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Abstract 

Study of the patterns of rumina} digestion of forages enhances 
the nutritional knowledge of how specific plant tissues are 
digested and adds its own dimension by characterizing the 
specific cells and the complex interactions of rumina} micro
flora with those tissues. A common pattern of digestibility exists 
for mono- and dicotyledon leaves : mesophyll and phloem are 
degraded readily, and sclerenchyma slowly, whereas cuticle and 
the remaining vascular tissues are rarely utilized . Digestion of 
stems is limited to parenchymal tissues in monocotyledons and 
to cortex and parenchyma in dicotyledons. Epidermal silica and 
cuticle are undigestible and restrict microbial entrance. Calcium 
oxalate crystals in legumes are utilized poorly by animals, sug
gesting the need for further attention to structure in feedstuff 
analyses. Future studies by animal scientists on plant utiliza
tion and by agronomists in genetics should include structural 
considerations along with the well recognized experimental 
procedures. 
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Introduction 

Over the past century, animal nutritioni sts have re li ed almost 
exclusive ly on chemical analyses in the ir quest for improved 
feedstuff utilization and animal performance. Samples of forages , 
for example, a re dried , ground through a 1-mm sc reen, and sub
jected to various phys ical, chemical, and biochemica l analyses. 
While such tests have prov ided va luable data on tota l nutrient 
content , littl e information re lati ve to nutrient location and 
spec ific ti ssue utilizati on has been obta ined . 

Attempts to use light microscopy to eva luate the digesti ve se
quences and spec ific plant-ti ssue utilizati on have been impeded 
by lac k of depth of field and resolution. The advent of the scan
ning electron microscope (SEM) g reatly enhanced such studies 
because of the three dimensional perspecti ve and the great depth 
of field at high magnifications. Research with the SEM on diges
tion of grasses, legumes, and silages is the subject of this rev iew. 
Digested samples shown in photomicrographs were obta ined 
us ing the nylon bag technique (14). 

Grasses 

Domestic ruminants genera ll y g raze on and consume hays 
from cool-season (C3) or temperate and wa rm-season or 
tropica l (C4) grasses . The structural anatomy of leaves o f these 
grasses di ffe rs (6,19) ; genera ll y c 3 grasses a re bette r util ized 
than C4 spec ies because of a greate r pe rcentage of mesophyl
lous ti ssues . Morphometric studies show that C3 g rasses 
characte ri sti ca ll y contain a higher pe rcentage of mesophyllous 
ti ssues (52- 64 %) compared with c 4 spec ies (27- 52 %) (6). Leaf 
blades of tropical grasses average 22% less of the highl y diges ti 
ble ti ssues and 25 % more of the ti ssues typically less diges
tible than do C3 g rasses (6) . Sta rch , a readily digestible car
bohydrate , is present in the mesophyll of c 3 species , but in c4 
spec ies it is localized within bundle sheath cells surrounding 
vascul ar bundles. In a ll monocotyledon leaves studied , meso
phyll and phloem are degraded readil y, while ligni fied tissues 
such as sclerenchyma and xylem usually are not degraded (6,20). 
Cutic le is ruptured following prolonged digestion but is not 
degraded (15,22) . 

The C3 grasses studied , including Bromus inermis Leyss . 
(bromegrass), Festuca arundinacea Schreb. (fescue) , Poa praren
sis L. (Kentucky bluegrass) , and Dactylis glomerata L. (orchard
grass) , show digesti ve patterns similar to those for c 4 plants or 
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to each other (Fig. 1). Mesophyll and phloem are degraded 
rapidly (within 24 h fermentation) followed by slow digestion 
of bundle sheath cells and sclerenchyma (2 ,6,13,22). Ruptured 
adaxial cuticle and intact abaxial cuticle remain after 72 h (22) . 
Tissues from bromegrass appear to be degraded more rapidly 
than those from fescue; however, the extent of digestion is similar 
if the grass fragments remain in the rumen for 48 h (22). Recent 
studies with various C4 , C3 , and C3/C4 intermediates of 
Panicum species show that readily digestible mesophyllous 
tissues in leaves are degraded primarily by a diverse popula
tion of nonadhering bacteria, whereas parenchyma bundle 
sheaths , sclerenchyma , and epidermis require adhering encap
sulated cocci and irregularly-shaped bacteria (9,11) . Complex 
interrelationships exist between fiber-digesting bacteria and 
forage-plant cell walls during digestion and that relationship is 
probably related to variation in cell wall nutrient availability (1). 
Stems from grass species vary in parenchymal lignification and , 
thus , digestion , suggesting the possibility for genetically pro
duced plants with no or little parenchymal lignification (5). One 
species, Panicum antidotale (C4), shows no parenchymal ligni
fication ; the tissue is digested within 24 h . 

