maximum of $5,300,000,000 of services will 

be procured per year. Critigen’s award has 
a three-year base period with one five-year 
award term, and is comprised of seven regional 
zones in which task orders will be competed 
based upon the principal place of performance. 
Critigen is authorized to perform services in all 
seven zones. The scope of the contract includes 
22 functional requirements areas spanning the 
full spectrum of professional services procured 
by the U.S. Navy and Marine Corps, as well as 
other Defense agencies. Critigen and its team 
partners support all 22 functional areas of the 
Seaport-e contract. The following key areas 
are of particular focus: systems and process 
engineering; system design and technical data 
documentation; software engineering, develop-
ment, programming, and network support; con-
figuration management and quality assurance; 
information system development, information 
assurance, and information technology support; 
test and evaluation; training; and program-level 
support. For information, visit critigen.com.

East View Cartographic (EVC) has become 
an official reseller of paper and digital geo-
spatial products produced by the national 
mapping agency of Tanzania, The Ministry 
of Lands in Dar-es-Salaam. EVC has acquired 
and signed digital rights agreements to 
offer these unique locally produced geo-
spatial data to all of its customer types, 
which include: academic libraries; regional 
and international governmental agencies; 
mil/intell, oil, gas & mining, and avionics 
corporations. Over the past five years, EVC 
has embarked on an aggressive mission to 
acquire the world's largest commercially-
available collection of locally produced 
cartographic and GIS data worldwide with a 
particular focus on Africa nations. Tanzania 
now accompanies EVC's similar success in 
Botswana, Rwanda, Madagascar, Kenya, 
and South Africa. EVC maintains an office in 
Nairobi, Kenya, which is staffed primarily to 
establish and consummate data distribution 
and value-add agreements. 
 The University of Arizona's Map Library 
and GIS Department has requested that East 
View Cartographic (EVC) procure, structure, 
translate and host several gigabytes of 
Mexican-created geospatial vector data. EVC 
fulfilled the request and additionally built 
a convenient webapp that allows non-GIS 
users to also access this dataset. Chris Kol-
len, the University of Arizona's Data Curation 
Librarian and sponsor of the effort expressed, 
"With the geospatial web server, University 
of Arizona faculty and students are able to 
easily view and download detailed Mexico 
geospatial data. By providing access to 
the data through East View Cartographic's 
geospatial web services, the University of 
Arizona Libraries did not need to expend 
hardware, software or staff resources to 
create their own service."  For information, 
visit www.cartographic.com.

People
Amar Nayegandhi was named manager 
o f  e l e v a t i o n 
technologies at 
Dewberry. Based 
in  the  f i r m’s 
Tampa, Florida, 
office, Nayegan-
dhi will provide 
m a n a g e m e n t 
and technical 
support for lidar-
derived projects for local, state, and federal 
clients. With more than 10 years’ experience, 
he has developed original data processing 
algorithms for airborne lidar sensors, as well 
as processed and analyzed waveform, point 
cloud, and Digital Elevation Model data 
in submerged, sub-aerial, and vegetative 
coastal environments. He has presented 
his research and technological findings at 
more than 60 international conferences and 
technical workshops, as well as authored 15 
articles and more than 65 reports for the U.S. 
Geological Survey. Nayegandhi is a member 
of the team developing the Experimental 
Advanced Airborne Research Lidar (EAARL) 
system—a unique topo-bathy lidar system 
that generates large volumes of green-
wavelength, waveform lidar data to measure 
submerged topography and land elevations 
seamlessly. Nayegandhi earned his master’s 
degree in computer science from the Univer-
sity of South Florida and bachelor’s degree in 
electrical engineering from the University of 
Mumbai, India. He is a member of the Ameri-
can Society for Photogrammetry and Remote 
Sensing, American Geophysical Union, and 
American Association of Geographers.

Richard Jacobs has been appointed to the 
position of Gen-
eral Counsel at 
Pictometry Inter-
national Corp. In 
this role, Jacobs 
w i l l  o v e r s e e 
rights manage-
ment and licens-
ing of Pictom-
etry’s vast global 
image library and will join the Company’s 
Executive Management Team. Jacobs’ prior 
legal experience includes positions with 
Ashland Inc. and Lexis-Nexis, a division of 
Reed Elsevier PLC (as well as its predecessor, 
Mead Data Central, Inc., a subsidiary of The 
Mead Corporation). While at Lexis-Nexis 
his roles included Vice President, Licensing 
and Deputy General Counsel, Vice President, 
Acquisitions and Deputy General Counsel 
and the establishment and management of 
licensing operations to support global expan-
sion of a major online information publishing 
business during a period of rapid changes 
in the online publishing industry. In addi-
tion to expertise in intellectual property and 
licensing, he brings significant experience in 
commercial contracts and international distri-
bution arrangements. Jacobs is a graduate of 
The Ohio State University where he earned a 
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bachelor’s degree in economics and finance 
and a Master’s of Business Administration 
degree in finance from the Fisher College of 
Business, and a Juris Doctor degree from the 
Moritz College of Law.

Scott Van Dermark has joined Wiser Company, 
LLC (Wiser) as 
Senior Vice Pres-
ident, Business 
Development. 
In this role, Van 
Dermark will lead 
Wiser’s business 
deve lopment 
team’s ef forts 
in furthering the 
company’s strategic growth and development 
within the Intelligence & Security Services, 
Information Technology Solutions, and Infra-
structure Engineering markets.  Van Dermark 
most recently served as the Vice President of 
Sales and Marketing for Fugro EarthData, Inc. 
where he directed all sales, marketing, and 
business development activities within the 
U.S. geospatial market. He brings over 23 
years of geospatial business experience in the 
field of airborne and satellite remote sensing 
and is an expert in the application of electro-
optical imaging, laser, and radar technologies 
in support of survey and mapping operations. 
Van Dermark attended the Community College 
of the Air Force, Joint Military Intelligence 
College, and Defense Mapping School and 
holds multiple certificates in intelligence and 
counterterrorism analysis.

Products
ERDAS has released ECW for ArcGIS Server, 
version 11.0.2. This product provides a means 
for ArcGIS Server to deliver data in the ERDAS-
patented Enhanced Compression Wavelet 
(ECW) format to clients via OGC-compliant Web 
Coverage Service (WCS) and Web Map Service 
(WMS). Based on technology originally pro-
vided in ERDAS ECW/JP2 SDK version 4.2, ECW 
for ArcGIS Server enables ArcGIS Server to sup-
port ECW imagery, providing the fast decom-
pression. Using minimal memory, ECW can 
quickly decompress and open massive files, in 
many cases faster than uncompressed imagery 
can be opened. Additionally, multi-resolution 

level of detail is built into the file, eliminating 
the need to generate or distribute pyramids 
or overviews. The ECW technique does not 
require the creation and storage of intermediate 
tiles (RRDs), as they are an inherent part of the 
ECW format. ECW also supports opacity chan-
nels, allowing images to overlay other imagery 
cleanly without showing compression artifacts 
around the edges. A key enhancement in ECW 
for ArcGIS Server version 11.0.2 is backward 
compatibility with ArcGIS Server 9.3 and 9.3.1 
in addition to the previously supported ArcGIS 
Server 10. ECW for ArcGIS Server version 11.0.2 
also supports the use of European Petroleum 
Survey Group (EPSG) codes in ECWP. For infor-
mation, visit www.erdas.com.

GeoCue Corporation announced the release 
of GeoCue 2011.1. Advanced enhancements 
to GeoCue 2011.1 include:  native support 
for 64-bit Windows platforms; significantly 
enhanced coordinate reference system and 
datum support, including Horizontal Time 
Dependent Positioning (HTDP) and ground-
grid models; automatic dispatched and dis-
tributed processing for local clouds; support 
for Web Mapping Services (WMS) backdrops 
in GeoCue Client, including native support 
for Open Street Map layers; completely new 
Table of Contents including nested folders 
and real-time shared layouts; new CuePacs 
for Intergraph’s OrthoPro and Trimble®’s 
Rapid Ortho; and, many other new features 
aimed at improving project quality and 
reducing production wall-clock time. GeoCue 
products featured in this release include 
GeoCue Client, GeoCue Server, GeoCue Fed-
erator (Dashboard), and a family of workflow 
specific CuePacs. GeoCue customers under 
current maintenance agreements will auto-
matically receive this significant upgrade. 
 QCoherent Software LLC recently pre-
viewed its impending release of the 2011.1 
LP360 LIDAR product suite. LP360 includes 
an ArcGIS extension version as well as 
standalone versions with no CAD or GIS 
prerequisites. In addition to numerous new 
features, the company announced a renam-
ing of the product set: 

 LP360 Basic (formerly LP360) – Lidar •	
data import, visualization, QC and prod-
uct generation 

 LP360 Standard (formerly Classify) – •	
Adds interactive data classification, 
geometry-based classification, confla-
tion, breakline and hydrologic enforce-
ment tools to the Basic version 

 LP360 Advanced (formerly Extractor) •	
– Add algorithmic classification to the 
Standard version 

Among the many new features are algorith-
mic tools (LP360 Advanced version) includ-
ing: Low Points, Isolated Points, Ground 
Classifier, Statistical Noise, and Point group 
vectorization. In addition to a number of other 
new features, LP360 standalone is now avail-
able in a 64-bit version. Each license of LP360 
includes the right to run a single (non-simul-
taneous) instance of LP360 for ArcGIS, LP360 
32-bit or LP360 64-bit. QCoherent continues 
to offer its GeoCue integrated solutions for 
Quality Check/Edit (LP360 EQC) and railway 
feature extraction (LP360 RFX) through its 
OEM relationship with GeoCue Corporation. 
For information, visit www.geocue.com.

Services
Clark Labs of Clark University announced that 
two new tutorials have been added to the 
video series on its website. Both videos high-
light functionality within the IDRISI software’s 
modeling applications: Land Change Modeler 
and Earth Trends Modeler. The video entitled 
“REDD Baseline Modeling with Land Change 
Modeler in IDRISI,” demonstrates its use for 
REDD—Reducing Emissions from Deforesta-
tion and Forest Degradation. Utilizing a case 
study from Conservation International, the 
video highlights how Land Change Modeler 
can be used to prepare the required maps 
of projected land change. The video entitled 
“Time Series Analysis with Earth Trends Mod-
eler in IDRISI” provides an introduction to 
the Earth Trends Modeler application within 
IDRISI for the analysis of image time series. 
Earth Trends Modeler is a revolutionary earth 
observation software tool that allows you to 
model and analyze earth trends and ecosys-
tem dynamics. The software is specifically 
developed for global change research and 
analysis. The videos are available at  http://
www.clarklabs.org/resources/videos.cfm.
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3D Laser Mapping LTD 
Bingham, Nottingham, UK
www.3dlasermapping.com
Member Since: 2/2010
Adageos Research LTD
St John’s, NewFoundland, Canada
Email: d.laprairie@nl.rogers.com
Member Since: 7/2010
Aerial Cartographics of America, Inc. 
(ACA)
Orland, Florida
www.aca-net.com;
Member Since: 10/1994
Aerial Data Service, Inc. (ADS)
Tulsa, Oklahoma
www.aerialdata.com
Member Since: 8/1993
Aerial Services, Inc.
Cedar Falls, Iowa
www.AerialServicesInc.com
Member Since: 5/2001
Aero-Graphics, Inc.
Salt Lake City, Utah
www.aero-graphics.com
Member Since: 4/2009
AeroMetric, Inc.
Sheboygan, Wisconsin
www.aerometric.com
Member Since: 1/1974
Aeroquest Optimal 
(formerly optimal geomatics inc.)
Huntsville, Alabama
www.optimalgeo.com
Member Since: 2/2006
AeroTech Mapping Inc.
Las Vegas, Nevada
www.atmlv.com
Member Since: 8/2004
AGFA Corporation
Ridgefield Park, New Jersey
www.agfa.com
Member Since: 1/1990
Air Photographics, Inc.
Martinsburg, West Virginia
www.airphotographics.com
Member Since: 1/1973
Airborne 1 Corporation
El Segundo, California
www.airborne1.com
Member Since: 7/2000
American Surveyor Magazine
Frederick, Maryland
www.TheAmericanSurveyor.com
Member Since: 12/2004
Applanix, A Trimble Company
Ontario, Canada
www.applanix.com
Member Since: 7/1997
Applied Imagery
Silver Spring, Maryland
www.appliedimagery.com
Member Since: 4/2005
ASD Inc. 
(formerly analytical Spectral Devices)
Boulder, Colorado
www.asdi.com
Member Since: 1/1998

Axis GeoSpatial, LLC
Easton, Maryland
www.axisgeospatial.com
Member Since: 1/2005
Ayres Associates, Inc.
Madison, Wisconsin
www.AyresAssociates.com
Member Since: 1/1953
BAE Systems
San Diego, California
www.baesystems.com/gxp
Member Since: 7/1995
Bohannan Huston, Inc.
Albuquerque, New Mexico
www.bhinc.com
Member Since: 11/1992
Booz Allen Hamilton
Mc Lean, Virginia
www.boozallen.com
Member Since: 10/2004
Cardinal Systems, LLC
Flagler Beach, Florida
www.cardinalsystems.net
Member Since: 1/2001
CRITIGEN
(formerly ch2m hiLL)
Redding, California
www.critigen.com
Member Since: 1/1974
Clark Labs/Clark University
Worcester, Massachusetts
www.clarklabs.org
Member Since: 10/1997
COL-EAST, Inc.
North Adams, Massachusetts
www.coleast.com
Member Since: 1/1976
CRC Press - Taylor & Francis Group
Boca Raton, Florida
www.crcpress.com
Member Since: 9/2006
DAT/EM Systems International
Anchorage, Alaska
www.datem.com
Member Since: 1/1974
Dewberry
Fairfax, Virginia
www.dewberry.com
Member Since: 1/1985
DigitalGlobe
Longmont, Colorado
www.digitalglobe.com
Member Since: 7/1996
DiMAC sprl
Gosselies, Belgium 
www.dimac.eu
Member Since: 1/2004
DMC International Imaging Ltd.
Guildford, Great Britain
www.dmcii.com
Member Since: 3/2008
Dudley Thompson Mapping Corp. 
(DTM)
Surrey, Canada 
www.dtm-global.com 
Member Since: 9/2006 

Dynamic Aviation Group, Inc.
Bridgewater, Virginia
www.dynamicaviation.com
Member Since: 4/2003
Eagle Mapping, Ltd
British Columbia, Canada
www.eaglemapping.com
Member Since: 1/1999
Earth Eye, LLC
Orlando, Florida
www.eartheye.com
Member Since: 7/2009
Eastern Topographics
Wolfeboro, New Hampshire
www.e-topo.com
Member Since: 8/1978
Environmental Research  
Incorporated
Linden, Virginia
www.eri.us.com
ERDAS Inc. & Intergraph
Norcross, Georgia
www.erdas.com
Member Since: 1/1985
Esri 
Research Institute, Inc.
Redlands, California
www.esri.com
Member Since: 1/1987
EUROSENSE
Wemmel, Belgium
www.eurosense.com
Member Since: 1/1982
Federal Geographic Data Committee
Reston, Virginia
www.fgdc.gov
Member Since: 1/1998
Fugro EarthData, Inc. 
(was earthData, inc.)
Frederick, Maryland
www.earthdata.com
Member Since: 1/1994
Fugro Horizons, Inc.
(was horizons, inc.)
Rapid City, South Dakota
www.fugrohorizons.com
Member Since: 1/1974
GeoBC, Crown Registry &  
Geographic Base Branch
Victoria, Canada
www.geobc.gov.bc.ca
Member Since: 12/2008
GeoCue Corporation
(was niirS10, inc.)
Madison, Alabama
info@geocue.com
Member Since: 10/2003
GeoDigital International 
Hamilton, ON V8W 1R9
CANADA
www.geodigital.com
Member Since: 3/2011
GeoEye 
(was orBimage inc.)
Dulles, Virginia
www.geoeye.com 
Member Since: 4/1995

Geographic Resource Solutions
Arcata, California
www.grsgis.com
Member Since:12/2006
Geolas Consulting
Poing, Germany
www.geolas.com
Member Since:1/2002
Global Science & Technology, Inc.
Greenbelt, Maryland
www.gst.com
Member Since: 10/2010
GRW Aerial Surveys, Inc.
Lexington, Kentucky
www.grwinc.com
Member Since: 1/1985
Harris Corporation
Melbourne, Florida
www.harris.com
Member Since: 6/2008
HAS Images, Inc.
Dayton, Ohio
www.hasimages.com
Member Since: 2/1998
HyVista Corporation 
Castle Hill, Australia 
www.hyvista.com
Member Since: 3/2010
International Institute for Geo- 
Information Science and Earth  
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Abstract
Research goals were to analyze patterns of urban landscape
water use, assess landscape water conservation potential,
and identify locations with capacity to conserve. Method-
ological contributions involved acquiring airborne multispec-
tral digital images over two urban cities which were
processed, classified, and imported into a GIS environment
where landscaped areas were extracted and combined with
property and water billing data and local evapotranspiration
rates to calculate landscape irrigation applications exceed-
ing estimated water needs. Additional analyses were con-
ducted to compare classified aerial images to ground-
measured landscaped areas, landscaped areas to total
parcel size, water use on residential and commercial
properties, and turf areas under trees when they were leafed
out and bare. Results verified the accuracy and value of this
approach for municipal water management, showed more
commercial properties applied water in excess of estimated
needs compared to residential ones, and that small percent-
ages of users accounted for most of the excess irrigation.

Introduction
Competition over scarce water supplies has increased in the
rapidly urbanizing Western United States. Building new
supply structures to meet increasing urban demand is
problematic economically, socially, and politically. Alterna-
tive solutions are water reallocation from irrigated agriculture,
as urban water uses exercise higher-valued market demand
(Pimentel et al., 2004; Postel, 2000), and urban water conser-
vation strategies (Carr and Crammond, 1995; Vickers, 2001).
Re-allocating water from agricultural to urban uses comes at
the cost of lost farmland, compromised national food security,
and dislocations in agriculturally-dependent communities
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Conservation Potential Using High 
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(National Research Council, 1992; Postel, 2000). Increasingly,
water re-allocation from agricultural to municipal use is being
scrutinized on the basis of how much water is actually
needed by urban areas and how efficiently urban areas use
their existing water supplies. Determining urban water needs
in relation to urban water use (i.e., identifying potential
inefficiencies or waste) can reveal potential conservation
savings that could help minimize competing demands on
agricultural water as well as on a variety of environmental
uses.

In urbanizing parts of the arid U.S. West, irrigation of
outdoor landscapes consumes most municipal water,
accounting for 50 percent or more of total annual urban-
municipal potable water use (Kjelgren et al., 2000). Nation-
ally, it is estimated that approximately 30 percent of total
annual municipal water consumption in the U.S. is used on
urban landscapes (Solley et al., 1998). Unlike indoor water
use, outdoor landscape water use has not been rigorously
quantified, but potentially conservable water, or capacity to
conserve, can be quantified by comparing actual irrigation
usage to estimated water needs (Endter-Wada et al., 2008;
Kilgren et al., 2010). Estimated water needs can be
expressed in depth units, and can be determined from local
cool-season reference evapotranspiration rate (ETo). ETo is a
function of local air temperature, wind speed, humidity, and
incoming solar radiation that drive evaporation, which is
modified by a correction factor unique to a given plant type
(Allen et al., 1994). Actual landscape water use can be
derived from water purveyor billing data measured in
volumetric units. However, in order to compare estimated
landscape water needs to actual usage, both ETo and water
use need to be expressed in common units.

Careful measurements of irrigated landscaped areas and
determination of plant types are necessary for this conver-
sion. Compared to large-scale agricultural production,
measuring irrigated urban areas is difficult because of the
wide range in sizes, shapes, and fragmentation of these
areas, as well as diversity in plant material used and the
types and functions of various landscapes (residential,
commercial, institutional, public). Manual measurement is
impractical on a large scale, and the great diversity of plant
species used in urban landscapes makes area determination
from conventional black and white or color aerial images
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difficult (Kjelgren et al., 2000). Most satellite multispectral
images have too low a spatial resolution for this functional
use in urban areas.

The purpose of this paper is to present research findings
which demonstrate that high-resolution airborne multispec-
tral imagery can be used to determine irrigated landscaped
areas and aid in quantifying urban water conservation
potential. Images can be taken over a large area with high
spatial resolution, and different vegetation types can be
classified based on their spectral properties. A geo-rectified
and classified aerial image can then be imported into a
geographic information system (GIS) environment and
integrated with municipal databases to extract irrigated
landscaped areas for individual properties or water users.
We argue that this methodology could be employed by water
agencies to assess potentially conservable water on both an
aggregate (e.g., municipal) and an individual (e.g., customer)
basis.

Our research is based on a conceptual approach that
uses airborne multispectral imagery to obtain irrigated
landscape areas that, when combined with local reference
evapotranspiration data, can be used to estimate reasonable,
area-specific urban vegetative water demand. The estimated
water demand is compared to actual landscape water use by
parcel, obtained by mining water supplier billing data. This
approach is used to determine potentially conservable
landscape irrigation water and to identify end users with
high capacity to conserve. This methodological approach is
a key component in a trajectory of interdisciplinary research
designed to investigate site characteristics and human
behaviors affecting urban water use (Endter-Wada et al.,
2008; Kilgren et al., 2010).

Methods

Study Areas
Research was conducted in two suburb cities of Salt Lake
City, Utah and one northern Utah community. The City of
Layton, approximately 35 km north of Salt Lake City
(population in 2000 of about 58,000) was the initial project
study area. Layton was selected for study as it is rapidly
urbanizing, and yet retains older areas that may vary in
landscaped area and landscape water use characteristics. We
focused on a section of the city, approximately 17 km2 that
encompassed newer and older residential areas, as well as
commercial-industrial and institutional (CII) areas. All
customers in this area relied on municipally-supplied
culinary water and did not have access to landscape water
from secondary irrigation systems. A second suburb of Salt
Lake City, the City of West Jordan, was additionally selected
in order to validate the image analysis process and assess if
the landscaped area and water use trends observed in
Layton might be representative of other urban areas in Utah.
West Jordan (population in 2000 of about 68,000), located
approximately 15 km southwest of Salt Lake City, is mostly
residential but with a fast-growing commercial district and
covers an area of 80 km2. Research conducted in Logan,
Utah, approximately 120 km north of Salt Lake City, deter-
mined the percentage of turf grass shaded by tree cover. The
area of tree canopy in relation to underlying turf area needs
to be taken into consideration when estimating the demand
for urban irrigation water. Findings from the Logan research
were integrated into the calculations of landscape water
needs.

Image Acquisition
Multispectral airborne digital images of Layton were taken
in August 1998, and repeated for both Layton and West

Jordan in August 2000 using an airborne multispectral
digital imaging system (Cai and Neale, 1999; Neale and
Crowther, 1984). This system consisted of three Kodak
Megaplus 4.2i digital cameras using Nikon 20 mm lenses
with interference filters forming spectral bands in the green
(0.545 to 0.555 �m), red (0.665 to 0.675 �m) and near
infrared (NIR) (0.790 to 0.810 �m) wavelengths mounted in a
Piper Seneca II aircraft, dedicated to remote sensing
research. The cameras were computer controlled using in-
house software. The multispectral images were acquired at
1-meter pixel resolution. In the Logan research (quantifying
shaded turf areas under trees), images were acquired at 
0.5-meter pixel resolution on 20 May 1999, early enough in
the growing season that leaf cover from trees and shrubs was
minimal. Images were taken again on 16 September 1999, at
the end of the growing season when trees and shrubs were
at full leaf cover.

Image Processing
The individual images were corrected for lens vignetting
effects and geometric radial distortions, using the same
calibration techniques from a previous generation of the
airborne digital system developed by Neale and Crowther
(1994) and described by Sundararaman et al. (1997) for
airborne multispectral video images. The removal of the lens
vignetting effects in the imagery minimizes image-to-image
brightness variations, allowing for the mosaicing of overlap-
ping images along flight lines with no perceivable seams.

The spectral images were then registered into 3-band
images and rectified individually to digital 7.5-minute
orthophotos quads (1:24 000) with 1-meter pixel resolution,
using the Universal Transverse Mercator (UTM) projection
and a root mean square error for the transformation of less
than 1 meter. The rectified images were mosaiced along the
flight lines into image strips of six to ten images each. The
strips were joined together into large image mosaics covering
the entire study area in each research location (Layton, West
Jordan, and Logan). The final images were re-projected to
the Utah State Plane coordinate system to match the GIS
parcel boundary layers provided by the respective cities.

The 3-band image strips along each flight line were
calibrated in terms of reflectance through the ratio of
outgoing over incoming radiation. Outgoing radiation was
obtained using system calibration curves relating image
digital numbers with radiance (W/m2) (Neale and Crowther,
1994). Incoming solar irradiance was measured with an
Exotech radiometer with similar spectral bands to the
airborne digital cameras, placed at nadir over a leveled
barium sulfate standard reflectance panel with known bi-
directional reflectance properties (Jackson et al., 1992)
located in central locations in each study area. The Exotech
radiometer was sampled every minute throughout the image
acquisition period using a CS21X data logger synchronized
to the GPS time stamp of the airborne system digital images
(Chavez et al., 2005; Crosby et al., 1999). Each 3-band image
strip was thus calibrated prior to the formation of the final
mosaics covering the entire research areas.

Image Classification
Spectral signatures of ground surface classes of interest were
extracted and on-site verification through ground measure-
ments and observations were conducted using laminated
printed portions of the multispectral mosaics, marked up to
indicate the different surface classes visible in the imagery.
In agricultural areas adjacent to Layton, signatures from
identifiable crop types, evaluated as to stage of growth, were
extracted. In the urban areas, the classes trained represented
the turf grass, trees, shrubs and other landscape features,
physical structures and shadows. Several dozen signatures
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were extracted visually and iteratively from each mosaic to
cover most agricultural and urban surface classes, using the
seed property method of the ERDAS Imagine® (version 8.4;
Leica Geosystems; Norcross, Georgia) with the appropriate
spectral Euclidian distance.

The high spatial resolution of the airborne digital
images complicated the signature extraction and classifica-
tion. Several spectral signatures were needed in the training
set to represent a specific surface’s illumination or vegeta-
tion density variations. For example, darker reflectance
values for shaded portions of trees and large shrubs could
lead to misclassifications and thus were extracted as a
separate class. Class spectral separability, a statistical
measure of distance between two signatures, was studied
using the Transformed Divergence Index (TDI) method
within ERDAS Imagine® (ERDAS, 1999). For the Euclidean
distance evaluation, the spectral distance between the mean
vectors of each pair of signatures was computed and evalu-
ated for significance.

The transformed divergence has lower and upper
bounds of 0 and 2,000, respectively. If the calculated
divergence for a signature pair is equal to the upper bound,
then the signatures are considered to be totally separable in
the spectral band combination being used (in our case, the
three bands of the airborne multispectral system). A calcu-
lated divergence of zero means that the signatures are
inseparable and should be either merged or one of them
discarded. For the classification of the Layton mosaic,
signatures below a TDI value of 1,500 were discarded while
signatures above 1,500, such as those for trees and shrubs,
were added to capture the nuances in variability due to 
bi-directional effects. TDI values above 1,800 were accepted
with little confusion and high relative confidence of separa-
bility between the signatures.

