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     Describing any biological characteristic of organisms requires 
adequate sampling so that statements are universally valid. Thus, 
one should consider the range of variation within the taxon (be it 
taxonomic, morphological, physiological, ecological, genetic, or 
geographic) to accurately describe diversity within the group 
( Hillis, 1998 ). To capture such variation, one must sample suf-
fi ciently to understand both the limits and typical ranges of 
variation. Such sampling means collecting and examining repre-
sentatives across the distribution of the taxon. In general, sam-
pling across a taxon ’ s range is easier to do for lower taxonomic 
levels because successively smaller clades encompass increas-
ingly narrow ranges. However, sampling across geographic 
ranges becomes logistically challenging for species or species 
complexes with worldwide (or nearly so) distributions. 

 Examples of widespread species for which a global perspec-
tive has been taken include highly mobile birds ( Burg and 
Croxall, 2004 ), invertebrates ( Lee, 2000 ;  Boyer et al., 2007 ), 
and fungi ( Hibbett, 2001 ;  Banke and McDonald, 2005 ). Within 
green plants, worldwide distributions are common among  “ in-

vasive ”  species, i.e., those with recent (less than 500 years), 
human-mediated, widespread distributions. Examples include 
aquatic weeds ( Barrett, 1989 ) among others ( Holm et al., 1997 ). 
At least one study has examined evolutionary history in a wide-
spread invasive species,  Cardamine fl exuosa  ( Lihov á  et al., 
2006 ), but few examples, if any, have examined the phyloge-
netic structure of a species complex with an ancient (preagricul-
tural; 10   000 years) worldwide distribution (but see  Bakker et 
al., 1995 ). For a species to occupy such a broad range, it must 
have a wide ecological amplitude (i.e., ecological valence) or 
be able to adapt quickly to a wide range of local environmental 
conditions without speciation. Additionally, to achieve a wide 
distribution, a species must have a high dispersal and coloniza-
tion ability, or be an old taxon with a broad ancestral distribu-
tion, or both. The genus  Pteridium  Gled. ex Scop. (bracken 
fern, Dennstaedtiaceae) represents one such taxon, having 
achieved a natural worldwide distribution and occupying di-
verse habitats ( Page, 1976, 1986 ;  Holm et al., 1997 ). Fossil evi-
dence indicates that bracken had achieved a worldwide 
distribution by the Oligocene, ~23.8 mya (reviewed by  Page, 
1976 ), and several lines of evidence indicate that bracken can 
disperse and establish following long distance dispersal by 
spores ( Punetha, 1991 ;  Rumsey et al., 1991 ). 

  Pteridium  is often treated as a monotypic genus after  Tryon 
(1941) , but most contemporary systematists recognize the ge-
nus as a species complex in need of taxonomic revision ( Page, 
1976 ;  Brownsey, 1989 ;  Page and Mill, 1995 ;  Thomson, 2000b ). 
Bracken ferns are easily recognized and well differentiated 
from other genera in Dennstaedtiaceae, and many infrageneric 
taxa within  Pteridium  have high levels of geographically based 
morphological structure. However, great confusion in defi ning 
infrageneric taxa has resulted from the fact that bracken has 
high levels of phenotypic plasticity, few diagnostic morpho-
logical characters, and the presence of intermediate phenotypes 
where different morphological forms come into contact, dem-
onstrating that reproductive barriers are incomplete ( Page, 
1976 ). These factors, coupled with local taxonomic judgments 
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with comparative nuclear sequence data. These results also pro-
vide important information necessary for taxonomic revision of 
infrageneric taxa in  Pteridium . 

 MATERIALS AND METHODS 

 Taxonomic sampling   —     Sampling was designed to cover the range of mor-
phological and geographical diversity within  Pteridium , representing nearly all 
currently recognized species, and most infraspecifi c taxa, with the exception of 
 P. aquilinum  subsp.  feei  (W. Schaffn. ex F é e) J. A. Thomson, Mickel  &  Mehl-
treter, endemic to central Mexico. Determination of specimens used in this 
study follow  Thomson and Alonso-Amelot (2002) ,  Thomson (2004) , and 
 Thomson et al. (2005, 2008) . In addition to the materials used here, a large se-
ries of specimens from major herbaria has been examined in the course of the 
taxonomic revisions listed. We sampled 77 bracken specimens, most of which 
were included previously in the taxonomic studies described. Tissue samples 
were collected from either wild sources or from sporophytes grown in a com-
mon garden derived from known wild sources and propagated from rhizome 
segments or mass spore sowings ( Thomson, 2000a ). Complete voucher infor-
mation with geographic sources and GenBank accession numbers is provided in 
Appendix 1. 

 DNA extraction, PCR amplifi cation, and sequencing   —     Total genomic 
DNA was extracted from tissue that had been silica-dried, freeze-dried, or pickled 
in CTAB/NaCl/ascorbate ( Thomson, 2002 ). The chloroplast markers  trnS  GGA  – 
 rpS4  spacer+gene and  rpL16  intron were amplifi ed in 25- µ L polymerase chain 
reactions (PCR) using the fern-specifi c primers published in  Small et al. (2005) . 
Each PCR reaction contained 25 – 50 ng of template DNA, 1 ×  Promega PCR 
buffer (Promega, Madison, Wisconsin, USA), 1.5 mM MgCl 2 , 0.20 mM of each 
dNTP, 0.25  µ M each of the forward and reverse primers, and ~12.5 U  Taq  poly-
merase. Most PCR reactions were completed under a standard temperature cy-
cle procedure beginning with a 2 min denaturation step at 94 ° C; followed by 30 
cycles of 94 ° C, 48 ° C and 72 ° C each for 1 min; fi nishing with a 7 min elongation 
step at 72 ° C. Problematic samples were amplifi ed using a slow ramp thermal 
cycle protocol that began with a 2 min denaturation step at 95 ° C, followed by 
30 cycles in which the sample was denatured at 95 ° C for 1 min, dropped to 
45 ° C for 1 min, then slowly raised to 68 ° C at a rate of 0.2 ° C/sec and held at 
68 ° C for 4 min. After cycling, reactions were held at 68 ° C for 10 min to com-
plete elongation of PCR products. PCR products were directly cycle-sequenced 
in both directions using the PCR primers and ABI BigDye Terminator version 
3.1 chemistry (Applied Biosystems, Foster City, California, USA). 

