
 1

A combined dynamical and statistical downscaling technique to reduce biases in 1 

climate projections: An example for winter precipitation and snowpack in the 2 

western United States  3 

 4 

R. Li
1, 2

, S.-Y. Wang
1, 2

, R. R. Gillies
1, 2

 5 

                   (1) Utah Climate Center, Utah State University, Logan, UT, USA  6 

                   (2) Department of Plants, Soils, and Climate, Utah State University, Logan, UT, USA  7 

 8 

Emails: lirong18@gmail.com, simon.wang@usu.edu, Robert.Gillies@usu.edu 9 

 10 

Abstract 11 

Large biases associated with climate projections are problematic when it comes to 12 

their regional application in the assessment of water resources and ecosystems. Here, we 13 

demonstrate a method that can reduce systematic biases in regional climate projections. 14 

The global and regional climate models employed to demonstrate this technique are the 15 

Community Climate System Model (CCSM) and the Weather Research and Forecasting 16 

(WRF) model, respectively. The method first utilized a statistical regression technique 17 

and a global reanalysis dataset to correct biases in the CCSM-simulated variables (e.g., 18 

temperature, geopotential height, specific humidity, and winds) that are subsequently 19 

used to drive the WRF model. The WRF simulations were conducted for the western 20 

United States and were driven with a) global reanalysis, b) original CCSM, and c) bias-21 

corrected CCSM data.  The bias-corrected CCSM data led to a more realistic regional 22 

climate simulation of precipitation and associated atmospheric dynamics, as well as snow 23 

water equivalent (SWE) in comparison to the original CCSM-driven WRF simulation.  24 

Since most climate applications rely on existing global model output as the forcing data 25 

(i.e. they cannot re-run or change the global model), which often contain large biases, this 26 

effective and economical method provides a useful tool to reduce biases in regional 27 
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climate downscaling simulations of water resource variables.    28 

Keywords: Regional climate modeling, dynamical downscaling, snowpack, 29 

precipitation, western U.S., climate change, snow water equivalent  30 

1. Introduction 31 

The assessment of, and adaptation to, future water resources depends heavily 32 

upon reliable climate simulations of precipitation, snowpack, and temperature. Deriving 33 

regional climate information from coupled atmosphere–ocean general circulation model 34 

(CGCMs) projections by using regional climate models (RCMs), namely dynamical 35 

downscaling, has become a common practice (Hayhoe et al. 2004; Wood et al. 2004; 36 

Wilby et al. 1998; Gutierrez et al. 2013; Hewitson and Crane 1996). Dynamical 37 

downscaling generates physics-based representations of future climate processes that also 38 

account for the changing dynamics in the climate system; this is its advantage over 39 

statistical downscaling (Leung et al. 2003a; Leung et al. 2003b; Liang et al. 2008). 40 

However, certain climate variables, especially snowpack and precipitation, are 41 

particularly difficult to simulate accurately (Salzmann and Mearns 2012; Rasmussen et al. 42 

2011; Mearns et al. 2013; Mearns et al. 2012; Pielke 2013), and it is impossible to correct 43 

their large biases through either dynamical or statistical methods alone.  44 

Generally, biases in dynamical downscaling originate from two sources: (1) 45 

inadequate representation of the physical processes in the RCMs, and (2) biases 46 

propagated into the RCMs from the “parent” CGCMs (Pielke and Wilby, 2012). Since 47 

RCMs and dynamical downscaling are expensive in terms of model development and 48 

computing time, some studies that require regional climate information tend to utilize 49 

existing simulations provided by a handful of modeling centers, e.g., those participating 50 
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in the North American Regional Climate Change Assessment Program (NARCCAP; 51 

Mearns et al. 2012). Consequently, these studies are forced to work with both types of 52 

biases in the existing climate simulations. Since CGCM simulations are also complex and 53 

computationally expensive, most studies that perform their own regional climate 54 

simulations have to rely upon national centers and coordinated projects (e.g., the Coupled 55 

Model Intercomparison Project Phase 5 (CMIP5)) (Taylor et al. 2012) for CGCM data to 56 

provide boundary conditions to RCMs. However, such CGCM-derived boundary 57 

conditions contain model-specific and often large biases; these also degrade the 58 

downscaled simulation results (e.g., Wang et al. 2009).   59 

Given the aforementioned problems that exist in both regional and global climate 60 

models, we sought to develop an effective and economical procedure to improve regional 61 

climate downscaling. For this paper, we focused on downscaled precipitation and 62 

snowpack projections in the semi-arid western United States, where reliable assessment 63 

of future changes in water resources has been a challenge. For example, existing 64 

simulations in the western U.S. such as NARCCAP (50 km resolution) tended to predict 65 

too much winter precipitation (Mearns et al. 2012; Wang et al. 2009), too little SWE 66 