Images were iteratively classified using the maximum
likelihood scheme. Surfaces with spectral reflectance not
encompassed within the selected signatures were succes-
sively set as “unclassified” in the classification and the
signatures corresponding to the unclassified area re-assessed
to the individual pixel level and incorporated to the signa-
ture set after every iteration. The final classified image was
created by forcing the remaining unclassified pixels into the
class with the most similar signature. After filtering using a
3 � 3 majority filter to remove “salt-and-pepper” pixels, the
resulting several dozen classes were re-coded into specific
basic classes. The recoded classes were “grass,” “trees and
shrubs,” “concrete,” “asphalt,” “bare soil,” “shadow,”
“water,” and “meadow.”

An accuracy assessment was conducted on the urban
portion of the classified image product. A stratified random
sampling scheme in ERDAS Imagine® was used to generate
217 random points on the classified image, proportional to
class surface area present. The urban surface class corre-
sponding to each point was verified on 2006 NAIP (National
Agricultural Inventory Program) color, digital orthophotogra-
phy of the same area. Because of the changes that occurred
in some portions of the imagery between the date of multi-
spectral image acquisition (1998 and 2000) and the NAIP
image acquisition, 60 points of the 210 had to be verified by
visual interpretation of the multispectral image itself.
A contingency table was built with this information which
allowed for calculation of the errors of omission and
commission (Congalton, 1991).

GIS Landscape Area Extraction
Residential and commercial (CII, or “commercial-industrial-
institutional”) GIS layers were obtained from Layton and
West Jordan cities. These layers contained parcel bound-
aries, streets names, parcel tax identification numbers, and

other information. The Layton residential layer divided
parcels into subdivisions or neighborhood areas, designated
by name, while the West Jordan layer did not. The Layton
commercial GIS overlays were out of date and thus were not
usable. The layers were matched to the projection of the
high-resolution multispectral mosaic and its classified
rendition. In addition, residential and commercial water
billing data were also obtained from Layton for 1996 to
2001, and from West Jordan for 2000 and 2001.

The GIS parcels layer was overlaid on the recoded
classified images imported to ArcInfo® (version 8; Esri, Inc.;
Redlands, California) in GRID format. Water billing database
files were linked to the GIS database for both cities using
property tax ID number as the common attribute. Within the
Layton study area, the number of GIS parcel boundary
records we were able to join to residential water billing
records varied by year (initially with 1,000 in 1997, but up
to 2,800 by 2001) due to updates and changes in the water
billing database. We also randomly selected approximately
2,000 residential parcels in West Jordan from the entire city
to match Layton residential numbers for 2000 and 2001.
Two hundred and thirty-one CII parcels with landscapes
were identified within the Layton study area for analysis,
and again a similar number of commercial parcels were
randomly selected from West Jordan City.

Remotely sensed landscape area accuracy was assessed
by regressing against ground-measured landscape areas. In
Layton, 53 residential parcels were randomly selected and a
walk-behind measuring wheel was used to physically
measure dimensions for calculating total lot size and
landscaped area. Contiguous shrub areas were physically
measured on the ground separately from turf, and irregularly
shaped areas beyond simple rectangles or circles were
approximated as rectangles. All Layton CII parcels were
similarly hand measured but could not be related to 
GIS-derived areas for lack of an accurate parcel layer, but in
West Jordan we were able to link 73 GIS-derived cases, with
up-to-date parcel layers, to hand-measured commercial
properties. Water billing data collection frequency varied
between cities, and between residential and CII areas. All
West Jordan and Layton CII parcels had monthly water
billing data, while Layton residential billing data were bi-
monthly; all water billing data were in volume (gallon)
units. All parcels, except for several institutional landscapes,
were served by a single water meter and thus indoor water
use and outdoor landscape water consumption volumes
were combined and could not be directly separated. Since
plant dormancy and low temperatures preclude winter
irrigation in Utah, we assumed that average monthly winter
(December through February) billed water use was exclu-
sively indoors and further assumed that indoor use is
constant year round. We estimated landscape water use by
subtracting the derived indoor water use from monthly or
bi-monthly billed water use during the potential (April
through October) irrigation growing season (Endter-Wada et
al., 2008). Non-landscape seasonal outdoor water use, for
features such as swimming pools, was assumed to be
negligible, and CII users with seasonally variable or unusu-
ally high non-landscape water use, such as car washes, were
excluded.

Parcel landscape area was extracted from the classified
and recoded image within the GIS database. The area of each
surface cover was obtained by GIS analysis using the tabu-
lated-areas method to obtain the areas of one theme within
the zones of another. Total landscaped area was then
calculated as the sum of the three turf class areas (good
growth, stressed grass, and sparse cover grass) and the tree
and shrub class areas, and the output tables were joined
with water billing data through the common identifier of tax
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ID. Water volume applied to landscapes was extracted from
billing data, as described above, and normalized to depth
units by dividing by GIS-derived landscaped areas.

Data Analysis
Descriptive statistics were calculated for the percentage area
of good, stressed, and sparse grass, as well as for trees and
shrubs. Total landscaped area, total parcel size, and percent
landscaped area were also analyzed. GIS-derived landscape
areas were regressed against landscape areas obtained from
on-site ground measurements for verification. GIS-derived
landscaped areas were then regressed on total parcel size
(ground-measured for Layton CII; GIS parcel boundaries for
the others) to evaluate the potential for estimating land-
scaped areas from total parcel size for the subsets of residen-
tial properties in both cities, but for all CII properties within
the study areas.

The frequency distribution of percent turf coverage
was determined for CII and residential landscapes in
Layton and West Jordan. We also calculated frequency
distribution for the fraction of total seasonal water use
within 500 mm increments of water consumption for CII
and residential parcels in Layton (1998 billing data) and
West Jordan (2000 billing data) during the period 01 June
1 through 30 September when data were most complete.
This period of water consumption was chosen because
the two-month residential billing period for Layton
limited the availability of reliable irrigation season data
to only two billing periods during the growing season of
June/July and August/September. Consequently, we
constrained the water billing data for Layton CII, and
West Jordan residential and CII, to the same four-month
time period in order to compare results.

Capacity to conserve water used on landscapes is the
difference between water actually applied and water needed
which is based on a reasonable estimate of landscape
evapotranspiration. Estimated landscape water need is based
on local reference evapotranspiration, or ETo (Allen et al.,
1998), that integrates radiation, air temperature, humidity,
and wind into calculated water loss for a hypothetical
uniform cool-season turf grass surface for a fixed set of plant
characteristics. ETo generally ranges from 0 to 6 mm/day in
northern Utah, when constraints are not imposed by non-
uniform urban conditions (Snyder and Eching, 2005). The
product of local ETo and an empirical-fractional plant
correction factor (Kc; reflecting variable plant characteristics)
proportional to plant water needs is the depth of estimated
water needs for a regional area defined by the position of
the weather station used to calculate local ETo. Empirical Kc
values are not seasonally well defined for turf, but an intra-
seasonal value of 0.8 is commonly used for cool season turf
grass (Kneebone et al., 1992). While precise empirical Kc
values defined for trees and shrubs require additional
research, a value of 0.5 is reasonable (Montague et al., 2004;
Costello et al., 1992).

Our initial approach to quantifying capacity to conserve
was a frequency distribution end user applied water depth
(per parcel, seasonal water use divided by GIS-derived total
landscape area) for Layton and West Jordan residential and
CII end users for 1998 and 2000, respectively (image acquisi-
tion years). Capacity to conserve was identified in those
users applying water above a ceiling threshold of estimated
needs, defined by seasonal ETo (years 1998 and 2000 for
Layton and West Jordan, respectively) multiplied by 0.8 Kc
that assumes a uniform turf grass surface (Endter-Wada et
al., 2008; Kilgren et al., 2010). We constrained seasonal ETo
to June through September to match the constrained billing
data. We did not subtract rainfall, in order to provide a
generous estimate from the user point of view, or include an

empirical correction factor for irrigation system non-unifor-
mity because the study did not include on-the-ground
irrigation system assessments (Solomon et al., 2007).

Here, we calculated capacity to conserve on an aggregate
volume basis. Volume of estimated water need was calcu-
lated for each end user parcel using the following equation:

(1)

where Vwater needs is the estimated volume of landscape water
needs for given end user, Atotal is total landscaped area, ET0
is reference water loss (mm/time period; in this case, the
constrained June through September billing periods and data
obtained from nearby weather stations in Layton and West
Jordan), Kcl is a composite landscape correction factor that
integrates the different Kc values for turf, shaded turf and
trees, and shrubs. Finally, Ei is the estimated efficiency of
irrigation application where a value of 0.85 was used and
chosen to give a more generous estimate of landscape water
needs. Kcl can be further defined such that:

(2)

where, Aturf, Ats, and Atotal, are the areas (m2) of turf grass,
trees and shrubs, and total landscape respectively; Tsh is the
fraction of shaded turf grass under tree canopies; Kturf and
Kts are the previously defined Kc values for turf and
trees/shrubs (0.8 and 0.5, respectively). We assumed a Kc
value of 0.8 for turf under trees under the assumption that
reduced water loss in shaded turf is compensated by the
water loss in overlaying tree canopy. The resulting Vwater needs
from Equation 1 will vary largely with Atotal, as Kcl will vary
within the range of 0.5 for an all woody plant landscape to
0.8 for an all-turf grass landscape.

Results and Discussion
Plate 1a shows the location of the Layton study area with
the calibrated multispectral mosaic of the research area and
the surrounding agricultural fields (Plate 1b). The classified
rendition of the image is also shown (Plate 1c) with the
property boundary layer used for the extraction of the
overlaid landscape vegetation areas. The accuracy assess-
ment of the classified and recoded product is shown in
Table 1 including only the urban vegetation classes and bare
soil. The overall accuracy was 89 percent, similar to classifi-
cation accuracy results obtained by Neale et al. (2007) for
wetland habitats using a similar type of imagery and
methodology. Some spectral confusion occurred between the
trees and shrubs class and the grass classes, but overall, the
results were similar to those obtained by Thomas et al.
(2003) for an urban setting resulting from the classification
of airborne multispectral imagery at the same pixel resolu-
tion. The classification accuracy would have been reduced if
the impervious surface classes had been included (asphalt,
roofs, concrete, etc.) due to the spectral variability of these
classes within the urban setting.

Landscaped areas derived from the digital imagery
through GIS analysis correlated with those derived from
ground truth measurements (Figure 1). For Layton residen-
tial parcels over a range of landscaped areas of 200 to
1,200 m2, the relationship was reasonable (r2 = 0.74), but
still somewhat unexpectedly low. Similarly, correlation of
GIS-derived commercial landscaped areas to ground

� aAts * Tsh * Kturf

Atotal
b

Kcl � aAturf * Kturf

Atotal
b � aAts * (1 � Tsh) * Kts

Atotal
b

Vwater needs �  
Atotal * ET0 * Kcl

Ei
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measurements in the City of West Jordan also showed
scatter within the range of smaller landscapes, but the large
range of landscaped areas up to 30,000 m2 yielded a close
fit (r2 =0.96). The scatter at the lower end of the range for
the commercial landscapes, as well as the scatter observed
for the residential areas, is possibly due to the limits of the
1-meter imagery resolution and uncertainty in the parcel
boundary layer. These factors would give greater weight to
errors in smaller, fragmented landscapes than would be the
case for larger, contiguous landscapes characteristic of large
parcels in the Salt Lake City metropolitan region. Possible
errors in landscape ground measurements could have also
contributed to the scatter, particularly related to the
difficulty of measuring irregular shaped landscape areas on
the ground. However, given that the residuals in Figure 1a
were normally distributed, it appears that errors in
remotely sensed and ground measured landscape areas
were random. We think these reasonable relationships
between ground-measured GIS-derived landscaped areas
imparted enough confidence to conduct further analyses
using the GIS-derived landscaped areas.

Since parcel size is a key element in municipal con-
struction permitting and property taxation, this information
is generally readily available. Landscaped area parameter-
ized as a function of total parcel size can be developed into
a model and ultimately a functional tool, when remote
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TABLE 1. ACCURACY ASSESSMENT OF THE CLASSIFIED IMAGE PRODUCT INCLUDING ONLY THE URBAN VEGETATION CLASSES

Good Sparse Stressed Trees & Bare
Errors of Commission

Classified Data Grass Grass Grass Shrubs Soil Row Total % Correct

Good Grass 58 4 1 2 0 65 89.2
Sparse Grass 4 22 0 2 0 28 78.6
Stressed Grass 0 1 44 4 3 52 84.6
Trees And Shrubs 0 1 0 27 0 28 96.4

Bare Soil 0 1 0 0 36 37 97.3
Column Total 62 29 45 35 39 210
Errors of Omission
% Correct 93.5 75.9 97.8 77.1 92.3 187.0
Total Error 89.0

sensing is not possible, to estimate irrigated landscape area.
We tested the relationship between GIS-derived landscape
area and GIS-derived total parcel area (Figure 2) and found a
modest-to-good fit for residential Layton and West Jordan
(r2 = 0.48 and 0.91, respectively), but each relationship
exhibited unique properties. As parcel size increased,
Layton residential landscape areas formed an upper thresh-
old, under which there was substantial scatter. Since this
residential study area contained a large percentage of older
homes in subdivisions (dating back to 1940), it included
more parcels that had been converted to other non-vegetated
uses, such as patios, decks, and building additions. In West
Jordan, average parcel size was much larger than in Layton,
with upper bounds of nearly 5,000 m2 versus 1,400 m2. The
landscape area to parcel size relationship became weaker
above 2,000 m2, because the randomly selected residential
parcels above this range were higher-income custom-built
homes with larger landscaped areas that were customized
and irregular rather than standardized, as in a subdivision.
Future regression analyses conducted in sections of cities
and incorporating census and demographic information
could better explain outliers and further refine these data
into more robust relationships.

Landscaped area and parcel size for CII parcels in Layton
and West Jordan were not statistically related in any mean-
ingful way. Isolated large parcels defined the fit and

Plate 1. (a) Layton, Utah study area, (b) multispectral image mosaic, and (c) the GIS parcel boundary layer
placed over the classified image of the Layton study area.



increased the r2 values but substantial scatter made the
relationships less predicatively useful. The high degree of
variability amongst the majority of the CII parcels for both
cities suggests that trying to predict landscape area from
parcel size would be difficult. Compounding this difficulty
would be CII landscape regulations that would vary from
municipality to municipality, likely rendering a robust,
widely-applicable, predictive model nearly impossible. Thus,
the use of high-resolution multispectral imagery to quantify
landscaped areas on an individual parcel basis would be an
advantage for determining CII irrigated landscaped areas.

The amount of landscaped area in turf varied between
the Layton residential and the other three groups (Figure 3).
CII landscapes, and West Jordan residential landscapes, all
showed somewhat to heavily right hand-skewed frequency
distributions in terms of the number of parcels with high
turf, and low tree-shrub coverage. West Jordan residential
parcels showed a relatively even distribution (12 to 15
percent of the total population for each bin) in the 51 to
90 percent turf coverage range, with a sharp decline in
the fraction of water users with turf coverage below 
50 percent. West Jordan CII parcels showed a similar
percentage of the population having more turf coverage
than tree and shrub coverage. Since turf has higher water
use and a shallower root zone than trees, quantifying
parcels with high turf area is potentially diagnostic and
predictive of higher water use.

The skewed distribution of the fraction of parcels with
high turf coverage is much sharper for CII parcels in Layton,
with about 60 percent of all the parcels falling in the range
of 81 to 100 percent turf coverage. This different distribution
is due, in part, to a larger number of institutional landscapes
within the Layton study area, such as parks and schools that
are largely turf grass and used for recreational purposes, and
to a larger number of industrial business landscapes where
the easiest type of landscape coverage is turf grass that lends
itself to uncomplicated irrigation and maintenance. In
contrast, the largest fraction of residential parcels in Layton
had 41 to 50 percent turf coverage, with a roughly normal
distribution on either side. This lower amount of turf grass
is due to the many older landscapes in the Layton study
area that had mature trees covering more of the landscaped
area. An analysis (data not shown) of neighborhood age in
Layton showed that about half were older than 20 years at
the time of the study. A high proportion of tree cover has
water conservation policy implications. Urban trees repre-
sent a significant time and financial investment and produce
water (as well as energy) savings as they mature and provide
shade. Tree water needs during drought should be factored
into conservation measures to reduce risk of tree loss, help
ensure water user acceptance and compliance, and avoid
liability concerns.

Tree cover may include turf growing under the tree
canopy, however. The Logan research was conducted on
imagery from three residential neighborhoods on the Logan
bench and one cemetery selected for analysis because of the
diversity and maturity of the trees. After image classification
using the same techniques described above, the areas of turf
and trees were extracted from the imagery acquired at two
different dates in the growing season and shown in Table 2.
The average amount of turf under tree canopy weighted
according to the size of the section areas analyzed was
34 percent. This overlapping coverage also means that water
consumed through evapotranspiration is from a combined
turf/tree system and was taken into account in our land-
scape water need calculations.

Seasonal (01 June through 30 September) water applied
to landscapes (year 1998 for Layton; year 2000 for West
Jordan) varied the most between residential and CII users in
both cities (Figure 4). The largest fraction of residential water
users in both Layton (90 percent) and West Jordan (80 per-
cent) used below 1,000 mm/year, showing a sharp left hand
distribution. Again, because the residential neighborhood
areas in Layton were older, there were fewer automated
sprinkler systems and more manual irrigation, which led to
lower overall water use (Endter-Wada et al., 2008). In West
Jordan, there was a higher percentage of new parcels with
automated systems (characteristic of the area), likely leading
to higher irrigation application amounts. Average cumulative
reference evapotranspiration (Allen et al., 1994) for the Salt
Lake City region is approximately 750 mm. Allowing for
irrigation non-uniformity that increases water needs (Kjelgren
et al., 2000), 1,000 mm of water applied to landscapes can be
justified. Thus, the majority of residential water users in
Layton and West Jordan appeared to be relatively efficient at
irrigating their landscapes. CII parcels exhibited something
similar to a bimodal pattern of water use, with only 40 to
45 percent of the total number of parcels using less than
1,000 mm. Both cities had a long tail at the high end of
water use for CII parcels where 17 percent of the West Jordan
and 7 percent of the Layton CII parcels used in excess of
5,000 mm of water. These potentially excessive water users
are most likely businesses with automated systems where
water use is not closely monitored; such systems have been
shown to contribute to excess irrigation (Endter-Wada et al.,
2008; Kilgren et al., 2010).
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Figure 1. Comparison of GIS-derived landscaped areas to
ground measured landscaped areas for (a) residential
parcels in Layton, and (b) commercial-industrial-institu-
tional (CII) parcels in West Jordan, Utah.
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Figure 2. Relationship between GIS-derived landscaped area and total parcel size, in m2, for residential
and commercial-industrial-institutional parcels in (a) and (b) Layton, and (c) and (d) West Jordan, Utah.

Figure 3. Frequency histogram of the percentage of landscaped area that
is covered by turf for commercial-industrial-institutional (CII) and residential
water users in Layton and West Jordan, UT.



Residential water use in excess of estimated needs in
Layton over a five-year period showed substantial variation
among years as estimated water needs varied (Table 3). The
years 1997 and 2000 were relatively hot and dry, and a
higher percentage (68 percent and 66 percent, respectively)
of the study population irrigated their landscapes in excess
of water needs as estimated from local reference evapotran-
spiration and landscape areas. Again, the population size
varied among years as the water billing data set received
from the city varied from year to year in terms of the
number of billing records that we were able to link to parcel
boundary records. In late 1999, Layton changed to a new
water billing system that resulted in more consistent water
billing data. In 1998/1999, evapotranspiration was lower and
rainfall higher than in 2000 and 2001, thus fewer Layton
residential water users irrigated in excess of estimated needs
compared to 1997 and 1998 (54 to 59 percent). In 2001, the
number of people irrigating their landscapes in excess of
estimated needs fell as a result of a state-wide, state-run
advertising campaign asking the population of Utah to
reduce water consumption due to the third year of below
normal winter snow pack. Over all five years, approximately

the same percentage of residential water users, 9 to 13
percent, accounted for 50 percent of the excess irrigation in
any given year. This result is consistent with the right hand
tail of seasonal water use (Figure 4) where a small number
of parcels had very high consumption rates.

Conclusions
High-resolution airborne multispectral imagery obtained over
urban areas in northern Utah was classified to extract turf
grass, trees, and shrub areas resulting in an accuracy of 89
percent of the final recoded product. This imagery analyzed
in a GIS environment can be a very useful tool in urban
areas for estimating evapotranspiration from landscaped
surfaces, identifying high-end landscape water users, and
formulating water management and conservation plans by
cities. This process provides data on irrigated landscaped
areas of thousands of parcels through remote sensing that
would otherwise be logistically impossible to obtain with
on-the-ground measurements. Remotely sensed landscaped
and total parcel area provided the basis for a practical model
to predict residential landscaped area from total parcel area.
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Figure 4. Frequency histogram of landscape irrigation water consumption
for the period 01 June through 30 September by commercial-industrial-
institutional (CII) and residential water users in Layton (data from year
1998) and West Jordan (data from year 2000), Utah. Arrow indicates
approximate cumulative ETo for same time period for both years.

TABLE 2. TURF AND TREE SURFACE AREAS EXTRACTED FROM MULTISPECTRAL IMAGERY ACQUIRED OVER THE CITY OF LOGAN, UTAH IN EARLY MAY 1999 PRIOR TO FULL
TREE LEAF OUT AND IN SEPTEMBER 1999 AFTER FULL LEAF OUT, TO DETERMINE THE PERCENT OF TURF AREA UNDER TREE CANOPY

Image Turfgrass Area Tree Area Size Area Shaded Grass

Areas 5-May 16-Sept. Difference September Analyzed Actual Weighted
Examined (m2) (m2) (m2) (m2) Weight % %

Cemetery 114,365 84,013 30,352 44,394 1 0.68 0.12
Section 1 149,977 132,495 17,482 64,143 1.5 0.27 0.07
Section 2 78,024 61,614 16,410 44,831 1 0.37 0.07
Section 3 162,846 143,097 19,749 98,622 2 0.20 0.07

Average 0.38 0.34



Further work is needed to determine if such a model from
this data set would be applicable to residential areas in
other cities around the western U.S.

Estimating irrigated landscape area and using water
billing data allowed us to determine the actual amount of
water applied to CII and residential landscapes. This practi-
cal analysis of landscape water consumption showed that all
the groups studied, residential and CII in Layton and West
Jordan, had a small percentage of users accounting for most
of the excess irrigation above estimated landscape needs.
Thus, if a city wanted to implement water conservation
measures, those individual water users could be identified
and targeted in an efficient manner without offering or
delivering conservation programs to the majority of users
already irrigating their landscapes efficiently. However, more
CII than residential parcel owners were applying water in
excess of estimated needs, and in vastly greater amounts.
Thus they would be the most likely targets for conservation
interventions in order to most efficiently achieve the greatest
water savings from the smallest percentage of users.
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Abstract
The extensive distribution of bamboo forests in Southern and
Southeast Asia plays an important role in carbon sequestra-
tion and climate change. Providing timely and accurate
estimates for aboveground carbon (AGC) of Moso bamboo
forests is an urgent task. Based on the integration of Landsat
Thematic Mapper (TM) and field inventory data, this study
explores use of the k Nearest Neighbors (KNN) technique for
estimating AGC. A new distance metric named Slope, Inter-
cept, and Correlation Distance (SICD) is introduced and
compared with Euclidean Distance (ED) and Mahalanobis
Distance (MD). Using leave-one-out (LOO) cross-validation, the
estimation performance of KNN technique is then compared
with a linear regression model. The research indicates that
the SICD is slightly better than ED and MD but no significant
differences were found between them in estimating AGC. For
extreme AGC conditions, the KNN technique has a greater
estimation performance than that of the linear regression
model, and is a convenient and effective method for estimat-
ing AGC of Moso bamboo forests in a large area.

Introduction
Bamboo forests are extensively distributed in Southern and
Southeastern Asia and are continuously increasing. In 2009,
the Chinese government reported bamboo forests had
reached an area of approximately 6 � 106 ha, in which
Moso bamboo accounted for approximately 70 percent of the
area. Bamboo serves as an excellent substitute for woods in
producing pulp, paper, board, and charcoal and plays an
important role in Asia’s rural economy (Ruiz-Pérez et al.,
1999). Because of bamboo’s rapid growth rate and its strong
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Estimating Aboveground Carbon of Moso
Bamboo Forests Using the k Nearest

Neighbors Technique and Satellite Imagery
Guomo Zhou, Xiaojun Xu, Huaqiang Du, Hongli Ge, Yongjun Shi, and Yufeng Zhou

capacity for storing carbon, carbon sequestration research
has increased. For various reasons, it is important to accu-
rately estimate bamboo forest attributes in a timely manner.
Forest inventory is the primary source of information for
large area estimates. Further, the estimators used to produce
the large area estimates are unbiased which cannot be
asserted for remote sensing-based estimates. However, forest
inventory is time-consuming, labor intensive, and the spatial
distribution in a large area is difficult to update. Remote
sensing conserves time and labor and is the best approach to
estimating forest attributes if maps are also required and/or
if small area estimates are required (Mäkelä and Pekkarinen,
2004; McRoberts and Tomppo, 2007).

Previous research has shown the potential of remote
sensing imagery for estimating aboveground carbon (AGC) of
Moso bamboo with partial least-squares (PLS) regression and
Back-Propagation artificial neural network (BP-ANN) (Xu
et al., 2011). However, the complexity of PLS and BP-ANN
often results in difficulty in choosing optimal parameters
(Xu et al., 2011). Both methods are needed to build different
models for estimating forest attributes. In contrast, nearest
neighbors techniques are easy to apply and have the advan-
tage of simultaneously estimating large numbers of forest
attributes. McRoberts (2009) provided and clearly evaluated
diagnostic tools for nearest neighbors techniques when used
with satellite imagery.

Because it can provide information about forest attrib-
utes over large areas, remote sensing imagery is often used
as predictor variables with the nearest neighbor techniques.
Both predictor and response variables are measured in field
sample plot units to construct a reference set. Only predictor
variables are measured in pixel units across the entire study
area that comprise the target set (Hudak et al., 2008).
Nearest neighbor techniques then serve as a bridge between
the reference and target sets. The distance metric in nearest
neighbor techniques is used to determine nearest neighbors
for target sets on the basis of similarity in values of predic-
tor variables. According to the type of distance metric and
the number of nearest neighbors, many kinds of nearest
neighbors techniques can be used (Moeur and Stage, 1995;
Tokola et al., 1996; Nilsson, 1997; Ohmann and Gregory,
2002; Temesgen et al., 2003; McRoberts et al., 2007; Hudak
et al., 2008). Of these techniques, the k nearest neighbors
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(KNN) technique combined with remote sensing imagery is
one of the more common methods used in estimating forest
attributes (Franco-Lopez et al., 2001; Tomppo et al., 2002;
McRoberts, 2008; Fuchs et al., 2009; Magnussen et al.,
2009). However, results showed KNN prediction error was
relatively high (Tokola et al., 1996; Mäkelä and Pekkarinen,
2004; Gjertsen, 2007). In order to continue the credible use
of the KNN technique, it is necessary to improve its predic-
tion accuracy.

Previous research has explored some methods for
improving KNN technique. For example, a genetic algorithm
(GA) was applied to optimize selection of weights for
predictor variables (Tomppo and Halme, 2004; Tomppo
et al., 2009). A modified KNN technique based on GA to
reorder nearest neighbors and to eliminate spurious nearest
neighbors (McRoberts, 2008) and a model-assisted KNN
technique (Magnussen et al., 2010) were proposed to
improve accuracy. A new distance weighted with Fuzzy
Weights (FW) or Fuzzy Distance (FD) produced the best
results in comparison with ED and MD because it emphasizes
the relationship between the response and feature variables
(Chirici et al., 2008). A flexible distance metric for selecting
the set of potential nearest neighbors is needed because
prediction accuracy of the KNN technique mainly depends
on the nearest neighbors selected.