Warm-season grasses studied by SEM initially involved 
Cynodon (bermudagrasses) and Andropogon (bluestems) , but 
now include Panicum (13) , Digitaria pentzii Stent. (10), Bothri
ochloa , and Eragrostis (4). These grasses contain much less 
of the readily available tissues (especially mesophyll) , which 
partially accounts for their lower digestibilities compared with 
cool-season grasses (6) . Mesophyllous tissues appear to be more 
compact and may have differential quantities and qualities of 
cell wall material (27). A typical example (Fig. 2) of a digested 
leaf shows the tissue remnants. Generally, lignified supportive 
cells (xylem , inner bundle sheath) are not degraded and stain 
positively with acid phloroglucinol , suggesting coniferaldehyde 
lignin. Slowly degradable cells such as sclerenchyma and outer 
bundle sheath are positive for chlorine-sulfite stain, probably 
because of syringyl groups (8,9). Horses also are able to digest 
the readily degradable tissues that ruminants digest but are 
unable to utilize these chlorine-sulfite-positive-cells that 
ruminants degrade slowly (24). 

Starch is localized in bundle sheath cells of C4 grasses (19). 
Hydrolysis of these granules cannot occur until bundle sheath 
walls have been ruptured (3,7) . Transmission electron micros
copy studies reveal a thin , suberin layer in outer tangential and 
radial walls of bundle sheath cells of immature and mature leaves 
of indiangrass (Sorghastrum nutans (L.) Nash) and big bluestem 
(Andropogon gerardi Yitman) , which resist degradation. Mature 
leaf blades subjected to 120 h incubation show only 25 to 50 % 
of bundle sheath cells degraded. Rupture of the bundle sheath 
is dependent upon bundle size and stage of development (27). 

Bacterial entry may be less restrictive where the cell walls are 
contiguous to vascular tissues (no suberin layer) . Masticated 
and exposed edges of vascular bundles may provide channels 
for bacterial distribution , at least in smaller bundles. 

Silages 

Storing freshly harvested plant material by ensiling in air-tight 
structures permit bacterial fermentation (mainly lactate forma
tion) prior to utilization by ruminants. Leaf and stem tissues 
from corn (Zea mays L.) and sorghum (Sorghum bicolor (L.) 
Moench.) treated by this process have been studied by SEM (26). 
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Bacterial attachment is more prevalent on adaxial compared 
with abaxial surfaces of leaf tissues of both forages removed 
from silos. In corn silage, hydrolytic activity occurs in starch 
granules of corn silage deposited along vascular protrusions of 
adaxial leaf surfaces during the ensiling procedure. These cuti
cular areas appear to be vulnerable to bacterial degradation (Fig. 
3). Sorghum leaf surfaces are planar, thus starch granules do 
not accumulate during ensiling. Sorghum seeds are smaller than 
those of corn and generally escape fracture during harvesting. 
Internal leaf tissues remain intact , although numerous bacterial 
accumulation can be observed. Stem tissues remain intact. Corn 
stem parenchyma contains partially digested starch granules from 
ruptured corn kernels; sorghum stem parenchyma appears free 
of starch granules from seed as were the ensiled sorghum leaves. 