 Sequence alignment and phylogenetic analyses   —     Sequences were checked 
against electropherograms and manually edited, if necessary, using the program 
4Peaks version 1.7 ( Griekspoor and Groothuis, 2006 ). Sequences were manu-
ally aligned using the program Se-Al version 2.0a11 ( Rambaut, 2002 ). The 
aligned concatenated data matrix is available in TreeBase (http://www.tree-
base.org; study number S2235). Maximum parsimony (MP) analyses were per-
formed on the two-marker concatenated data set in the program PAUP* version 
4.0b10 ( Swofford, 2002 ). All nucleotide site characters were unordered and 
equally weighted, treating gaps as  “ missing ”  data. Heuristic MP searches used 
tree-bisection-reconnection (TBR) branch swapping on starting trees generated 
from 10   000 random stepwise addition sequence replicates, holding 10 trees at 
each addition step. All the most parsimonious trees were saved, and the strict 
consensus of these was calculated. MP bootstrap support was assessed from 
10   000 bootstrap replicates using heuristic searches with TBR branch swapping 
on starting trees generated from 10 random stepwise addition sequence repli-
cates and saving all the most parsimonious trees. 

 Models of DNA sequence evolution used in Bayesian phylogenetic infer-
ence (BI) were selected for each chloroplast marker using the second order 
Akaike information criterion (AICc) implemented in the program MrModelT-
est version 2.2 ( Nylander, 2004 ), using likelihood scores estimated in PAUP* 
for the neighbor-joining tree under alternative models of evolution. The total 
number of alignment sites in each data partition was used as the sample size for 
AICc calculations ( Posada and Buckley, 2004 ). Akaike weights and evidence 
ratios were examined to help guide selection of the best-fi t model of molecular 
evolution for each partition ( Burnham and Anderson, 2002 ). 

 Bayesian analysis was performed in the parallel version of the program Mr-
Bayes version 3.1.2 (Ronquist and Huelsenbeck, 2003;  Altekar et al., 2004 ). 
Data were partitioned for the two chloroplast markers, allowing model param-
eters for each partition to vary independently while linking topology and branch 

based on geographically biased sampling, has led to a large 
number of local forms being described as new species, subspe-
cies, or varieties, resulting in a multiplicity of names ( Tryon, 
1941 ;  Page, 1976 ;  Thomson, 2000a ). The genus is distributed 
worldwide and is notorious as a weed because of its exceptional 
ability to grow rhizomatously in dense patches, overgrowing 
open fi elds and pasture ( Tryon, 1941 ;  Holm et al., 1997 ). 

 Bracken ferns have a long and complex taxonomic history. 
The fi rst bracken species were described by Linnaeus in the ge-
nus  Pteris  L. (Linnaeus, 1753). Later authors followed this ge-
neric circumscription, but  Agardh (1839)  was the fi rst to examine 
specimens worldwide and set the brackens apart as section  Orni-
thopteris  J. Agardh ( Tryon, 1941 ;  Brownsey, 1989 ). Later, 
 Hooker (1858) , in a comprehensive treatement of  Pteris , sub-
sumed all brackens as varieties of  Pteris aquilina  L. Various 
authors segregated the brackens from  Pteris , but it was not until 
 Kuhn (1879)  defi ned  Pteridium aquilinum  (L.) Kuhn that the 
brackens were widely accepted as a distinct genus ( Tryon, 1941 ). 
The last global revision of the genus was  Tryon ’ s (1941)  mono-
graph, in which he reduced more than 135 previously named 
variants into a single species, with two subspecies containing 12 
varieties. Subsequent authors have continued to modify the tax-
onomy of bracken, but most works refl ect a geographically lim-
ited perspective ( Brownsey, 1989 ;  Page and Mill, 1995 ;  Wolf 
et al., 1995 ;  Speer, 2000 ;  Thomson and Alonso-Amelot, 2002 ; 
 Gureyeva and Page, 2005 ;  Thomson et al., 2005, 2008 ). Recent 
evidence suggests that two  Pteridium  taxa have allopolyploid 
hybrid origins, and these two tetraploids are currently recog-
nized as segregate species ( Tan and Thomson, 1990b ;  Thomson, 
2000a, b ;  Thomson and Alonso-Amelot, 2002 ). 

 Recent work has reexamined the systematic utility of mor-
phological characters ( Thomson and Martin, 1996 ), character-
ized the structure of the chloroplast genome ( Tan and Thomson, 
1990a ;  Tan, 1991 ), and used genetic fi ngerprinting to examine 
evolutionary history in  Pteridium  ( Thomson, 2000a, b ). Much 
of this work contributes toward a taxonomic revision of the ge-
nus. The typifi cation of  Pteridium aquilinum  (L.) Kuhn has 
been revisited, and nomenclature within  ‘ latiusculum ’  morpho-
types (N. America, Europe and northeast Asia) has been clari-
fi ed ( Thomson, 2004 ;  Thomson et al., 2008 ). 

 Global perspectives on phylogeography can be inferred us-
ing chloroplast DNA sequence variation to detect and recon-
struct historical evolutionary events, including population 
demographics, migration, colonization, and both ancient and 
contemporary hybridization events ( Rieseberg and Soltis, 1991 ; 
 McCauley, 1995 ;  Rieseberg et al., 1996 ;  Ennos et al., 1999 ). 
Variation in chloroplast sequence data has been used to recon-
struct phylogenetic relationships among plants as diverse and 
ancient as land plants to variation among recently diverged 
populations within a single species.  Pteridium  is a well-defi ned 
and evolutionarily isolated genus comprising several closely 
related taxa. Examining patterns of chloroplast variation pres-
ents an excellent opportunity to infer patterns of widespread 
dispersal, colonization, and divergent evolutionary history on a 
global scale. This study represents one of the only studies of 
worldwide variation in a terrestrial plant. 