According to Im et al. (2005), slope, intercept, and
correlation images derived from two registered remote
sensing images are superior in detecting land use changes
because the same geographic area on two dates of imagery
tends to be highly correlated if little change has occurred
and uncorrelated when change occurs. Ideally, if the sets of
values of the feature variables for the target and reference
pixels are not significantly different, pairs of feature variable
values should be located along y = x in two dimensional
space. They should be located far from y = x if the values of
the variables are substantially different. Regression lines are
computed between the feature variable values of the refer-
ence and target pixels. If the differences in values of the
feature variables are large, the correlation coefficient of the
regression lines between the two sets of feature variable
values will fall off to a lower value in which case the slope
and intercept of the regression lines will be much larger or
smaller than 1 and 0, respectively. Consequently, nearest
neighbors can be selected based on estimates of the slope,
intercept, and correlation coefficient of the regression lines
between the sets of values of the feature variables for the
target and reference pixels.

The objectives of this study are (a) to describe and
illustrate the new SCID metric for the KNN technique, (b) to
compare this new distance metric with the Euclidean
distance (ED) and Mahalanobis distance (MD), and (c) to
compare the KNN technique with a linear regression model
using field plot data and TM imagery for estimating pixel-
level AGC (Mg C/ha) of Moso bamboo forests.

Study Area
Anji and Lin’an counties, located in the northwestern part of
Zhejiang province, China (Figure 1), cover approximately
5,000 km2, and were selected for research. Anji County covers
1,886.45 km2, and 30.1 percent of the area is occupied by
Moso bamboo forests. Lin’an County is approximately
3,136.34 km2. Moso bamboo forests cover approximately
22,000 ha, and are mainly distributed in the eastern part of
the county. Both counties have similar geological and climatic
conditions. The terrain is undulating with elevation ranging
2 m to 1,629 m above sea level. The average elevation is 403
m. Average annual precipitation is between 1,100 mm and
1,900 mm. The average annual temperature is about 16.0°C.

Methods

Field Inventory Data and Image Processing
Field inventory was conducted August and September of
2008. Using a stratified random sampling scheme, 92 sample
plots of 0.09 ha (30 m � 30 m) were measured. Towns
within both counties were used as strata with the percentage
of bamboo area of every town as the weight of stratum.
Sample plots covered by clouds or with other location errors
were excluded. Overall, 54 sample plots in Anji County and
29 sample plots in Lin’an County were surveyed (Figure 1).
The survey items included plot longitude and latitude, and
tree age, diameter at breast height (DBH, cm), etc. Dry AGC of
each individual bamboo tree (kg) was estimated using the
Weibull model (Equation 1). This model has an R2 value of
0.937 and prediction accuracy of 96.43 percent (Zhou,
2006). The AGC of each sample plot was then estimated as
the sum of dry AGC for individual bamboo trees,

(1)

where DBH is diameter at breast height, and A is age. The
unit used to denote the age of Moso bamboo is called “du.”
New bamboo or one year bamboo is called 1 du, 2 to 3 years
as 2 du, and 4 to 5 years as 3 du, and so on. The expansion
factor for the conversion from biomass to carbon for Moso
bamboo forest is 0.5042 (Zhou, 2006). The AGC of field
plots ranges from 9.90 Mg C ha�1 to 38.60 Mg C ha�1.

A Landsat Thematic Mapper (TM) image (WRS = 119/039)
acquired on 05 July 2008, was used in this study. The image

AGN C � (747.787DBH2.771a 0.148A
0.028 � A

b5.555

� 3.772) * 0.5042
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Figure 1. Study area Anji and Lin’an Countries and
overlaid sample plots showing their spatial distribution.



was rectified to the Transverse Mercator coordinate system
using control points taken from topographic maps, with the
root mean square error (RMSE) of 0.51 pixels. The nearest
neighbor algorithm was used during the image rectification
to resample the TM image into pixel sizes of 30 m � 30 m.

The TM image was radiometrically and atmospherically
calibrated using the Dark Object Subtraction (DOS) approach
(Chavez, 1996; Song et al., 2001; Schroeder et al., 2006;
Vicente-Serrano et al., 2008). The minimum digital number
(DN) value and downwelling diffuse irradiance are two very
important parameters for the DOS approach. The minimum
DN value in each spectral band was selected as the darkest
DN with at least a thousand pixels for the entire image (Song
et al., 2001; Schroeder et al., 2006). The downwelling
diffuse irradiance for a Rayleigh atmosphere was estimated
as zero aerosol optical depth at 550 nm using the 6s radia-
tive transfer code (Vermote et al., 1997). After atmospheric
calibration, DN values of original image were converted into
reflectance values between 0 and 1.

The C correction model was used for topographic correc-
tion (Teillet et al., 1982; Chirici et al., 2008) and expressed as:

(2)

(3)

(4)

where LT is the normalized reflectance, L is the uncorrected
reflectance, is the solar zenith angle, is incidence angle,
c is correction factor, a and b are respectively the slope and
intercept of a regression line between the cosine of the
incident angle and reflectance, is terrain slope, is sun
azimuth, and is terrain aspect.

Sun elevation and sun azimuth, 65° and 101°, were
from the image’s header file. Terrain slope and aspect were
derived from an ASTER GDEM data with 30 m � 30 m spatial
resolution (http://datamirror.csdb.cn/).

Linear Regression and kNN Model Development
The mean values of the six TM spectral bands for each field
plot were extracted with a window size of 3 pixels � 3 pixels
and used to establish AGC estimation models.

Stepwise regression analysis was then used to establish
a linear regression model, defining suitable thresholds for
adding and removing independent variables. Multi-collinear-
ity issues were addressed by calculating and monitoring the
size of the condition index using Statistical Product and
Service Solutions software (SPSS13.0). Models with condi-
tion index values greater than 30 were not accepted, indicat-
ing that there was no serious collinearity inherent in the
selected models (Næsset et al., 2005).

The KNN technique, with the combination of Landsat TM
imagery and field measurements, has been extensively used
for mapping forest attributes (McRoberts, 2008). It can
simultaneously estimate all plot attributes using the same
underlying remote sensing data. Estimation of forest attrib-
utes with KNN can be expressed as:

(5)

where is the target plot’s predicted forest attributes, yj is 
the jth nearest reference plot’s forest attributes, and k is the
number of nearest neighbors. The weight, wi,j, is set propor-

yNi

yN i � a
k

j�1
wi, jyj,

v
la

bu

 cos (b) �  cos (a) * cos (u) � sin (a) * sin (u) * cos (l � v),

c �  
b
a

 ,

LT � L * a  cos (u) � c

 cos (b) � c
b ,

tional to the inverse distance between the values of the
feature variables for target plot i and the jth nearest reference
plots as expressed in Equation 6:

, (6)

where Di,j denotes the distance in feature space between the
values of the feature variables for target plot i and the jth

nearest reference plot. J denotes the set of the k reference
plots nearest to target set pixel i in feature space when using
distance metric, D. In this study, m equals 1. The distance
metric is one of the critical parameters used in KNN algo-
rithm, and affects the estimates. Common distance metrics
are the ED and MD (McRoberts et al., 2002; McRoberts and
Tomppo, 2007; Baffetta et al., 2009). In this study, a new
distance metric named Slope, Intercept, and Correlation
distance (SICD) was proposed. When the values of feature
variables for the target and reference plots are not substan-
tially different, the regression lines between them should be
close to y = x. If a slope is close to 1, an intercept is near 0,
and a correlation coefficient is near 1, the two sets of feature
variables are similar.

For each combination of reference and target set ele-
ments, the relationship between observations of the feature
variables was estimated using a simple linear regression
model of the form,

(7)

where yi,l is the observation of the lth feature variable for the
ith target set element; xj,l is the observation of the lth feature
variable for the jth reference set element; a and b are model
coefficients; and ε is residual error. Estimates of a and b
respectively are obtained using ordinary least squares
techniques.

The SICD, calculated using Equation 8, is used to
determine the similarity between the values of the feature
variables for target plots and reference plots. Because slope,
intercept, and correlation have different scales, the three
parameters are normalized by the sum.

(8)

where ai,j, bi,j, and ri,j are estimates of the slope, intercept, and
correlation coefficient of the regression line (see Equation 7)
between the values of the feature variables for the target
plot i and reference plot j, and n is the total number of
reference plots.

Determining the k value is subjective, and is often
selected by a variety of considerations (McRoberts, 2009).
Both small and larger numbers of nearest neighbors 
(k-values) have their own advantages (Tokola et al., 1996;
Katila and Tomppo, 2001; Ohmann and Gregory., 2002;
McRoberts et al., 2007; McRoberts, 2009). The optimal 
k-values can be effectively determined using the leave-one-
out (LOO) cross-validation technique and statistical measures
(Table 1) of prediction quality (Fuchs et al., 2009). Compro-
mise is necessary for determining the optimal k-values in
practical application (Katila and Tomppo, 2001; Fuchs et al.,
2009). The k-values attaining high correlation coefficient,
coefficient of variation (CV), and range values and small
relative bias (BIASR), relative root mean square error (RMSER),

SICDi,j � V
(ai,j � 1)2
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and mean relative error (MRE) values were selected as the
optimal number of neighbors to be used.

Model Evaluation and Comparison
The LOO cross-validation and statistical measures (Table 1)
were used as an evaluation approach for (a) the choice of 
k-values, (b) a comparison of distance metrics, and (c) a
comparison of the KNN technique and linear regression
estimates. In order to reduce the registration errors between
sample plots and the imagery, the estimation results were
evaluated based on a window size of 3 � 3 pixels. Signifi-
cance of difference in absolute residuals between linear
regression and KNN technique was tested by the paired
sample t test (Altman, 1991), expressed as:

(9)

(10)

where t is a paired sample t test with n � 1 degrees of
freedom, d is the difference between two absolute residual
samples from linear regression and the KNN technique; dmean
is the mean d values, SE is standard error of d values, and
n is the number of sample plots.

Results

Linear Regression Models
Pearson’s correlation analysis shows that both TM band 2
(r = 0.24, p �0.05) and band 4 (r = 0.26, p �0.05) are
significantly correlated with AGC. The results based on the
stepwise regression model (Table 2) show that TM band 4 is
a useful variable for estimating Moso bamboo forest AGC.
According to the F test, the linear regression model for
estimating AGC is significant at level � = 0.01.

Comparison of Distance Metrics
Correlation coefficients between observations and estimates
increase rapidly when the k-values increase from 1 to 10, but

SE � Ua
n

i�1
(di � dmean)2

n * (n � 1)

t �  
dmean

SE
 ,

decrease slightly after that (Figure 2). RMSER, MRE, CV, and
Range decrease rapidly as the k-values increase from 1 to 10.
These statistical measures for the ED and MD curves are quite
similar, whereas they are notably different than those of the
SICD. When the k-values are from 1 to 20, RMSER and MRE for
SICD are at least 1 percent smaller than those for ED and MD.
The correlation coefficient, CV, and Range of the SICD are
higher than those of ED and MD (Figure 2). This shows that
the SICD is slightly better than ED and MDs in estimating AGC.

The optimal k-values were selected based on the criteria
previously mentioned and were used to estimate AGC of
Moso bamboo forests. The estimation results of KNN with
different distance metrics were evaluated based on the LOO
cross-validation (Table 3). The SICD produces the highest
correlation coefficient, Range, and CV and the lowest RMSE,
RMSER, and MRE compared with the other two distance
metrics. The SICD not only maintains precision but also
preserves range and variance better as the CV increases
(Figure 2 and Table 3). With the optimal k-values, the SICD is
superior to the other two distance metrics. However, results
of the paired samples t test show no significant differences
in predictive performances of the three distance metrics.

Using the LOO cross-validation technique, the mean and
ranges of weight values of the ith nearest neighbors 
(I = 1, 2, . . . , k, k = 8) for reference plots are shown in
Figure 3a. The weight values for i from 1 to 3 from the SICD
are greater than those from the ED and MD. Because a greater
weight value reduces the importance of the last nearest
neighbors (Katila and Tomppo, 2001), the optimal k-values of
the SICD are smaller than those of the ED and MD (Table 3).

The RMSE between the AGC values corresponding to the
ith nearest neighbors and AGC observations for reference
plots were calculated (Figure 3b). An intrinsic difference
between distance metrics was discovered. Nearest neigh-
bors selected by the ED and MD are clearly different than
those selected by the SICD. The RMSE between AGC values
corresponding to nearest neighbors selected by the SICD
and AGC observations for reference plots was less than the
RMSE from the ED and MD. The lower RMSE for the SICD
shows that nearest neighbors selected by the SICD are more
similar to the AGC observations of reference plots, espe-
cially for the first three nearest neighbors. Therefore, the
SICD can select more suitable nearest neighbors and more
effectively display the ordering. With the advantages of
greater weight values and better nearest neighbors, the SICD
is slightly superior to the ED and MD in estimating AGC
values of Moso bamboo forests.

Comparison between Linear Regression and kNN-SICD Prediction
A comparative analysis of the predictive performances of
KNN-SICD (k-values in Table 3) and linear regression indicates
that the KNN-SICD has better estimation performance (Table 4).
The CV of the KNN-SICD is much larger than that of linear
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TABLE 2. RESULTS OF STEPWISE LINEAR REGRESSION

Variable Estimate Sig. r RMSE (Mg C/ha)

Intercept 6.89 0.18 0.29 5.38Band4 43.13 0.01

Sig. is level of significance; r is correlation coefficient

TABLE 1. STATISTICAL MEASURES FOR K VALUES SELECTION AND ACCURACY EVALUATION (YI and ARE OBSERVED DATA i and
PREDICTED DATA i; n is NUMBER OF SAMPLE PLOTS)

Measures Formulas Measures Formulas

Range MRE

RMSE RMSEr

BIASr CV
1

ymean
 C1

n
 g

n
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(yNi � ymean)2

* 100%
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regression model. This implies that the KNN-SICD better
retains the original variation of the observations in the
spatial variation of the estimates.

Field plots were divided into two subgroups accord-
ing to the AGC values corresponding to field plots. Sub-
group 1 consists of field plots with AGC larger than 1
standard deviation from the mean AGC value of all field
plots. The AGC values in subgroup 1 are also named as
extreme AGC values. The remaining field plots were
separated into subgroup 2. Estimation errors are mainly
from subgroup 1 (Table 4). The errors for subgroup 1 are
much greater than for subgroup 2. Greater RMSER values
are found with linear regression compared with KNN-SICD
for subgroup 1, whereas smaller RMSER values are found
with linear regression compared with KNN-SICD for sub-
group 2. Results of the paired samples t test show that
there is no significant difference between linear regression
and KNN-SICD for subgroup 2. However, those observations
in subgroup 1 estimated using the KNN-SICD are signifi-
cantly more accurate (p �0.05) than when using linear
regression model.

Scatter-plots of estimates versus observations also
show the KNN-SICD prediction accuracy is better than the
linear regression model (Figure 4a). For the linear regres-
sion model, the resulting scatter diagram reveals the weak

correlation between the observed and estimated AGC. The
best-fit line of the linear regression model approaches a
horizontal line and its prediction capability is fairly poor.
The residual analysis for linear regression and KNN-SICD
both show large residuals for small and large AGC values
(Figure 4b). Although the linear regression and KNN-SICD
methods have similar problems in overestimating small
values and underestimating large values, the observations
are better estimated by the KNN-SICD than the linear
regression models. This result is consistent with result of
Fuchs et al. (2009).

When predictions are extrapolated beyond the ranges
of variable values for the reference data, nearest neighbors
techniques are vulnerable to poor performance (McRoberts
et al., 2007; McRoberts, 2009). Therefore, the numbers of
target set pixels whose variable values beyond the ranges of
variable values for reference set were checked. In this
study, less than 10 percent of target set pixels were not
completely covered by the reference data set. Because the
proportion of target set pixels requiring extrapolations was
small, the spatial distributions of Moso bamboo AGC were
produced from the linear regression and KNN-SICD models
(Figure 5).

The histograms of AGC estimates for the linear regres-
sion and KNN-SICD in Figure 5 show the main difference
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Figure 2. Evaluation criteria of AGC estimation for three distance metrics with different numbers of 
neighbors (k).



between the KNN-SICD and linear regression model are the
estimates for small and large AGC values. The KNN-SICD
estimates extreme values better than linear regression
model, which is consistent with the results of Table 4.
Mean AGC estimates from the KNN-SICD, for the nine areas of
interest, were compared with the mean AGC values of field
plots (Figure 5). Mean AGC estimates from the KNN-SICD are
close to the mean AGC values of field plots. The difference
(field plot observations - KNN-SICD predictions) varies from 
�8.4 to 2.1 Mg C/ha. The mean difference is �0.9 Mg C/ha 
(�0.87 percent). The absolute values of relative differences
are in most cases less than 10 percent. The relative differ-
ences exceed 20 percent only in one area of interest. The
large relative difference is due to small AGC values in that
area of interest.

Discussion
In this study, when the SICD was applied instead of the ED and
MD, the AGC estimates of Moso bamboo forest improved. This
result is mainly attributed to distance metrics because the
predicted AGC are calculated through multiplying the
observed AGC associated with nearest neighbors by their
weight values. Because the SICD has the advantage of selecting
more suitable nearest neighbors, the AGC estimates from the
SICD are more similar to observations than those from the ED
and MD (see Tables 3 and Figure 3b). Although results of
accuracy measures show that the SICD is superior to the ED

and MD, no significant differences were found among the three
distance metrics based on the paired samples t test. Since the
KNN-SICD needs to calculate slopes, intercepts, and correlation
coefficients of regression lines between the values of the
feature variables for reference plot and target plot, it takes
more time than the KNN-ED and KNN-MD. The applicability of
KNN-SICD for other applications should be tested.

The RMSER of AGC estimates of Moso bamboo forests is
smaller than in most previous studies of other forests such
as Betula pendula and Picea obovata (Tuominen and
Pekkarinen, 2005; Fuchs et al., 2009). The RMSER of AGC
was 25.27 percent as estimated using the KNN-SICD, while
for a previous study the RMSER reached up to 41.21
percent (Fuchs et al., 2009). Most Moso bamboo forests are
pure forest with high homogeneity. The relatively small
errors in this study are possibly due to the homogeneity
characteristic of Moso bamboo forests. The field inventory
data shows the majority of AGC observations of Moso
bamboo forest are within 1 standard deviation of the mean
AGC value of all field plots (Table 4). The spatial variabil-
ity of AGC values for Moso bamboo forest is small. The
linear regression and KNN-SICD models both accurately
estimate the observations closer to the mean (Table 4).
Therefore, the RMSER of AGC estimates from both methods
are small (Table 4). The prediction errors are mainly
caused by failure to estimate extreme values in an accurate
manner (see Table 4 and residual graphs in Figure 4b). In
this study, the large errors for extreme values are partly
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Figure 3. (a) Mean and ranges of weight values of the ith nearest neighbors (I = 1, 2,..., k, k = 8) for
reference plots; vertical real line means the ranges of weight values from ED and MD; vertical dashed line
means the ranges of weight values from SICD, and (b) RMSE between the AGC values corresponding to the
ith nearest neighbors (i = 1, 2,..., k, k = 8) and AGC observations.

(a) (b)

TABLE 3. COMPARISON OF DIFFERENT DISTANCE METRICS FOR ESTIMATING AGC BASED ON THE LOO CROSS-VALIDATION

Model k RMSE (Mg C/ha) RMSEr (%) MRE (%) BIASr (%) Range CV (%) r

ED 10 5.35 25.90 21.95 �0.22 11.21 11.30 0.26*

MD 10 5.40 26.15 22.36 0.03 11.23 11.39 0.24*

SICD 5 5.22 25.27 20.90 0.87 17.83 15.74 0.37**

Level of significance, *�0.05, **�0.01.



due to the limited number of extreme values in reference
plots and the relatively weak relationships between TM
bands and AGC observations. The prediction accuracy
using predictor variables selected by stepwise linear
regression was greater than that using the original bands
(Fuchs et al., 2009). Another reason for large errors for
extreme values may be only use of spectral TM bands. How
to accurately estimate those extreme values is a key
problem to improving prediction accuracy for AGC of Moso
bamboo forests. Large quantities of sample data, suitable
spectral feature variables, and versatile statistical estima-
tion techniques may solve this problem. The PLS-Bootstrap
algorithm is a useful method for selecting suitable vari-
ables (Lazraq et al., 2003; Xu et al., 2011).

In comparison with the linear regression model, the
KNN-SICD technique improves the AGC estimates of Moso
bamboo forests. The KNN-SICD performs well and gives
estimates with smaller errors than the linear regression
model. In estimating extreme AGC values, there are signifi-
cant differences between the KNN-SICD and linear regression
models. The linear regression overestimates the field plots
with small observations and underestimates the field plots
with large observations, as did another linear regression
model based on a different set of variables (Xu et al., 2011).
The KNN-SICD considerably improved this situation, and is as
efficient as the PLS model (Xu et al., 2011). The BP-ANN
model has the advantage of fault tolerance and the ability to
estimate extreme values of AGC because it can approximate
any arbitrarily complex nonlinear function regardless of the
complexity of the relationships between the variables and
AGC (Xu et al., 2011). The KNN-SICD is an effective method

that can be used to accurately estimate the mean AGC values
of Moso bamboo forest at town level.

Conclusions
This study examined the integration of Landsat TM and field
measurements for AGC of Moso bamboo forests for estimation
using the KNN technique and a linear regression model.
Using small data sets in this study, the SICD works as well as
ED and MD because of its advantage in selecting suitable
nearest neighbors. A comparison of the SICD with ED or MD
using large data sets would be useful. The prediction
accuracy of the KNN-SICD is better than that of the linear
regression model. The results show that the KNN technique
is a promising tool for estimating AGC of Moso bamboo
forests for large areas. However, the extreme observations
estimation accuracy was still not great enough. In order to
acquire accurate as for Moso bamboo forests AGC, variable
selection and increase in the number of reference plots
should be tested in future studies.

Acknowledgments
This work was supported by the funds from National
Natural Science Foundation (Grant, 31070564, 30700638,
30771715), 948 item of national forestry bureau (Grants,
2008-4-49), and item of science and technology department
of Zhejiang province (Grants, 2008C12068). We also wish to
thank three anonymous reviewers for their constructive
comments and suggestions.

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Novembe r  2011 1129

TABLE 4. COMPARISON OF AGC ESTIMATES FOR THE KNN-SICD AND LINEAR REGRESSION. THE t IS THE VALUE 
OF THE PAIRED SAMPLE T TEST AND P IS PROBABILITY VALUE

kNN-SICD Linear regression

Plots n RMSEr% CV% RMSEr% CV% t p

All plots 83 25.27 15.74 26.03 7.91 �0.42 0.68
Subgroup 1 21 37.12 24.23 40.40 8.38 �2.59 0.02
Subgroup 2 62 18.58 11.87 17.29 7.81 1.90 0.06

Figure 4. (a) Scatter diagram, and (b) residual graph of predicted versus observed AGC from KNN-SICD model.
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Abstract
We studied the use of daily satellite data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors to
assess wetland forest damage and recovery from Hurricane
Katrina (29 August 2005 landfall). Processed MODIS daily
vegetation index (VI) trends were consistent with previously
determined impact and recovery patterns provided by the
“snapshot” 25 m Landsat Thematic Mapper optical and
RADARSAT-1 synthetic aperture radar satellite data. Phenologi-
cal trends showed high 2004 and 2005 pre-hurricane tempo-
ral correspondence within bottomland hardwood forest
communities, except during spring green-up, and temporal
dissimilarity between these hardwoods and nearby cypress-
tupelo swamp forests (Taxodium distichum [baldcypress] and
Nyssa aquatica [water tupelo]). MODIS VI trend analyses
established that one year after impact, cypress-tupelo and
lightly impacted hardwood forests had recovered to near pre-
hurricane conditions. In contrast, canopy recovery lagged in
the moderately and severely damaged hardwood forests,
possibly reflecting regeneration of pre-hurricane species and
stand-level replacement by invasive trees.

Introduction
In our study of the impacts of Hurricane Katrina (29 August
2005 landfall in Louisiana) to the lower Pearl River flood
plain forests of Louisiana, (Ramsey et al., 2009a; Figure 1),
we defined spatial patterns of impact and short-term
recovery in forested wetlands by using satellite optical and
radar image data. Impact and recovery patterns and trends
within the wetland forest were determined using change
detection analyses of optical vegetation index (VI) products
derived from 25 m Landsat Thematic Mapper (TM) imagery
(Plate 1) and calibrated 25 m RADARSAT-1 synthetic aperture
radar (SAR) intensity images collected before, within a few

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Novembe r  2011 1133

Daily MODIS Data Trends of 
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and Early Recovery
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days after, and about one and two months after the hurri-
cane landfall.

Our success in mapping the storm impact was based on
a combination of opportunistic and emergency response
collections of satellite images with stand-level (25 m)
resolution; an improved approach to forested wetland
impact assessment would be based on consistent and higher
frequency temporal sampling. The success of emergency
response mapping for resource damage assessments is highly
reliant on the availability of comparable and timely “before”
and “after” recordings of the vegetation condition. In
addition to initial emergency response, longer recovery
monitoring can expose more subtle abnormalities in pheno-
logical trends that indicate latent biophysical changes
initiated by a preceding impact event (Middleton, 2009).
Trends of relevant coastal ecosystem indicators (e.g., vegeta-
tion greenness) based on consistent and appropriate tempo-
ral scales are powerful tools for assessing ecosystem change
and recovery and functional structure and associations.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) offers a source of high temporal resolution data for
monitoring vegetation condition at regional scales; however,
two noteworthy problems hamper the application of MODIS
image data to coastal terrestrial ecosystem monitoring. First,
the 250 m (a red and a near-infrared band), 500 m (blue,
green, near-infrared, and shortwave infrared bands), and
remaining (1,000 m) bands are generally inadequate for most
typical forest stand-level mapping applications and tend to
be primarily suitable for regional applications which require
or otherwise benefit from high temporal fidelity (Ramsey et al.,
2009a; Klemas, 2005). For example, AVHRR data at the 1 km
scale were useful for assessing forest damage and initial
recovery from Hurricane Andrew (Ramsey et al., 1997, 1998,
and 2001). More recently, MODIS time-series data have been
used to assess Hurricane Katrina impacts on forest biomass
(Chambers et al., 2007). In addition, clouds often obscure
the landscape, particularly in subtropical to tropical regions
(Ramsey et al., 1997, 2009a, and 2009b).

Temporal collection inconsistency in terms of cloud-free
data coverage can be a problem with sensors like Landsat,
which revisit and collect data at a given spot only once every
16 days. In contrast, the MODIS sensors onboard the Aqua and
Terra satellites each collect daily daylight images of a given
area. Even though providing two daylight MODIS collections
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per 24 hours for a given location, cloud cover can still be
problematic. To further increase cloud-free coverage, data
from the two MODIS sensors can be fused (Xiong and Barnes,
2006). The dual data source along with time-series data
processing software can be used in conjunction with a
standard MODIS (MOD35) cloud detection product described by
Frey et al. (2008) and Ackerman et al. (2008) to effectively
mask out the clouds and cloud shadows. Further processing
enables cloud-related data gaps to be temporally interpolated
with appropriate response values obtained from non-cloud-
affected temporally adjacent data points from the time series.

