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Abstract 

This paper re-introduces the concepts of Time­
Based Clustering (T BC). Also, the ideas of over­
sampling and embedding time are introduced 
in connection with mutual information theory. 
These concepts are then extended through the 
use of the Time-Based Clustering (TBC) prob­
lem. Mutual information curves for the ROssler 
system are shown to match a slice through the 
rich cost function space spanned by the Time­
Based Clustering (TBC) solution. In closing, 
some possible repercussions of this find are dis­
cussed. 

1 Introduction 

This paper has been written using information 
obtained within an extended research project in 
determining the origins of generic signals[l]-[3] . 
The concept of determining the origin or moti­
vation of a generic signal is very important to 
an engineer today. For example, when a new 
cooling system or aircraft is designed and tested 
there are times when these systems develop un­
expected turbulent flows. The engineer would 
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like to know if these flows are created by deter­
ministic processes or if they are caused by ran­
dom effects. Moreover, if the flows are determin­
istic based, the engineer most likely has a better 
chance to make an engineering change to over­
come the deterministic cause of the unexpected 
turbulance or in short control it. 

There are many methods that can be at­
tempted for determining the origin of a signal, 
they include: First Return Maps, Statistical 
based calculation, attractor reconstruction, and 
a new hybrid method created by the authors[3]. 
Many of these methods rely on the choice of the 
optimal embedding time step. The optimal em­
bedding time step has an important connection 
to the process of coarsening or converting a com­
plicated signal into a symbol train used in the 
authors new method. This connection is dis­
cussed further within this paper. However, the 
idea of embedding time step optimal sample time 
should be of interest for all engineers. As with 
many young engineers, the author was taught 
that under-sampling of a signal was a very big 
problem. Moreover, if a signal is under-sampled, 
information is lost within the signal. In addi­
tion, if proper low pass filtering has not been ac­
£Omplished on the under-sampled signal aliasing 
effects come into play. However, as a young en­
gineer the effects of over-sampling a signal were 
not discussed with as much importance, if at all. 
Over-sampling is as big a problem in attempt­
ing to learn about the dynamics of a system as 



the under-sampling problem. What is meant by 
over-sampling? A simple example explains the 
concept best. Consider sampling a 1Hz sine at 
1000Hz. If one now looks at the resulting digi­
tal signal not much changes from one time step 
to the next. In fact , as one tries to find the 
dynamics within the digital signal at least 1000 
points are required to see the global 1Hz sine 
wave. In short, the general dynamics from time 
step to time step have been washed out by the 
over-sampling. 

A traditional method for determining the em­
bedding time step/optimal sample time has been 
based on mutual information theory. In this 
paper, the traditional mutual information the­
ory solution has been shown (using the ROssler 
system) to match a new Time-Based Cluster-
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Figure 1: x state versus y state plot of the 
ROssler system time evolution (a= 0.2, b = 0.2, 
and c = 5.7) . 

Time-Based Clustering ing (TBC) solution. Moreover, the traditional 3 
mutual information theory is a macro solution, 
while the TBC solution contains both the macro 
and micro level optimal sample time information. 
These ideas are discussed further within this pa-

This is a simple reintroduction of the concepts 
behind the Time-Based Clustering (TBC) prob­
lem that was originally introduced in [1]. For a 
more complete coverage of the TBC problem the 
following papers and documents are suggested 
[1], [2], and [3] for reading. The TBC prob­
lem has been initially designed as a coarsener 
used within the symbol string creation process 
for study of strange signals. The TBC problem 
is built upon the Fuzzy-C Means (FCM) cluster­
ing problem[5]-[7],[1],[3] . The formulation of the 
TBC problem is a generalized of the FCM with 
a twist. One of TBC's goals is to convert a n 
dimensional digital signal into a one dimensional 
symbol train that still retains as much dynamical 
information contained within it as possible. One 
might first consider implementing time embed­
ding practices within the data to be clustered in 
order to accomplish the goal. Instead, one might 
consider changing the idea of how a cluster is de­
fined. Using the later idea and knowing that we 
are interested in time series data, it is logical 
that our data clusters should also contain some 
kind of time series information. However, one 
does not in general know much about the time 
series data that is being studied. So, in some 
way TBC should be allowed to determine the 
best way to involve the time series information 
within the clusters. With this notion in mind, 

per. 

2 The Rossler System 

First, the reader should be come acquainted with 
the ROssler system. This system is a simple three 
state system defined as: 

:ncj 

y(t) 

z(t) 

= - (y(t) + z(t)) 

= x(t) + ay(t) 

= b + z(t) (x(t) -c) 

(1) 

(2) 

(3) 

This system under goes some important changes 
when the parameters a and bare fixed at 0.2 and 
the parameter c is varied. As the parameter c is 
varied from 2 to 5. 7 an infinite number of period 
doublings occur[4] within its attractor. These 
period doubling events produce the strange at­
t ractor shown in Figure l. Note that the ROssler 
system with the parameters a = 0.2, b = 0.2, 
and c = 5.7 exhibits chaos. Furthermore, this 
simple chaotic system allows for a detailed com­
parison between mutual information theory and 
the TBC problem, as will be shown shortly. 
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Figure 3: The generalized new cluster concept used within the new TBC problem and coarsener. 
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Figure 2: The new cluster concept used within 
the new TBC problem and coarsener. 

consider a new type of cluster shown in Figure 2. 
Note, that by using this new concept of a clus­
ter, a data point is only considered to be part 
of a cluster if it both starts in the vicinity of a 
cluster center and a later data point ends within 
the vicinity of the ending cluster center. It is 
easy to see that this is just a simple extension of 
older clustering concepts. Moreover, this simple 
single time step cluster idea can be generalized 
further to include multiple future cluster centers, 
see Figure 3. This extended TBC problem will 
be discussed further in the conclusions of this 
paper, as well as in [3]. 