 The objectives of this present study are threefold. First, we 
examine chloroplast DNA variation within  Pteridium  in a 
global phylogenetic context to ascertain evolutionary patterns 
of divergence, dispersal and colonization. Second, we examine 
maternal ancestry in the two tetraploid taxa hypothesized to be 
of hybrid origin. Third, we establish a clear framework for de-
veloping hypotheses of evolutionary history that can be tested 
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ancestor of  P. aquilinum , and the fi rst repeat was gained in the 
common ancestor of the African and European  P. aquilinum  
subspecies. The evolution of these indels is mapped on the 
Bayesian phylogeny ( Fig. 1 ).  

 Phylogenetic analyses   —      Maximum parsimony (MP) analy-
sis of the concatenated data set resulted in 12 most parsimoni-
ous trees with a length of 59 (consistency index, CI = 0.9153; 
retention index, RI = 0.9892). The best fi t model used in Bayes-
ian inference (BI) was GTR+ Γ  and HKY+ Γ  for  trnS  –  rpS4  
spacer+gene and  rpL16  intron, respectively. The AICc weight 
of the best fi t model was 1.4 times greater than the next-best 
model for  trnS  –  rpS4  spacer+gene and 1.3 times greater for 
 rpL16  intron. The topology of the MP strict consensus tree 
( Fig. 2A )  is congruent with the BI phylogeny ( Fig. 1 ). MP boot-
strap support (BS) and BI posterior probabilities of clades (PP, 
i.e., clade credibility values) are reported on the tree for sup-
ported nodes ( Fig. 1 ). Two fully supported clades are resolved 
at the base of the phylogeny, separating  P. arachnoideum , 
 P. esculentum , and  P. semihastatum  from  P. aquilinum.  There 
is a basal polytomy within the  P. aquilinum  clade. A single ac-
cession of the tetraploid species  P. caudatum  is grouped with 
 P. semihastatum  in the former clade, while the remaining 
 P. caudatum  accessions are grouped with subspecies  pseudo-
caudatum  (Clute) Hult é n in the  P. aquilinum  clade. 

 Biogeographic analysis   —      Mapping geographic areas onto 
the phylogeny revealed a number of biogeographic patterns 
( Fig. 2A ). The Austral taxon  P. esculentum  is found in a clade 
with  P. arachnoideum  from South and Central America and  P. 
semihastatum  from Southeast Asia and Australia, forming a 
group with a post-Gondwanan (after Africa split away) south-
ern continental distribution referred to here as the Austral/South 
American clade. Within the  P. aquilinum  clade, basal biogeo-
graphic patterns are unresolved, but the European  P. aquilinum  
subsp.  aquilinum  accessions emerge from within the African 
brackens and  P. aquilinum  subsp.  decompositum  in Hawaii is in 
a clade with all of the sampled accessions of  P. aquilinum  subsp. 
 pubescens  (Underw.) J. A. Thomson, Mickel  &  Mehltreter from 
western North America. The locations of specimens included in 
this study are indicated on a global map ( Fig. 2B ). 

 DISCUSSION 

 Phylogenetic relationships among bracken taxa   —       Pterid-
ium  species form two distinct and fully supported basal clades 
(100% maximum parsimony bootstrap — BS, 1.0 Bayesian pos-
terior probability — PP). The fi rst clade contains  P. esculentum  
from Australia, New Caledonia, and New Zealand and  P. 
arachnoideum  from the neotropics, but neither of these species 
form distinct monophyletic groups. The tetraploid species  P. 
semihastatum  and a single accession of the tetraploid species  P. 
caudatum  from Costa Rica are included in this fi rst main clade 
and together are monophyletic (85% BS, 1.0 PP). This tetra-
ploid group is derived from a clade containing an accession of 
 P. esculentum  from New Caledonia (55% BS, 0.99 PP). The 
second main clade in  Pteridium  includes all of the  P. aquilinum  
accessions we sampled and three of the four  P. caudatum  acces-
sions we included in our analysis (Costa Rica and northern 
South America). This second main  Pteridium  clade (the  P. 
aqui linum  clade) is fully supported as monophyletic (100% BS, 
1.0 PP), but phylogenetic relationships of lineages within this 

lengths across partitions. Two independent runs, with six chains each, were 
conducted simultaneously for 10   000   000 generations. Parameter estimates 
were sampled every 1000 generations. The average standard deviation of split 
frequencies and the potential scale reduction factor (PSRF) were calculated af-
ter discarding the fi rst 25% of the generations (2.5 million generations) as 
burn-in to assess topological and parameter convergence (respectively) be-
tween the two runs. Bayesian inference clade credibility values (i.e., posterior 
probabilities for clades) and tree posterior probabilities were also calculated 
after the fi rst 2.5 million generations were discarded as burn-in. 

 Alignment of two outgroup taxa [ Dennstaedtia davalloides  (R. Br.) T. 
Moore and  Hypolepis muelleri  N. A. Wakef.] with the  Pteridium  sequences was 
not possible due to a high level of divergence (both sequence substitution satu-
ration and ambiguous indels). Inclusion of these taxa in preliminary phyloge-
netic analyses contributed to the destabilization of clades within  Pteridium . 
Because of this, the midpoint rooting method implemented in PAUP* was used 
to root the  Pteridium  phylogeny in both MP and BI analyses. While this ap-
proach is not ideal, it has yielded acceptable results in other taxa when appro-
priate data are not available ( Schuettpelz and Hoot, 2006 ). The monophyly of 
 Pteridium  and the midpoint root was confi rmed by outgroup phylogenetic anal-
ysis of  rbcL  sequences from a subset of our sampled  Pteridium  taxa aligned 
with additional outgroup taxa from Dennstaedtiaceae (data not shown). 