Time-series data processing software packages have been
developed for temporal processing of MODIS time series,
including those for primarily producing vegetation phenol-
ogy data layers. These software packages are used to gener-
ate MOD12 phenology products from MODIS MOD13 enhanced
vegetation index (EVI) time-series data (Zhang et al., 2003
and 2006) and phenology products generated from MOD15
leaf area index (LAI; Gao et al., 2008). Similar software has
been developed by Reed et al. (1994) with respect to AVHRR
satellite-based observations of vegetation phenology and by
Lunetta et al. (2006) regarding MODIS-based land-cover
change detection. Other recent relevant examples of satellite
time-series data processing include work by Chen et al.
(2004) and Bradley et al. (2007).

Many of these packages were based in part on the
TIMESAT package described by Jönsson and Eklundh (2004).
The Time Series Product Tool (TSPT) software package
developed at the National Aeronautics and Space Adminis-
tration (NASA) John C. Stennis Space Center also utilizes
routines and algorithms from TIMESAT and adds functions for
custom processing of multiple standard MODIS and other
satellite time-series datasets (e.g., Landsat) into time-series
data products for vegetation monitoring (McKellip et al.,
2005 and 2008; Spruce et al., 2011). As a precursor to
computation of phenology products, time-series processing
software programs include algorithms for cloud removal,
noise suppression, and data void integration usually through
temporal curve-fitting procedures. The intent of temporal
data processing is to produce the highest quality time-series
dataset possible where the problems of data voids from
atmospheric contamination are effectively identified and
diminished through interpolation and filtering.

While many software programs exist for MODIS time-
series data processing, there can be differences in terms of
their effectiveness for a given application. The latter can
depend on the application, the sensor characteristics (e.g.,
spatial, temporal radiometric, and signal to noise resolution),
the settings used in running the software (e.g., settings that
control allowable data quality, noise detection, and interpo-
lation of data gaps), and other factors (e.g., data storage and
computational requirements). The time-series product
effectiveness often is gauged through comparison with
higher spatial resolution data products, though issues can
occur with the suitability of higher resolution products as
references. For example, point measurements, or even stand
scale compatible measurements, of forest phenology are not
necessarily representative of the same phenomenon at the
regional MODIS scale (Fisher and Mustard, 2007). One
method for increasing the comparability of ground-reference
data to satellite-based phenology is to compare plots or
ground sampling areas that are of sufficient spatial extent to
be comparable to the coarser spatial resolution satellite data
(White and Nemani, 2006). In terms of assessing phenology
of wetland forest damage from hurricanes, this was accom-
plished in our study by assessing MODIS vegetation index
responses for specific previously defined damage polygons
(or equivalently raster bitmaps) created with 25 m optical
and radar data analyses (e.g., Plate 1 and Figure 2).

The vegetation index (VI) used for our study was the
normalized difference vegetation index described by Tucker
(1979). This VI was selected because of its quantitative
indication of foliage greenness and quantity and because it is
based on the highest spatial resolution MODIS 250 m red and
near infrared bands. Even though atmospheric correction was
not employed in the computation and application of the
MODIS VI products used in our study, these products were
computed by using a sequence of rigorous temporal process-
ing (e.g., noise reduction, removal of poor viewing geometry
data, multi-MODIS sensor data fusion, and void interpolation)
procedures that collectively helped to minimize occurrences
of aberrant VI values in the time series caused by inferior (off
nadir) illumination and atmospheric contamination. The use
of the VI also contributed to the normalization (i.e., mitiga-
tion) of effects from atmospheric contamination and inferior
viewing geometry (Huete et al., 1999).

The spatial resolution incompatibility of MODIS with
Landsat TM and RADARSAT-1 data was minimized by using
only the 250 m MODIS bands for computing the VI (e.g., Plate
1 and Figure 2). With the temporal consistency improvement
and the spatial restriction to MODIS 250 m VI mapping, we
anticipated that the temporal trends in VI would provide
additional insight into the damage and recovery of the bottom
land hardwood (BLH) forest type. This expectation was based
in part on a previous case study in which AVHRR was used
with Landsat TM data to assess regionally evident vegetation
damage and recovery from Hurricane Andrew’s landfall in
southeastern Louisiana (Ramsey et al., 1998 and 2001).

For Hurricane Katrina, the first study objective was to
determine whether or not the previously documented 25 m
stand-level short-term patterns of forest impact and recovery
were identifiable on a VI derived from the lower 250 m spatial
resolution but higher daily temporal resolution MODIS image
data. Within the research process, we examined whether or
not the availability of immediately before and after daily and
comparable MODIS VI trends enhanced assessment and differen-
tiability of impacts between cypress-tupelo and BLH forests
and within evident damage zones of the BLH forest. The
second study objective was to demonstrate the advantages of
the higher temporal frequency and longer term VI trends in
exposing abnormalities in the wetland forest phenological
patterns that could indicate latent biophysical changes
initiated by Hurricane Katrina impact. To this end, we added
2004 and 2006 yearly trends to the 2005 trend that encom-
passed the initial impact and short-term recovery periods.

Study Area
The study area included the wetland forests within the State
of Louisiana’s Pearl River Wildlife Management Area (PRWMA)
managed by the Louisiana Department of Wildlife and
Fisheries (Figure 1). The PRWMA contains 14,177 ha of flat,
low lying terrain largely occupied by wetland forests with
poor drainage and subject to annual and episodic flooding.
Before Hurricane Katrina, the northern 60 percent of the
PRWMA contained a BLH forest of variable age and species that
transitioned to a cypress-tupelo forest occupying the more
southern PRWMA (Plate 1). According to White’s (1983) floristic
survey, overstory tree species in the eastern BLH forest were
dominated by Quercus michauxii, Magnolia virginiana, and
Ilex opaca and the western BLH forests were dominated by
Quercus lyrata, Carya spp., Taxodium distichum, Nyssa
aquatica, and Faximas spp. Cypress-tupelo forests included
baldcypress (Taxodium distichum) and tupelo gum (Nyssa
aquatica) communities. Differences in dominant species
composition between observed wetland forest cover types
represent differences in resiliency to hurricane damage
(Ramsey and Rangoonwala, 2010, unpublished data).
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Methods

MODIS VI Time-Series Production
The production of cloud-free daily MODIS VI time-series
products involved a multistep process. First, daily Aqua
and Terra MODIS sensor reflectance data were acquired as
MOD02 reflectance data in the standard MODIS hierarchical
data format. Subsequently, TSPT was used to re-project the
data and then compute VI values from the input red and
near-infrared reflectance data. TSPT then employed the
MODIS cloud mask products (MOD35) to remove clouds and
further restricted the retained cloud-free data to exclude
pixels with sensor zenith angles of more than 47°. After-
ward, the retained quality cloud-free data from Aqua and
Terra MODIS sensors were fused into a composite image that
yielded the best available quality data on a daily basis. The
residual data voids were then temporally interpolated and
filtered to remove remaining anomalous and erroneous VI
values or “spikes” (i.e., residual noise from undetected
clouds) using the Savitzky Golay filter (Savitzky and Golay,
1964). The filter was applied with a full width half maxi-
mum setting of four time steps (i.e., days), a temporal
frame size of 15 time steps, and outlier (spike) removal
setting of 0.5. These settings were determined and opti-
mized through trial and error sensitivity analysis. In all of
these processing steps, bilinear interpolation resampling
was used.

Such processing, where successful, provides a means to
compute and assess changes in the digital values of specific
VI that are indicative of vegetation vigor, disturbance,
and/or recovery status after a major disturbance, like a
hurricane. Spike detection settings for identification of
residual noise in the intermediate VI products are set
conservatively to reduce and alleviate noise artifacts while
effectively capturing the vegetation response to the hurri-
cane. In doing so, the output retains and shows the initial
VI drop from the hurricane’s impact and subsequent recov-
ery in VI for certain vegetation types in the early months
after the hurricane.

Spatial Alignment of the MODIS Images and the 25 m Impact and Recovery
Polygons
MODIS images were georeferenced to the Lambert Conformal
Conic (LCC) projection (using standard parallels, a central
meridian, and false northing and easting as defined by the
Louisiana State Plane South) to conform to the Louisiana
State georeferencing system. The 25 m image databases were
referenced to the same projection (Ramsey et al., 2009a).
The georeferenced MODIS data products were then subset to
the PRWMA and areas immediately adjacent.

Cypress-tupelo and BLH forest extents were defined by
polygons created from the previous classification of a 2004
summer TM image (Ramsey et al., 2009a). Similarly, impact
and recovery polygons created from the early (09) and late
(25) October 2005 satellite data analyses were used to define
the areas with low (slight to moderate defoliation), moderate
(widespread defoliation with branch loss), and severe
(defoliation, branch loss, and downed trees) impacts to the
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Figure 1. The study area includes the wetland forests of
the Pearl River Wildlife Management Area (PRWMA). The
inset illustrates the path of Hurricane Katrina in the Gulf
of Mexico, its landfall on the coast of Louisiana, and its
movement through the eastern United States. The
different categories of the hurricane as it progressed
northward are presented in the hurricane symbols.

Figure 2. Impact and recovery polygons define the extents
of different impact levels to the BLH forest and the cypress-
tupelo forest based on the 09 and 25 October 2005 TM
images (Ramsey et al., 2009a) (Table 1). The outlined area
defines the PRWMA. The entire imaged area excluding water
bodies defined the sample region used in the cloud
occurrence calculations.



BLH forest (Ramsey et al., 2009a) (Figure 2). Impact severity
designations relied on general site assessment, discussions
with PRWMA personnel (J. Stafford, Region 7 Biologist
Manager, Louisiana Department of Wildlife and Fisheries,
personal communication), and previous documentation of
cypress-tupelo and BLH forest responses to an intense storm
impact (Ramsey et al., 1998). Based on that experience, post-
recovery analyses was limited in time in order to alleviate
ambiguity in the impact assessments caused by changes
brought on by fall senescence and by low-lying shrub and
vine growth, particularly where tree fall was widespread
(Ramsey et al., 2009a). A combination of site assessment,
discussions with PRWMA personnel, mapping experience,
and integration of both the initial and short-term recovery
assessments were used to define each impact and recovery
polygon designation (Ramsey et al., 2009a).

To prepare for comparing these impact and recovery
polygons with the MODIS products, vector-smoothing algo-
rithms were applied, and exclusion of polygons encompass-
ing less than 10,000 m2 were eliminated to reduce noise
(e.g., artifacts in the classification and raster to vector
conversion) and increase pertinent information content (PCI
Geomatics, 1998).

The Daily Mean VI for each Impact and Recovery Polygon
Cypress-tupelo and BLH forest impact polygons (depicted on
Figure 2) based on the 09 and 25 October 2005 25 m
satellite data analyses were overlaid on the 2004, 2005, and
2006 suites of MODIS VI images. VI image values were then
extracted under each polygon for each day of each year (PCI
Geomatics, 1998). Each year spanned from 01 January to 31
December and included 365 days or image layers. (The leap
day in 2004 was deleted.)

The ten-fold spatial sampling disparity between the 25
m Landsat and RADARSAT-1 and 250 m MODIS satellite data
products had the highest potential for increasing disagree-
ment between the 25 m and 250 m VI comparisons (Plate 1
and Figure 3). The overlay and spatial correspondence
calculation was accomplished by reprojecting the bitmaps
(raster representation of the polygons) defining the spatial
coverages of each impact zone derived from the 25 m
analyses to a 250 m representation. A nearest neighbor
approach was used to determine which 250 m pixels
spatially corresponded with the applied 25 m bitmap. The
criteria for inclusion of the 250 m pixel and its associated VI
values was whether or not a 25 m bit was located at the

center of the 250 m pixel. Although based on a simplistic
approach, visual examination showed the 25 m bitmap and
derived 250 m coverages aligned well. The most notable
disparities in spatial correspondence were associated with
the severe impact polygon (Figure 2; 25 October 2005)
exhibiting the highest spatial dispersion of all the impact
and recovery polygons.

To quantitatively assess the performance of the simple
nearest neighbor approach, we created a procedure within
the image processing software (PCI Geomatics, 1998) that
associated the spatial location of each bit of each different
bitmap with a unique 250 m pixel. For each day and each
bitmap (or polygon), the number of spatial co-occurrences
per 250 m pixel and its VI values were tracked. That
tracked information was used to create a VI frequency
distribution that represented the number of bits per bitmap
and day that were spatially associated with discrete VI
values (at the 0.1 percent level). The bit per VI value
frequencies were the weighting values used in the mean
and variance calculations (following Andersen et al., 1984;
equation 3.12). These statistics based on the VI frequency
distributions were compared to the calculated mean and
variance statistics based on the nearest neighbor selection
of 250 m pixels and their associated VI values. As stated,
based on visual inspection of the nearest neighbor results,
we expected close correspondences of the means of the two
approaches; however, because of the disparity in sample
number and the fact that the 25 m bits sampled individu-
ally constant valued 250 m pixels, we anticipated higher
variances about the 250 m means as compared to the 25 m
variance measures.

Daily Cloud Cover Estimates
Initial inspection of the VI trends suggested quasi-sinusoidal
cycles that appeared unusual for phenological patterns
associated with southern forests. Though trends were largely
consistent which might be expected in a forest without
hurricane effects, it is possible that cloud occurrences may
have impacted the trend results. MODIS data analyses do
mitigate most cloud cover impacts, but because they do not
completely eliminate them, we visually examined whether
the quasi-sinusoidal features could be related to cloud
contamination by producing percent cloud occurrence
images corresponding to the daily MODIS VI trend products.
From each daily cloud occurrence image, the percent of land
area within the study area (Figure 1) influenced by clouds
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Figure 3. Average VI values associated with impact and recovery polygons (shown in Figure 2) based on
the 25 October 2005 TM image (Ramsey et al., 2009a) for Landsat TM (25 m) and MODIS (250 m) images
depicted in Plate 1: (a) Cypress-tupelo, (b) low impact BLH, (c) moderate impact BLH, and (d) severe impact
BLH polygons.

(a) (b) (c) (d)



was calculated. The daily cloud cover was included in the
trend graphs for comparison.

Comparison of Yearly VI Trend Differences
To highlight the dissimilarities between pre-hurricane and
post-hurricane cypress-tupelo and BLH forests and their
associated impact and recovery polygons, MODIS VI differ-
ences were calculated between 2004, as the base year, and
2005 and 2006. Pre-hurricane (01 January to 28 August)
2004 versus 2005 VI calculations provided an estimate of
nonimpact year to year variability. Post-hurricane (29
August to 25 October and 26 October to 31 December) 2004
versus 2005 VI differences emphasized the immediate impact
and near-term recovery. VI differences related to 2004 versus
2006 compared to the 2004 versus 2005 differences provided
qualitative assessment of the temporal variability of recovery
per forest type and impact level. Errors associated with the
VI differences indicated the ability to discern differences
given the small 250 m sample size and spatially convoluted
impact and recovery polygons. Error estimates of the
difference were calculated by propagating the standard
deviation (Std) of each VI used in the difference calculation
(following Bevington, 1969). The Std indicates how tightly
the individual VI values (per pixel) composing each polygon
group about the associated polygon VI mean (Streiner, 1996).

In order to further elucidate seasonal patterns in the
post-hurricane 2006 recovery, 2004 minus 2005 differences
were subtracted from 2004 minus 2006 differences. The
direct calculation of the 2004 to 2005 and 2006 difference
provided a metric to evaluate the recovery patterns and to
quantify their strength per forest type and impact level.
These patterns were used to indicate time periods of
stability more conducive for assessing recovery.

Results

Assessment of 250-m VI Means and Variance Measures
Daily VI means calculated by using the nearest neighbor
selection and the frequency distribution methods differed on
average by �0.1% � 1% (Std) in comparisons that included
the 2006 low and severe impact and recovery polygons
(extents shown on Figure 2). The closeness of the means
justified the use of the simple nearest neighbor approach for
extracting the daily polygon VI statistics from the 250 m
MODIS data. As expected, the variance magnitudes associated
with the frequency distribution were much lower than those
calculated from the set of 250 m VI pixels selected with the
nearest neighbor approach. Although no compensation for
the coarse spatial resolution of MODIS was included in the
polygon overlays and VI extractions, we believe the variance
calculated at the 250 m level best represented the inherent
VI variability considering the relatively small sample size
and convoluted spatial coverages of the polygons. Table 1
includes the calculated areas and number of MODIS pixels
extracted per polygon (as shown in Figure 2). Each polygon
average VI and its associated variance for each year is
included in Table 2. The number of observations (250 m
pixels) used in the mean and variance calculations is listed
in Table 1.

Overlay of TM and MODIS Composite VI Images and VI Aggregate
The overlays of 22 August, 07 September, and 09 October
2005 TM and MODIS VI images exhibited remarkable corre-
spondence (Plate 1). Similarly, the TM and MODIS mean VIs
associated with the cypress-tupelo forest polygon and the 25
October 2005 low, moderate, and severe BLH impact polygons
show nearly replicate trends and magnitudes (Figure 3). 
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Impact and Recovery Polygons Observations

Data Condition Total (km2) 250 m MODIS
Pixels

Cypress-Tupelo 46.5 744

Based on 09 Oct
Low to Moderate Impact BLH 32.5 520

Moderate to Severe Impact BLH 18.4 294

Based on 25 Oct

Low Impact BLH 17.1 273

Moderate Impact BLH 26.8 429

Severe Impact BLH 7.4 118

Total 148.6 2,378

TABLE 1. IMPACT AND RECOVERY POLYGONS IN THE PRWMA

TABLE 2. MODIS VI MEAN AND VARIANCE ESTIMATES PER IMPACT AND RECOVERY POLYGON (MODIS VI AVERAGE VARIANCE ESTIMATES (AVE) ARE

COMPUTED USING THE IMPACT AND RECOVERY POLYGONS DERIVED FROM THE 25 OCTOBER 2005 TM COLLECTION AS DEPICTED IN PLATE 1 AND

FIGURE 2. THE NUMBER OF OBSERVATIONS USED IN THE STANDARD DEVIATION (STD) CALCULATION ARE LISTED IN THE MODIS PIXELS COLUMN IN TABLE 1.)

Year Cypress-Tupelo Low Impact BLH Moderate Impact BLH Severe Impact BLH Averaged by Year

Ave � Std Ave � Std Ave � Std Ave � Std Ave � Std

2004 0.488 0.053 0.582 0.044 0.584 0.045 0.570 0.050 0.556 0.048
2005 0.484 0.059 0.558 0.044 0.538 0.048 0.502 0.043 0.521 0.049
2006 0.459 0.056 0.558 0.051 0.516 0.058 0.448 0.049 0.495 0.054
Average 0.477 0.056 0.566 0.046 0.546 0.050 0.507 0.047 0.524 0.050



1138 Novembe r  2011 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Plate 1. Color composites of VI calculated from (a) TM and (b) MODIS images collected on 22 August, 
07 September, and 09 October 2005 (red-green-blue). Hurricane Katrina made landfall at the southern
extreme of the PRWMA (Figure 1) on 29 August 2005. The yellow (cypress-tupelo), green (moderate to
severe impact), and blue (low to moderate impact) polygon overlays indicate the impact and recovery
polygons based on the TM-radar image analyses up to 09 October 2005. These polygons are also depicted
in Figure 2 along with polygons based on the 25 October 2005 analyses. The TM color composite and
impact and damage polygons were adapted from Ramsey et al. (2009a)

(a) (b)

This high correspondence attests to the quality performance
of the TSPT processing.

Cloud Cover and VI Trends
Cloud cover percentages included on the trend graphics
illustrate the temporal correspondence between cloud cover
and VI trends (Figures 4a, 4b, and 4c). Although the visual
correspondence is scarce, there are a few short time periods
on the graphs where the rise and fall in cloud cover corre-
sponds to an inverse VI pattern, most notably on Figures 4a
and 4c. On the contrary, many abrupt changes in the VI
trends are reverse to the above patterns or seem totally
independent of the cloud cover trends. This limited evalua-
tion of cloud cover influence on the observed MODIS VI

trends suggests that extensive cloud covers may have
impacted the VI estimates at times; however, the relation and
magnitude of influence were unclear. The high consistency
in TM and MODIS VI results (Plate 1 and Figure 3) and pre-
hurricane BLH trends in 2004 and 2005 (and the co-occur-
rence in Hurricane Katrina landfall and abrupt decrease in
VI) substantiated the interpretability of the MODIS VI results
with respect to the study objectives.

Early and Late October Impact and Recovery NDVI Trend Comparisons
MODIS VI trends based on the early (09) and late (25) October
2005 impact and recovery zones showed similar patterns
differing mainly in VI magnitude (only trend lines associated
with 25 October polygons are included; Figures 4a, 4b, and 4c).



In particular, the trends based on the 25 October VI data
showed

• the BLH severe impact trend line lower than the combined
moderate to severe impact trend line based on the 09
October VI data;

• the 25 October BLH moderate impact trend line higher than
the 09 October VI moderate to severe impact trend line but
lower than the 09 October VI combined low to moderate
impact trend line;

• the 25 October BLH low impact trend line only slightly
higher than the 09 October VI low to moderate impact trend
line.

Cypress-tupelo trend lines based on MODIS VI data did
not change because its impact and recovery trend was
aggregated for the entire cypress-tupelo PRWMA coverage.
The near consistent early- and late-October 2005 impact and
recovery patterns allowed an effective illustration of the
changes in MODIS VI trends relevant to Hurricane Katrina
impacts by the trend lines based on the 25 October VI data.

NDVI Trends Based on Late October Impact and Recovery Polygons
The juxtaposition of MODIS VI trends in 2004 representing
the 25 October BLH impact and recovery zones supported the
spectral similarity of these different impact and recovery
patterns documented in the single-date early- and late-
October 2005 25 m satellite data analyses (Figure 4a). The
only disparity supporting a species dependency to the
observed impact and recovery patterns occurred in the
spring green-up period between about 01 February and mid-
March 2004. The VI trend associated with cypress-tupelo
forest in 2004 aligned with the BLH trends from spring to
early August then increasingly diverged until reaching
maximum differences in the winter. MODIS VI trends in 2005
displayed similar phenological behaviors for these cover
types until Hurricane Katrina landfall (Figure 4b). Shortly
after the storm, both BLH and cypress-tupelo forests exhib-
ited an atypical sudden and dramatic decrease in VI magni-
tudes. As revealed in the 25 m analyses, MODIS VI initial
impact severities and short-term recoveries trends differed
between cypress-tupelo and BLH forests and within the BLH.

As indicated by MODIS VI magnitudes, the cypress-tupelo
and the farthest southern BLH forests sustained the highest

damage, while the more northern BLH forest sustained
relatively lighter damage (Figure 4b). Based on VI trends,
cypress-tupelo forests quickly recovered and surpassed the
2004 VI magnitudes by mid- to late-October 2005 (Figure 4b).
Although the change was less dramatic, the lightly damaged
BLH forest had similarly recovered to 2004 VI levels by mid-
October 2005 (Figure 4b). In contrast, moderate and severe
impact BLH forests lagged behind (Figure 4b) and did not
approach 2004 VI levels until late-fall 2005 (Figure 4c).
MODIS 2006 trends exhibited high disparity between cypress-
tupelo and the BLH forests and BLH impact and recovery
polygons (Figure 4c).

VI Difference Trends
Yearly VI trends were more fully highlighted in the calcu-
lated VI difference trends (Figure 5a, 5b, 5c, and 5d). Pre-
hurricane (01 January to 28 August) 2004 versus 2005 VI
differences fluctuated � 5 percent near zero for both
cypress-tupelo and BLH forests. As noted in the yearly
trends, the largest 2004 versus 2005 difference during the
aforementioned pre-hurricane period occurred at spring
green-up. A second difference peak occurred in early-July.
Post-hurricane (29 August to 31 December) 2004 versus 2005
difference trends exhibited abrupt changes just after impact.
In the 2005 post-hurricane period, the level of BLH recovery
depended on impact level (Figures 5b, 5c, and 5d; Table 3).
While initially defoliated by the hurricane, cypress-tupelo
within a matter of weeks exhibited high VI values in this
period as these forests grew new canopy foliage. This was
already noted in the yearly trends (Figure 4b) and amplified
on the 2005 difference trends (Figure 5a; Table 3).

Longer term recovery trend disparities also were
represented on the VI difference trends (Figure 5a, 5b, 5c,
and 5d). In the pre-hurricane months (01 January to 28
August), the 2006 cypress-tupelo and low impact BLH VI
difference trends more closely tracked the 2004 and 2005
pre-hurricane VI trends than did the 2004 versus 2006
moderate and severe BLH impact trends. In the post-hurri-
cane period (29 August to 31 December), near zero 2004
versus 2006 VI differences indicated cypress-tupelo and low
impact BLH had recovered to near pre-hurricane levels
(Table 3). In the period representing the initial 2005 impact
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Figure 4. Yearly line graphics (a) is 2004, (b) is 2005, and (c) is 2006) depict the mean daily MODIS VI
extracted for the cypress-tupelo and BLH low, moderate, and severe impact and recovery polygons summa-
rized in Tables 1 and 2 and shown in Plate 1 and Figure 2. These line graphs are based on 25 October
2005 TM image data; graphs associated with impact and recovery polygons based on 09 October 2005 TM
image data are not included. Cloud frequency line graphs depicting the daily occurrence of cloud cover in
the study area as defined in Figure 2 are shown at the top of each graph.

(a) (b) (c)



and short-term recovery (29 August to 25 October), moderate
and severe 2004 versus 2006 BLH impact differences also
showed dramatic recovery but after that remained at post-
hurricane 2004 versus 2005 levels (Table 3).

Pre-hurricane (01 January to 28 August) recovery trends
in 2006 were further clarified by comparing 2004 versus 2005
VI and the 2004 versus 2006 VI differences (Figure 5e). In this
period, cypress-tupelo and low impact BLH closely aligned
with 2004 and 2005 pre-hurricane conditions based on MODIS
VI (Figure 5e; Table 4). In contrast, moderate and severe
impact BLH trends exhibited successively higher differences

(Figure 5e; Table 4). Within these pre-hurricane overall trends
from 01 January through late-July, four time periods exhibit-
ing noticeably different VI difference patterns emerged in the
cypress-tupelo and BLH forests. These patterns consisted of (a)
the winter flat (01 January to 19 March), (b) the early-spring
minimum (20 March to 14 May), (c) the late-spring to early-
summer flat (15 May to 19 July), and (d) the summer increase
(20 July to 29 August). The first and third periods (the winter
flat and the late-spring to early-summer flat) may offer the
most stable time periods for monitoring forest recovery in
these wetland forests (Figure 5e; Table 4).
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Figure 5. Yearly differences between 2004 (base year) and 2005 and 2006 MODIS VI values. In Figures 5a,
5b, 5c, and 5d the black lines denote calculated 2004 versus 2005 VI differences plus and minus one
Std (summarized in Table 3). The grey lines denote differences between the pre-hurricane (01 January to
28 August) VI values represented as the 2004 and 2005 VI averages minus 2006 VI values and the post-
hurricane (29 August to 31 December) 2004 minus 2006 VI differences plus and minus one Std. (a)
Cypress-tupelo (the ellipse highlights the elevated cypress-tupelo post-impact VI), (b) low impact BLH, (c)
moderate impact BLH, and (d) severe impact BLH. The 29 August (anniversary date of the Hurricane Katrina
landfall) and 25 October vertical dashed lines mark the time period divisions used in Table 3. Figure 5e
represents the pre-hurricane (01 January to 28 August) and post-hurricane (29 August to 31 December)
2004 versus 2005 VI difference minus the 2004 versus 2006 differences. Negative differences denote
higher 2004 versus 2006 VI differences than the pre-hurricane VI variance represented by the 2004 versus
2005 VI differences. Cypress-tupelo is represented by the diamonds, low impact BLH by the dashed lines,
moderate impact BLH by the open circles, and severe impact BLH by the open squares. The first three
vertical dashed lines show locations of categories summarized in Table 4, and the fourth the 29 August
Hurricane Katrina landfall. Average variance for each difference trend line is in Table 4.

