Righting the Balance: Gender Diversity in the Geosciences

Robin E. Bell

Kim A. Kastens

Follow this and additional works at: https://digitalcommons.usu.edu/advance
Part of the Law and Gender Commons, and the Other Education Commons

Recommended Citation

Bell, Robin E. and Kastens, Kim A., "Righting the Balance: Gender Diversity in the Geosciences" (2004). ADVANCE Library Collection. Paper 47.
https://digitalcommons.usu.edu/advance/47

This Article is brought to you for free and open access by the Gender Equity and Diversity at DigitalCommons@USU. It has been accepted for inclusion in ADVANCE Library Collection by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

FORUM

Righting the Balance:
Gender Diversity in
the Geosciences

The blatant barriers are down. Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments, and funding agencies. Nonetheless, barriers remain Women continue to be under-represented in Women continue to be under-represented in the Earth, ocean, and atmospheric scienc
Let's do the numbers: As of 1997, women Let's do the numbers: As of 1997, women received 41% of all Ph.D.s in science and engineering, but only 29% of the doctorates in the Earth, atmospheric, and oceanographic sciences [NSF, 1999a]. Women were 23% of employed Ph.D.s across all fields of science, but only accounted for 13% in the geosciences. Women's salaries also lag: the median salary for all Ph.D. geoscientists was $\$ 60,000$; for women, the figure is $\$ 47,000$ [$N S F, 1999 \mathrm{~b}$]. The growing number of women students is a step in the right direction, but only a step. What must be done to attain gender parity? Whiie many studies have addressed the institutional influences on the careers of women scientists [e.g., Cole and Zuckerman, 1987; M/T 1999], there has been scant attention to how women's careers are played of gender disciplines. Solving the problem or gender understanding of the particular obstacles women face in our field. As is true in science a problem to be solved is both a challenge a problem an opportunity to progress.
The under-representation of women offers Earth science departments, universities and Earth science departments, universities and
research centers, funding agencies, and proresearch centers, funding agencies, and pro-
fessional organizations like AGU opportunities fessional organizations lik
for constructive action.

Opportunities for Departments.

Balance Demographics
A study by the Commission on the Status of Women at Columbia University, New York, examined women's progress through the aca demic pipeline [Applegate et al., 2001]. From 1990 to 2000, the representation of wornen in the natural sciences rose from 8% to 11%, while the percentage of women in the graduate student population grew from 20% to 33%. The picture at Columbia mirrors national trends in the physical sciences [Long, 2001]. but the Columbia study provides more detailed information, highlighting the points where women are not progressing through the academic pipeline at the same rate as men. Specifically, women are under-represented in the applicant pools for faculty positions, and few women are hired into the tenured faculty The Columbia study showed that once they are in the applicant pool, women compete
well and are hired at an equitable rate. The chokepoint is the relatively small number of women who are applying for entry-level jobs. The reasons for this are not clear. It may be due to the greater percentage of women relative to men who leave the scientific workforce, the greater percentage of women who seek employment in industry [Long, 2001], the reluctance of women to relocate [Shauman and Xie, 1996], or the tendency of women to be part of a dual-career family, and hence a dual-job search family [Sonnert and Holton, 1995].
Although women are being tenured at a rate equivalent to that of men at Columbia, a demographic imbalance persists because of external hires into the tenured ranks. Fully half of all new appointments to tenure come half of all new appointments to tenure come are significantly less likely to be female than are significantly less likely to be female the
are candidates promoted from within the are candidates promoted from within the
university. The imbalance is particularly university. The imbalance is particularly
noticeable when departments hire what noticeable when departments hire what
administrators call "targets of opportunity" and the rest of us call "stars." Over the decade studied, 11 male and no female scientists were hired as "stars" in the natural sciences at Columbia.
This aralysis indicates two points in the pipeline to be fixed. As producers of Ph.D.s and post-docs, departments should seize the opportunity to encourage young women scientists to pursue the academic life.As consumers of young Ph.D.s, departments have the opportunity to actively recruit the good young
women scientists, to convince them that applying for academic jobs will not be a possibly humiliating waste of time, but an opening to great opportunities. The most convincing to greatopporta be to make it convincin argument would be to make it the truth. At the second point, departments should make aggressive efforts to recruit female "targets of opportunity. To aid these efforts, women should be strongly encouraged to visit institutions for sabbaticals and as visiting scientists. The connections made during such visits often lead to recruiting efforts at all levels.

