

Landsat-8 Operational Land Imager (OLI) Initial On-Orbit Performance

Geir Kvaran, Ed Knight, Khurrum Ansari, Kenton Lee, Brent Canova, Brian Donley Ball Aerospace & Technologies Corp.

Ball Aerospace & Technologies Corp. Hugh Kieffer Celestial Reasonings

> Agility to innovate, Strength to deliver.

- Intent of talk is to review On Orbit Checkout (first 90 days on-orbit)
 - Emphasis was on health and welfare of OLI, exercising all observation modes and comparison with pre-launch test activities
- Overview of instrument and calibration operations
- Pre-launch to post-launch comparison by observation type
 - Shutter (dark)
 - Stim lamps
 - Diffusers
 - Variable Integration Time
- Celestial Targets
 - Moon
 - Stars
- Overview of performance vs. Key Performance Requirements
 - SNR
 - Stability
 - Uniformity

OLI Instrument Overview

- Pushbroom VIS/SWIR sensor
- Four-mirror telescope with front aperture stop
- FPA consisting of 14 sensor chip assemblies, passively cooled
- On-board calibration with both diffusers lamps and a shutter

OLI Focal Plane and Data Layout

OLI has 9 bands, 6 Si and 3 HgCdTe on each of 14 FPMs Spectral separation uses 9 "toothpick" interference filters.

Shutter Observations Pre-Launch To On-Orbit

Si band Shutter observations show a small bias shift common to all bands.

Dark Current Measurement v/Variable Int. Time

- Variable integration time shutter observations allow OLI to track HgCdTe band dark current.
- The basic dark current pattern has remained, however not all detectors have changed identically.

On-Board Stim Lamps Allow a Second Set of Pre-Launch to On-Orbit Comparisons

- A simple analytical model of the stim lamp output (Planck function + optics transmission) allows us to fit an effective temperature to the lamps.
- We observed an ~60K increase in effective temperature, consistent with our expectations for 0G effects.

The Heliostat Was Used as the Basis for the Transfer to Orbit Experiment

- Using the heliostat we illuminated the flight diffuser in a flight like manner and estimated the corresponding TOA radiances.
- The transfer to orbit experiment compares predicted diffuser TOA radiances to measured radiances.

Summary of Transfer to Orbit

- We estimated ~2.5% uncertainty (1s) on this comparison.
- Positive bias in all bands is probably significant- i.e. there is likely an unaccounted for bias error

Heliostat Allows Montioring Change in Diffuser Uniformity Pre-Launch to On-Orbit

Non-Uniformity of the heliostat agrees to about +/- 0.5% with On-Orbit observations

Diffuser Variable Integration Time

Comparison ITS Sweep Skylines

Variable integration time observations of the diffuser allow linearity monitoring

Linearity vs Integration Time Pre-Launch to On-Orbit

- FPM non-linearity observations agree well with pre-launch values.
- Pre-launch and post-launch variable integration time observations agree well for all detectors.

Image Frame Vector Y-component

Stellar Observations Were Used To Validate Pointing

- With an observatory maneuver OLI was able to scan two star
- Mean errors of 2 m AT, 128 m XT
- Standard deviation of errors of < 4 m XT and

30

Lunar Observations

- With an observatory maneuver OLI scans the full Moon every month in each spectral band.
- •This requires 15 scans over 2 orbits.
- During On-Orbit Checkout, our focus was on the Moon as a stray light (not a radiometric) source.
 Artifacts are not visible to the naked eye.

Lunar Observations Show that OLI Ghosting Meets its Requirements

Ghosting is small and well contained.

SNR On-Orbit Agrees Well With Pre-Launch Measured Values

Pre-Launch	Spec Value	C/A (1)	Blue (2)	Green (3)	Red (4)	NIR (5)	SWIR 1 (6)	SWIR 2 (7)	Pan (8)	Cirrus (9)
	Req. at Ltyp	130	130	100	90	90	100	100	80	50
	Value (12 bit)	232	355	296	222	199	261	326	146	162
	Req. at Lhigh	290	360	390	340	460	540	510	230	NA
	Value (12 bit)	607	1127	1213	945	1009	1007	1030	440	

Spec Value	СА	Blue	Green	Red	NIR	SWIR1	SWIR2	Pan	Cirrus
string	#	#	#	#	#	#	#	#	#
Req. at Ltyp	130	130	100	90	90	100	100	80	50
Value	233	361	298	224	198	263	334	150	168
Req. at Lhigh	1 290	360	390	340	460	540	510	230	
Value	623	1162	1236	969	1014	1016	1045	452	NA

On-Orbit

- All bands meet spec.
- There are no out of spec detectors
- On-orbit values show good agreement with Pre-Launch

Ball Stability of Diffuser Observations is Used to Evaluate a KPR

- The time series of diffuser observations shows:
- A small degradation in response in the Blue & CA bands
- A very small increase in all other bands

Diffuser Observations are Used to Evaluate Uniformity KPR

- Repeatability of the diffuser uniformity on-orbit is good.
 - Banding likely contans information about local diffuser non-uniformity
 - Streaking is dominated by cosmic ray hits

Earth Observations

EROS data center was able to generate high quality imagery using pre-launch calibration coefficients in a timely manner

- OLI continues to operate successfully and meet its Key Performance Requirements
- The pre-launch calibration have been successfully transitioned on-orbit and provide a good baseline for characterizations over the mission life.