(a) (b)

(d) (e)

(c)



Discussion
This study showed that, even though extensive cloud cover
existed and possibly affected the VI trends at times, its
influence on the interpretability of relative trend patterns
among impact and recovery zones was substantially elimi-
nated by the TSPT processing of the dual, integrated Aqua
and Terra daily MODIS sensor data. MODIS VI trends replicated
expected phenologies and hurricane impact responses and
aligned remarkably well with VI spatial trends exhibited by
Landsat TM impact and recovery images and Landsat TM VI
aggregated by impact and recovery polygons. In addition,
pre-hurricane MODIS VI BLH trends in 2004 and 2005 further
substantiated the consistency of the daily VI record offered
by TSPT processing. These and other discussed consistencies
confirmed that the relative differences between trends were
directly interpretable.

The pre-hurricane daily MODIS VI record considerably
improved our understanding of the temporal VI trend
associated with hurricane-induced forest damage and
subsequent recovery, compared to information available
from the snapshot recordings offered by the 25 m Landsat
TM and RADARSAT-1 satellite image collections. Replicating the
25 m data analyses, the MODIS VI exhibited different impact
and recovery trends in the cypress-tupelo versus BLH forests
and within the BLH forest. Even the abnormal and elevated
2005 post-hurricane canopy foliage response associated with
the cypress-tupelo forests that were indicated on the 25 m
Landsat TM and RADARSAT-1 monitoring was clearly docu-
mented and its temporal duration timed in the MODIS VI
trend analyses. Not directly distinguishable in the 25 m
analyses were the detailed temporal VI response trends
representing the cypress-tupelo and different impact and
recovery zones within the BLH forest.

Multiple post-hurricane impact trends for these impact
and recovery zones were discernable in the MODIS VI record
through 2006, more than one year after the Hurricane
Katrina Louisiana landfall. By using 2004 and 2005 VI trends

to represent pre-hurricane (01 January to 28 August) vegeta-
tion condition, post-hurricane 2004 versus 2006 VI difference
analyses showed that by early-2006 cypress-tupelo and light
impact BLH canopies had largely recovered to pre-hurricane
foliage canopy greenness levels. On the contrary, VI trends of
moderate to severe impact BLH forests differed highly from
pre-hurricane levels throughout the period from 01 January
to 28 August 2006, and although diminished, continued to
differ through the end of 2006. A probable reason for the
lagging recovery in these more severely impacted BLH forests
could be fundamental changes in canopy structure and, in
some cases, canopy composition, especially for those areas
in the process of stand replacement.

The phenology represented by the severe and moderate
impact BLH VI trends seems to correspond to severely
damaged stands and subsequent replacement. The most
severely impacted BLH forest would include the greatest tree
fall, and although diminished, the moderately impacted BLH
forest might nevertheless be distinguished by a higher
incidence of gap creation and enlargement. Where gaps were
created or enlarged, new species and replacement seedlings
of similar composition to the pre-hurricane overstory species
composition could have quickly established with the newly
available light. Creation and enlargement of canopy gaps
with the rapid establishment and growth of a sub-canopy or
the wholesale replacement of tree stands would alter the
site’s phenological trends as represented by remotely sensed
canopy foliage parameters, such as VI in this case. In fact,
widespread replacement of pre-hurricane forest canopies is
occurring in severe impact BLH forest zones within the study
area (Jimmy Stafford, 2008, Louisiana Department of
Wildlife and Fisheries, personal communication). Fre-
quently, this replacement is through regeneration by Triad-
ica sebifera (Chinese tallow), an aggressive and highly
tolerant invasive tree species (Ramsey et al. 2005). The
ability to capture these possible forest transitions exempli-
fies the advantage with MODIS of longer term and higher
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TABLE 4. PRE-HURRICANE AND POST-HURRICANE MODIS VI DIFFERENCE COMPARISONS (AVERAGES (AVE) WERE

CALCULATED FROM THE 2004 VERSUS 2005 DIFFERENCE MINUS THE 2004 VERSUS 2006 DIFFERENCES FOR
EACH TIME PERIOD. THE TIME PERIODS ARE DEPICTED ON FIGURE 5E. THE STANDARD DEVIATIONS (STD) WERE

CALCULATED AS VARIANCE ABOUT THE AVERAGE DIFFERENCES. NEGATIVES DENOTE HIGHER 2004 VERSUS 2006
THAN 2004 VERSUS 2005 DIFFERENCES.)

Impact and Recovery 01 Jan – 19 Mar 20 Mar – 15 May 16 May – 20 Jul

Polygon Ave � Std Ave � Std Ave � Std

Cypress-Tupelo −0.02 0.05 −0.02 0.06 −0.05 0.02
Low Impact BLH 0.01 0.04 −0.05 0.05 −0.06 0.03
Moderate Impact BLH −0.04 0.03 −0.11 0.05 −0.09 0.03
Severe Impact BLH −0.10 0.05 −0.19 0.06 −0.15 0.03

TABLE 3. COMPARISONS OF MODIS 2004, 2005, AND 2006 VI DIFFERENCES. (AVERAGES (AVE) WERE CALCULATED FROM 2004 VERSUS 2005 AND 2004
VERSUS 2006 VI DIFFERENCES. THE STANDARD DEVIATIONS (STD) ARE PROPAGATED VARIANCES BASED ON THE STD OF THE INDIVIDUAL YEARLY VI VALUES. NEGATIVES

DENOTE LOWER 2004 VERSUS 2005 OR 2006 VI AVERAGED. THE TIME DIVISIONS ARE LOCATED ON FIGURES 5A, 5B, 5C, AND 5D.)

29 Aug – 25 Oct 26 Oct – 31 Dec

Impact and Recovery Polygon 2004 vs 2005 2004 vs 2006 2004 vs 2005 2004 vs 2006

Ave � Std Ave � Std Ave � Std Ave � Std

Cypress-Tupelo 0.12 0.04 �0.01 0.04 �0.11 0.04 0.02 0.03
Low Impact BLH 0.15 0.03 0.00 0.03 0.00 0.03 0.02 0.04
Moderate Impact BLH 0.21 0.02 0.03 0.03 0.05 0.05 0.07 0.07
Severe Impact BLH 0.27 0.03 0.06 0.04 0.12 0.04 0.12 0.04



frequency monitoring of forest recovery areas and threats to
full recovery.

In the pre-hurricane 25 m Landsat TM and RADARSAT-1

analyses, the eastern and western divisions in BLH communi-
ties identified in White’s (1983) floristic survey were not
discernable; however, the pattern of the eastern and western
forest communities’ dominance coincided with spatial
patterns determined in the 25 m impact and recovery
analyses (Ramsey et al. 2009a; Ramsey and Rangoonwala,
2010, unpublished data). The pre-hurricane MODIS VI trends,
however, suggested that spectral separation of the BLH
communities may be possible in a fairly narrow time period
from late-winter to early-spring encompassing the early-part
of leaf regrowth and canopy green-up. Such phenological
differences in vegetation greenness can be largely attributa-
ble to differences in species composition and other struc-
tural attributes (e.g., intra-stand height, density, and arrange-
ment) of the forest overstory within these communities. This
apparent distinctiveness in VI response between the BLH
communities was achievable because of the availability of
the daily MODIS data and the phenological characteristics of
these specific communities within the more broadly defined
BLH type. The ability to separate spectrally the BLH commu-
nity types during seasonal canopy foliage changes is sup-
ported by mapping based on late-fall and winter color
infrared aerial photographic image data (Ramsey and
Rangoonwala, 2010, unpublished data). The spatial coinci-
dences in the color infrared and MODIS VI BLH community
and impact severity mapping could establish an association
between BLH community type and storm impact severity.

Although 25 m Landsat TM and RADARSAT-1 pre-
hurricane mapping showed no conclusive spectral dispari-
ties between eastern and western BLH forest (Ramsey et al.,
2009b), classification of the pre-hurricane 25 m satellite
images showed the capacity for spectral differentiation
between the BLH and cypress-tupelo forests. The MODIS VI
trend analyses confirmed the 25 m satellite data analyses
and provided additional information. Pre-hurricane VI
trends predicted increasing divergence between cypress-
tupelo and BLH trends starting around mid-summer that
reached its highest magnitude of difference in winter.
Although not determined here, the higher VI differences
would most likely suggest higher spectral contrast because
the VI magnitudes are primarily driven by green foliage
quantities in fully formed canopies and by canopy percent
openness and background reflectance in more open
canopies. Ramsey et al. (2006) noted that many BLH forest
species form fuller summer canopies than mixed cypress-
tupelo forests and can retain their leaves throughout most
of the winter, the leaf turnover transition occurring rapidly
within a short time period. The more prolonged retention
of leaves and fuller canopies associated with some hard-
wood species could exacerbate winter VI differences related
to canopy closure in cypress-tupelo versus BLH, and
thereby, could augment the ability to spectrally differenti-
ate between the more open canopy cypress-tupelo forest
and the BLH forest.

Conclusions
The phenological characteristics of impacted wetland forest
communities within the lower Pearl River were provided by
the integration of 25 m satellite optical and radar satellite
stand-level information with the high temporal yet lower
spatial resolution 250 m daily MODIS image data. The daily
MODIS VI mapping substantiated the overall 2004 and 2005
pre-hurricane consistency in BLH forest canopy foliage and
captured the sudden damage to the lower Pearl River’s

wetland forest that occurred during Hurricane Katrina’s
landfall. As in the 25 m Landsat TM and RADARSAT-1 satellite
analyses, the MODIS VI showed a dramatic decrease in
canopy foliage throughout this wetland forest and corrobo-
rated 2005 post-hurricane differential impact patterns. Post-
hurricane VI trends documented the rapid and elevated
foliage regrowth of the extensively defoliated cypress-tupelo
forest and the disparate short-term recoveries associated
with the differential BLH impact severities previously
documented in 25 m snapshot image collections by Ramsey
et al. (2009a). The MODIS VI trends, however, changed the
monitoring paradigm from one based on chance collections
of useable image data from Landsat TM and RADARSAT-1
sources to one based on consistent daily collections of image
data from the two MODIS systems.

The MODIS VI trend analyses enabled a more complete
description of the pre-hurricane phenologies and post-
hurricane damage severities and recovery. Instead of moni-
toring based on opportunistic snapshots of the wetland
forest condition, and even though cloud occurrence was
frequently evident and often extensive, specialized process-
ing provided consistent daily MODIS VI estimates of forest
greenness conditions. With these daily products, time
periods for optimal spectral separation between forest types
and communities were observed. This information was not
readily available from the alternative 25 m satellite collec-
tions of limited temporal availability. For instance, although
nearly coincident in pre-hurricane spring to early-winter
months, VI analyses identified a separation of BLH commu-
nity trend in the pre-hurricane spring green-up period,
representing observable differences in a specific phenologi-
cal response per forest community type. In addition, an
optimal time period for cypress-tupelo and BLH forest
spectral separation was observed. Likewise, hurricane
impact and recovery temporal patterns were more fully
documented. Lightly damaged BLH and extensively defoli-
ated cypress-tupelo forests exhibited largely pre-hurricane VI
trends from 2006 onwards. In contrast, moderately, and
especially severely, impacted BLH post-hurricane VI trends
revealed lagging recoveries throughout 2006 that may in part
be associated with observed stand-level replacement by
invasive, non-native trees.

Future works will assess longer term recovery as a
function of VI-based wetland forest canopy greenness and
compare wetland forest impacts from Hurricane Katrina to
those on adjacent upland forests. The spatial and temporal
extension of these analyses could help improve the under-
standing of wetland forest regeneration and forest structure
spatial patterns (e.g., composition, density) in order to
predict how specific weather events such as devastating
storms change these forested ecosystems. In addition, we
hope to better define the relationship of observed damage
and recovery with respect to timber volume.
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Abstract
This research investigated the applicability of lidar data for
estimating population at the census block level using a
volumetric approach. The study area, near the urban
downtown area of Denver, Colorado, was selected since it
includes dense distribution of different types of residential
buildings. A modified morphological building detection
algorithm was proposed to extract buildings from the lidar-
derived surfaces. The extraction results showed that the
modified morphological building detection algorithm can
effectively recover building pixels occluded by nearby trees.
The extracted buildings were further refined to residential
buildings using parcel data. Two approaches (i.e., area- and
volume-based) to population estimation were investigated at
the census block level. Four regression models (i.e., simple
linear regression, multiple linear regression, regression tree
using one variable, and regression tree using multiple
variables) were used to identify the relationship between
census population and the area or volume information of
the residential buildings. The volume-based models over-
whelmingly outperformed the area-based models in the
study area, and the models using multiple variables yielded
more accurate estimation than the single variable models.
The volume-based regression tree model using multiple
variables yielded the most accurate estimations: R2 � 0.89,
RMSE � 21 people, and RRMSE � 26.8 percent in the calibra-
tion site; and R2 � 0.80, RMSE � 27 people, and RRMSE �
30.1 percent in the validation site. As the results show, the
volumetric approach using lidar remote sensing is effective
for population estimation in regions with heterogeneous
housing characteristics.

Introduction
The application of remote sensing and GIS technologies for
population estimation has been intensively investigated
during the past two decades (Lo, 1995; Yuan et al., 1997;
Harvey, 2002; Wu and Murray, 2005; Lu et al., 2006; Lo,
2008; Liu et al., 2008; Wu et al., 2008; Jensen et al., 2010;
Li and Weng, 2010; Lu et al., 2010). In previous studies of
population estimation, remote sensing-derived variables
were used as population count indicators (such as pixel
counts of land use) and population density indicators (such
as mean of reflectance data or their transforms) (Wu and
Murray, 2007). In most of these studies, these indicators
were derived from moderate spatial resolution satellite
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imagery (e.g., Landsat Thematic Mapper). Investigation of
the relationship between these indicators and census
population data has followed (e.g., Lu et al., 2006; Lo,
2008). Approaches using moderate spatial resolution data
have two main limitations: a relatively weak relationship
between the population indicators (e.g., residential area)
and census population, and difficulty in categorizing
different types of residential areas (e.g., dominance of
multi- versus single-unit residential buildings; and mix-
tures of tall apartment complexes and one- or two-story
residential buildings).

Jensen and Cowen (1999) proposed that spatial resolu-
tion between 0.5 m and 5 m would theoretically be appro-
priate for extracting detailed population information. More
recently, several studies reported increased capability for
population estimation using high spatial resolution imagery
such as QuickBird and Ikonos data (e.g., Liu et al., 2008) or
fusing lidar data with high spatial resolution imagery (e.g.,
Wu et al., 2008; Lu et al., 2010). In addition, many studies
have used geographic information system (GIS) tools to
collate spatial data from different sources to estimate
population. For example, Langford (2006) employed a three-
class dasymetric method to estimate population in non-
census reporting areas. Interpolation-based approaches have
also been investigated for population estimation (Wu and
Murray, 2005; Liu et al., 2008).

Remote sensing-derived area information, such as
residential area and impervious surface area, has typically
been used in population estimation studies. Though the area-
based approaches may perform well in homogeneous regions,
such as suburban regions where most of the residential
buildings are single family houses, they might not work well
in heterogeneous areas with various types of residential
buildings (single-family houses, apartments, and condomini-
ums). Lu et al. (2006) and Wu et al. (2008) found that area-
based approaches tend to overestimate population in low
population density regions, while underestimating popula-
tion in high density regions. Wu et al. (2008) also found that
population estimations for multi-family residential areas tend
to have higher errors than single-family residential areas.
There are two main issues in estimating population in
regions with heterogeneous building characteristics: (a) the
difficulty in discriminating residential and non-residential
buildings, and (b) the difficulty of dividing multi- and 
single-unit residential buildings (Lo, 1989 and 1995).
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To overcome the limitation of the area-based
approaches, a volume-based approach has been introduced
(Wu et al., 2008; Lu et al., 2010). The volume-based
approach utilizes the volume of residential buildings, rather
than the area of the building footprint, to estimate popula-
tion. The volume-based approach, with its ability to alleviate
the prediction bias caused by multi-unit structures, may
outperform the area-based method particularly in heteroge-
neous regions. Lu et al. (2010) evaluated both area- and
volume-based approaches to population estimation in a
suburban area of Denver, Colorado where most of the
residential buildings were single-family houses. An object-
based decision tree classification algorithm was employed to
delineate the residential buildings using QuickBird and lidar
data. The volume of residential buildings was then calcu-
lated using the previously delineated residential building
footprint multiplied by the lidar-derived height. Both the
areal and volumetric approaches successfully estimated
population at the census block level resulting in R2 �0.8
and RMSE �30 people. However, the volume-based approach
did not significantly outperform the area-based approach
mainly because (a) the study site was dominated with
single-family houses, and (b) the volume-based approach
was more sensitive to residential building classification
errors (e.g., confusion with tall trees and other types of
buildings such as shopping malls).

Using airborne or satellite imagery or fusing lidar data
with such imagery, has been a popular method for delin-
eating building footprints in population estimation studies
(Wu et al., 2008; Lu et al., 2010). The fusion process
facilitates using the valuable spectral information (e.g.,
Gong et al., 2011; Ke et al., 2010), which makes the
identification of building footprints more accurate. How-
ever, this fusion process has several associated challenges:
the spatial resolution of the lidar data may be sacrificed to
fit other inputs (Tullis and Jensen, 2003); noise, such as
shadows, clouds and the building displacements may be
introduced due to variation in look angles or other collect-
ing conditions (Meng et al., 2009a); and temporal discrep-
ancy in different data sources can negatively impact
population estimation.

Meng et al. (2009a) found lidar data adequate for
delineating building footprints in urban areas. However,
using lidar data solely for estimating population in urban
areas has had minimal exploration. In this study, a modified
morphological building detection algorithm was proposed to
delineate the footprints of all buildings from lidar-derived
surfaces around urban downtown areas. Subsequently, the
residential building footprints were obtained by intersecting
the building footprints delineated from lidar-derived sur-
faces with land parcel polygons. The volume of the residen-
tial buildings was then calculated using lidar-derived height
information. The objectives of this research were to (a)
investigate the usability of lidar data to delineate residential
buildings in urban areas, (b) investigate different lidar-
derived products for calculating population indicators (i.e.,
residential building footprint, residential building volume),
and finally (c) evaluate volume and area-based regression
models (i.e., simple linear, multiple linear, and regression
trees) for population estimation.

Study Area and Data
Study Area
Two sites located near the downtown area of Denver,
Colorado were selected for calibration and validation
(Figure 1). The calibration site contains three census tracts

which consist of 163 census blocks. Two census blocks in
the neighboring tract containing mainly multiple family
houses (i.e., apartments and condominiums) were also
included to ensure heterogeneity within the calibration site.
Of the 165 blocks in the calibration site, 139 contain
residential buildings, while 84 of these have multiple family
houses. The average number of residents per block in the
calibration site is 68.

The validation site includes one census tract with
58 census blocks, 38 of which contain multiple-family
houses, and the average number of residents per block is 78.
Both sites have heterogeneous characteristics in terms of
building components and population intensity, although the
validation site is smaller than the calibration site. The
buildings in the calibration site consist of 3,041 single-
family houses (85.3 percent), 368 multiple-family houses
(10.3 percent), and 155 non-residential buildings (4.4 percent),
while the buildings in the validation site are 972 single-
family houses (79.7 percent), 171 multiple-family houses
(14.0 percent), and 77 non-residential buildings (6.3 percent).
Table 1 summarizes the basic statistics related to the
demographic, economic, and housing characteristics in the
calibration and validation sites. One of the census tracts in
the calibration site has quite different economic and housing
characteristics (i.e., higher income and higher rate of single-
family houses) than the other two calibration tracts and the
validation tract. This makes the calibration site more
heterogeneous, which is good for investigating which
modeling techniques are more robust and flexible for
population estimation in such a heterogeneous environment.
In addition, the different characteristics between the calibra-
tion and validation sites will allow us to examine the
transferability of the modeling techniques used.

Data
The lidar data were collected on 15 April 2008 by the
Sanborn Map Company. The lidar sensor collected small
footprint multiple returns (x, y, and z) and intensity data
using a 1,064 nm laser with a pulse repetition frequency of
50 kHz. The posting density of the lidar data was about
2.3 pts/m2. Three raster surfaces with 0.5 m pixel size were
generated from TIN models of the first return, last return,
and bare earth data points. Two local height surfaces
denoted as the first return height (FRH) surface and the last
return height (LRH) surface were created by subtracting the
bare earth surface from the first return and last return
surfaces, respectively. A first-last difference surface (FLD)
was also created by subtracting the last return surface from
the first return surface.

The 2000 census block data and land parcel data were
downloaded from the GIS Center of Denver City (http://www.
denvergov.org/GIS). The Denver parcel data describes the
rights, interests, usage, and assessed value of property.
The parcel polygons approximate the boundaries of land
properties. In addition, each parcel data record also has
an attribute showing the building construction year, which
was used as a reference to exclude residential buildings
built after 2000 from the population estimation process.

Methodology
Figure 2 summarizes the research workflow. Three lidar-
derived surfaces (i.e., FRH, LRH, and FLD) were initially
generated, and then a modified morphological building
detection technique (Figure 3) was proposed to delineate
building polygons using these surfaces. The extracted
building polygons were subsequently intersected with the
parcel data to identify the residential building polygons
according to the parcel usage. The volume of the residential
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Figure 1. The study area containing calibration and validation sites.

TABLE 1. DEMOGRAPHIC, ECONOMIC, AND HOUSING CHARACTERISTICS OF THE CALIBRATION AND VALIDATION SITES

Statistic Calibration site Validation site
Population density 4,119 people/km2 5,124 people/km2

Population per block (range) 2 – 462 people 2 – 287 people
Median household income (USD) $49,106 $29,964
Per capita income (USD) $36,673 $23,515
Number of single-family houses 3041/18* 972/17
Number of multiple-family houses 368/2 171/3
Number of non-residential buildings 155/1 77/1

*total/mean at the block level

buildings was calculated by multiplying the delineated
footprints of residential buildings with the lidar-derived
height. The area and volume information of the residential
buildings for each census block were attained using a zonal
statistics function in ArcGIS® 9.3. Then, the relationships
between the area and volume of the residential buildings
and census population were investigated using four

regression models. All the calibrated models were evaluated
using data from the validation site.

Modified Morphological Building Detection Algorithm
The morphological building detection algorithm presented
by Meng et al. (2009a) was developed to utilize lidar-
derived surfaces in the extraction process. The use of a



single data source in the algorithm helps mitigate errors and
information loss caused by the process of data fusion. There
are five main operations in the original morphological
building detection method. The first operation is ground
filtering, which utilizes a multi-directional ground filtering
algorithm (Meng et al., 2009b) to generate the bare earth
surface. The second operation uses the FRH and FLD surfaces
to separate buildings from other objects. The third operation
is morphology filtering to remove misclassified building
pixels based on the morphological characteristics of
buildings. The fourth operation is building center recovery,
which aims to recover the incorrectly filtered pixels that are
within the building objects. The last operation is performed
to convert the building pixels into vectors and remove non-
building polygons using area and compactness thresholds.

The first operation of the morphological building
detection algorithm was not necessary in this study because

the bare earth points were identified and delivered by the
Sanborn Map Company. Two major improvements have
been made to the original method. The first improvement
was made to the building center recovery operation. While
the original center recovery operation effectively recovered
some of the pixels that were misclassified as non-building
pixels, the complex urban environment led to substantial
enlargement of vegetation fragments within the study site.
For this reason, the typical recovery criterion was modified
to not only compare the FRH with the average FRH of the
neighboring potential buildings, but to also count the
number of neighboring building pixels. If the number of
neighboring building pixels was less than a user-specified
threshold (i.e., four in this study), the non-building label
remained even if the pixel satisfied the height criteria.

The second improvement was implementation of
a boundary recovery operation to deal with the partial
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Figure 2. The process flow diagram of the study.



occlusion of building footprints caused by nearby trees. The
boundary recovery operation initially generated another
binary image by applying a threshold to the LRH surface. If
the height (LRH) of the pixel was larger than the threshold,
the pixel would be labeled as a last-return-derived building
pixel. Then, a morphology operator was applied to the
potential building image obtained after the first four opera-
tions of the morphological building detection technique.
Pixels incorrectly labeled as non-building pixels were
recovered if they satisfied the following two criteria: (a) the
pixels below and above or to the left and right were last-
return-derived building pixels, and (b) the height difference
between the non-building pixel (i, j) and the neighboring
last-return-derived building pixels was less than 1 m. The
modified morphological building detection algorithm was
implemented using the C# programming language and the
Geospatial Data Abstraction Library (GDAL).

Volumetric Approach to Population Estimation
The volumetric approach to population estimation uses the
volume of residential buildings, which is calculated using the

footprint area and height of the buildings. The footprint of
residential buildings was obtained by intersecting the
extracted building polygons with the parcel data based on the
parcel usage information. Two different lidar-derived height
layers (FRH and LRH) were tested for providing the height of
residential buildings. To reduce the need for field-collected
building height reference data, we performed a relative
comparison between the two height layers: the volume of
residential buildings was calculated using both height layers
for the calibration site, linear regression was investigated
between the volume information and census population, and
finally, the height layer resulting in better performance was
considered the reference “height” layer and used in subse-
quent population estimation analyses. In addition to the
volumetric approach, an areal approach using building
footprint size was also employed for comparison.

Four regression models (simple linear regression (SLR),
multiple linear regression (MLR), regression tree using a
single variable (RTS), and regression tree using multiple
variables (RTM)) were used to identify the relationship
between both area and volume, and population. Regression
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Figure 3. Flow diagram of the modified morphological building detection
algorithm.



trees are a well accepted machine-learning technique, and
have been widely employed in the field of remote sensing
(Lawrence and Wright, 2001; Xu et al., 2005; Kocev et al.,
2009; Im et al., 2009 and 2011). Regression trees recursively
split input reference data to obtain the homogeneous
terminal nodes, from which different rulesets are generated.
A split occurs if the combined residual error of the model
for two subsets is significantly lower that the residual error
of the single best model in the process (Huang and Town-
shend, 2003). This study used Cubist by RuleQuest, Inc.,
which uses a modified regression tree system to create rule-
based predictive multivariate models from the data. It was
anticipated that regression tree models (i.e., RTS and RTM)
could be valuable for population estimation in heteroge-
neous regions since the method can generate multiple
rulesets that may correspond to census units with different
population density and building characteristics. After the
four regression models were trained using the calibration
site, their performance was evaluated using data from the
validation site.

The independent variable for the single variable regres-
sion models (i.e., SLR and RTS) was the total area/volume of
the residential buildings in each census block. For the
multi-variable regression models (i.e., MLR and RTM), the two
independent variables were total area/volume of the single
family and multiple family houses in each census block.
Using the two variables as population indicators, different
weights can be assigned to each variable according to its
contribution to the population numbers. The performance of
the four models (i.e., SLR, MLR, RTS, and RTM) for each input

dataset (i.e., area and volume) was evaluated using coeffi-
cient of determination (R2), root mean square error (RMSE),
and relative root mean square error (RRMSE).