Opportunities for Universities and Research Centers:Transparency and Open Distribution of Funds
To win the game, you have to know the rules-the real rules. Women are often not included in the informal network in which information about promotion possibilities and job openings is exchanged [Ragins and Sundstrom, 1989].Consequently,well-documented, widely disseminated information on promotion and advancement has been identified as an important element in creating a positive climate for women scientists. Increasing the transparency of promotion and review procedures is a challenge to universities and research centers. Recent experience at Lamont-Doherty indicates that implementing and communicating well-defined criteria for promotion

requires a significant investment of time and effort. Promotion criteria must be defined, al scientists must be informed of these criteria, and provisions must be made for providing regular written and oral feedback to junior scientists.
The MIT [1999] report indicated that science departments with undocumented hiring or advancement procedures also tended to give women department members inequitable access to institutional resources. Clearly, this handicaps women in their research and creates an additional impediment to advancement. Access to matching funds for proposals, institutionally supported fellowships and research tutionally supported fellowships and resear assistants, funding for new instrumentation,
start-up packages, and seed funding for new start-up packages, and seed funding for new projects has been identified as one of the major sources of gender inequity by both the Zuckerman et ai. [1991] study and the MIT report.An open, peer-reviewed process for distributing internal discretionary funds for new project development will reduce this discrepancy.

Opportunities for Funding Agencies: Easing the Financial Burdens of Fieldwork

Across the sciences, the academic workplace is now a more congenial environment for women and men with families to work productively. Many institutions such as LamontDoherty have developed clear family leave policies and invested in childcare facilities. But the geosciences often require extended fieldwork in remote locations, which raises unique issues for parents. In oceanography polar sciences, and marine geosciences, data collection and experimentation require that scientists spend weeks to months on research vessels in remote locations. Fieldwork, a major attraction to graduate students, becomes increasingly difficult for early and mid-care scientists, particularly women and men with children. This critical component in the career of a young scientist inevitably increases the of a young scientist inevitably increas
ension between career and family
Providing financial support for parents conducting extensive fieldwork, "family field pay," would go part of the way toward reducing this tension. In the marine sciences, the cost of sea pay ($-\$ 50 /$ day $)$ is routinely budgeted to cover the hardships of the sea-going expe rience. The funding agencies have an oppor tunity to help scientists balance the demands of fieldwork and family by accepting family field pay as an allowable expense on field program budgets. Examples of potentially useful expenditures for family field pay include temporary babysitting services, extended hours of child care, transportation costs to bring a family member back for home visits, or even support for taking a babysitter into the field.

Opportunities for Professional Organizations
AGU annually documents the employment patterns and demographic characteristics of recent Ph.D.s in Earth and environmental sciences. Many studies have been conducted on the status of women in science at all levels. While knowledge of the status of women is While knowledge of the status of women is ot understand limate change by merely not understand climate change by merely me cannot und we cainot dions on in the conthout on whe without understanding the fluxes and control points in the system. Professional organization such as AGU and the Geological Society of America should develop projects to monitor the career patterns of scientists, both men and women, beyond graduate school and the
first job. A study could involve longitudin: racking cohorts of geoscientists through graduate school to 20 years post-Ph.D. Accompanying this should be a study to dentify critical points in the advancemer or attrition of women scientists. Such a st could address the question of why wome lake industry jobs at a rate greater than m [Long, 2001]. The current hypothesis-tha women prefer the security of industrial el women prefer the security of industrial el Conducting flux studies and identifying tl Conducting flux studies and identifying ti will provide fundamental data for designi will provide fundament data for designi successful programs to enhance diversity the geosciences.