(Salzmann and Mearns 2012), and inconsistent long-term trends by different models 67 

(Salzmann and  Mearns 2012).  In addition, the simulation of snow water equivalent 68 

(SWE) generally requires the use of high (< 10 km) resolution model runs (Rasmussen et 69 

al. 2011; Jin and Wen 2012); this is often prohibitively expensive. Here, we present 70 

results from a combined statistical and dynamical technique, first introduced by Jin et al. 71 

(2011), that can reduce biases resulting from both inadequate RCM physics and biased 72 

CGCM boundary conditions without the expense of having to use fine resolutions. 73 
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The paper introduces the bias-correction method applied to the CGCM data that 74 

are subsequently used as boundary conditions by a RCM in Section 2, followed by the 75 

RCM simulation results of precipitation, SWE and temperature in Section 3. A summary 76 

with conclusions is given in Section 4. 77 

 78 

2. Methods 79 

For the lateral boundary conditions we utilized the CCSM3 (the Community 80 

Climate System Model) simulations forced with the IPCC A2 emissions (the higher end 81 

but not the highest), which were described in the fourth assessment report (Nakicenvoic 82 

et al. 2000). The CCSM3 output was obtained from the 3
rd

 phase of CMIP. Although the 83 

newer version model (CCSM4) had been released in 2013, we used the older version 84 

(CCSM3) in order to demonstrate the effectiveness of the bias correction technique since 85 

this precludes the use of any particular global model iterations. Hereafter the global 86 

model output is referred to as CCSM.  87 

 88 

Biases in the CCSM data can propagate into the WRF simulation and degrade the 89 

downscaled climate projections, and thus need to be corrected before feeding into the 90 

WRF model. The approach used in this study to correct biases in the CCSM data is based 91 

upon Dettinger et al. (2004) and Miller et al. (2008). The key point here is to maintain 92 

physical consistency among essential variables used to drive WRF, including temperature 93 

(T), specific humidity (Q), surface pressure (P), geopotential height (Z), and winds (U 94 

and V). Following Jin et al. (2011), the 6-hourly CCSM’s temperature, specific humidity, 95 

and surface pressure, which are relatively independent, were corrected using regression 96 
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coefficients of biases in each variable for each model point at each pressure level. These 97 

regression coefficients of biases were calculated using linear regression with the 98 

observation-based NCEP Reanalysis (Kalnay et al. 1996) over the years 1948-1999. Then 99 

the bias-corrected T, Q, and P were used to compute the geopotential height (Z) based on 100 

hydrostatic and other physical relationships among these variables (Holton 1992). The 101 

“reconstructed” Z was subsequently used to calculate the geostrophic wind ( ). Next, in 102 

order to compute the ageostrophic wind ( ), which is more difficult to calculate since 103 

the percentage of ageostrophic wind in total wind is large near the surface, the NCEP 104 

Reanalysis winds were first decomposed into the geostrophic and ageostrophic 105 

components. Then a regression model was developed between the NCEP ageostrophic 106 

wind and corrected T and Q (i.e. the main drivers of the ageostrophic effect). The 107 

regression model was subsequently applied to generate , which was then combined 108 

with  to produce the bias-corrected total wind V . Such a bias-corrected total wind field 109 

was then applied onto the boundary conditions driving the RCM simulations.  110 

We used the Weather Research and Forecasting model (WRF) version 3.2.1 111 

(http://www.wrf-model.org/index.php) coupled with the Community Land Model (CLM) 112 

version 3.5 (Jin and Wen 2012; Subin et al. 2011) as the RCM. The coupling of the CLM 113 

has been shown to improve WRF’s simulation of snow, soil, and vegetation processes 114 

(Jin and Wen 2012; Subin et al. 2011). Since WRF has an array of physics scheme 115 

options and each scheme tends to introduce particular biases, sensitivity tests were 116 

undertaken to obtain an optimal combination of physics schemes that were effective in 117 

simulating the most realistic precipitation and air temperatures over the western U.S. The 118 

sensitivity tests were performed using the NCEP Reanalysis (as the boundary conditions), 119 
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and the identified optimal set of physics schemes is listed in Table 1. The simulations 120 

were performed at a spatial resolution of 50 km over the domain (ref., Figure 1).  121 