Results and Discussion
Residential Building Delineation
Both the original and modified morphological building
detection algorithms were applied to the lidar-derived
surfaces to delineate building footprints. While the delin-
eated building footprints using both algorithms were
generally similar, the modified algorithm dramatically
improved the building delineation where there were tall
trees next to the residential buildings. In order to conduct a
quantitative assessment of the results, a small portion of the
study area was selected and buildings were manually
digitized based on the visual interpretation of the lidar-
derived height (i.e., FRH and LRH) and intensity. The
digitized building polygons were further visually examined
using Google Earth® and were used as a reference for
evaluating the two algorithms. Figure 4 shows the reference
building polygons and the building footprints delineated
using both the original and modified algorithms. The
associated accuracy statistics (user’s and producer’s accura-
cies, overall accuracy, and Kappa coefficient) are summa-
rized in Figure 4. The statistics showed that the modified
algorithm (Kappa of 0.924) outperformed the original one
(Kappa of 0.838). When compared to the reference polygons
for the building area (5,685 m2 based on the reference
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Figure 4. Accuracy assessment of the delineated building footprints using both the
original and modified building detection algorithms: (a) the reference building polygons
digitized based on visual interpretation of the lidar-derived height and intensity,(b) the
building footprints generated using the original building detection algorithm, (c) the
building footprints generated using the modified building detection algorithm, (d) accu-
racy statistics of the results using the original algorithm, and (e) accuracy statistics of
the results using the modified algorithm.

(a) (b) (c)

(d) (e)



polygons), the original algorithm underestimated the
building area (4,685 m2 or 82 percent of the area of the
reference data) while that generated using the modified
algorithm was 5,419 m2 (95 percent of the area of the
reference data). The increase of the building footprint area
delineated based on the modified algorithm was mainly
attributed to the successful recovery of the building pixels
occluded by the nearby tall trees. In addition, the recovery
of some pixels that were incorrectly labeled as non-building
pixels within the boundary of the building objects also
contributed to the increase of the footprint area. However,
errors still existed for both the original and modified
morphological building detection algorithms since not all
incorrectly classified pixels within building objects were
recovered and some building boundaries were still irregular.
While additional morphology operators such as erosion and
dilation might reduce these errors, it is likely that such
operations would inappropriately modify the size of the
extracted building footprints at the same time. Given the
small size of these errors in both the calibration and
validation sites, no further processing operations were done
for this study.

Having established building footprints, residential
buildings were delineated by intersecting the extracted
footprints with the parcel data according to the attributes of
building type and construction year. All residential build-
ings were further categorized into two classes (single-family
houses (i.e., single-family and row houses) and multiple-
family houses (i.e., condominiums and apartments)) accord-
ing to the usage attribute from the parcel data.

Investigation of Lidar-derived Heights for Calculating Population Indicators
The volume of residential buildings calculated using either
FRH or LRH was investigated as a population indicator in this
study. Lidar-derived height is typically generated by sub-
tracting a bare earth from a first return surface (i.e., FRH).
However, FRH may not provide accurate building height
information in certain situations. For example, if a portion
of a building rooftop is occluded by nearby tree branches,
FRH would overestimate the height, and consequently the
building volume. LRH may improve height estimation in this
case since the last return comes from the rooftop, not from
the occluding tree branches. Table 2 summarizes the
performance of the regression models (i.e., SLR and MLR)
using building volume based on two different height data
(i.e., FRH and LRH) for population estimation in the calibra-
tion site. There was not much difference in population
estimates using FRH or LRH, although the LRH-derived volume
did result in slightly better performance than FRH-derived
volume (Table 2). The major reasons for the similarity in
results are because (a) occlusion by trees was already
improved by the modified morphological algorithm, (b) there
are not many building pixels occluded by the tall trees
within the site, and (c) the differences between FRH and LRH
in the occluded building pixels were generally small.
Consequently, the LRH-derived volume information was used
in subsequent population estimation.

Population Estimation
We used the parcel data to identify the type of the delin-
eated buildings in terms of usage (i.e., single-family houses,
multiple-family houses, and non-residential buildings). As
there are many non-residential buildings within the study
sites, population estimation based directly on all the
delineated buildings could result in very poor performance.
A preliminary analysis was conducted in both the calibra-
tion and validation sites to see if classification of buildings
by their usage could improve population estimation. The
analysis evaluated the correlation between the census
population and both the area and volume of the residential
buildings, extracted based on the parcel data, and all the
buildings without using the parcel data. For the calibration
site, the R2 values between the census population and the
area and volume of the residential buildings were 0.23 and
0.73, respectively, compared to 0.10 and 0.14 based on the
area and volume of all the extracted buildings. Similar to
the calibration site, the R2 values between the census
population and the area and volume of the residential
buildings in the validation site were 0.69 and 0.80, respec-
tively, compared to 0.30 and 0.12 using the area and volume
of all buildings. Given that using only the residential
buildings dramatically improved population estimation,
especially for the volume-based models (i.e., R2 value
increased from 0.14 to 0.73 and 0.12 to 0.80 in the calibra-
tion and validation sites, respectively), the residential
building delineation and further classification into single-
and multiple-family houses were necessary to increase
population estimation accuracy.

Four regression models (i.e., SLR, MLR, RTS, and RTM)
based on either the area or volume of the residential build-
ings were developed in the calibration site (Table 3). The
volume-based RTS and RTM models generated two different
rulesets for regions with various building characteristics, the
remaining six models had only one ruleset. The perform-
ances of different models were compared in the following
section.

Table 4a shows the calibration results using four
regression models (i.e., SLR, MLR, RTS, and RTM) based on
either the area or volume of the residential buildings. The
volumetric approaches outperformed the areal ones among
all the models. In particular, the area-based regression
models using a single variable (i.e., SLR and RTS) were
poorly calibrated, resulting in R2 0.23, RMSE 58 people,
and RRMSE 70.9 percent. The weak performance of the
area-based SLR and RTS models indicated that the area of
residential building footprints might not be well correlated
with the number of people who live within the buildings in
certain regions, because important factors, including the
number of stories, are not considered. This reason was also
supported by a comparison between the area-based and
volume-based SLR and RTS models: while there was a
tenuous relationship between the area of residential building
footprints and the census population, the volume of residen-
tial buildings provided much higher correlation (R2 >0.7)
with the census population in the calibration site. Among

«

««
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TABLE 2. REGRESSION MODELS USING TWO DIFFERENT HEIGHT DATA (I.E., FRH AND LRH) FOR POPULATION
ESTIMATION IN THE CALIBRATION SITE

FRH-derived volume LRH-derived volume

R2 RMSE (people) RRMSE (%) R2 RMSE (people) RRMSE (%)

SLR 0.72 34 42.4 0.73 33 42.2
MLR 0.87 23 29.1 0.87 23 29.0

Regression 
model



all the regression models, the volume-based RTM model
yielded the most accurate results, with the highest R2 value
(0.89) and the lowest RMSE (21 people) as well as RRMSE
value (26.8 percent). The volume-based MLR model also
yielded competitive estimation result with R2 � 0.87, RMSE
� 23 people, and RRMSE � 29.5 percent.

The regression models developed for the calibration site
were tested on the validation site (Table 4b). The perform-
ance of the eight models for the validation site (Figure 5) was
similar to that for the calibration site. The volume-based
regression models (Figures 5b, 5d, 5f, and 5h) resulted in
more accurate population estimation than the area-based
models (Figures 5a, 5c, 5e, and 5g). Similar to the calibration
results, the volume-based RTM model resulted in the best
performance (R2 � 0.80, RMSE � 27, and RRMSE � 30.1
percent) among all the models. The volume-based MLR model
yielded competitive estimation results as well (R2 � 0.76,
RMSE � 28, and RRMSE � 31.1 percent). It is typical to find

that the validation accuracy is normally lower than the
calibration accuracy. However, the performance of the area-
based SLR model dramatically increased for the validation
site compared to the calibration results (i.e., R2 increased
from 0.23 to 0.69, RMSE decreased from 56 to 42, and RRMSE
decreased from 70.9 percent to 43.3 percent), and several
other models showed validation accuracy slightly higher
than calibration accuracy. The main reason for this is likely
the more uneven distribution of multiple-family houses in
the calibration site as compared to the validation site
(Figure 6). Some blocks in the calibration site have higher
proportion of multiple-family houses, while some blocks
does not have multiple-family houses (especially in the
lower census tract in the calibration site), which resulted
in very low correlation when considering the area of the
residential buildings. This has less of an impact on the
validation accuracy since the validation site has a more even
distribution of multiple-family houses. To explore the impact
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TABLE 3. REGRESSION MODELS DEVELOPED FOR THE CALIBRATION SITE

Regression model Equation (Ruleset)

Area-based SLR

Area-based MLR

Area-based RTS

Area-based RTM

Volume-based SLR

Volume-based MLR

Volume-based RTS

Volume-based RTM

Pi represents predicted population in the ith census block

Ai represents the total area of residential buildings in the ith census block

A1i represents the area of multiple-family housing units in the ith census block

A2i represents the area of single-family housing units in the ith census block

Vi represents the total volume of residential buildings in the ith census block

V1i represents the volume of multiple-family housing units in the ith census block

V2i represents the volume of single-family housing units in the ith census block

Pi � 0.0069 * V1i � 0.0016 * V2i � 17.3  if V1i …  25122.8

Pi � 0.0111 * V1i � 153.00  if V1i 7 25122.8

Pi � 0.0030 * Vi � 0.100  if Vi … 23505.5

Pi � 0.0812 * Vi � 88.400  if Vi 7 23505.5

Pi � 0.0065 * V1i � 0.0013 * V2i � 24.912

Pi � 0.0063 * Vi � 43.985

Pi � 0.0559 * A1i � 0.0057 * A2i � 22.400

Pi � 0.0337 * Ai � 47.800

Pi � 0.0583 * A1i � 0.0026 * A2i � 31.697

Pi � 0.0353 * Ai � 37.781

TABLE 4. COMPARISON BETWEEN THE AREA- AND VOLUME-BASED MODELS FOR: 
(A) THE CALIBRATION SITE, AND (B) THE VALIDATION SITE

Area-based approach Volume-based approach

R2 RMSE (people) RRMSE (%) R2 RMSE (people) RRMSE (%)

SLR 0.23 56 70.9 0.73 33 42.3
MLR 0.75 32 40.3 0.87 23 29.5
RTS 0.23 58 73.5 0.78 31 38.7
RTM 0.75 32 40.9 0.89 21 26.8

(a)

Area-based approach Volume-based approach

R2 RMSE (people) RRMSE (%) R2 RMSE (people) RRMSE (%)

SLR 0.69 42 43.3 0.80 35 38.8
MLR 0.68 32 32.5 0.76 28 31.1
RTS 0.69 45 50.3 0.78 32 35.9
RTM 0.71 30 33.1 0.80 27 30.1

(b)

Regression 
model

Regression 
model
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Figure 5. Validation results of the area and volume-based models using:
(a) area-based SLR model, (b) volume-based SLR model, (c) area-based MLR model,
(d) volume-based MLR model, (e) area-based RTS model, (f) volume-based RTS
model, (g) area-based RTM model, and (h) volume-based RTM model.

of the distribution of multiple-family residences on the
results, we developed regression models using only one
census tract (the upper left one in the calibration site), which
has a relatively even distribution of multiple-family houses
and a similar rate ( 15 percent) of multiple-family houses
from the residential buildings. The calibration accuracy

'

increased using only the census tract. The models were
evaluated using the validation dataset and the validation
accuracy was slightly lower than the calibration accuracy.
This suggests that the different spatial distribution of single-
and multiple-family houses between the calibration and
validation sites could result in differences in performance.



The performance between the calibration and validation
sites of volume-based models did not change as much as the
area-based ones according to the RRMSE values. The volume-
based single-variable models (SLR and RTS) performed better
for the validation site than the calibration site (i.e., RRMSE
of the volumetric SLR and RTS models decreased from
42.3 percent to 38.8 percent, and 38.7 percent to 35.9 percent,
respectively), while the volume-based multi-variable models
(MLR and RTM) resulted in slightly poorer estimations for the
validation site than the calibration site (i.e., RRMSE increased
from 29.5 percent to 31.1 percent, and 26.8 percent to
30.1 percent). Results show that the performance of popula-
tion estimation was considerably influenced not only by the
models employed but also by the population indicators
used. Compared to the dramatic performance fluctuation and
relatively poor performance of the areal approach, the
performance of the volumetric approach was more accurate
and stable.

Regression models using multiple variables, such as high-
or low-density urban or commercial use areas, have been
commonly used in area-based population estimation (e.g., Lo,
2008; Wu and Murray, 2005; Li and Weng, 2005). In this
study, the regression models using two variables (i.e., single-
and multiple-family houses) resulted in better performance
than the models only using one variable (i.e., residential
buildings) for both the area- and volume-based approaches. In
particular, the area-based regression models using multiple
variables dramatically increased the calibration accuracy
compared to the area-based models using a single variable in
the calibration site. One possible explanation for this is that
the inclusion of two variables allowed different weights to be

assigned for single- and multiple-family houses, which
decreased the impact of the lack of information (e.g., the
number of stories) in the area-based models. The regression
tree models (i.e., RTS and RTM), provided similar or slightly
better estimation compared to the linear regression models
(i.e., SLR, MLR). In addition, the volume-based RTM model
yielded the most accurate estimations in both the calibration
and validation sites, which suggested regression tree models
could be valuable in remote sensing-based population
estimation. The likely reason for more accurate performance
of the regression tree models is their ability to generate
multiple rulesets, thus better characterizing different housing
configurations. For example, the volume-based RTM model
generated two rulesets for the calibration site (Table 2).
One of the rulesets was for the regions where multiple-
family houses were dominant resulting in larger volume
of residential buildings, and the other one was for the
single-family house-dominant regions with smaller
residential building volume.

Figure 7 shows the population density map estimated
using the regression models for the calibration site. Both the
area- and volume-based models successfully estimated
population for most census blocks with population density
�5,000 people/km2, which contain mainly single family houses.
The census blocks with population density between 5,000 and
15,000 people/km2 included both single- and multiple-family
houses, to different extents, in the study areas. For these
census blocks, the volume-based models (i.e., Figures 7e, 7f,
7g, and 7h) performed slightly better than the area-based
models (i.e., Figures 7a, 7b, 7c, and 7d). The area-based SLR
and RTS models dramatically underestimated population
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Figure 6. The spatial distribution of single- versus multiple-family houses in both (a) the calibration site,
and (b) the validation site.

(a) (b)



density in the regions dominated by multiple-family houses,
where population density was �15,000 people/km2. The
volume-based MLR and RTM models (Figures 7f and 7h)
resulted in accurate estimation regardless of the mixture of
single- and multiple-family houses.

Based on a comparison of the area- and volume-based
approaches, the volume of residential buildings is a more
robust and stable population indicator because the volume-
based models were more flexible in considering different
housing characteristics. The comparison also suggested the

potential merit of the volumetric approach for remote
sensing-based population estimation for urban areas in
developing countries, where residential buildings are
frequently multiple-family structures such as apartments and
condominiums. However, the volume-based approaches are
sensitive to the accurate identification of residential
buildings. In this study, potential errors due to inclusion of
non-residential structures were greatly reduced by the parcel
data, which are not always available. Consequently, the
accurate extraction of residential buildings from remote
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Figure 7. Population density distribution map estimated using: (a) area-based SLR model, (b) area-based
MLR model, (c) area-based RTS model, (d) area-based RTM model, (e) volume-based SLR model, (f) volume-
based MLR model, (g) volume-based RTS model, (h) volume-based RTM model, and (i) calculation using
census population.



sensing data (e.g., lidar data) without any external informa-
tion is one of the most significant and challenging problems
for remote sensing-based population estimation. While a
general land use classification approach may work well for
residential building extraction in suburban areas (e.g., Lu
et al., 2010), more advanced approaches (e.g., using the
association and spatial relationships between residential
buildings and other land use classes) are necessary in urban
areas with heterogeneous housing characteristics. Building
type/usage classification using airborne or satellite remote
sensing data only has had minimal exploration.

Conclusions
Compared to population estimation in suburban or rural areas,
population estimation in urban areas is particularly challeng-
ing due to the heterogeneous characteristics of housing. In this
study, five main conclusions can be drawn: (a) the modified
morphological building detection algorithm successfully
delineated the building footprints, even for buildings partially
occluded by nearby tall trees, (b) lidar last return-derived
height provided slightly better population estimation results
than that using lidar first return-derived height, (c) compared
to footprint area, the volume of residential buildings was a
more stable population indicator, (d) the regression models
using two variables (e.g., single and multiple family houses)
outperformed those using only one variable (e.g., residential
houses), and (e) the regression tree models (RTS and RTM)
increased population estimation accuracy possibly because
they were flexible by allowing different rulesets for regions
with different housing characteristics.

The main objective of this research was to utilize lidar
data for building delineation and compare the performance
of volumetric and areal approaches to population estimation
in regions with heterogeneous housing characteristics. The
results attained using the regression tree model with a
volumetric approach provided the best results and is
expected to have the greatest extension to other areas. By
utilizing the tools generated to accurately delineate building
footprints, even where buildings are partially occluded, the
utilization of multiple rulesets and inputs provides a popula-
tion estimation approach that should provide flexibility in a
range of urban environments. However, the success of the
volumetric approach to population estimation in this study
was partially attributed to the parcel data. Using parcel data
as an ancillary input to identify residential buildings was an
accurate but not ideal solution, since parcel data are not
universally available. Accurate building type/usage classifica-
tion using remote sensing data only would make both the
volumetric and areal population estimation approaches more
generalized and applicable to different urban environments,
which is the main focus of our future research.
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Abstract
For airborne surveys, the GPS/INS system has become the
primary source for aerial image georeferencing. However,
alternative automated georeferencing is required to serve as
a backup for georeferencing when GPS/INS-based georeferenc-
ing is not feasible. High-resolution satellite images (HRSI)
have been globally available with better spatial resolution
and increasing positional accuracy. Therefore, HRSI has high
potential as a ground control source for aerial image
georeferencing which usually requires accurate 3D ground
control points. Unfortunately, single imagery, which is often
used as a reference, contains relief displacement due to
objects on the ground introducing positional errors, unless it
is not true ortho-rectified which is costly and time consum-
ing. Therefore, in this study, a stereo HRSI-based automated
georeferencing approach is proposed. The use of stereo
images can avoid the impact of relief displacement and
requires no external height information. The proposed
method is based on a multi-scale image matching approach
utilizing a combination of SIFT (Scale-Invariant Feature
Transform) and RANSAC (RANdom SAmple Consensus). In
the georeferencing step, the bundle adjustment with outlier
removal of Baarda’s data snooping was utilized. Experimen-
tal results for a strip of aerial images with stereo Ikonos
images showed its potential as a backup system for auto-
mated georeferencing.

Introduction
Aerial digital imaging systems with direct georeferencing
have been widely used for mapping. With the advance in
semiconductor technology to produce large CCD arrays, aerial
digital cameras have been rapidly spreading all over the
world. High-performance airborne digital sensor systems can
generally acquire large amounts of data and provide frequent
updates of geospatial image information with the capability
of fast and automated digital processing. A critical step in
aerial image processing is georeferencing, i.e., establishing
sensor orientation that is usually performed manually using
ground control points. Traditionally, it used to be costly and
labor intensive, but now it is highly automated by integrated
GPS/INS systems (Global Positioning System/Inertial Naviga-
tion System) (Grejner-Brzezinska, 1999; Mostafa and
Schwarz, 2000; Mostafa et al., 2001). In the GPS/INS
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integration, GPS measurements are used to correct INS
measurements through an integration algorithm. However,
since GPS is a line-of-sight system and is subject to interfer-
ence and jamming (Carroll, 2001), any loss of GPS lock
results in so-called free inertial navigation of a GPS/INS
system, where georeferencing errors increase with time due
to inertial sensor drifts. Navigation-grade INS can maintain
horizontal position accuracy within 100 m through GPS
outages of more than 10 minutes, while the lower cost INS,
common in guided weapons, unmanned air vehicles and
general aviation (private) aircraft can only maintain this
accuracy for 2 to 3 minutes (Runnalls et al., 2005). In
addition, there are areas that completely lack the ground-
based GPS infrastructure that are often required to maintain
mapping accuracy by differential GPS methods.

Image-to-image matching-based indirect georeferencing,
also used in terrain-based navigation (Sim et al., 2002; Conte
and Doherty, 2008), is rapidly gaining research and practical
interest and offers an alternative approach to the georefer-
encing. By means of image matching, existing reference
images can provide newly acquired images with ground
control information to perform georeferencing. Therefore,
reference data quality is one of the key components for the
success of georeferencing. Ideal reference data would be
images acquired with the same sensor at a similar geometry,
at a similar time and season as that of the new image;
obviously, this is rarely the case. Ideally, the sensor used for
the reference image should be of high spatial resolution,
high temporal resolution, and high positional accuracy.

High-resolution satellite images (HRSI) have good
potential as a ground control source for aerial image georef-
erencing. Since the first 1 m resolution satellite Ikonos-2,
was launched in September 1999, many high-resolution
satellite images have been available such as QuickBird
(DigitalGlobe, launch: 2001, resolution: 60 cm), SPOT-5 (SPOT,
2002, resolution: 2.5 m), OrbView-3 (GeoEye, 2003, resolu-
tion: 1 m), KOMPSAT-2 (KARI, 2006, resolution: 1 m), EROS-B
(ImageSat, 2006, resolution: 70 cm), WorldView-1 (Digital-
Globe, 2007, resolution: 50 cm), CARTOSAT-2A (ISRO, 2008,
resolution: 80 cm), GeoEye-1 (GeoEye, 2008, resolution:
41 cm), WorldView-2 (DigitalGlobe, 2009, resolution: 46 cm).
Moreover, more satellites are scheduled in a few years such
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as EROS-C, and GeoEye-2. HRSI is acquired worldwide with
good temporal resolution and is available at good-positional
accuracy, up to sub-pixel level accuracy when bundle
adjusted using Ground Control Points (GCP) (Fraser and
Ravanbakhsh, 2009). These images have a relatively large
swath width, usually more than 10 km, and are used to
create worldwide image maps, such as Google Earth®. In
addition, many images are acquired in multispectral bands,
which have advantages in feature extraction.

The image-to-image approach for automatic image co-
registration has been studied extensively (Wen et al., 2008;
Yi et al., 2008; Wong and Clausi, 2007; Ali and Clausi,
2002; Zhang et al., 2000). Most of these authors focused on
two-dimensional co-registration between low-resolution
satellite images based on a simple geometric model such as
affine geometry and polynomials. Other research utilized a
standard ortho-rectified image and an associated low-
resolution digital elevation model (DEM) to obtain 3D ground
control points to georeference satellite images (Rottensteiner
et al., 2009; Gianinetto and Scaioni, 2008). These image-
to-image approaches using a satellite image were also
investigated in the field of navigation to support unmanned
aerial vehicle (UAV) navigation (Sim et al., 2002; Conte and
Doherty, 2008).

This study proposes use of stereo HRSI as a ground
control source for automatic aerial image georeferencing.
Note that a standard ortho-rectified reference image will
contaminate ground control point quality due to the still
existing relief displacement of the ground features in the
image, such as buildings and trees, unless these objects are
also rectified; and, a coarse DEM also leads to inaccurate
height information. Therefore, the combination of a true
ortho-rectified image and a high-resolution DEM should be
used for accurate 3D ground control. However, there are
practical limitations to the generation and update of a true
ortho-rectified image for a large area, including the high
production cost of a DEM with accurate break-lines. In
addition to the attractive properties of HRSI, stereo HRSI is
not subject to the aforementioned effect of relief displace-
ment or the requirement for accurate external height infor-
mation. Figure 1 compares the proposed method to the
conventional method of using a combination of standard
ortho-rectified imagery and digital terrain model (DTM) as a
reference. Figure 1a shows the main steps of the standard
ortho-rectified image and DTM-based registration. Note that
there exists relief displacement of the ground features such
as buildings and trees in the reference image; the apparent
leaning of objects can be observed. Even worse, the DTM
does not contain the height information of ground features.
When the image points (solid triangles on both aerial image
and reference image) are obtained by image matching
between the aerial and reference images, erroneous ground
point information (hollow triangles) is obtained due to the
relief displacement, and due to the missing height informa-
tion of the ground features in the DTM. In comparison,
Figure 1b depicts the case of using stereo HRSI as reference
data. By image matching of the aerial image to the left and
right HRSI, the image points (solid triangles and squares) are
obtained in each stereo image (reference). By utilizing stereo
matching along the epipolar line, conjugate image points
(hollow triangles and squares) can also be obtained in the
stereo image pair. The 3D ground restitution of these conju-
gate points provide correct 3D ground point coordinates,
which are not affected by relief displacement of the ground
features in the reference data, and do not require external
ground height information.

Besides the reference data, another requirement for
successful georeferencing is the robust image matching,
because aerial images and HRSI tend to have large image

differences due to differences in sensors used, acquisition
time and season, camera orientation, and so on. Therefore,
the proposed method is based on a multi-scale image
matching approach utilizing a combination of the SIFT
(Lowe, 1999) and RANSAC (Fischler and Bolles, 1981)
methods. Aerial images are matched to stereo HRSI to obtain
ground coordinate information of aerial image points. Then,
RANSAC implemented with the collinearity constraint is used
to eliminate outliers in matching points of each aerial image.
In the georeferencing step, exterior orientation parameters
(EOP) are estimated from the bundle adjustment with outlier
removal based on Baarda’s data snooping (Baarda, 1968).

The paper is structured as follows: first, the proposed
method will be presented including image matching
between aerial images and stereo HRSI and how to remove
outliers. Second, experimental results for a strip of aerial
images with stereo Ikonos images are presented, followed by
a brief summary.

Proposed Method
Robust and accurate image matching is critical since aerial
images and the satellite images should have large image
differences. To handle these differences, highly invariant
feature matching methods are required such as SIFT. SIFT is
the popular point feature extraction and matching method,
since it was recognized to be very reliable and invariant to
changes in image condition. Note that some modifications to
SIFT were developed to make it more effective, such as PCA-
SIFT (Ke and Sukthankar, 2004), GLOH (Gradient Location-
Orientation Histogram) (Mikolajczyk and Schmid, 2005),
CSIFT (Abdel-Hakim and Farag, 2006), SR-SIFT (Yi et al.,
2008), SURF (Speeded-Up Robust Features) (Bay et al., 2008),
and Robust SIFT (Li et al., 2009); although, they are concep-
tually similar. The major concern in the image matching is
the existence of numerous matching outliers, which, for
example, can be removed by RANSAC with an appropriate
geometric model. Note that RANSAC is a technique to esti-
mate parameters of a model through iteration from a set of
observations when they contain outliers. Therefore, this
study proposed a multi-scale approach based on SIFT and
RANSAC for efficient yet robust image matching between
aerial images and HRSI.

Figure 2 depicts the flowchart of the proposed method
of automated aerial image georeferencing using stereo HRSI.
First, aerial images are matched to each satellite image in a
multi-scale approach to extract aerial image points, e.g., n
points, and the corresponding left and right satellite image
points, e.g., points, where . By per-
forming stereo satellite image matching (normalized cross
correlation along the epipolar line), conjugate satellite image
points can be located in the stereo pair. Of course, poor
stereo matching points should be pruned utilizing a thresh-
old at the stage, and it is assumed that m stereo conjugate
points remain. Consequently, the number of corresponding
aerial image points is also reduced to m. Then, 3D ground
coordinates are computed from the m stereo conjugate
points by ground restitution using RPC (Rational Polynomial
Coefficients) (Grodecki et al., 2004). Since 3D ground
coordinates of aerial image points have been obtained, the
aerial georeferencing can be carried out indirectly using the
collinearity equation. However, there is still a high possibil-
ity that numerous image matching outliers exist. Therefore,
RANSAC is utilized to remove possible image matching
outliers by introducing a geometric constraint of collinearity.
Following the successful outlier removal, EOP of the aerial
images can be finally estimated using the single photo
resection method or the bundle adjustment depending on

n … nL � nRnL and nR
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Figure 1. Image-to-image matching based georeferencing methods using reference
data: (a) a standard ortho-rectified image and DTM, and (b) stereo HRSI.