The Future

The scientific challenges facing the geoscier and the realization that research budgets never grow as quickly as research opportun make it imperative that the Earth and envi mental sciences use all of the resources a able to them, including the growing numt of women scientists. These scientists have training, background, and will to advance frontiers of research in our fields. Ensurin, that they will have the opportunity to do : is the responsibility of us all.

Acknowledgments

We thank Jonathan Cole, provost and d of faculties at Columbia University. This is Lamont contribution \#6491.

References

Applegate, J, L Drotning, N. Gajee, J. Howard, K. tens, J. Metcalfe, and D. Partridge, Advancemer women through the academic ranks of the Colur University Graduate School of Arts and Scien Where are the leaks in pipeline?, The pp., Columbia University N. Y 2001
pp., Columbia University, N.Y., 2001
and research performance in science Sci. Am 2,119-125, 1987.
Long. J. S., Ed., From Scarcity to Visibility: Cende, Differences in the Careers of Doctoral Scientist and Engineers, National Research Council, 311 National Academy Press, Washington D.C., 206 MIT, A Study of the Status of Women Faculty in S ence at MIT: How a Committee on Women Fac Came to Be Established by the Dean of the Sic of Science, Massachusetts Institute of Technol, Boston, Mass. 1999.
SFF Division of Science Resource Studies, Chan teristics of Doctoral Scientists and Engineers ir United States: 1997, NSF. Women, Minonties, and Persons with Disabil in Science and Enyineering: 1998; calculated f Appendix Table 5-10, National Science Founda Arlington, Va., 1999b.
Ragins, B. R., and E.Sundstrom, Gender and pov in organizations:A longitudinal perspective, Psychological Bull., 105,51-88, 1989.
Shauman, K.A., and Y. Xie, Geographic mobility . scientists: Sex differences and family constrai Demography, 33, 455-468, 1996.
Sonnert, G., and G. Holton, Gender Differences in. ence Careers: The Project Access Study, 187 pp.: gers, The State University, New Brunswick, N...,. Zuckerman, H.,J. Cole, and J. Butler, (Eds.), The :
er Circle: Women in the Scientific Community,: pp., W.W. Norton \& Company, N.Y., 1991.
-Robin E. Bell and Kim A. Kastens, Lamont Doherty Earth Observatory, Columbia University Falisades, N. Y: MAark Cane, Columbià Üniversit New York, N.Y.; Roberta B. Miluer, Center for Intemational Earth Science Information Networl Columbia University Palisades, N.Y.;, JOHN C. MuTt Earth Institute of Columbia University, New York N. Y.; and Stephanie Pfrman, Barnard College. New York, N.Y.

Call for Nominations

NORMAN L. BOWEN AWARD
The Norman L. Bowen Award is given annually for outstanding contributions to rolcanology, geochemistry, or petrology. The contribution may be: (1) a single outstanding paper published in any journal; 12) a series of papers which, taken tcgether, constitute an outstanding contribution; or (3) any other contribution that t . Selection Committee considers worthy. Special consideration is given to nominees who have not previously received an AGU medal.
For consideration for the 2003 award, nominations must be received by 1 October
2003, and should be sent to:

Rebecca Lange

2534 C.C. Little Building
Department of Geological Sciences
University of Michigan
Ann Arbor, MI 481091063 USA
The nomination file should include: (1) a nominating letter from a colleague, (2) a CV for the candidate, (3) a list of publications for the candidate, (4) three letters of recommendation (no more or less) from colleagues that are neither from the candidate's current institution nor from
the candidate's Ph.D. institution the candidate's Ph.D. institution.