A set of historical (1969-1999) WRF simulations were then undertaken with 122 

lateral boundary conditions being supplied by a) the NCEP Reanalysis, b) the original 123 

CCSM (not bias-corrected), and c) the bias-corrected CCSM data. Two additional 124 

simulations were conducted for the 2001-2010 period using the original and bias-125 

corrected CCSM data. Lastly, WRF simulations were carried out for the mid-21
st
 Century 126 

(2056-2065) using both the original and bias-corrected CCSM data. The simulations for 127 

the 2001-2010 and 2056-2065 periods were driven with the transient simulation of 128 

CCSM (i.e., in forecasting mode). We focused on the winter snow season (i.e. January-129 

March) in the western U.S. Each of the simulations included a model spin-up over four 130 

months from September 1 to December 31 of the previous year.  131 

 132 

3. Results 133 

The observed mean precipitation for January-March (JFM) during 1969-1999, 134 

derived from the Parameter-elevation Regressions on Independent Slopes Model 135 

(PRISM) data (Daly et al. 1994), is shown in Figure 1a. Visually, the NCEP-driven 136 

simulation of precipitation (Figure 1b) is in good agreement with the observation. 137 

Quantitatively, the root mean square deviation (RMSD) of the JFM precipitation was 43 138 

mm/month over the western U.S. domain (with respect to PRISM). The NCEP-driven 139 

simulation serves as the upper bound for model performance (Mearns et al. 2013; Mearns 140 

et al. 2012; Pielke 2013). In comparison, the original CCSM-driven simulation resulted in 141 

significant wet biases throughout the western U.S. (Figure 1c), increasing the RMSD to 142 
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80 mm/month. Since both the NCEP-driven and the original CCSM-driven simulations 143 

used exactly the same physics schemes in WRF, the differences in simulated precipitation 144 

could only be caused by the disparities in WRF input data between the two simulations. 145 

This means that the original CCSM data have significant biases that were passed through 146 

the WRF model. The bias-corrected CCSM-driven simulation (Figure 1d) reduced the 147 

wet bias and lessened the RMSD to 70 mm/month, mostly in the southwestern U.S.  This 148 

means that although there are still biases in WRF-simulated precipitation resulting from 149 

imperfect representations of physics in the WRF model and biases in its forcing data, the 150 

bias-correction method did improve the WRF simulation.  151 

The more important questions posed are: (a) how may the JFM precipitation 152 

change in response to such a bias correction? (b) how does it affect the mountain 153 

snowpack projection? To examine these questions, we plotted the JFM precipitation 154 

differences between future (2056-2065) and current (2001-2010) periods; these are 155 

shown in Figures 1e and 1f. The results reveal a marked difference between the original 156 

and bias-corrected CCSM-driven simulations and this is emphasized by a spatial 157 

correlation coefficient (R) of only 0.07. In the original CCSM-driven simulation, the 158 

change in the JFM precipitation exhibits a widespread increase across much of the 159 

western U.S. with most of the increase covering a 35°-46°N latitudinal band. Northward 160 

of 46°N decreased precipitation was simulated. In the bias-corrected CCSM-driven 161 

simulation, however, the precipitation change reveals a north-south dipole with a large 162 

increase in the northwestern states and a slight decrease in the southwestern states. 163 

It was found that the precipitation differences corresponded closely to the 164 

circulation changes. Figures 2a-c show the mean JFM wind fields at 200 hPa for the 165 
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1969-1999 period derived from the (a) NCEP-driven, (b) original CCSM-driven, and (c) 166 

bias-corrected CCSM-driven simulations. Compared to the NCEP-driven simulation 167 

(Figure 2a), the original CCSM-driven simulation produced considerably stronger winds 168 

over most of the domain and induced a pseudo jet streak near 50°N (Figure 2b). In 169 

contrast, wind fields in the bias-corrected CCSM-driven simulation (Figure 2c) were in 170 

better agreement with the NCEP-driven simulation, though the wind speed remained 171 

slightly higher over the interior West. Overly strong westerly winds in both the original 172 

and bias-corrected CCSM-driven simulations were observed throughout the troposphere 173 