 Biogeographic analysis  —    Broad geographic regions were mapped onto the 
phylogeny using the parsimony criterion to elucidate major historical biogeo-
graphic events. Geographic areas were coded as six unordered character states 
(Hawaii, North/South America, Europe, Asia/India, Africa, Austral) and traced 
onto the tree using the program Mesquite version 2.5 ( Maddison and Maddison, 
2008 ). Specimens in cultivation were coded from the geographic area of their 
source. 

 RESULTS 

 Sequence characteristics   —      The aligned  trnS  –  rpS4  spacer+gene 
and  rpL16  intron data matrices included 1018 and 753 nucle-
otide sites with 29 and 25 variable sites, respectively. Of those 
variable sites, 22 were parsimony-informative in the  trnS  –  rpS4  
spacer+gene, and 21 sites were parsimony-informative in the 
 rpL16  intron. There were two 5-bp repeat sequence indels lo-
cated 32 nucleotides apart in the  trnS  –  rpS4  spacer. Individuals 
either lacked one or both of the repeat sequences, resulting in 
three observed indel haplotypes. These haplotypes have been 
reported previously ( Thomson et al., 2008 ), and our study is 
consistent with those fi ndings, so we adopt their nomenclature 
here (haplotypes A, B, and C). This study newly establishes the 
haplotypes for  Pteridium aquilinum  subsp.  decompositum  
(Gaudich.) Lamoureux ex J. A. Thomson,  P. caudatum  (L.) 
Maxon, and  P .  semihastatum  (Wall. ex J. Agardh) S. B. An-
drews, and extends coverage of  P. aquilinum  subsp.  pinetorum  
(C. N. Page  &  R. R. Mill) J. A. Thomson to eastern Europe. 
Haplotype B (the presence of the fi rst repeat sequence, GTTTT) 
was observed in  P. aquilinum  subsp.  aquilinum  from Europe 
and both  P. aquilinum  subsp.  centrali-africanum  Hieron. and  P. 
aquilinum  subsp.  capense  (Thunb.) C. Chr. in Africa, while 
haplotype C (the presence of the second repeat sequence, 
AGTCT) was observed in  P. arachnoideum  (Kaulf.) Maxon in 
Central and South America,  P. esculentum  (G. Forst.) Cock-
ayne in Australia, New Zealand, and New Caledonia,  P .  semi-
hastatum  in Australia and Malaysia, and a single accession of 
 P. caudatum  from Costa Rica. Haplotype A (the absence of 
both repeat sequences) was observed in the remaining taxa (i.e., 
 P. aquilinum  from Asia and North America and the remaining 
 P. caudatum  accessions). Comparison of bracken haplotypes 
with those found in  Dennstaedtia davalliodes  and  Hypolepis 
muelleri  reveals that haplotype C is likely to be plesiomorphic. 
Parsimony character reconstruction of these indels on our phy-
logeny indicates that the second repeat was lost in the common 
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 Fig. 1.   Bayesian phylogram inferred from the concatenated  trnS - rpS4  spacer+gene and  rpL16  intron alignment. Branch lengths are proportional to the 
number of nucleotide substitutions/site. Support values from maximum parsimony bootstrap analysis (BS) and Bayesian posterior probabilities for clades 
(PP) are given above branches (BS/PP). Clades receiving less than 50% BS or 0.5 PP are indicated with a dash ( — ).   
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 Fig. 2.   Biogeography of bracken. (A) Broad geographic distribution of bracken specimens traced onto the maximum parsimony phylogeny using 
parsimony-based character reconstruction. Geographic areas were coded as six unordered character states: Hawaii, North/South America, Europe, Asia/
India, Africa, Austral. (B) Global map of sampled bracken specimens, color-coded consistently with the geographic area character states in (A).   
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plast DNA in  Pteridium , several studies have demonstrated ma-
ternal inheritance in other species of ferns ( Gastony and 
Yatskievych, 1992 ;  Vogel et al., 1998 ). 

  Pteridium caudatum  and  P. semihastatum  have been shown to 
be tetraploid bracken species based on DNA  c -values, spore size, 
guard cell length, and morphology of the cells in the false indu-
sium ( Thomson, 2000a, b ;  Thomson and Alonso-Amelot, 2002 ). 
Hypothesized allopolyploid origins have been inferred from in-
termediate morphology and additive AP-PCR DNA genotypes 
of these two species ( Thomson, 2000a ;  Thomson and Alonso-
Amelot, 2002 ). These studies have suggested putative progeni-
tors of  P. caudatum  to be  P. aquilinum  subsp.  pubescens  in the 
north and  P. arachnoideum  in the south ( Thomson and Alonso-
Amelot, 2002 ). These data have similarly been used to infer the 
putative progenitors of  P. semihastatum  in Southeast Asia and 
northern Australasia as  P. aquilinum  subsp.  wightianum  (= P . 
 revolutum  sensu  Brownsey, 1989 ) and  P. esculentum  ( Thomson, 
2000a ;  Thomson and Alonso-Amelot, 2002 ). Our data based on 
the phylogeny of chloroplast sequences support the maternal 
parentage of  P. semihastatum  to be  P. esculentum , while  P. cau-
datum  emerges from two parts of the phylogeny (with North 
American  P. aquilinum  subsp.  semicaudatum / latiusculum  and 
embedded in the Austral/South American clade, which includes 
 P. arachnoideum ,  P. esculentum , and  P. semihastatum ). Two 
possible explanations for the phylogenetic placement of our  P. 
caudatum  accessions seem plausible: (1) reciprocal and multiple 
hybrid origins of this species or (2) a single hybrid origin of  P. 
caudatum  with the maternal parent as  P. aquilinum  subsp. 
 pseudocaudatum / latiusculum  with subsequent introgression of 
the tetraploid  P. semihastatum  chloroplast genomes. Addition-
ally, the Austral/South American parent of  P. caudatum  may be 
an unsampled haplotype of the co-occurring  P. arachnoideum  
from South America or long-distance hybridization from an 
Austral member of that clade. Long-distance hybridization in 
bracken has been documented between eastern North America 
and Scotland ( Rumsey et al., 1991 ). To evaluate these hypothe-
ses, we need nuclear genetic data to determine parentage and 
additivity of genomic elements in the allotetraploid species. Nu-
clear sequence data promise to be especially useful in elucidat-
ing specifi c phylogenetic relationships among the various 
bracken taxa ( Schuettpelz et al., 2008 ). 

