

View metadata, citation and similar papers at core.ac.uk

Right-sizing Small Satellites

SSC14-V-4

David J Barnhart, USAF Academy Martin N Sweeting, Surrey Space Centre

- Fundamental question: "what is the right size for a small satellite?" (< 200 kg)
- Three proposed design factors:
 - Spacecraft Utility (ScU)
 - Mission Utility (MU)
 - Optimum Cost
- Motivation
 - Provoke thought, not discredit prior work
 - Develop comparison metrics for decision-makers

- First satellites were SmallSats!
- Re-birth in 1980s
- CubeSats/containerization early 2000s
- US Government CubeSat interest late 2000s
- Recent major findings/publications
 - NASA Ames "Small Satellite Technology State of the Art" (< 180 kg)
 - USAF SAB "Microsatellite Mission Applications" (< 300 kg)

- Lowering launch costs through containerization
 - NASA's Payload Ejection System (PES)
 - Orbiting Picosat Activated Launcher (OPAL)
 - P-POD
- Standardized bus designs
 - STP-SIV 180 kg ESPA configuration
 - 3U CubeSats 4.5 kg such as NRO's Colony
- Plug-and-play architecture
- Little work in quantitative assessments

- Firstly, we must define the "perfect" satellite
- Payload consumes 100% of resources
 - Power
 - Volume
- Infinite power available
- Volume is unconstrained (infinite)
- Mass is zero
- Impossible to approach, but helps us model

Proposed mathematical model:

$$ScU = \eta \left(\frac{P}{P+100}\right) \left(\frac{V}{V+1}\right)$$

- η = aggregate payload volume & power efficiency
- P = OAP in Watts ($\infty = ideal$)
- V = spacecraft volume in m³ ($\infty =$ ideal)
- Initial weighting factors: 100 Watts $\approx 1 \text{ m}^3$

ScU Examples

Mission	Bus Cost (\$K)	Mass (kg)	η	OAP (W)	Volume (cm³)	ScU
SpaceChip	2.7	0.01	0.01	0.001	2×2×0.3	1.2×10 ⁻¹³
MCMSat	24	0.170	0.1	0.88	10×10×1	8.4×10 ⁻⁸
PCBSat	13	0.25	0.05	0.88	10×10×2.5	1.2×10 ⁻⁷
\$50Sat	0.25	0.22	0.3	0.55	5×5×7.5	3.1×10 ⁻⁷
1U CubeSat	75	1	0.1	1.6	10×10×10	1.6×10 ⁻⁶
Colony I	250	3	0.4	8	10×10×30	8.9×10 ⁻⁵
Colony II	250	3	0.4	10	10×10×30	0.0001
FS-2	1,500	19.5	0.2	10	32×32×32	0.0006
FS-3	2,100	54.3	0.21	18.9	45×45×63	0.004
DMC	-	88	0.5	30	64×64×68	0.025
FS-5	2,400	137.7	0.51	38	61×72×97	0.043
DMC-2	15,000	96	0.5	50	63×66×84	0.043
SIV	-	181	0.35	225	61×72×97	0.07
FS-6	2,600	164.3	0.48	102	61×72×97	0.07

Proposed mathematical model:

$$MU = 1 - \left(1 - ScU\right)^n$$

- Similar to parallel reliability equation
- n = number of spacecraft in mission architecture
- *MU*, like *ScU*, approaches unity (1)

- Disaster Monitoring Constellation (DMC)
 - 88 kg bus mass, 64×64×68 cm bus volume
 - η = 0.50, OAP of 30 W; results in an *ScU* of 0.025
 - Five satellites in architecture yields <u>MU of 0.12</u>
- Space Weather
 - I kg 1U CubeSat, 10×10×10 cm bus volume
 - η = 0.1, OAP of 1.6 W; yields *ScU* of 1.6×10⁻⁶
 - Ten satellites in architecture yields <u>MU of 1.6×10^{-5} </u>
 - 100 satellites yields <u>MU of 1.6×10⁻⁴</u>

- Bus cost (drives ScU)
 - Invest in raising ScU
- LVI costs (drives MU)
 - CubeSat mass overhead 40-55%
 - ESPA mass overhead 13%
 - Launch opportunity cost not yet considered
- Potential revenue
 - A commercial issue in general
 - Academic programs typically not concerned

Proposed Objective Design

- 50×50×50 cm
- η = 70%
- OAP = 100 W
- Target cost of \$1M
- Mass of 30 kg
- Non-containerized

FalconSAT-1 was about this size

ScU Component Analysis

ScU/Cost

Conclusions

- Theoretically perfect satellite proposed
- First step in quantifying the "utility" of spacecraft and mission capabilities
- Much more work to be done
 - Need more data, extend to all satellite classes
 - Develop ScU and MU standard reference points
- Career lessons learned in the community
 - Miniaturizing payloads to fit is costly
 - Overselling SmallSats reduces credibility
 - Decision-makers need metrics for comparison
 - SmallSat potential barely tapped...

<u>Feedback welcomed at:</u> david.j.barnhart@outlook.com david.barnhart.1@us.af.mil

<u>Visit us at:</u>

USAF Academy University Exhibit 15U Surrey Satellite Technology-US Surrey Satellite Technology, Ltd.