(not shown) and this likely caused the overly wet biases along the windward side of the 174 

mountains, as is revealed in Figure 1 and found occurred in NARCCAP model 175 

simulations by Wang et al. (2009).  176 

The wind changes at 200 hPa between the 2056-2065 and 2001-2010 periods also 177 

showed a marked difference between the original CCSM-driven (Figure 2d) and bias-178 

corrected CCSM-driven (Figure 2e) simulations. Both simulations produced an 179 

anomalous trough over the western U.S. sandwiched between two anomalous ridges to 180 

the west and east. In the bias-corrected CCSM-driven simulation, the trough was 181 

displaced further north, but the wind speed was much reduced when compared to the 182 

original CCSM-driven simulation. At 600 hPa, the differences in the wind anomalies 183 

(Figures 2f and 2g) are similar to those at 200 hPa, suggesting a barotropic structure (i.e. 184 

vertically uniform). In the bias-corrected CCSM-driven simulation, the cyclonic center 185 

was positioned at the U.S.-Canadian border and the westerly wind anomalies were moved 186 

northwestward; this led to the northward displacement of the precipitation anomalies 187 

(Figure 1f). Apparently, the bias-corrected boundary conditions produced a marked 188 
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impact on the “downscaled” circulation simulations, which, in turn, could and did alter 189 

the precipitation projections.  190 

Any changes in projected winter precipitation would directly affect projections of 191 

mountain snowpack – a crucial water resource in the region as was noted earlier. To 192 

investigate further, we focused on four major mountain regions: (1) the Cascade Range, 193 

(2) the Bitterroot Range, (3) the Wasatch Range, and (4) the Colorado Rockies; these are 194 

delineated by boxes labeled 1, 2, 3, and 4 in Figure 1b. For evaluation purposes we 195 

utilized the Snowpack Telemetry Network (SNOTEL) observations; there are 196 

respectively 46, 32, 79, and 71 SNOTEL stations within the four mountain regions. 197 

Figures 3a-d show the time series of the April 1 snow water equivalent (SWE) derived 198 

from the SNOTEL, NCEP-driven, original CCSM-driven, and bias-corrected CCSM-199 

driven simulations, overlaid with the linear trends. Over each mountainous region, the 200 

mean values of the 2001-2010 and 2056-2065 periods in each simulation are connected 201 

by a dashed line to indicate future changes.  202 

Figures 3a-d show that the original CCSM-driven simulation yielded marked 203 

increasing SWE trends in all four regions; this is not in agreement with the observed 204 

decreases of SWE in Regions 2, 3 and 4. The decreasing SWE in Regions 2, 3 and 4 has 205 

been noticed in previous studies (Christensen et al. 2004; Gillies et al. 2012; Howat and 206 

Tulaczyk 2005). By contrast, in all four regions, the bias-corrected CCSM-driven 207 

simulations produced SWE trends that are in better agreement with the SNOTEL 208 

observations. The trend lines in the NCEP-driven simulations were also aligned more 209 

closely with the SNOTEL observations. Regarding future projections, i.e. from 2001-210 

2010 to 2056-2065, the bias-corrected CCSM-driven simulations indicate a future decline 211 
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in SWE in each region; this is in contrast to the original CCSM-driven simulation, which 212 

did not produce any significant SWE change in all regions with the exception of the 213 

Cascades (Region 1). It is also noted that the SWEs tend to be lower in the WRF 214 

simulations in comparison to the observations. Such underestimations in SWE are 215 

expected because most SNOTEL stations are sited at high-elevation in the mountains 216 

where snow tends to accumulate, whereas the averaging of the modeled SWEs over a box 217 

domain includes low elevation locations (e.g., valley) where there are less snow amounts. 218 

To explain the differences in the SWE trends, Figure 4 shows the trends of the 219 

JFM precipitation for the four mountainous regions. Again, the original CCSM-driven 220 

simulations produced a reversed JFM precipitation trend during 1979-1999 in comparison 221 

to the PRISM observations, while precipitation trends of both the NCEP-driven and bias-222 

corrected CCSM-driven simulations show the same tendency as PRISM.  223 

We further analyzed 2-meter air temperatures derived from PRISM and WRF 224 

simulations (see Figure 5). Evident from the original CCSM-driven simulations is a steep 225 

cooling trend; this is evident in all four regions and likely the cause of the marked 226 

increase in the original CCSM-driven simulation’s SWE trend (Figure 3). Such a cooling 227 

trend is contrary to all anthropogenic warming scenarios (including the A2 scenario) but 228 

more importantly, is inconsistent with the SNOTEL observations. In the bias-corrected 229 

