

Characterization of Deep Convective Clouds as Absolute Calibration Targets for Visible Sensors

28 August 2012

Daniel Morstad^a, David Doelling^b, Benjamin Scarino^a, Rajendra Bhatt^a, Arun Gopalan^a, ^aSSAI, One Enterprise Pkwy Ste 200, Hampton, VA 23666 USA ^bNASA Langley Research Center, 21 Langley Blvd MS 420, Hampton, VA 23681-2199 USA

2012 CALCON Technical Conference

27 - 30 August 2012 Logan, Utah, United States

Inter-calibration and Validation of Operational Sensors -- Oral Session

Background

- Deep Convective Clouds (DCC) are cold, bright, and stable targets that are observed by nearly all geostationary and polar orbiting satellites
 - 90% reflectance at the lowest possible SZA
 - Predictable DCC reflectance at low SZA and VZA
 - Located near equator at the tropopause level
- DCC are easily identified by a simple IR threshold.
 - IR imagers are historically well calibrated with onboard blackbodies
 - Only good visible and IR co-registration is needed, good navigation is not a requirement
- DCC have historically been used to monitor degradation of visible sensors. To be used for transferring absolute calibration, they must be better characterized.

Objective: Characterize DCC for use as absolute calibration targets

- Use Aqua-MODIS as reference sensor to evaluate how the following criteria affect DCC reflectivity:
 - IR temperature threshold
 - Spatial standard deviations (Visible/IR)
 - Geolocation
- Use SCIAMACHY and Hyperion to evaluate hyperspectral characteristics of DCC reflectivity
 - Compare DCC to other cloud type

DCC Identification

Parameters	DCC Identification Threshold	
Geographical Extent	30°N to 30°S all surface types	
Angular Range	SZA<40°, VZA<40°	DCC pixel
11µm Temperature	BT11μm < 205°K	
11µm Spatial Homogeneity	Standard deviation $BT_{11\mu m} < 1^{\circ}K$	based on all 9 pixels
0.65µm Spatial Homogeneity	Standard deviation R _{0.6µm} <3%	

Baseline Aqua-MODIS 0.65µm DCC method

- Apply BRDF model to derive DCC anisotropic corrected (AC) radiance
- Compute monthly histogram
- Perform temporal trend

IR Temperature Threshold for DCC Identification August 2004

- 2%, 0.6% increase in the mean, mode PDF Rad_{AC} with each 5° decrease
- 64%, 94%, 99.7% data reduction between 205°K and 200°K, 195°K, 190°K
- Sufficient samples with IR threshold between 205°K and 195°K

Spatial Thresholds for DCC Identification

0.65µm StDev threshold (%)	Mode DCC radiance (Wm ⁻² sr ⁻¹ µm ⁻¹)	Mean DCC radiance (Wm ⁻² sr ⁻¹ µm ⁻¹)	Monthly Mode standard deviation (%)	Mode trend (%/decade)
None	530.4	501.4	0.51	-0.60
5	531.7	507.9	0.47	-0.61
3	3 532.8		0.51	-0.66
1	532.6	509.4	0.55	-0.73

11µm StDev Threshold (K [°])	Mode DCC radiance (Wm ⁻² sr ⁻¹ µm ⁻¹)	Mean DCC radiance (Wm ⁻² sr ⁻¹ µm ⁻¹)	Monthly Mode standard deviation (%)	Mode trend (%/decade)
None	530.4	501.4	0.51	-0.60
3	530.9	504.3	0.50	-0.79
2	2 531.6		0.51	-0.64
1	533.4	505.5	0.51	-0.71

• Spatial standard deviation has little to no effect on Mode or Mean reflectivity

• 56% data reduction when applying both spatial thresholds

Aqua-MODIS DCC Frequency

- \bullet For 0.65 μm the mode is more consistent in space
- \bullet For 2.12µm the mean is more consistent in space and time
- 0.65µm land not necessarily brighter than ocean, for 2.12µm it is
- For 2.12µm land has less temporal uncertainty