(a)

(b)



the level of overlap between the aerial images. In the bundle
adjustment step, a more rigorous outlier removal, based on
Baarda’s data snooping, is employed as a kind of “safety”
because the image overlap can provide a useful geometric
constraint to filter out the remaining outliers.

Multi-scale Approach for Matching between Aerial Image and Stereo
Satellite Images
A multi-scale approach consisting of coarse and fine image
matching between aerial and satellite images is proposed as
shown in Figure 3. This multi-scale approach is efficient for
practical application since geospatial images acquired for
mapping purposes or for terrain-referenced navigation are
typically large in size.

By utilizing coarse matching, an aerial image is approxi-
mately located and co-registered to satellite images, and the
region of interests (ROI) is obtained in satellite images, to
which the aerial image will be fine-matched. Note that the
coarse matching utilizes down-sampled images. Taking the
average is the simplest method of low-pass filter, but in this

study, the Gaussian image pyramid is generated from each
aerial and satellite image to attenuate aliasing effects (Fosyth
and Ponce, 2000). The top of the image pyramid should
have only the low-frequency information. Then, Gaussian
down-sampled images of similar spatial resolution are SIFT
matched to each other, and outliers in the matching results
are removed using RANSAC. Since the down-sampled images
are often low-resolution, not significantly affected by relief
displacement, the affine model should be satisfactory to
model the transformation. Commercial software, such as
ERDAS Imagine® AutoSync, requires that at least two conju-
gate points be measured by users to orient images and
constrain automatic image matching. In this case, the coarse
matching step would not be required because the manually
measured data are available. In addition, when external EOP
parameters exist, even though they are not accurate enough,
the information will be useful for the initial localization or
ROI determination. However, in this study, the coarse
matching was activated since no external information is
assumed.
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Figure 2. Flowchart of the proposed method for automatic georeferencing of
aerial images using stereo HRSI.



Following the coarse matching, the fine matching is
performed between the aerial image and the selected region
of satellite images (each stereo image) to obtain control
points from the satellite images. Note that aerial images,
which usually have higher spatial resolution, need to be
down-sampled close to the resolution of satellite images
before matching, since resolution difference is one of the
factors affecting SIFT matching performance. For example, if
the aerial image has 25 cm resolution and satellite images
are of 1 m resolution, pyramid level 3 of the aerial image is
selected. Use of the down-sampled image has another
benefit of significantly reducing computational load in
image matching. In contrast to the coarse matching, the
outliers in the fine matching results should be suppressed
using a rigorous model, such as the collinearity equation,
exploiting well-calibrated camera information because relief
displacement needs to be handled.

Stereo Matching between Stereo HRSI

Since the geometric and spectral difference between the
along-track stereo HRSI are rather small and epipolar geome-
try is well established, there is no need for SIFT or other
sophisticated and computationally expensive feature match-
ing methods. The well-known normalized cross-correlation
can be used for the stereo image matching using Equation 1:

(1)

where A is a patch from aerial image, size of , B is a
HRSI patch of size equal to that of A, are the image
intensity of A and B at row i and column j, respectively, and

are the average of all intensity values in image A and
B, respectively.

Even if the accurate epipolar image resampling signifi-
cantly reduces the search space to the epipolar line, there is
still a computational load for any moving window approach.
Therefore, the convolution theorem is utilized for fast
matching performance. From Equation 1, it can be seen that
B can be computed in the frequency domain by FFT (Fast
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Fourier Transform), i.e., convolving B with the window, with
all elements equal to one. In other words, if is computed
over the entire HRSI in advance, before the correlation
computation, the computational load is significantly reduced.

By decomposing the numerator of Equation 1, it is

identified that can be computed once for each

aerial image patch, and can be computed in

the frequency domain by convolving B with .
Similarly, the decomposition of the denominator shows that

can be computed once for each aerial image

patch, and the summation terms and can be

computed by convolving B or with a window that has all
elements equal to one. By utilizing this approach, the
matching speed can be significantly increased.

Experiment

Test Data
Table 1 presents the specifications of aerial and Ikonos
stereo images tested, and Figure 4 and Figure 5 show the
test images. Note that the aerial images were acquired in
June 2003 and the Ikonos stereos in November 2001. Due to
time and seasonal gaps, there are large seasonal and terrain
differences between the images. First, the Ikonos RPC were
updated using four GCPs by estimating only shift terms in
the RPC error adjustment model (Fraser and Hanley, 2005).
Image coordinate residuals after adjustment were at the one-
pixel level. Then, epipolar image resampling was performed
for efficient stereo image handling, and y-parallax in the
epipolar resampled images was at a one-pixel level (Note
that the epipolar image resampling process is an option.).
Ground restitution residuals of the epipolar resampled
images were 1 and 0.5 meter for horizontal and vertical,
respectively. For the epipolar image resampling method for
the same dataset in detail, refer to (Oh et al., 2010). Figure 4
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Figure 3. Multi-scale image matching approach between an aerial image and stereo satellite images.



presents a subset image of the epipolar resampled images,
and Figure 5 shows a strip of aerial images containing
various ground textures including open field, forest, and
buildings. For the image matching, the red band in the aerial
image was selected because the Ikonos relative spectral
response (GeoEye, 2008) shows that the red band shows
acceptable similarity in terms of spectral responsibility, even
though the green band covers a little larger spectral range,
i.e., wider in terms of spectral range.

Multi-scale Image Matching
First, the initial localization is carried out by coarse match-
ing, and the results are presented in Figure 6. The first two
columns are the aerial image and the left epipolar resampled
Ikonos image with the matching points and initial localiza-
tion results overlaid in them. The last two columns show
the aerial image and the right Ikonos epipolar resampled
images with the matching points and initial localization
results overlaid in them. Note that aerial images and Ikonos
images are Gaussian down-scaled to 2 m spatial resolution
for matching. Coarse matching is based on SIFT � RANSAC
using the affine model. The goal of the coarse matching is
only localization, and the threshold for error rejection in
RANSAC is loosely set to five pixels with 99 percent probabil-
ity. Figure 6 shows that regions of interest could be obtained
successfully. In the forest area, image matching results seem
to be acceptable despite the seasonal difference. Since the
images are Gaussian down-scaled, the low frequency terrain
features are identified as feature points. Also, another
advantage of using stereo images in the matching process
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TABLE 1. TEST DATA SPECIFICATION

Data Site Date Focal length Resolution Spectral

Ikonos, Level2 Stereo Daejeon, Korea Nov 2001 10 m 1 m Pan

Aerial images Daejeon, Korea Jun 2003 55 mm 25 cm Color

Figure 4. Subset epipolar resampled Ikonos image with
aerial image coverage.

Figure 5. Test aerial images: (a) and (b) show fields, (d) and (e) are forests, (g) contain buildings, and (c)
and (f) are mixed areas.

(e) (f) (g)

(a) (b) (c) (d)



can be also identified, e.g., more matching points are
obtained than in the single image case by combining the
points obtained by matching the aerial photos to the left and
right Ikonos images, respectively. It is obvious that one of
the stereo images should have better similarity in viewing
angle than the other.

Based on the region of interest from the coarse match-
ing, subsets of the Ikonos images with a margin were used
for fine matching. Since the spatial resolution of Ikonos and
aerial images are 1 m and 25 cm, respectively, the aerial
images were downscaled to 1 m for efficient matching.
Figure 7 shows the fine matching results. The aerial images
and the left and right Ikonos images are presented together
with the matching points. Note that rectangles are the SIFT
matching points from the fine matching. Then, 3D ground
coordinates for each SIFT matched point are computed by
Ikonos stereo matching (cross-correlation matching with
FFT). Then, the ground coordinates and corresponding aerial
image points were refined by RANSAC with the collinearity
equation. The refined matching point locations are marked
by triangles in Figure 7. In RANSAC, the threshold for error
rejection is more strictly set to one pixel with 99 percent
probability. The images (a) and (g) in Figure 7 show that an

acceptable number of points could be obtained over the
image. Note, however, that matching points could hardly be
obtained over the forest area due to lack of unique features
and large seasonal differences between aerial and satellite
imagery. Unlike the coarse matching, which showed moder-
ate image matching for the forest area, the fine matching was
not successful over the forest area, as shown in the aerial
images (d).

Figure 8 illustrates a sample of fine matching results. It
was observed in the test that fine matching could successfully
locate identifiable matching points for small and large
buildings, road intersections, etc., despite the scale difference.

Georeferencing and Accuracy Assessment
First, single photo resection was tested for EOP estimation
from the ground control points obtained by multi-scale
image matching. The estimated EOP was compared to the
reference EOP known from the bundle adjustment using
accurate ground control points, and the differences are
presented in Table 2 with the precision is shown in
parenthesis. Compared to the forest area (c), (d), and (e),
the open field and the urban (building) areas show better
estimation performance. Estimation for image (d) is the
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Figure 6. Coarse matching results based on SIFT � RANSAC with affine equation for images (a), (d), and (g).

(a)

(d)

(g)



worst, because there are not enough invariant features in
the forest area due to the large seasonal gap between the
aerial and Ikonos images. Most aerial images, except for the
forest areas, show an EOP positional accuracy of less than
20 meters; note that the height was relatively well esti-
mated. Note that the East coordinate error is large for (c),
and (e), and the pitch angle accuracy is low accordingly as
most ground control points are located in the upper part of
image (c), and in the lower part of image (e) (figures not
presented). Since the East direction is along the row
direction of Ikonos, the skewed distribution of points led

to lower estimation. In terms of attitude estimation
performance, a sub-degree accuracy could be achieved in
most cases, with yaw (heading) angles showing the best
accuracy. The precision for forest areas (c) and (e) is
roughly twice as worse as the others, as anticipated.
Precision for the forest area (d) is infinity, that is, EOP
for the area could not be estimated practically.

Image coordinate residuals for the estimated EOP were
computed and presented in Table 3. Mean residuals range
from three to four pixels. In addition to the residuals, image
coordinates computed from the estimated EOP were
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Figure 7. Fine matching results based on SIFT � RANSAC (Collinearity Equations) for images (a), (d), and (g).

(a)

(d)

(g)



compared to the coordinates from the reference EOP; the
image coordinate errors are presented. Most errors are less
than 2.5 meters (about ten pixels in aerial images) except for
forest areas.

Second, the bundle adjustment was performed by
generating tie points between adjacent aerial images, taking
advantage of image overlap. Table 4 lists EOP estimation
errors. Note that the EOP accuracy of the forest area images
((c), (d), and (e)) significantly improved. However, the EOP
for some images are a little deteriorated, most likely due to
the fact that the EOP errors of the forest area images are
distributed to the adjacent images. The precision also
improved overall except for area (a). Note that the preci-
sions are now quite uniform. The precisions for the height

are much better than the precision of the horizontal
coordinates, and the yaw precision was superior to the
other angles.

Finally, the bundle adjustment with outlier removal was
carried out using Baarda’s data snooping method. Cumula-
tive F-distribution with was used for the
hypothesis test. Note that one image point measurement
yields two collinearity equations, i.e., one equation for row
(line) and one for column (sample) coordinates. Therefore,
the image point is flagged as outlier if the null hypothesis is
rejected for any one of the two, and the data snooping is
iterated until no outlier is detected. In the test, a total of six
iterations of data snooping were needed to remove all
outliers, as shown in Table 5. The standard deviation of unit

a � 99.99%
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TABLE 2. ERROR AND ONE STANDARD DEVIATION OF THE ESTIMATED EOP USING SINGLE PHOTO RESECTION

East [m] North [m] Height [m] Roll [deg] Pitch [deg] Yaw [deg]

(a) Field �11.53 (� 2.22) �1.81 (� 2.40) �4.68 (� 0.43) 0.067 (� 0.112) �0.533 (� 0.104) 0.109 (� 0.020)

(b) Field 1.20 (� 7.20) �0.75 (� 6.09) �4.06 (� 2.26) 0.019 (� 0.282) 0.063 (� 0.344) 0.082 (� 0.056)

(c) Field � Forest 66.61 (� 15.61) �13.58 (� 13.99) �38.00 (� 8.13) 0.526 (� 0.652) 3.416 (� 0.787) �0.545 (� 0.221)

(d) Forest 534.11 (� N/A) 62.75 (� N/A) �603.52 (� N/A) �4.751 (� N/A) 40.090 (� N/A) �2.774 (� N/A)

(e) Forest �44.21 (� 12.88) 18.48 (� 6.54) �4.46 (� 3.65) �1.025 (� 0.339) �2.221 (� 0.685) 0.391 (� 0.114)

(f) Forest � 8.26 (� 7.13) 4.68 (� 5.23) 2.70 (� 1.25) �0.255 (� 0.264) 0.452 (� 0.344) 0.036 (� 0.043)

(g) Building 4.55 (� 6.80) �13.87 (� 7.98) �2.02 (� 1.29) 0.679 (� 0.396) 0.322 (� 0.336) �0.085 (� 0.044)

TABLE 3. IMAGE COORDINATE RESIDUALS AND ERRORS OF THE ESTIMATED EOP USING SINGLE PHOTO RESECTION

Residual [pixels] Error [pixels]

Column Row Column Row

Mean Max Mean Max Mean Max Mean Max

(a) Field 2.8 12.4 3.3 11.2 4.3 9.1 6.0 17.3

(b) Field 2.5 10.5 4.3 13.5 3.8 9.2 3.1 6.6

(c) Field � Forest 2.9 5.1 1.8 4.4 9.1 24.4 3.3 5.6

(d) Forest 0.0 0.0 0.0 0.0 177.0 392.4 80.7 129.8

(e) Forest 3.5 14.0 4.3 14.0 2.0 6.5 8.1 15.7

(f) Forest � building 4.0 11.0 4.2 12.7 2.3 8.9 5.9 8.7

(g) Building 3.4 8.5 4.1 12.8 2.8 7.5 10.9 18.0

Figure 8. A RANSAC-refined matching point: (a)is an aerial image;(b) and (c) are left and
right Ikonos images).

(a) (b) (c)
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TABLE 4. ERROR AND ONE STANDARD DEVIATION OF THE ESTIMATED EOP USING BUNDLE ADJUSTMENT (WITHOUT OUTLIER REMOVAL)

EOP difference East [m] North [m] Height [m] Roll [deg] Pitch [deg] Yaw [deg]

(a) Field �2.03 (� 4.64) �6.87 (� 5.88) �6.81 (� 1.31) 0.336 (� 0.278) �0.077 (� 0.2158) 0.144 (� 0.041)
(b) Field �3.72 (� 3.77) �6.38 (� 5.78) �6.33 (� 1.41) 0.352 (� 0.274) �0.123 (� 0.174) 0.125 (� 0.036)
(c) Field � Forest �5.96 (� 3.31) �8.79 (� 5.41) �5.62 (� 1.66) 0.492 (� 0.261) �0.193 (� 0.152) 0.078 (� 0.030)
(d) Forest �5.47 (� 2.97) �6.91 (� 5.37) �4.30 (� 1.88) 0.415 (� 0.261) �0.154 (� 0.137) 0.006 (� 0.031)
(e) Forest �0.93 (� 2.82) �5.64 (� 5.33) �2.54 (� 1.87) 0.340 (� 0.263) �0.328 (� 0.139) �0.063 (� 0.034)
(f) Forest � building �9.25 (� 3.68) �7.10 (� 5.59) �0.64 (� 1.64) 0.385 (� 0.278) �0.332 (� 0.180) �0.094 (� 0.040)
(g) Building �8.44 (� 5.72) �7.56 (� 5.80) 0.97 (� 1.87) 0.375 (� 0.288) �0.294 (� 0.278) �0.120 (� 0.051)

TABLE 5. BUNDLE ADJUSTMENT (BAARDA’S DATA SNOOPING)

Bundle # of image Std of unit Cumulative F- DOF # of outlier points 
adjustment points weight distribution detected
iteration

1 381 8.58 15.30 761 3
2 378 0.94 15.30 755 6
3 372 0.44 15.30 743 6
4 366 0.37 15.31 731 4
5 362 0.34 15.31 723 1
6 361 0.32 15.31 721 0

Total 20

points as discussed above (Note that most of them are from
the aerial images (c), (d), and (e) that are forest areas.). Since
a small number of matching points was obtained over the
forest area, no redundant ground controls were available to
successfully refine control points in the matching and
RANSAC process. Table 6 shows the EOP accuracy for bundle
adjustment with outlier removal. The EOP accuracy became
more uniform and is better than 7 meters. Note that the
flight direction is to the East-direction. The negative bias in
the East and North coordinates are due to correlation with
the negative errors in the pitch angle and the positive errors
in the roll angle, respectively. The building area images ((f)
and (g)) show fairly accurate Z values. A high ground height
variation in the building area seems to lead to a relatively
accurate Z value estimation. Among the attitude angles,
again the yaw angle shows the best accuracy. Note that
precisions of the estimated EOP significantly increased
compared to the precisions presented in Table 4. Precisions
are not only high, but also uniform for the test areas. Height
and yaw angle still show the best precision.

The ground restitution accuracy for tie points was
computed and presented in Table 7. Without the outlier
removal, the bundle adjustment showed horizontal accuracy
up to 3.45 meters and vertical up to 5.77 meters. Consider-
ing the existence of outliers, this accuracy is quite good. The
effect of the outliers seems to be attenuated by the combined
impact of many, good ground control and tie points. In
contrast, the bundle adjustment with outlier removal
improves horizontal and vertical accuracy to 2.18 and 4.53
meters, respectively. Since 1 m resolution stereo images are
used as a reference, these results are relevant.

The error sources affecting the estimation accuracy may
be listed as satellite image positional accuracy, epipolar
image resampling accuracy, image matching accuracy
between aerial and satellite image, stereo matching accuracy,
the GCP distribution on the aerial image, and image overlap.

Conclusion
A new automatic aerial image georeferencing using stereo
HRSI was proposed. Significant improvements in HRSI
specifications, including high spatial and temporal

Figure 9. Removed outlier distribution on the Ikonos
image in the bundle adjustment (triangles: refined ground
controls, crosses: removed as outliers).

weight (the variance component) significantly decreased
after the first iteration, and then slowly converged to 0.32.
As a result, the total of 20 image points were detected as
outliers, which correspond to 12 ground control points

Figure 9 illustrates which ground controls were
removed as outliers, marked by ‘�’. A total of 12 ground
points were removed, which corresponds to 20 outlier image



resolutions, good positional accuracy and large swath width,
motivated the idea of using satellite imagery as a reference
for image-to-image-based indirect georeferencing. For aerial
image georeferencing that requires accurate 3D ground
coordinates, the use of stereo satellite images was proposed
as a reference to provide 3D ground coordinates. The use of
stereo images can avoid the impact of relief displacement in
the reference data and the requirement of accurate external
height information.

For the approach, a robust and efficient image matching
scheme with outlier removals was proposed. A SIFT-based
multi-scale image matching scheme, including coarse and
fine matching, was used for efficient matching between
aerial and satellite images. The coarse matching performs
the initial localization of aerial images on the satellite image
based on a combination of SIFT and the affine model-based
RANSAC to model the geometric difference between Gaussian
down-scaled images. The coarse matching is followed by
fine image matching to obtain accurate matching points.
Then, ground coordinates are computed from satellite stereo
pairs by cross-correlation matching, implemented by FFT,
followed by the collinearity equation-based RANSAC to
further refine matching points.

An experiment was carried out for a strip of aerial
images and Ikonos stereo images. Test results showed that
acceptable matching results could be obtained over open
and built-up areas; however, the matching was poor over
forest areas, especially when there is a large seasonal
difference between the aerial image and the reference.
EOPs of aerial images are estimated from ground control
information acquired from the matching points. Both
single photo resection and bundle adjustments were tested.
Using the bundle adjustment approach with blunder
removal, relatively accurate EOPs could be obtained and
the ground restitution accuracy could be improved up to
the level that can be expected from the positional accuracy
of stereo satellite images. Even though georeferencing
performance is highly subjected to many error sources,
including reference data positional accuracy and matching
quality, the high potential of stereo HRSI as reference data
has been confirmed. The approach could be used not only
for aerial image georeferencing in mapping at small scale,
but also provides a good basis for robust navigation under
GPS signal loss, since it is capable of providing position of
the platform, facilitating image-based terrain-referenced
navigation.
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Abstract
The recent economic crisis in United States has led to an
increase in home foreclosures and subsequent abandon-
ments. A by-product of this trend has been an associated
rise in the number of neglected swimming pools, which
provide new habitats for the larval stages of the Culex
mosquito vectors of West Nile Virus (WNV) in urban and
suburban environments. WNV has been major concern
related to neglected swimming pools in California. Our
research focused on using very high spatial resolution (VHR)
satellite imagery and processing techniques, including image
pansharpening, normalized difference water index, and
geographic object-based image analysis (GEOBIA), to develop
a geographic information system (GIS) database of swimming
pool locations. This research demonstrated that GEOBIA with
VHR imagery could produce a GIS database of swimming
pools with the high accuracy of 94 percent. The analytic
approach of this research is expected to economically
facilitate the location of swimming pools for ground inspec-
tion and mosquito control.

Introduction
West Nile Virus (WNV) (family Flaviviridae, genus Flavivirus)
emerged in New York City in late August 1999 and quickly
spread westward across the United States (US), reaching
California in 2003 (Reisen et al., 2004). WNV is now
considered to be established in all continental states except
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Maine and Alaska. According to the US Center for Disease
Control and Prevention (CDC, 2010), a cumulative total of
29,681 WNV cases were reported from 1999 to 2009 across
US with the highest numbers in Colorado, Nebraska, and
California. WNV is maintained and amplified within an
enzootic cycle among passeriform birds and Culex mosqui-
toes, with tangential transmission to humans and equines,
which may suffer severe disease but are functionally “dead
end” hosts for the virus (Komar, 2003; Kramer et al., 2007).
In urban/suburban habitats, members of the Culex pipiens
complex are the primary WNV vectors (Turell et al., 2005)
and exploit manmade containers that hold standing water
for larval development.

Neglected (or abandoned) swimming pools are suitable
larval habitats for several WNV mosquito vectors (Epstein,
2001; Caillouët et al., 2008; Kern County, 2008; Reisen 
et al., 2008; Reisen et al., 2009a). Although the putative link
between mosquitoes emerging from neglected pools and WNV
transmission has not been directly assessed, increases in the
numbers of home foreclosures and abandonments has
paralleled increases in human cases in several areas of
California such as Kern County (Reisen et al., 2008; Reisen
et al., 2009b). Colonization of pools was associated with the
decline in pool chemicals, followed by algal blooms and an
accumulation of organic material (Epstein, 2001; Reisen et
al., 2008). The current financial crisis and associated home
foreclosures was considered to be a driving factor triggering
a marked increase in the number of neglected private
swimming pools (Reisen et al., 2008), which provided an
extensive array of urban mosquito habitats.

The location and treatment of neglected pools has
become a difficult and expensive problem for local mosquito
and vector control programs in California responsible for
extensive residential areas; the Greater Los Angeles County
Vector Control District, for example, contains �1.1 million
parcels and �9.8 million residents. Examination of aerial
photographs has been used to locate and attempt to identify
neglected pools because there may be little current
information about the geographic location of each private
swimming pool (John Newton, Orange County Vector Control
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District, personal communication). However, the manual
interpretation of aerial photography is a time-consuming and
labor-intensive procedure compared to an automated image
analysis. Furthermore, aerial surveys are too expensive to be
conducted repeatedly over short time periods.

In recent years, very high spatial resolution (VHR)
satellite imagery has become available with pixel sizes
(i.e., spatial resolution) similar to those of aerial photo-
graphs. In addition, VHR satellites generally have the
capability to revisit the same locations every two to three
days, which allows the rapid detection of changes in Earth
surface features. For this reason, automated swimming
pool detection using remote sensing techniques and VHR
satellite imagery may expedite neglected pool surveillance
by extracting the locations of private swimming pools and
constructing a geographic information system (GIS) data-
base. Nevertheless, there have been few attempts to use
automatic image analyses with VHR satellite imagery for
that purpose. In the current study, we explore the poten-
tial for using automated remote sensing techniques with
VHR satellite imagery to develop a spatial database of
swimming pool locations, which may aid in the surveil-
lance and treatment of neglected pools by vector control
programs.

Study Area and Data
The US recently has experienced a financial crisis that has
caused a considerable increase in mortgage delinquencies
and foreclosures. According to the US Federal Reserve Bank
of New York (FRB, 2010), Kern County in California had a
mortgage delinquency rate of 11.7 percent for over 90 days
in 2010, which was nearly double the national rate of 
5.7 percent. The unemployment rate of the Bakersfield-
Delano Metropolitan Statistical Area was 15.7 percent in
June 2010, also higher than a national rate of 9.5 percent
(BLS, 2010). This recent economic downturn may have
made it difficult for pool-permit holders to pay maintenance
costs for their backyard swimming pools, which in turn may
increase the possibility of neglected swimming pools to be
utilized by WNV vector mosquitoes. In Kern County, Cx.
tarsalis, a highly efficient WNV vector that is typically
associated with wetland and agricultural habitats (Reisen
and Reeves, 1990), was found frequently in neglected urban
swimming pools (Reisen et al., 2008).

Taking into account the magnitude of the abandoned
swimming pool problem, we selected the City of Bakers-
field in Kern County, California, for this research (Figure
1). The population of the city was estimated at 328,692 in
2008, and it is one of fast growing cities in California
(CDF, 2010). The Kern River flows through Bakersfield City
but remains dry during spring and summer seasons (Reisen
et al., 2008). Average temperature was approximately
18.6°C in the city, but the average monthly temperature
during May to September ranged from 29.2°C to 36.9°C
with little precipitation (less than 0.5 cm). Limited summer
precluded cloud cover. In addition, Bakersfield has had
consistent WNV enzootic and epidemic activity since 2004
(Reisen et al., 2009a).

GeoEye-1 satellite imagery, acquired on 12 September
2009, was delivered with panchromatic and multispectral
images from the US National Geospatial-Intelligence Agency.
Table 1 describes the spatial resolutions and spectral
wavelength regions of the two images, and Plate 1a shows
multispectral GeoEye-1 image for the Bakersfield study area.
We extracted a residential area in 1.6 km � 1.5 km from the
satellite imagery, indicated by a white-hollow box in Plate 1a, 
and it was utilized to develop swimming pool detection
procedures. The study area included residential swimming

pools as well as other land-use and land-cover types such
as buildings, roads, grass, trees, bare soil, and lakes (see
Plate 1b).

Methods

Image Pansharpening and Visual Interpretation of Swimming Pools
The GeoEye-1 satellite provides panchromatic and multispec-
tral images (see Table 1). The spatial resolution of the
panchromatic image is higher than the multispectral image,
but it does not contain color information. On the other hand,
GeoEye-1 multispectral imagery includes colors, albeit with
coarser spatial resolution than the GeoEye-1 panchromatic
imagery. Therefore, we employed pansharpening (also called
image fusion) from the GeoEye-1 panchromatic and multi-
spectral images to create high spatial resolution imagery
containing color information. We used a high pass filter (HPF)
technique, implemented in ERDAS Imagine® (version 9.3),
because it has the capability of producing high-quality
pansharpened imagery, compared with the original multi-
spectral VHR imagery (Gangkofner et al., 2008; Kim et al.,
2011a). HPF pansharpening method is a spatial-domain 
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Figure 1. Location of the City of Bakersfield in Kern
County, California. A black star in the figure shows the
location of the city.