Digestion of leaf tissues by rumen microorganisms shows that 
mesophyllous tissues are destroyed within 24 h in both corn 
and sorghum (Figs. 4,5). Sorghum epidermis is thicker and more 
resistant to rupture than that of corn . Unreported research sug
gests that there may be differences between sorghum lines in 
the rate of leaf degradation by rumen microflora (Akin DE, per
sonal communication). 

Examination of ensiled stem tissues shows that rumen micro
organisms preferentially digest thin parenchymal cells (Figs. 6,7) . 
Corn parenchyma is degraded within 48 h; however, sorghum 
stem parenchyma is degraded more slowly. Recent research in 
our laboratory suggests variation in digestion of stems between 
sorghum lines. Studies are currently underway to verify these 
findings and elucidate the reasons for resistance in some sorghum 
varieties . 

Other structural inhibitors to digestion 

Lignin, in combination with thick-walled cellular structures , 
forms major barriers to digestion of some internal tissues by 
microorganisms. The external leaf structures , silica and cuticle, 
provide a formidable barrier to microbial entrance, leaving only 
exposed edges and cuticle crushed from mastication as entrance 
sites (30) . 

Silica is deposited by a passive nonmetabolic mechanism (32) 
in grass epidermal cells (19) , where it prevents microbial en
trance (15). Grass cuticle is so resistant to microbial digestion 
that rumen fermentation has been used to isolate intact cuticle 
(31). 

Typical X-ray dispersions of silica in adaxial and abaxial 
tissues of c3 (fescue) and c4 (bluestem) grasses are shown in 
Figs . 8 to 10. Silica in adaxial leaf surfaces of fescue (Fig. 8) 
is limited to cells contiguous to underlying vascular bundles , 
whereas abaxial cuticle contains silica in every cell (Fig. 9). 
Both surfaces show the characteristic fescutoid phytoliths. The 
nonsilicified cells of the adaxial cuticle are ruptured during 
fermentation (Fig. 1), probably by physical rupture, and so may 
aid in increased rate of passage of nonutilizable tissues by rapid 
particle reduction. Silica is present in each cell of adaxial and 
abaxial epidermis of bluestem (Fig. 10); dumbbell-shaped pani
coid phytoliths are present in parallel rows on both surfaces. 
Cuticular resistance in C4 plants is such that only a few epider
mal cells are ruptured after underlying mesophyllous tissues 
are degraded (15). 

Plants (fescue and bluestems) grown with and without silica 
(25) show that young grasses (30 days postemergence) with silica 
have cuticular barriers to digestion similar to those of naturally 
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Fig. 1. Cross-section of fescue (C3) leaf blade digested 24 h 
by rumen microorganisms showing degraded mesophyll (M), 
ruptured cuticle (arrow), and intact sclerenchyma (S). Bar 
= 10 ~-tm. 

Fig. 2. Cross-section of 24 h digested bluestem (C4) leaf 
blade with intact cuticle (C) and vascular tissue (V). Bar 
= 100 ~-tm. 

Fig. 3. Adaxial surface of ensiled corn leaf with starch grain 
(arrow) deposit near protrusion over vascular tissue (V). Bar 
= 100 ~-tm. 

Fig. 4. Adaxial view of ensiled corn leaf blade after 72 h 
ruminal digestion showing remnants of adaxial cuticle (C), 
vascular tissue (V), and epidermal cells (E) attached to abax
ial cuticle. Bar = 300 ~-tm. 

Fig. 5. Section of sorghum leaf blade digested 12 h showing 
vascular bundles (V) and cuticle (C) intact. Bar = 100 ~-tm. 
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Fig. 6. Columns of vascular bundles (V) minus parenchyma 
after 48 h ruminal digestion of ensiled corn stem. Bar 
500 ~-tm. 

Fig. 7. Exposed vascular tissue (V) and parenchyma (P) 
remaining on sorghum stem digested 48 h. Bar = 400 ~-tm. 

