

02/09/2014

Vicarious calibration of PROBA-V : One year in orbit

Stefan Adriaensen(a), Wouter Dierckx(a), Jan Dries(a), Stefan Livens(a), Sindy Sterckx(a), Tanja Van Achteren(a), Marc Bouvet(b)

(a) VITO, Remote Sensing, Boeretang 200, Mol, Belgium

(b) ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

CALCON, August 11 - 15 2014, Utah, USA

PROBA-V In-flight calibration

- » Variations in the characteristics of the instrument are likely to occur in orbit due to
 - » outgassing phenomena during launch
 - » aging of the optical parts
 - » cosmic ray damage
 - » ...

- » NO on-board calibration devices such as lamps, solar diffuser panels, LEDs,..
- » vicarious calibration techniques to meet requirements
 - » 5 % absolute accuracy
 - » 3 % relative accuracy
 - » inter-band
 - » multi-temporal

RC – IQC: Vicarious Calibration Concept

Temporal

OSCAR* (Optical Sensor Calibration with simulated Radiances)

» Relies on combination of various vicarious calibration methods to reduce uncertainty in the calibration results and to verify the different requirements

Deserts

Multi Angular

vision on technology

Antarctica

Greenland.

DC Clouds

Interband

*Sterckx *et al.* IJRS, 2014; Sterckx *et al.* , TGARS, 2013; Govaerts *et al.*, RSL, 2013

02/09/2014 © 2014, VITO N

Deserts

Absolute calibration coefficient

Assessment interband calibration

RAYLEIGH

02/09/2014 © 2014, VITO NV

5

DCC Inter-band

6

Oscar Libya-4 calibration - LEFT

Oscar Libya-4 calibration - CENTER

Libya-4 - CENTER

© 2014. VITO NV

BOUVET M., RSE, 140, 2014.

11

Libya-4 - RIGHT

BOUVET M., RSE, 140, 2014.

Lunar Calibration

Moon = stable over thousands of years Usage : stability monitoring RED BLUE NR SWR Implementation :

- Compute integrated irradiance
- Convert integrated irradiance to full disc reflectance and compare with a lunar reflectance model
- Monthly acquisition at same phase angle to reduce uncertainty
 Other usage :
 - MTF
 - Dark current validation
 - Straylight assessment

Observations

- » Observation of the moon :
 - » Phase angle 7° +/- 0.5 degrees (moon observer sun angle)
 - » Waxing and waning
 - » Pitch maneuver : 360 degrees rotation at approx. 0.2 degrees/s
 - » Oversampling of +/-1.8
 - » Only center camera

Lunar reflectance model

- » USGS ROLO model implemented (311g)
 - » Kiefer and Stone, 2005
 - » Based on thousands of automated lunar observations
- » Main model Input parameters :
 - » Phase angle
 - » Sun selenographic longitude
 - » Observer selenographic lat and lon
 - » Response curve
- » Model returns 'disc equivalent reflectance'
 - » Smoothed to Apollo sand reflectance
 - » Corrected for distance observer moon and sun moon

Workflow

Masking

- » Result strongly depend on correct masking
- » Geometry :
 - » Timestamp center line of the moon
 - » Position of the moon, sun, earth and platform
 - » Distances and angles between them
- » Define pixel solid angle along track :
 - » Conversion from radiance to disk eq reflectance :
 - » pixel solid angle
 - » integrate over disc

Stability monitoring lunar observations

Ak

Absolute Calibration

Ak

Comparison with desert

Conclusions

- » PROBA-V behaves well !
- » Lunar reflectance model is implemented and applied successfully
- » It can be used for temporal stability monitoring
- » Results for absolute calibration moon are in line with desert method.
- » Verification/validation of the implementation still necessary
 - » Participate Lunar Calibration Workshop organized by GSICS later this year.
- » SWIR results

- » Acknowledge :
 - » T. Stone (USGS)