Spatial resolution Spectral resolution

Panchromatic
image

0.40 m 450–800 nm

Multispectral
image

Blue 1.65 m 450–510 nm

Green 1.65 m 510-580 nm

Red 1.65 m 655-690 nm

NIR 1.65 m 780-920 nm

TABLE 1. SPATIAL AND SPECTRAL RESOLUTIONS OF GEOEYE-1 IMAGERY



image fusion approach that involves high pass filtering of
high-resolution imagery, its addition to each multispectral
band, and linear histogram match of mean and standard
deviation between pansharpened and original multispectral
images (Gangkofner et al., 2008).

We then visually identified private swimming pools in
our study area using Google Earth® aerial photographs,
supplemented with the pansharpened GeoEye-1 imagery to
assist in pool identification. In the interpretation, we
excluded pools completely covered by tree canopy and

shadow. We obtained a total of 822 visually-interpreted
pools (see Plate 1b) that were utilized as the reference to
validate the classification accuracy of private swimming
pools.

Geographic Object-based Image Analysis (GEOBIA) Private Pool
Classification
Conventional pixel-based image classification approaches
have been widely utilized with medium- and coarse-
resolution satellite images to perform the classification (or
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Plate 1. (a) GeoEye-1 full scene delivered from the United States National Geospatial-Intelligence Agency,
and (b) its subset image used in this study. The GeoEye-1 imagery is rendered as a true color composite
using blue, green, and red bands for RGB. Visually-identified private outdoor pools of the study area are
shown in (b).

(a)

(b)



extraction) of landscape features. However, pixel-based
approaches decreased the accuracies of image classification
when they were used with VHR imagery (Woodcock and
Strahler, 1987; Hay et al., 1996; Kim, 2008; Myint et al.,
2011). In the late-1990s, an alternative remote sensing
approach, known as geographic object-based image analysis
(GEOBIA), has emerged to overcome the limitations of
conventional pixel-based approaches with VHR imagery. It
has gained much attention among remote sensing scientists
in recent years (Blaschke, 2010). GEOBIA is also called object-
based image analysis (OBIA), and readers are advised to refer
to Blaschke (2010) for in-depth literature review about it.

In this study, we adopted GEOBIA to extract private
swimming pools from the pansharpened GeoEye-1 imagery.
Two major steps are involved in GEOBIA: image segmenta-
tion and classification (Wang et al., 2004; Kim et al., 2008;
Kim et al., 2009). A segmentation produced the vector
boundaries of individual image objects (or segments), which
provided a distinguished functionality compared with
conventional pixel-based approaches. This means that we
can obtain spatial attributes such as size and shape, spectral
values for each image object, and contextual information
between image segments to be utilized in thematic classifi-
cation.

The spectral (or color) information from multispectral
imagery plays an important role in separating a targeted
feature from background or non-targeted features. However,
our initial analysis discovered that the spectral reflectance of
swimming pools was close to that of the other landscape
features such as building rooftops and roads (Figure 2). For
this reason, there is the possibility of a high degree of
classification confusion when using only the multispectral
image. Taking this into account, we used the normalized

difference water index (NDWI) (McFeeters, 1996) to extract
water bodies from remote sensing imagery. NDWI is calcu-
lated using green and near infrared (NIR) bands and has
values ranging from �1 to �1:

As shown in Figure 2, the separation of swimming
pools from other landscape features using NDWI was
improved in comparison with the original multispectral
image, and the image was used as our major data source to
conduct GEOBIA-based swimming pool classification. We
utilized the spectral value of the NDWI image and the spatial
attributes associated with image objects: rectangular fit (RF)
and size. RF is a spatial metric to describe how well an
image object fits in a rectangular shape with a range of 0 (no
fit) to 1 (complete fit) (Definiens, 2009). We utilized the
number of pixels within an image object to estimate the
physical area of each segment by applying Trimble (formerly
Definiens) eCognition® Developer (version 8) for segmenting
the NDWI imagery and deriving relevant spectral and spatial
attributes of each image object. We derived a total of 800
random samples for non-pools, and they were used with
visually identified pools for accuracy assessments. We
employed overall and individual accuracies for this purpose,
including overall accuracy, producer’s and user’s accuracies,
overall Kappa coefficient, and individual Kappa coefficient.

Results
A pansharpened image was obtained using the HPF fusion
technique, with correlation coefficients of 0.93 for all four

NDWI �  
Green � NIR
Green � NIR

 .
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Figure 2. Spectral reflectance curves of pool and non-pool features in each spectral
band and NDWI rescaled to 8-bits in order to match the radiometry of multispectral bands
(�1 for pool means, �2 for non-pool means, �1 for one standard deviations of pool, and
�2 for one standard deviations for non-pool). These curves were created using pixel
values of samples representing the two classes from the HPF pansharpened imagery.



spectral bands. The correlation coefficient is a band-by-band
evaluation metric of pansharpening color quality, compared
to the original multispectral image. The value of 1 indicates
an ideal case that the pixel values of a fused image are the
same as those of an original multispectral image. Higher
correlation coefficients reflect better pansharpening quality
in terms of color information. Plate 2 shows a panchromatic,
multispectral, and HPF pansharpened subset of images
derived from the original GeoEye-1 imagery. As shown in
the plate, the fused image retains the spatial resolution of
the GeoEye-1 panchromatic image, resulting in obvious
boundaries of spatial features and the color information from
the GeoEye-1 multispectral image.

Figure 3a shows an NDWI image that was computed from
the pansharpened imagery. When visually assessing the
NDWI image with the pansharpened multispectral image,
swimming pools have a relatively higher positive value
compared to the other landscape features. We observed that
negative NDWI values were assigned to most non-pool
features, as shown in Table 2. We utilized the same sample

of each non-pool feature, used for Figure 3, to derive the
mean pixel values of each land cover in the table. Therefore,
we performed a density slicing in such a way that negative
values were assigned to 0 and non-negative values retained
their original values. Figure 3b depicts the result of the
density slicing and provides greater insight about the
location of individual swimming pools. All the interpreted
swimming pools were located in the density-sliced image,
but shadows were not totally excluded. Therefore, we
focused on excluding shadows in subsequent GEOBIA proce-
dures.

We used the Multiresolution Segmentation algorithm,
implemented in eCognition® Developer, in our GEOBIA pool
classification. The algorithm places seed pixels across an
entire image and combines adjacent pixels around the seed
pixels to create image objects in the segmentation proce-
dures. Very small differences in neighboring pixel values do
not produce appropriate boundaries of segments using
floating-point values inherent in NDWI imagery. Therefore,
we rescaled the density-sliced NDWI imagery to 8-bit radio-
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Plate 2. GeoEye-1 (a) panchromatic image, (b) multispectral image, and (c) HPF pansharpened image. All
the images are shown at 1:1000 scale.

(a) (b)

(c)



metric resolution for GEOBIA pool classification. When using
GEOBIA approach, the size of image objects has been known
to affect segmentation quality and classification results (Tian
and Chen, 2007; Kim et al., 2009; Kim et al., 2010; Kim et
al., 2011b; Myint et al., 2011; Kim et al., in press). We
conducted image segmentations with various scale parame-
ters that have an effect on deciding the size of segments in
the Multiresolution Segmentation of eCognition® Developer.
The scale parameter of 5 was found to produce the best
segmentation result from the input NDWI imagery that
contained private swimming pools with various sizes. We
employed the default settings of the other segmentation
parameters for shape/color ratio and compactness/smooth-
ness ratio, i.e., 0.9 for color ratio and 0.5 for compactness
ratio.

Our initial segmentation generated image objects with a
total of 18,666 that included swimming pools and shadows
(Figure 4a). The total number of swimming pool, discovered
by this method, was much greater than determined by
manual interpretation. For this reason, the mean values, RFs,
and the number of pixels of individual segments were
derived to exclude shadows from the initial segmentation.
When examining the histogram of the density-sliced NDWI
image (Figure 4b) and the pansharpened image, we found
that shadows have lower pixel values than the average value
of the NDWI image (refer to Table 2). Taking it into account,
image objects that have spectral values smaller than the

global mean value of 36 were classified as non-swimming
pools. Figure 4c shows 987 segments combining swimming
pools and shadows. This total number of segments was
considerably reduced, compared with the initial segmenta-
tion of 18,666 segments.

Table 3 shows the classification results of pools and
non-pools with the mean value. We obtained an overall
accuracy of 85.3 percent with an overall Kappa of 0.70. The
use of the global mean correctly identified 775 pools with
an accuracy of 94.3 percent as compared to 822 reference
pools. Nevertheless, there were 212 image segments that
were incorrectly classified as private pools, which resulted
in lower user’s accuracy of 80.1 percent than the producer’s
accuracy for pools, as shown in the table.

We then employed spatial metrics to exclude the
remaining shadows. In an urban environment, shadows cast
from buildings would be rectangular in shape, which is not
the case for most private swimming pools. The value of 1
for RF was used to filter rectangular-shaped shadows. Table 4 
describes the classification result of employing the RF value
to differentiate non-pool segments from pool image objects.
Compared with Table 3, the addition of the RF value had a
minimal effect on the performance of pool and non pool
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Figure 3. NDWI imagery derived from green and near infrared bands of (a) pansharpened GeoEye-1 image,
and (b) its density-sliced image. In the figures, higher NDWI values are represented in light color and lower
values in dark color.

(a) (b)

TABLE 2. MEAN PIXEL VALUES OF NDWI IMAGERY FOR EACH LAND-COVER CLASS

Land-cover class Mean value

Bare earth −0.256
Road −0.035
Building rooftop −0.158
Vegetation −0.535
Shadow 0.089
Pool 0.419

TABLE 3. ERROR MATRIX OF A CLASSIFICATION RESULT ONLY WITH NDWI VALUE

Reference

Classification Pool Non pool User’s accuracy

Pool 775 192 80.1%

Non-pool 47 608 92.8%

Producer’s
accuracy

94.3% 76.0%

Overall accuracy: 85.3 percent, Overall Kappa coefficient: 0.70
Pool Kappa coefficient: 0.60
Non-pool Kappa coefficient: 0.86
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Figure 4. (a) image objects in an initial segmentation with 18,666 image objects, (b) histogram of pixel
values in the density-sliced NDWI image, and (c) 987 image segments after applying NDWI global mean
value of 36 to the initial segmentation. In (b), we did not include the number of pixels with the value of 0
(i.e., 14,676,564) for a better presentation of the histogram.

(a) (b)

(c)

TABLE 4. ERROR MATRIX OF CLASSIFICATION RESULTS WITH RECTANGULAR FIT
AS WELL AS NDWI VALUE

Reference

Classification Pool Non pool User’s accuracy

Pool 775 190 80.3%

Non-pool 47 610 92.9%

Producer’s
accuracy

94.3% 76.3%

Overall accuracy: 85.4 percent, Overall Kappa coefficient: 0.71
Pool Kappa coefficient: 0.60
Non-pool Kappa coefficient: 0.86

classification. We found that a total of 34 segments were
correctly assigned to non-pool class with the use of the RF
value of 1, but we still had 178 image objects that were not
incorrectly classified as pool in the classification result.

In the final stage, size-controlled shadow masking was
applied to image segments that were produced with RF.
Because there were few reports about the physical dimen-
sions of private outdoor swimming pools, we computed
percentile values of image objects’ size that were utilized as
cut-off values to remove image segments below the per-
centile values. Figure 5 shows the classification accuracies
of pools generated by dividing the total number of correctly-
classified pools by that of referenced pools. As shown in
Figure 5a, both accuracy and the number of correctly-
classified segments for pool decreased with an increase in
percentile ranking. The 10th percentile generated the most



accurate result with 94.3 percent, followed by the 20th

percentile with an accuracy of 90.1 percent. We performed
the same analysis between the 10th and 20th percentiles in
steps of 1. Figure 5b shows their accuracies and the num-
bers of misclassified image segments for pool, and Table 5
describes percentile values employed in the procedure.

According to the figure, accuracies decreased as the per-
centile ranking increased. However, the decrease of classifi-
cation accuracy was insignificant until the 15th percentile.

In particular, the 13th percentile value of 71 produced a
maximum classification accuracy of 93.9 percent, and it
produced the number of misclassified image segments for
pool less than the values of 11th and 12th percentiles. Table 6
summarizes the classification accuracies of size-controlled
GEOBIA with the 13th percentile value. The size-controlled
GEOBIA yielded an overall accuracy of 92.2 percent and a
Kappa coefficient of 0.84 that increased by approximately
6.9 percent and 0.14 for overall accuracy and Kappa,
respectively, compared with previous classification results.
In addition, the size-controlled GEOBIA enhanced the accura-
cies of individual classes by the increased ability of differen-
tiating non pools from pools (see Tables 3 and 4). We
obtained producer’s and user’s accuracies over 90 percent
for both pool and non-pool classes with Kappa coefficients
of 0.82 and 0.86 for pool and non-pool, respectively.

Plate 3 shows the final classification result of swimming
pools with the 13th percentile value of 71. The area of Plate
3a corresponds to the lower-right portion of Plate 3b marked
with a black-hollow rectangle. The boundary of each
classified swimming pool is delineated in black color, and
manually-interpreted pools are located in Plate 3a. As
shown in the plate, each extracted swimming pool can be
located in a GIS spatial database, which will expedite ground
truthing and the identification of neglected pools. Mean-
while, shadows could not be totally excluded in the final
classification result, and non-pool water features such as
lakes in a golf course were confused with swimming pools.
The lakes are located in the center of Plate 3b.

Discussion
Our research demonstrated that remote sensing techniques
and VHR satellite imagery could be utilized to detect private
swimming pools and to construct a GIS database with a high
accuracy. In particular, NDWI was found to be a valuable
remote sensing index that accurately separated swimming
pools from most other landscape features. NDWI has proven
to be successful in extracting open water and monitoring
vegetation moisture with medium resolution imagery
(McFeeters, 1996; Dennison et al., 2005). On the contrary,
few studies have combined the NDWI with VHR satellite
imagery. In our study, all manually-interpreted pools were
successfully located in NDWI imagery, but shadows remained
within the NDWI image that should be removed.

The global spectral mean of the NDWI image was a
useful cut-off (or threshold) value that reduced the number
of image segments and resulted in high classification
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Figure 5. (a) classification accuracies and number of
image segments in increments of 10, and (b) increments
of 1 between the 10th and 20th percentiles. The “number
of segments” in (a) means the number of correctly-
classified image objects for pools, and in (b) “number of
segments” indicates the number of misclassified
segments for pools.

(a)

(b)

TABLE 5. IMAGE OBJECT’S SIZE FOR EACH PERCENTILE USED IN SIZE-CONTROLLED
SHADOW MASKING PROCEDURE

Percentile Number of
pixels Percentile Number of

pixels

10 48 20 153

11 55 30 222

12 64 40 277

13 71 50 320

14 79 60 360

15 92 70 404

16 105 80 457

17 115 90 548

18 131 100 9329

19 143

TABLE 6. ERROR MATRIX OF FINAL POOL AND NON-POOL CLASSIFICATION RESULT
USING SIZE AS WELL AS NDWI AND RECTANGULAR FIT

Reference

Classification Pool Non pool User’s accuracy

Pool 772 77 90.4%

Non-pool 50 723 93.5%

Producer’s
accuracy

93.9% 90.9%

Overall accuracy: 92.2%, Overall Kappa coefficient: 0.84
Pool Kappa coefficient: 0.82
Non pool Kappa coefficient: 0.86



accuracy by separating swimming pools from shadows.
Figure 6 shows the graphs of the mean object values,
classification accuracy, and the number of non-pool seg-
ments as a function of these percentiles. The classification
accuracy of the figure was derived with the same way for
Figure 5. The global mean 36 of 8-bit NDWI image was
between the 94th percentile of 32 and 95th percentile of 38 in
terms of image objects’ mean value, as indicated by an arrow
in Figure 6a. The classification accuracy of the 94th per-
centile was 96.5 percent and that of the 95th percentile 92.3
percent. As marked by an arrow in Figure 6b, a mean object
value between the two percentiles was a critical point
associated with the number of non-pool segments. In the
94th percentile, 514 image objects were found to be incor-
rectly classified as swimming pools. On the contrary, there
were 175 segments that were incorrectly extracted in the
95th percentile. Taking it into account that a global mean
value would be different scene by scene, the incorporation
of a global mean with the percentile of mean value of image
objects is expected to provide a valuable clue in deciding a
threshold NDWI value for differentiating pools and non pools.

The GEOBIA approach has valuable functional aspects
compared with the conventional pixel-based approach in
landscape feature extraction. In the traditional pixel-based
approach, it was hard to derive spatial attributes such as
size and shape, because individual pixels were the basic
processing units. However, GEOBIA enabled us to generate
spatial attributes because the image objects have their own
vector boundaries to differentiate them from adjacent
segments. In our study, spatial attributes such as RF and size
played important roles in separating shadows from swim-
ming pools. Particularly, when using the 13th percentile
value of 71 as minimum size, the classification accuracy of
93.9 percent was acquired with a minimum number of
shadow segments. In remote sensing imagery, outdoor
swimming pools may be partly covered by vegetative
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Plate 3. (a) a subset of the final result overlaid on pansharpened GeoEye-1 imagery and (b) the final pool
classification result with the 13th percentile value of 71. In (b), correctly-classified swimming pools are
rendered in blue color and the shadows and golf course ponds in red color.

(a) (b)

Figure 6. (a) mean value of image objects and classifica-
tion accuracy versus percentile, and (b) number of non-
pool image objects and classification accuracy versus
percentile. The locations of global mean value in NDWI
image are indicated by two arrows in each figure.

(a)

(b)



canopies and shadows, which makes it difficult to determine
their average size even though we have that information. For
this reason, the percentile value will be more appropriate to
differentiate swimming pools from shadows when consider-
ing size as a classification criterion.

The final GEOBIA classification result revealed that
shadows inherent from buildings and vehicles on roads were
confused with swimming pools. Auxiliary information can
be incorporated in segmentation and classification proce-
dures, which improves the performance of GEOBIA (Dragut
and Blaschke, 2006; Kim et al., 2009; Kim et al., 2010; Kim
et al., 2011b). Regarding shadow issue, the incorporation of
an additional data set, i.e., light detection and ranging (lidar)
data, has been made to differentiate shadows from non-
shadows with high-resolution digital aerial imagery (Zhou 
et al., 2009). Taking it into consideration, the additional
data set such as building footprints and road networks may
reduce classification confusion between pools and shadows.
Moreover, additional data on size range for private swim-
ming pools would facilitate the separation of pools from
non-pool water bodies (e.g., lakes and reservoirs) that are
larger than pools. Besides size information, contextual
relationship between land-cover features, e.g., topological
relation such as adjacency and containment would be
helpful to differentiate pools from non-pool water bodies.
The contextual and spatial information of image objects has
been utilized to conduct thematic classification of a dense
urban area (Shackelford and Davis, 2003).

In recent years, an attempt has been made to study
neglected pools and find their correlation with WNV mos-
quito production status using remote sensing imagery
(Weinhold, 2009). Our proposed spatial database derived
from GEOBIA and VHR satellite imagery is expected to
facilitate the identification and location of neglected pools.
Nevertheless, manual interpretation will be required to
create a complete coverage of swimming pools. The accuracy
of 94 percent in pool detection is suitable from the perspec-
tive of remote sensing, but 6 percent of the swimming pools
may be missed (or 46 of the 775 correctly identified pools).
Therefore, the combination of GEOBIA and manual interpreta-
tion is recommended to develop a system for the detection
of all swimming pools before surveying for neglected pools.

Besides remote sensing pool surveys, it also is important
to continue community education efforts to encourage
residents to report neglected pools in their neighborhoods to
local vector control programs. The combination of remote
sensing and neighborhood patrols will aid efforts to control
urban Culex mosquitoes, including those who carry WNV or
other mosquito-borne pathogens. In addition, we utilized
NDWI imagery in image segmentation and pool classification
procedures based on our initial analysis associated with the
spectral reflectance of pools and the other land cover
features (see Figure 2). However, the incorporation of
multispectral bands with NDWI may have any effects on
GEOBIA pool classification since segmentation quality and its
associated classification result could be affected by the types
of input data set (Blaschke, 2003; Kim et al., 2010; Kim 
et al., 2011b; Kim et al., in press). Taking it into considera-
tion, the use of NDWI and VHR multispectral image would
help improve the performance of GEOBIA pool classification
as well as the separation of neglected pools from normal
pools in a further image analysis step.

Health scientists have utilized remote sensing imagery
to extract environmental variables that are related to vector-
borne diseases, and VHR imagery would be appropriate for
urban feature classification (Beck et al., 2000). Nonetheless,
the spatial resolution of original VHR multispectral imagery
may be insufficient to resolve small features in epidemiolog-
ical research. For instance, it was pointed out that VHR

multispectral images were not appropriate to detect and
extract small malaria mosquito habitats because their spatial
resolution was generally larger than the malaria mosquito
habitats (Mutuku et al., 2009).

In the current study, image pansharpening enabled us to
create higher-resolution color imagery that is appropriate for
extracting smaller spatial features, but still may miss objects
such as hot tubs or Jacuzzis. Existing VHR satellites, such as
Ikonos, QuickBird and GeoEye, provide multispectral images
with blue, green, red, and NIR wavelength regions. However,
recent advances in sensor technology have expanded the
number of spectral wavelength regions. For example, the
WorldView-2 satellite, launched in October 2009, provides
the additional spectral bands of coastal, yellow, red edge,
and NIR-2 as well as the conventional four spectral bands at
spatial resolution of 1.84 m (DigitalGlobe, 2010). The
panchromatic image of 0.46 m spatial resolution is also
available from the same satellite. Increased spatial and
spectral resolutions of current remote sensing imagery are
anticipated to aid in acquiring information about environ-
mental risk factors for human diseases.

Conclusions
Our research demonstrated that GEOBIA and VHR satellite
imagery could be used for the accurate construction of GIS
spatial databases for detecting private swimming pools. 
The spectral and spatial attributes of individual image objects
played important roles in reducing classification confusion
between swimming pools and non-pool features, particularly
shadows. The current GIS pool database is expected to assist
mosquito control programs to detect mosquito larval sources
within urban communities, especially for West Nile Virus
epidemic in the United States. We plan to expand this
research to develop an unsupervised classification scheme to
separate neglected swimming pools from clean swimming
pools using GEOBIA and VHR satellite imagery.
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Everyone will benefit if YOU
Make a commitment to Your Profession and Join ASPRS Today.

Active
 Involved or interested in the practice of photogrammetry, remote sensing, and/or geographic information systems and related sciences.
 Full member benefits including; the right to vote and hold office, discounts on ASPRS conference registration fees, group insurance policy, 

eligibility for awards, discounts off ASPRS publications.

 $135.00 Domestic, 2nd Class  $184.00 Canada, Air1  $195.00 Foreign, ISAL

Associate
 Have been a student member for at least one year but are no longer eligible for student membership status. 
 Eligible for this membership for a period of no more than three years immediately following their time as a student member. 
 Associate Members shall be entitled to the same rights and privileges of the Society as an Active Member. 

 $90.00 Domestic, 2nd Class  $137.00 Canada, Air1  $150.00 Foreign, ISAL

Student
 A Student Member shall be working towards a degree at a university or college. Certification of student status (examples may include copies 

of student identification or current registration, faculty or sponsor signature, etc.) is required for each year of student membership. Attach 
a copy of your student ID or certifying faculty name and institution _________________________________________________________

 A person is not eligible for student membership if he/she has previously held an Active or Associate Member status.
  Student members do not vote or hold office until they advance to Associate Membership.

 $45.00 Domestic  $48.00 Canada  $55.00 Foreign

Which membership is right for me?
ASPRS membership is for one year (12 months) and all Active and Associate members receive 12 issues of PE&RS. All Student members receive 
PE&RS in digital form only. Membership renewal is based on the anniversary date of the month you joined. Membership certificates are available for an  
additional charge (see below). Please allow 4–6 weeks for delivery of your membership materials.

Dues for Active and Associate domestic members includes Second Class Postage for 
PE&RS. Dues for Mexico and all other foreign countries include Airmail Publication Ser-
vice postage for PE&RS (7–20 day delivery time worldwide). In addition, all dues include 
a postage surcharge. Student members residing outside of the U.S., including Mexico 
and Canada, receive a Full digital version of PE&RS only.

Method of Payment: Payment must be  
submitted with application.

Payment must be made in US Dollars drawn on a US 
Bank or appropriate credit card. Make checks payable 
to ASPRS.

 Check (Print name on check.)

 Visa  MasterCard  American Express  Discover

Credit Card Account Number  Expires (MO/YR)

Signature Date

Membership dues includes an annual subscription to PE&RS 
valued at $68.00. Non-member subscription price is $410.00 
(libraries, universities, private companies etc.) Members 
may NOT deduct the subscription price from dues. ASPRS 
is an educational organization exempt from taxation under 
the 501(c) (3) code of the Internal Revenue Service. Dues 
payments are not deductible as a charitable contribution for 
federal tax purposes, but may be deductible as a business 
expense. Please check with your tax preparer.

Total Amount Enclosed: $ ________

Membership Certificate
Hand-engrossed, framable certificate of membership is availble for additional 
charge.  $20.00

Member Sponsorship (not mandatory)

Sponsor’s Member ID: ______________________________________________  

Sponsor’s Name:  __________________________________________________  

Member Information
Technical Division Preferences: Number the following 6 ASPRS divisions in 
order of preference where your primary interests lie so you can be kept up to 
date on their activities (Order of Preference 1–6).
___ GIS Geographic Information Systems ___ PA Photogrammetric Applications
___ PDA Primary Data Acquisition ___ PP Professional Practice
___ Lidar Division (new) ___ RSA Remote Sensing Applications

 New Member _Renewal (ID number ____________________________ )

_Mr. _Ms. _Dr. _other:  ________________________________

Name (please print): _________________________________________________

Check appropriate box for mailing address _home _ business

Address: ___________________________________________________________

___________________________________________________________________

Country: ___________________________________________________________  

Company’s name/workplace: _________________________________________   

Business Phone*: __________________  Home Phone*: ___________________

fax*: _____________________________  e-mail*: _________________________

*DO NOT PUBLISH: _Business Phone _Home Phone _Fax  E-mail

5410 Grosvenor Lane, Suite 210, Bethesda, Maryland 20814-2144 · tel 301.493.0290 · fax 301.493.0208 · email asprs@asprs.org · www.asprs.org

1DUES INCLUDES POSTAGE AND GST. (ASPRS is required by the Canada Customs and 
Revenue Agency to collect 5% of the total amount of dues and postage for Canada’s Goods 
and Services Tax — GST #135123065.)



 

ASPRS WEBINAR SERIES
Have you wanted to attend an ASPRS conference 
workshop but didn’t have the time to spend away 
from the office? Are your travel funds limited?  
No problem. Here’s why.

ASPRS Workshops are at your fingertips with the 
ASPRS Webinar Workshop Series. Now you can 
take popular ASPRS Workshops from your home 
or office through the ASPRS Webinar Workshop 
Series. Just sign up and log in on the Webinar 
date. You will be able to interact with others 
attending the Webinar and ask questions, just 
as if you were attending the Workshop at one 
of our conferences. The only thing you’ll miss is 
the coffee break!

You benefit from having these excellent ASPRS 
workshops delivered to you. So don’t wait; sign 
up today.

For deadlines & fees, see the URL below.

Webinar Calendar
December 2, 2011 
Basic Principles of Spatial Data Analysis

January 17, 2012
Object-based Image Analysis 

January 26–27, 2012
Preparation for ASPRS Certification 

http://asprs.org/Webinar-Series/