Fig. 8. X-ray dispersion of silica on adaxial surface of fescue 
leaf. Bar = 400 ~-tm. 

Fig. 9. X-ray dispersion of silica on abaxial surface of fescue 
leaf. Bar = 300 ~-tm. 

Fig. 10. X-ray dispersion of silica and panicoid phytoliths 
on surface of bluestem leaf blade. Bar = 30 ~-tm. 
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Fig. 11. Abaxial surface of young fescue leaf blade grown 
without silica showing cuticular rupture following U h di
gestion. Bar = 500 p.m. 

Fig. U. Digested alfalfa leaflet (24 h) with vascular tissue 
(V), cuticle (C), and abaxial macrohair (H) as only remnants. 
Bar = 100 p.m. 

Fig. 13. Cross-section of alfalfa stem showing cuticle (C), 
cortex (arrow), vascular tissue (V), and parenchyma (P). Bar 
= 300 p.m. 

Fig. 14. Digested alfalfa stem {48 h) showing remnants of 
vascular tissue. Bar = 300 p.m. 

Fig. 15. Calcium oxalate crystals (arrow) on vascular bundle 
remnants of digested alfalfa (24 h). Bar = 10 p.m. 
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grown plants. When silica is absent, mass ive rupture of the cuti
cular layers is possible (Fig. ll) , suggesting that silica is a major 
deterrent to microbial entrance in young plants. In older plants 
(60 days postemergence) , the absence of silica has no influence 
on microbial penetration ; other structures and components in 
the cuticle and epidermis resist rupture (25). 

Siliceous deposits are found also in leaves of corn and sor
ghum . Sorghum leaf cuticle is resistant to microbial and phy
sical rupture following ensi ling and rumen fermentation (Fig. 
5) , but adaxial corn leaf cuticle is not as resistant (Fig. 4) , sug
gesting that cuticular components other than silica differ among 
these forages (26). 

Legumes 

The dicotyledons have received less attention than monocoty
ledons because leaves of most of the former are readily diges
tible; their quality as feed is dependent upon the amount of 
highly lignified stem. The high digestibility of alfalfa does not 
agree with the supposition that lignin decreases digestibility, 
since legumes such as alfalfa generally contain more lignin than 
do most grasses. The idea was proposed more than 30 years 
ago that the location of lignin may have more effect on utiliza
tion than its percentage (17,29). 

Studies on the rumen fermentation patterns of fresh , intact 
legume leaves show that microorganisms rapidly enter through 
stomata , penetrate intercellular spaces, separate plant cells, and 
penetrate the cell walls by general di sorganization (16) . SEM 
studies (14) on alfalfa hay leaves show that rumina! fermenta
tion results in random sloughing of adaxial cuticle with rapid 
digestion of mesophyll. By 24 h the remaining leaf ti ssues con
sist of vascular bundles and abaxial cuticle with its macrohairs 
intact (Fig. 12). The indigestible abaxial ti ssues are also a feature 
of monocotyledons; however, legumes do not contain silica in 
epidermal ti ssues. 

The classic dicotyledon structures (epidermis, cortex , and vas
cular tissues) are distinguished easily in stem cross-section (Fig. 
13). Rumina! fermentation results in sloughing of the cuticle 
and hydrolysis of the dense cortex to sieve cells of the vascular 
ti ssue and simultaneous degradation of part of the pith paren
chyma (Fig. 14). No additional digestion has been observed in 
either rumen fermentations or fecal remnants. 

Studies with leaf and steam ti ssues of clovers (12) indicate 
that reduced digestibility with maturity is due to reduced de
gradation of stem interfascicular parenchyma . Differences in 
digestibility between arrowleaf clover (Trifolium vesiculosum 
Savi) and crimson clover (T incarnatum L.) could not be ex
plained by anatomical differences (12). 