 Phylogeography of bracken   —       Pteridium  occurs throughout 
the world, except in hot and cold desert regions. Range-wide 
sampling is necessary to adequately assess variation within the 
genus and delineate taxa. Only one such study has been accom-
plished in  Pteridium : that of  Tryon (1941) . While the varieties 
in Tryon ’ s treatment are often geographically based, he only 
briefl y discussed the geographic ranges of each taxon and in-
stead focused on the morphological differences between the 
varieties.  Page (1976)  expanded and updated the ecological and 
phytogeographic information known for each of Tryon ’ s variet-
ies, but emphasized that the adoption of Tryon ’ s nomenclature 
was done for practical reasons rather than validation of these 
taxa and that an updated worldwide revision of the genus was 
needed. While our sampling strategy attempts to cover the range 
of variation in  Pteridium  worldwide, our study would benefi t 
from additional sampling from Madagascar, South and Central 
America, the Caribbean, and parts of North America. 

 Recent phylogenetic analyses of ferns, which have included 
extensive taxonomic sampling and have used fossils for mo-
lecular date calibrations, have estimated divergence dates be-
tween  Pteridium  and  Dennstaedtia  to be about 114 mya ( Schneider 

group are not resolved. The three  P. caudatum  accessions in the 
 P .  aquilinum  clade are supported as monophyletic with 63% BS 
and 0.99 PP and are included in a polytomy with all of the  P. 
aquilinum  subsp.  pseudocaudatum  accessions we sampled 
(Florida, USA) and a  P. aquilinum  subsp.  latiusculum  (Desv.) 
Hult é n accession from Michigan, USA (64% BS, 0.98 PP).  Pte-
ridium aquilinum  subsp.  latiusculum  accessions are scattered 
throughout the  P. aquilinum  clade and therefore is not mono-
phyletic in our analyses. This phylogenetic pattern in  P. aquili-
num  subsp.  latiusculum  may be explained if this taxon is 
primarily defi ned by plesiomorphies (morphologically) and/or 
if it is susceptible to widespread hybridization ( Speer et al., 
1998 ). Together,  P. aquilinum  subsp.  japonicum  (Nakai)  Á . 
L ö ve  &  D. L ö ve from coastal Asia and  P. aquilinum  subsp. 
 pinetorum  from the boreal Asian interior form a clade supported 
by 63% BS and 0.98 PP, but neither subspecies forms a mono-
phyletic group.  Pteridium aquilinum  subsp.  decompositum  
(Gaudich.) Lamoureux ex J. A. Thomson from Hawaii and  P. 
aquilinum  subsp.  pubescens  from western North America and a 
single  P. aquilinum  subsp.  latiusculum  accession from Massa-
chusetts, USA, form a polytomy, supported by 86% BS and 1.0 
PP. This pattern suggests a trade wind dispersal route from 
North America to Hawaii consistent with other wind-dispersed 
fern taxa ( Geiger et al., 2007 ).  Pteridium aquilinum  subsp. 
 wightianum  (J. Agardh) W. C. Shieh from the Himalayas of 
northern India (isolate YGIN) emerges from the  P. aquilinum  
clade polytomy, while the remaining  P. aquilinum  subsp.  wight-
ianum  accessions from Sri Lanka and Southeast Asia form a 
monophyletic group supported by 87% BS and 1.0 PP. Isolate 
YGIN was also distinguished from other  P. aquilinum  subsp. 
 wightianum  by both a distinctive nuclear genome marker and 
morphology in an earlier study ( Thomson, 2000a ). All the  P. 
aquilinum  subsp.  aquilinum  accessions we sampled (Europe) 
are monophyletic (62% BS, 1.0 PP), but emerge from a para-
phyletic grade of African  P. aquilinum  subsp.  capense . Also 
emerging from  P. aquilinum  subsp.  capense  is  P. aquilinum  
subsp.  centrali-africanum , which is supported as monophyletic 
with 87% BS and 1.0 PP. 

 We emphasize here that apparent paraphyly at the level of 
species or below in our data set should not be used to recircum-
scribe taxa for two reasons. First, we have examined only varia-
tion in chloroplast DNA. Because of lineage sorting and 
recombination, we have no reason to expect exactly the same 
patterns for nuclear genes ( Soltis et al., 1992 ). Second, some 
models of speciation predict a high frequency of paraphyly 
among recently diverged species ( Rieseberg and Brouillet, 
1994 ;  Funk and Omland, 2003 ). 