CCSM-driven simulation, the cooling trends were much reduced, though not reversed to 230 

the degree of perfect agreement with the observation. The combined improvements (or 231 

corrections) in both precipitation and temperature in the bias-corrected CCSM-driven 232 

simulations did lead to improvements in the representation of SWE and its trends.  233 

 234 
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4. Discussion and conclusion 235 

We analyzed the results from three RCM simulations of winter precipitation and 236 

snowpack projections to examine the reduction of biases existing in both CGCMs and 237 

RCM parameterizations. The biases associated with RCM parameterizations were 238 

reduced by selecting an optimal combination of physics schemes through sensitivity tests; 239 

and the biases from CGCMs were corrected using a statistical method. It was found that 240 

the bias-corrected CCSM data resulted in a more reasonable simulation of the 241 

atmospheric circulations. The better representation of the atmospheric circulation 242 

dynamics did produce a more realistic precipitation climatology, and this in turn 243 

projected a precipitation change that was more closely aligned with the newer generation 244 

of multi-model downscaled projections of the CMIP5 (see Brekke et al. 2012, 2013). The 245 

precipitation and temperature trends during the historical period were also improved by 246 

the bias correction method. Such improvement led to a better simulation of SWE; this is 247 

particularly important in the western U.S. where snowmelt accounts for as much as 75% 248 

of water supplies (USGS 2014). In addition, the improvement of SWE simulations 249 

presented here signifies an economical alternative to reduce the expense of having to 250 

perform high-resolution simulations (i.e. < 10 km).  251 

Previous studies, using different combinations of CGCMs and RCMs, have 252 

produced different (even opposite) downscaled climate projections for the western U.S. 253 

(Dominguez et al. 2012; McAfee et al. 2011;Pierce et al. 2013a; Pierce et al. 2013b; Qian 254 

et al. 2010). Such a broad range of climate projections has led to the preference of an 255 

ensemble approach in the provision of more agreeable and supposedly more confident 256 

climate projections for their applications. However, performing large-ensemble 257 
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simulations using RCMs is cost-prohibitive. The present study demonstrated that, by 258 

employing one RCM forced with bias-corrected lateral boundary conditions obtained 259 

from one CGCM, the resulting precipitation and snow downscaling can be as consistent 260 

as the multi-model downscaled projections such as those from the CMIP5 (Brekke et al. 261 

2013). Although this study used the CCSM output and the WRF model, the same method 262 

can be applied to any other combination of global and regional climate models.  263 

 264 
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Figure 1: Mean JFM precipitation in 1969-1999 from (a) the PRISM data, (b) NCEP-382 

driven, (c) original CCSM-driven, and (d) corrected CCSM-driven WRF simulations, as 383 

well as the JFM precipitation differences between the years 2056-2065 and 2001-2010 384 

for the (e) original and (f) bias-corrected CCSM-driven simulations.  Units: mm month-1.  385 

The boxes labeled 1, 2, 3, and 4 in Figure 1b delineate four mountain regions: (1) the 386 

Cascade Range, (2) the Bitterroot Range, (3) the Wasatch Range, and (4) the Colorado 387 

Rockies.   388 

Figure 2: Mean JFM wind fields at 200 hPa in 1969-1999 simulated using (a) the NCEP 389 

as well as (b) original and (c) bias-corrected CCSM data. The differences in JFM wind 390 

fields at 200 hPa between the years 2056-2065 and 2001-2010 for the (d) original and (e) 391 

bias-corrected CCSM-driven simulations. The differences in JFM wind fields at 600 hPa 392 

between the years 2056-2065 and 2001-2010 for the (f) original and (g) bias-corrected 393 