• DCC AC radiance regional standard deviation decreased for both tropics and land for both channels as compared to 205°K maps

27 regions with 30 valid months

195°K

 DCC AC radiance regional standard deviation decreased for both tropics and land for both channels as compared to 205°K and 200°K maps but severely limited available calibration domains

200°K and spatial threshold

Tropics/Land		MODE		MEAN			
MODIS BAND	Spatial Month		Annual	Spatial	Month	Annual	
(µm)	(%)	(%)	(%)	(%)	(%)	(%)	
1 (0.65)	0.5/0.3	1.2/1.0	0.6/0.5	1.1/0.3	1.6/1.2	0.8/0.6	
3 (0.47)	0.5/0.4	1.3/1.1	0.6/0.5	1.1/0.3	1.7/1.2	0.8/0.5	
4 (0.55)	0.5/0.3	1.3/1.1	0.6/0.5	1.1/0.3	1.7/1.2	0.8/0.6	
5 (1.24)	1.2/0.7	1.3/1.0	0.6/0.5	1.3/0.7	1.0/0.8	0.5/0.4	
6 (2.12)	2.5/1.2	3.4/1.9	2.0/1.7	1.8/0.7	1.8/1.1	1.1/1.0	
26 (1.37)	2.0/1.1	2.7/1.9	1.2/0.9	2.3/0.9	2.0/1.5	1.0/0.6	

- Use PDF mode statistic for <0.65μm
- Use PDF mean statistic for >1.0μm
- Land has less temporal uncertainty than over ocean

SCIAMACHY reflectance spectra

GOES-13 and Hyperion image over hurricane Rina, October 27, 2011

- Hyperion on EO-1 10:00AM,
- 220 spectral bands from 0.4µm to 2.5µm at 10nm increments
- 7.5 by 100km spatial image

Comparison of Hyperion and SCIAMACHY spectra

- The reflectance spectra are similar, except maybe at 1.4μm
- Hyperion reflectance based on the USGS Hyperion solar spectra

Conclusions

- DCC calibration is most successful if the monthly PDF shape is consistent from month to month
 - Must balance the most stringent threshold with sample size
 - TWP, Africa and South America have the most DCC
 - PDF mode best for wavelengths < $0.7\mu m$
 - PDF mean best for wavelengths > $1.0\mu m$
 - Possible to calibrate wavelengths < $2.2 \mu m$
- DCC over land provides a more predictable reflectance and less uncertainty than over ocean
- DCC not impacted by water vapor bands between 0.4 and 1.6µm as with other cloud types

- The DCC ADM is nearly isotropic within 40° SZA and VZA
- If the Aqua orbit is maintained, and DCC consistent in space and time, then viewing geometry is replicated annually and less dependency on ADM

SCIAMACHY reflectance standard deviation

SCIAMACHY reflectance standard deviation (%)

Hyperion reflectance ratios

Hyperion reflectances are <2%

DCC threshold characteristics

0.65µm	thre	shold		MODE			MEAN		
Surface	Temp	Spatial	#	Spatial	Month	Annual	Spatial	Month	Annual
	(K°)			(%)	(%)	(%)	(%)	(%)	(%)
Tropics	205		117	0.8	1.8	0.7	1.4	1.8	0.8
	205	Y	78	0.6	1.6	0.7	1.5	1.9	0.9
	200		78	0.6	1.4	0.6	1.2	1.6	0.7
	200	Y	43	0.5	1.2	0.6	1.1	1.6	0.8
	195		27	0.5	1.3	0.7	1.0	1.4	0.8
Land	205		29	0.8	1.5	0.6	1.1	1.5	0.6
	205	Y	22	0.5	1.1	0.5	0.7	1.4	0.7
	200		24	0.6	1.3	0.6	0.9	1.3	0.6
	200	Y	11	0.3	1.0	0.5	0.3	1.2	0.6
	195		8	0.3	1.1	0.5	0.3	1.1	0.6

- Spatial thresholds work better over land
- Temperature thresholds work better over ocean