 Hybridization and the origin of the tetraploid species   —      Al-
though the majority of  Pteridium  taxa are at the same ploidy 
level (2 N  = 104;  Page, 1976 ), recent evidence suggests that  P. 
semihastatum  and  P. caudatum  are tetraploid taxa (4 N  = 208; 
 Tan and Thomson, 1990b ;  Thomson, 2000a, b ;  Thomson and 
Alonso-Amelot, 2002 ). Allopolyploidy appears to be a com-
mon speciation process in plants, and it often involves a triploid 
intermediate ( Ramsey and Schemske, 1998 ). Two main types 
of evidence for allopolyploid speciation can be gathered. Nu-
clear markers, preferably fi xed for different alleles in the differ-
ent parents, can show additive effects in allotetraploids, and 
simultaneously reveal both parents, whereas uniparentally in-
herited markers will reveal one parent and whether there have 
been multiple origins ( Soltis and Soltis, 1993 ). Although we 
have no evidence for the mechanism of inheritance of chloro-
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  G. J.     Gastony  .  2007 .  A genomewide study of reproductive barriers 
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et al., 2004 ) and 92 mya ( Pryer et al., 2004 ). These estimates rep-
resent upper ages for the evolution of  Pteridium  and correspond to 
the Cretaceous period. Fragments of fossils attributable to  Pterid-
ium  are known from the Tertiary period as far back as the Oligo-
cene (33.7 – 23.8 mya) from Europe to Australia, suggesting that 
even by this time, bracken may have achieved a widespread distri-
bution ( Page, 1976 ). During the time when bracken likely origi-
nated and the earliest divergences may have occurred (from 100 to 
30 mya), Africa and India separated from a southern landmass that 
included Australia, Antarctica, and South America ( Scotese, 2001 ). 
This separation may correspond to the basal divergence among 
brackens, splitting the Austral/South American clade from the  P. 
aquilinum  clade of African and Laurasian affi nity. The polytomy 
in the  P. aquilinum  clade may represent a rapid radiation of Afri-
can and Indian bracken as they moved north, colliding with a warm 
temperate and paratropical Laurasia by the end of the Paleocene 
(about 50 mya). Alternatively, the polytomy in the  P. aquilinum  
clade may result from insuffi cient data to distinguish phylogenetic 
relationships among lineages in the clade. 

 As continents have come to their modern global locations, and 
with the onset of the current ice age, the Quaternary glaciation be-
ginning 2.5 mya, there have been periods of extensive ice sheets 
and cold, dry steppe coming into Europe and North America and 
likely driving bracken into southern refugia. These repeated glacial 
periods may be invoked to explain the phylogeographic pattern 
whereby the European brackens are derived from within the Afri-
can taxa if Africa served as a source for colonization of Europe 
during recent geological times. The strong geographic structure 
observed at large (continental) scales among bracken taxa is con-
sistent with patterns expected under a vicariance model, with range 
expansion across land bridges and only occasional long-distance 
dispersal resulting in hybrid forms. This evidence contradicts the 
common assumption in ferns that repeated long-distance dispersal 
of spores will erode biogeographic patterns resulting from vicari-
ance in widespread species via constant gene fl ow ( Tryon, 1985 ; 
 Wolf et al., 2001 ). Recent empirical evidence in  Ceratopteris  
Brongn. shows that genetic reproductive barriers can accumulate 
quickly in allopatry, thereby restricting gene fl ow and potentially 
maintaining the signature of vicariance ( Nakazato et al., 2007 ). 