The SEM has been an especially useful tool in elucidating 
a nutritional problem associated with the feeding of alfalfa hay. 
Our dairy group reported approximately a twofold discrepancy 
in the requirement of calcium for milk production from that 
recommended by the National Research Council (NRC) when 
alfalfa-sorghum grain-soybean meal rations were fed (34). The 
NRC calcium requirement was derived from studies involving 
rations providing calcium from inorganic sources. The true 
digestibility (a combination of chemical and radio-calcium 
balance studies) of alfalfa calcium was found to average only 
two-thirds that of inorganic sources (2 1) , but the work was done 
with steers. 

Leguminous plants have 1 to 2% calcium. Thus, when NRC 
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recommended allowances for total calcium are followed , rations 
with alfalfa as the only source of roughage require additional 
phosphorous, but not calcium. Lactating dairy cows fed alfalfa 
as the sole roughage source did not reduce milk production ap
preciably but were removed early from the herd compared to 
calc ium-supplemented animals because of apparent skeletal 
problems (33). 

Using a combination of secondary imagery and x-ray disper
sion with the SEM in combination with Raman microprobe 
analysis (36), we were able to show that crystals surrounding 
vascular bundles in alfalfa were calcium oxalate (Fig. 15) , a con
dition reported much earlier in clovers (18,28). These crystals 
remained in their sclerenchymatous sheaths in the rumen and 
were found as loose crystals in fecal remnants (36). Fecal 
residues from domestic and zoo ruminants , nonruminant herbi
vores , and birds fed alfalfa hay or dehydrated pellets showed 
crystals still intact or loose (23). Further studies on extracta
bility in acid (35) and oxalate digestion (37) , as well as chick 
growth studies (38) confirmed poor utilization of oxalate calcium 
in alfalfa. 

Conclusions 

Microbial digestion of plant tissues follows a remarkably 
similar hydrolytic pattern: nonlignified tissues are degraded 
readily by cellulase enzymes, cells containing sy ringyl-type 
lignin are degraded slowly by two general types of attached 
bacteria , and structural tissues containing coniferaldehyde-type 
lignin resist digestion . Cuticle acts as a barrier to bacterial en
trance in most monocotyledons, and suberin surrounding C4 
bundle-sheath cells delays entrance into these starch-containing 
tissues. The relatively high concentration of calcium in dico
tyledons (such as alfalfa) is not as available as generally believed 
because of insoluble calcium oxalate crystals attached to leaf 
vascular bundles. 
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Discussion with Reviewers 

D.E. Akin: Could x-ray analysis of minerals and elements be 
used in re-defining NRC guidelines for animal feeding? 
Author: X-ray analysis for mineral s in biological specimens 
is generally limited to qualitative types of experiments . The 
methodology is extremely useful in defining insoluble mineral s 
such as the studies with calcium oxalate and· silica. Future studies 
localizing partially available mineral complexes such as phytin 
phosphate and other suspected mineral complexes resulting in 
water insoluble molecules could best be studied by microscopic 
techniques but would have to be confirmed by quantitative animal 
performance for re-defining NRC guidelines. 

D.E. Akin: You referred to the fact that absence of silica did 
not affect the resistance of cuticles in older plants, and that other 
compounds are possible factors. Do you think that various waxes, 
lipids, or suberin-like compounds may differentially influence 
cuticle breakdown in various plants? 
Author: Our investigations with corn and sorghum leaves as 
well as grasses grown with and without silica lead us to believe 
there are differences in cuticular composition. Literature on the 
chemical composition of leaves would certainly suggest differ
ences. 
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D.E. Akin: What do you feel will be the most important thrust 
for electron microscopy in future exploration of plant-microbe 
interactions? 

Author: Spec ifica lly fo r the ruminant animal, additional 
research is needed to identi fy plant spec ies and varieties con
taining readily digestible ti ssues and coordinating such findings 
with animal production information. Further studies are needed 
to identify and characteri ze bacteria and fungi that attack slow
ly degradable ti ssues. Such information would be of immediate 
benefit to animal sc ienti sts and agronomists and in future deci
sions by genetic engineers as to appropri ate changes in both 
plants and bacteria to achieve optimal plant digestion by rumin
ants. 
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