CCSM-driven simulations.  Units: m s
-1

.  394 

Figure 3: The time series (for all years — i.e. 1969-1999, 2001-2010, and 2056-2065) of 395 

region-wide average April 1 SWE for Regions 1 through 4. The black line represents 396 

observed April 1 SWE averaged over all SNOTEL stations in each region. The green, 397 

blue, and red lines represent the region-wide average April 1 SWE simulated by WRF 398 

driven by the NCEP, the original and bias-corrected CCSM (lateral boundary conditions), 399 

respectively.  400 

Figure 4: The time series (for all years — i.e. 1969-1999, 2001-2010, and 2056-2065) of 401 

region-wide average JFM precipitation for Regions 1 through 4. The black line represents 402 

observed JFM precipitation from PRISM in each region. The green, blue, and red lines 403 

represent the region-wide average JFM precipitation simulated by WRF using the NCEP, 404 

the original and bias-corrected CCSM, respectively.    405 

Figure 5: The time series (for all years — i.e. 1969-1999, 2001-2010, and 2056-2065) of 406 

region-wide average JFM surface temperature for Regions 1 through 4. The black line 407 

represents observed JFM surface temperature from PRISM in each region. The green, 408 

blue, and red lines represent the region-wide average JFM surface temperature simulated 409 

by WRF using the NCEP, the original and bias-corrected CCSM, respectively. 410 

411 
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Table 1. The optimal set of physics schemes adopted in this study: long-wave (LW) and 412 

short-wave (SW) radiation (RA), land surface (LS), microphysics (MP), cumulus (CU), 413 

and planetary boundary layer (PBL) schemes  414 

 415 

 Scheme  Major characteristics  

RA 

LW 
Rapid Radiative Transfer 

Model (RRTM)  
K-distribution method with 256 g points  

SW Dudhia  

Calculation of clear-air scattering, water vapour 

absorption, and cloud albedo and absorption using look-up 

tables for clouds  

LS 
Community Land Model 

(CLM)  

Sophisticated  ten-layer temperature and moisture soil 

model with detailed vegetation representation  

MP Goddard  

Simulates water vapour and condensate, into which the 

following four hydrometeor fields are combined for 

advection calculations: cloud water, rain, cloud ice, and 

precipitation ice 

CU Grell-Devenyi ensemble  
One-dimensional mass flux scheme that consists of a 

single updraft–downdraft couplet 

PBL 
Bougeault and Lacarrere 

(BouLac)  

TKE closure scheme in which vertical diffusion 

coefficient for momentum, the coefficient for heat, and the 

coefficient for TKE are identical 

 416 

 417 

418 
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419 

420 

Figure 1: Mean JFM precipitation in 1969-1999 from (a) the PRISM data, (b) NCEP-driven, (c) original CCSM-driven, and (d) corrected CCSM-driven 421 

WRF simulations, as well as the JFM precipitation differences between the years 2056-2065 and 2001-2010 for the (e) original and (f) bias-corrected 422 

CCSM-driven simulations.  Units: mm month-1.  The boxes labeled 1, 2, 3, and 4 in Figure 1b delineate four mountain regions: (1) the Cascade Range, (2) 423 

the Bitterroot Range, (3) the Wasatch Range, and (4) the Colorado Rockies.   424 
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Figure 2: Mean JFM wind fields at 200 hPa in 1969-1999 simulated using (a) the NCEP 

as well as (b) original and (c) bias-corrected CCSM data. The differences in JFM wind 

fields at 200 hPa between the years 2056-2065 and 2001-2010 for the (d) original and (e) 

bias-corrected CCSM-driven simulations. The differences in JFM wind fields at 600 hPa 

between the years 2056-2065 and 2001-2010 for the (f) original and (g) bias-corrected 

CCSM-driven simulations.  Units: m s
-1
. 
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Figure 3: The time series (for all years — i.e. 1969-1999, 2001-2010, and 2056-2065) of 

region-wide average April 1 SWE for Regions 1 through 4. The black line represents 

observed April 1 SWE averaged over all SNOTEL stations in each region. The green, 

blue, and red lines represent the region-wide average April 1 SWE simulated by WRF 

driven by the NCEP, the original and bias-corrected CCSM (lateral boundary conditions), 

respectively. 
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Figure 4: The time series (for all years — i.e. 1969-1999, 2001-2010, and 2056-2065) of 

region-wide average JFM precipitation for Regions 1 through 4. The black line represents 

observed JFM precipitation from PRISM in each region. The green, blue, and red lines 

represent the region-wide average JFM precipitation simulated by WRF using the NCEP, 

the original and bias-corrected CCSM, respectively.   
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Figure 5: The time series (for all years — i.e. 1969-1999, 2001-2010, and 2056-2065) of 

region-wide average JFM surface temperature for Regions 1 through 4. The black line 

represents observed JFM surface temperature from PRISM in each region. The green, 

blue, and red lines represent the region-wide average JFM surface temperature simulated 

by WRF using the NCEP, the original and bias-corrected CCSM, respectively.  
 