 Conclusions   —      This study highlights the importance of range-
wide perspectives when undertaking evolutionary and mono-
graphic studies. Any taxonomic revision of  Pteridium  must refl ect 
a global perspective and should include information from diverse 
areas of research, including morphology, cytology, genetics, and 
reproductive biology. To evaluate the biogeographic and hybrid 
origin hypotheses presented here, we will need a better-resolved 
species phylogeny with increased population-level sampling that 
incorporates nuclear data and fossils for date calibration. These 
data might also allow us to examine additional reticulation and 
lineage sorting in the evolutionary history of  Pteridium  as well as 
evaluate contemporary and historical gene fl ow. 
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   Pteridium aquilinum  subsp.  aquilinum    —   T. Reichstein  (NSW 420392) 017 
FZSW; Switzerland, Filzbach; 47.12; 9.10; FJ177240; FJ177159;  R. Prelli  
(NSW 420391) 031 BRFR; France, Britagne, Erquy; 48.38; 2.27; 
FJ177241; FJ177160;  M. E. Gillham  (NSW 420404) 065 CLYW; United 
Kingdom, Wales, Neath Valley; 51.65; -3.80; FJ177242; FJ177161;  A. F. 
Dyer  (NSW 420393) 099 EDSC; United Kingdom, Scotland, Pentland 
Hills; 55.5; -3.25; FJ177243; FJ177162;  R. Viane  (NSW 420405) 
103ASSP; Spain, Asturias Province, Villanueva; 43.37; -5.83; FJ177244; 
FJ177163;  M. E. Gillham  (NSW 420396) 106 OXLN; United Kingdom, 
England, London, Oxshott Common; 51.38; -0.42; FJ177245; FJ177164; 
 F. Piccoli  (NSW 420390) 188 CORF; France, Corsica, Haute Corse; 
42.57; 9.30; FJ177246; FJ177165;  E. Sheffi eld  (NSW 420403) 194 
AMTK; Turkey, Amasra, Black Sea Coast; 41.73; 32.40; FJ177247; 
FJ177166;  F. Piccoli  (NSW 420394) 202 RVIT; Italy, Ravenna; 44.42; 
12.2; FJ177248; FJ177167;  C. N. Page  (NSW 420408) 218 ACAW; United 
Kingdom, Wales, Caernarfon; 53.13; -4.27; FJ177249; FJ177168;  B. 
Capezedo  &  A. E. Salvo  (NSW 420374) 226 LBSP; Spain, Cadiz, Los 
Barrios; 36.18; -5.50; FJ177250; FJ177169;  A. C. Jermy  (NSW 420397) 
256 AZOR; Portugal, Azores, Terceira, Agra; 38.70 -27.20; FJ177251; 
FJ177170;  M. E. Gillham  (NSW 420380) 293 CPHW; United Kingdom, 
Wales, Caerphilly Mt.; 51.35; 3.12; FJ177252; FJ177171;  M.E. Gillham  
(NSW 420399) 307 BRGW; United Kingdom, Wales, Bridgend; 51.52; 
-3.58; FJ177253; FJ177172;  R. Viane  (NSW 420388) 336 RAMD; 
Portugal, Madeira, Rocha Alta; 32.65; -16.88; FJ177254; FJ177173;  R. 
Prelli  (NSW 420376) 350 NIFR; France, Nice, Cagnes-sur-Mer; 43.67; 
7.15; FJ177255; FJ177174;  V. Korzhenevsky  (NSW 627463) TAUR; 
Ukraine, Caucasus Mountains, Crimea; 44.98; 34.62; FJ177288; 
FJ177207.   Pteridium aquilinum  subsp.  capense   (Thunb.) C. Chr.  —   C. 
S. McMaster  (NSW 617745) 110 KUFZ; Zambia, Kundalila Falls; -12.45; 
30.13; FJ177256; FJ177175;  V. Rashbrook  (NSW 420332) 191 GSAF; 
Republic of South Africa, Grahamstown; -33.19; 26.32; FJ177257; 
FJ177176;  Watling  (NSW 420334) 228 MCAM; Cameroon, Mundamba; 
4.42; 8.87; FJ177258; FJ177177;  P. J. Myerscough  (NSW 420333) 353 
BBSA; Republic of South Africa, Betty ’ s Bay, Silver Sands; -34.35; 18.9; 
FJ177260; FJ177179;  B. E. Okoli  (NSW 420328) 368 NDNG; Nigeria, 
Niger Delta; 4.83; 6.25; FJ177262; FJ177181;  A. C. Chikuni  (NSW 
617743) 503CAPM/ZOMA; Malawi, Zomba Plateau; -15.3; 35.32; 
FJ177263; FJ177182.   Pteridium aquilinum  subsp.  centrali-africanum   
Hieron.  —   C. S. McMaster  (NSW 617746) 112 ZAMB/CH3Z; Zambia, 
Mkushi, Chilongoma Hills; -14.38; 29.53; FJ177264; FJ177183;  C. S. 
McMaster  (NSW 617747) AKFZ; Zambia, Kundalila Falls; -12.45; 30.13; 
FJ177265; FJ177184;  C. S. McMaster  (NSW 617757) CAF4; Zambia, 
Mkushi, Chilongoma Hills; -14.38; 29.53; FJ177266; FJ177185. 
  Pteridium aquilinum  subsp.  decompositum   (Gaudich.) Lamoureux ex J. 
A. Thomson  —   C. W. Smith  (NSW 420357) 292 MAHI; USA, HI, Maui, 
Haleakala National Park; 20.75; -156.17 FJ177268; FJ177187.     Pteridium 
aquilinum  subsp.  japonicum   (Nakai)  Á . L ö ve  &  D. L ö ve  —   S.-M. Chew  
(NSW 420347) 029 TTWN; Taiwan, Nankang, Taipei; 25.00; 121.02; 
FJ177269; FJ177188;  R. Hirose  (NSW 420335) 071 AIJP; Japan, Honshu, 
Aichi Prefecture; 34.49; 137.12; FJ177270; FJ177189;  K. U. Kramer  
(NSW 420340) 085 YSCH; China, Kwansi, Guilin, Yao Shan; 25.35; 
110.18; FJ177271; FJ177190;  Y.-J. Zhang  (NSW 420336) 096 GNCH; 
China, Gansu Province; 35.00; 105.00; FJ177272; FJ177191;  R. Hirose  
(NSW 420351) 104 MOGJ; Japan, Honshu, Nagano Prefecture, Mt. 
Ogura; 36.17; 138.25; FJ177273; FJ177192;  T. Kumashiro  (NSW 420356) 
113 YOJP; Japan, Kyushu, Kagoshima Prefecture; 31.58; 130.55; 
FJ177274; FJ177193;  R. Hirose  (NSW 420348) 280 CHJP; Japan, 
Honshu, Chiba Prefecture; 35.60; 140.10; FJ177275; FJ177194;  T. Miyata  
(NSW 420349) 316 SHJP; Japan, Honshu, Shimane Prefecture; 35.47; 
133.03; FJ177276; FJ177195.   Pteridium   aquilinum  subsp.  latiusculum   
(Desv.) Hult é n  —   E. Klekowski  (NSW 420315) 143 YCCM; USA, MA, 
Yarmouth; 41.70; -70.23; FJ177277; FJ177196;  W. H. Wagner Jr  (NSW 
420310) 147 WMCH; USA, MI, Waterloo; 42.15; -84.24; FJ177278; 
FJ177197;  D. Barrington  (NSW 420311) 148 BRMN; USA, ME, 
Bridgton; 44.04; -70.42; FJ177279; FJ177198;  D. Barrington  (UTC 
247719) DSB 2287; USA, VT, Colchester, Niquette Bay State Park; 44.58; 
-73.20; FJ177280; FJ177199;  P. Wolf  (UTC 249671) PGW 921; USA, CT, 

SE of Storrs, Spring Hill; 41.79; -72.22; FJ177281; FJ177200.   Pteridium 
aquilinum  subsp.  pinetorum   (C. N. Page  &  R. R. Mill) J. A. Thomson 
 —   V. Bogatyr  (NSW 420402) 164 KUKR; Ukraine, Kiev; 50.43; 30.5; 
FJ177235; FJ177154;  E. A. Ershova  &  A. I. Shmakov  (NSW 807731) 
N2nR; Russia, Siberia, Altai Plain; 53.35; 83.73; FJ177236; FJ177155;  E. 
A. Ershova  (NSW 807726) N6nR; Russia, Siberia, Novosibirsk; 55.03; 
82.92; FJ177237; FJ177156;  O. N. Perestoronina  (NSW 807736) RU4K; 
Russia, Kirov Region; 58.60; 49.65; FJ177238; FJ177157.   Pteridium 
aquilinum  subsp.  pseudocaudatum   (Clute) Hult é n  —   E. Sheffi eld  (NSW 
420317) 169 FLUS; USA, FL, Cape Kennedy; 28.47; -80.47; FJ177282; 
FJ177201;  P. G. Wolf  &  M. D. Windham  (NSW 420316) 203 HFLA; USA, 
FL, Hawthorne; 29.55; -82.08; FJ177283; FJ177202;  P. Soltis  (UTC 
249632) Der 68; USA, FL, Paynes Prairie State Preserve; 29.52; -82.30; 
FJ177299; FJ177218.   Pteridium aquilinum  subsp.  pubescens   (Underw.) 
J. A. Thomson, Mickel  &  Mehltreter  —   D. Barrington  (NSW 419173) 
100 AOUS; USA, OR, Ashland; 42.23; -122.73; FJ177284; FJ177203;  J. 
Schneller  (NSW 420312) 325 OWUS; USA, WA, Olympic Peninsula; 
47.55; -124.24; FJ177285; FJ177204;  J. Der  (UTC 249629) JPD 66; 
Canada, British Columbia, Vancouver; 49.26; -123.26; FJ177297; 
FJ177216;  J. Der  (UTC 247718) JPD 67; USA, CA, Feather River 
Canyon; 39.74; -120.71; FJ177298; FJ177217.   Pteridium aquilinum  
subsp.  wightianum   (J. Agardh) W. C. Shieh  —   R. D. E Jayesekara  (NSW 
419562) 001 AMSL; Sri Lanka, Ambewela; 7.03; 80.59; FJ177289; 
FJ177208;  J. V. Pancho  (NSW 420371) 007 KLPH; Philippines, Luzon, 
Kinabuhayan; 14.25; 121.5; FJ177290; FJ177209;  T. Partomihardjo  
(NSW 419534) 068 SERI; Indonesia, Molucca Island, Seram; 3.10; 
129.05; FJ177291; FJ177210;  R. Kiew  (NSW 420251) 182 PMAL; 
Malaysia, Pahang; 4.00; 102.5; FJ177292; FJ177211;  S. P. Khullar  (NSW 
419570) 305 YGIN; India, Garhwal, Yamunotri Hills ; 30.92; 78.47; 
FJ177293; FJ177212;  J. A. Thomson  (NSW 420257) 354 WFNQ; 
Australia, N. Queensland, Wallaman Falls; -18.55; 145.80; FJ177294; 
FJ177213;  M. D. Dassayanake  (NSW 419571) 362 HKSL; Sri Lanka, 
Hakgala; 6.55; 80.48; FJ177295; FJ177214;  S. J. Moore  (NSW 705077) 
416 TREV; Taiwan, Taitung Hsieh; 23.27; 120.96; FJ177296; FJ177215. 
  Pteridium arachnoideum     (Kaulf.) Maxon  —   B. Perez-Garcia  (NSW 
420308) 144 RMEX; Mexico, Molango, R í o Malila; 20.48; -98.44; 
FJ177221; FJ177140;  M. G. E. Noronha  &  P. G. Windisch  (NSW 420303) 
317 SPBR; Brazil, Sao Paulo; -22.42; -49.00; FJ177219; FJ177138;  M. E. 
Alonso-Amelot  (NSW 505771) ME2-1VNZA; Venezuela, M é rida, Cerro 
La Bandera; 8.42; -69.03; FJ177220; FJ177139.   Pteridium caudatum   
(L.) Maxon  —   J. Villalobos-Salazar  &  M. Firenczi  (NSW 420247) 238 
HECR; Costa Rica, Heredia; 10.00; -84.08; FJ177222; FJ177141;  J. 
Lenne  (NSW 420295) 274 QCOL; Colombia, Valle, Quisquina; 3.60; 
-76.48; FJ177223; FJ177142;  A. C. Jermy  &  T. G. Walker  (NSW 420305) 
323 COCR; Costa Rica, Cordillera; 9.15; -83.8; FJ177224; FJ177143;  M. 
E. Alonso-Amelot  (NSW 505770) MD2-2VENZ; Venezuela, Merida, La 
Hechicera; 8.42; -71.03; FJ177225; FJ177144.   Pteridium esculentum   (G. 
Forst.) Cockayne  —   J. A. Thomson  (NSW 420273) 083 WAWA; Australia, 
WA, Waroona; -32.51; 115.59; FJ177226; FJ177145;  J. A. Thomson  (NSW 
420274) 127 KEWA; Australia, WA, Kenton; -34.57; 117.01; FJ177227; 
FJ177146;  J. A. Thomson  (NSW 420848) 213 CRAN; Australia, NSW, 
Craven; -32.15; 151.95; FJ177228; FJ177147;  J. A. Thomson  (NSW 
420264) 275 KONC; New Caledonia, Mt. Koghi; -22.17; 166.50; 
FJ177229; FJ177148;  C. Surman  (NSW 420267) 324 HNNZ; New 
Zealand, South Island, Nelson, Hira Forest; -41.18; 173.17; FJ177230; 
FJ177149;  C. Surman  (NSW 420289) 332 SVNZ; New Zealand, North 
Island, Wellington, Stokes Valley; -41.07; 175.08; FJ177231; FJ177150;  J. 
A. Thomson  (NSW 420879) 387 CRDQ; Australia, N. Qld, Credition; 
-21.20; 148.53; FJ177232; FJ177151;  J. A. Thomson  (NSW 420269) 401 
RYNA; Australia, NSW, Sydney, Ryde; -33.47; 151.05; FJ177233; 
FJ177152;  P. Wolf  (UTC 250545) PGW 638; New Zealand, North Island, 
Ruakura; -37.78; 175.31; FJ177234; FJ177153.   Pteridium semihastatum   
(Wall. ex J. Agardh) S. B. Andrews  —   P. Brocklehurst  &  G. Wightman  
(NSW 420865) 251 PFNT; Australia, NT, Petherick ’ s Forest Park; -13.06; 
130.24; FJ177286; FJ177205;  Mujamil  &  T. J. Ho  (NSW 419554) 278 
KMAL; Malaysia, Selangor, Kapar; 3.07; 101.24; FJ177287; FJ177206. 

  Appendix   1.  Taxa, vouchers, localities, and GenBank accessions for bracken specimens included in this study. Voucher specimens are deposited in the following 
herbaria: NSW = National Herbarium of New South Wales, Australia; UTC = Intermountain Herbarium, Utah State University, USA. 

   Taxon    —  Voucher:  Collector  (Herbarium accession) Sample isolate ID; Locality; Latitude; Longitude; GenBank accesions:  trnS  –  rpS4  spacer+gene;  rpL16  intron. 