By extending the cluster concept to include fu­
ture dynamic data, the clusters are able to retain 
more dynamical information within the symbol 
trains that are created from TBC. That is the 
goal! In fact, as will be discussed later, the TBC 
problem solves the over-sampling problem in a 

manor similar to how mutual information theory 
solves over-sampling. So, how might one state 
the new TBC problem. Consider: 

miDUli,u2, 
u,k.Dt 

W.O. u 0, E jO, 1j 
2:c u,k = 1 Ylt = 1, 2, ... , N 

D, E1f, 2, ... , Amo:e ) i ~maz 4::' N 

II' (4 ) 

(5) 

where, Cis the number of clusters, N is the num­
ber of data vectors { Xk } being clustered, Uik is 
the membership value of the kth data vector in 
the ith cluster, and [vlfv2TJT is center (mean) 
vector of the ith cluster. Note that the center 
vector holds both locational as well as dynamic 
signal direction information. For this paper the 
11 •11 is the Euclidean norm, however an adaptive 
matrix norm could be used in the future[6]-[7]. 
It is important to note that this problem is very 
difficult! Why? The fact that the Di terms are 
allowed to change implies that you cannot sim­
ply apply a Lagrange multiplier solution to this 
problem. In short you can't create a simple one 
step solution process such as the FCM problem 
has[l] ,[3]! Solution methods are discussed in [3]. 
However, note that if the Di's are held fixed, 
then the TBC problem reverts to the more sim­
ple FCM problem. This is a key to its solution 
as well as a newer definition of the TBC prob­
lem that follows. Note that the above definition 
seems reasonable. However, as was discovered 
during the research process, a better TBC prob-



lem is stated as: 

w.c. u,k E (0 , 1( 

~c u,k = l Vk = 1,2, ... , N 
L-,,= 1 

D, E (1, 2, .. · , .O.~o: ( ; .O.~o% ¢: N 

za:- ul, 
:tk+ D i - v2, II' (6) 

that the second TBC problem solves the mutual 
information problem over a larger solution space. 
This is due to the the ability of the clusters to 
localize the mutual information across the data 
space. The TBC problem thus finds the best 

(
7

> subsample time steps for each cluster separately. 
In short mutual information theory attacks the 
global problem while TBC can solve both the 
global as well as the local over-sampling problem. 
One can think of the TBC problem as a gener­
alized mutual information problem. Extending 
this idea further, as is shown latter, mutual in­
formation theory produces a simple curve that is 
searched over for the best solution, while TBC 
method produces a much higher dimensional sur­
face that must be searched for the best result. 
In short, TBC problem could be thought of as a 
multiple localized mutual information solution. 
This is shown in the next section. 

This might seem strange to some readers, how­
ever by maximizing over the minimized FCM 
TBC problems, one solves the problem of over­
sampling as well as clusters the data. Over­
sampling is a problem few engineers consider, 
however it is important in this work. The idea 
of choosing the perfect sampling time is very im­
portant. One knows that if the time is not fast 
enough information is lost! Likewise, if one sam­
ples too fast, dynamical information from one 
time step to another is lost. Mutual information 
theory attempts to lessen this problem. Basi­
cally, one attempts to find a time step within a 
sampled signal such that the information within 
the initial time step does not tell much about 4 
the future time step. However, we want that 
time step to be as short as possible so that we 

Mutual Information and 
Time-B ased Clustering 

do not under-sample the signal. With this in 
mind, from studies in mutual information the­
ory, it has been assumed that the best choice 
for the subsample time step is where the first lo­
cal minimum occurs in the mutual information 
curve[8]. If such a minimum does not exist, then 
the choice of no subsampling should be made[8]. 
The mathematical concept behind this is that 
one is attempting to decorrelate the informa­
tion from one time step to the next. Explained 
slightly different, one is attempting to spread the 
data points out but not so far that one losses 
information, just far enough to get rid of redun­
dant information. It will been shown that this 
is what the above restated TBC problem accom­
plishes! Furthermore, note that the first TBC 
problem statement should be used when there is 
not a local minimum on the mutual information 
curve- or likewise a local maximum on the TBC 
constant Di curve. The lack of a local minimum 
occurs in many systems, in fact it always occurs 
within simple map based chaotic systems. These 
concepts are discussed more thoroughly later in 
[3]. Moreover, at this point it should be noted 

How is TBC and mutual information theory con­
nected? In order to answer this question, one 
must first know what mutual information theory 
is useful for and how it is implemented. Mu­
tual information theory is used in reconstruct­
ing attractors. Mutual information is a method 
for deciding on the optimal time embedding step 
used within the reconstruction process. As was 
discussed earlier, this choice of the embedding 
time step is closely tied to the idea of optimal 
sampling time. In other words, traditional sam­
pling theory gives one the maximum sample time 
needed so that the signal can be sampled and 
then reconstructed. Likewise, mutual informa­
tion theory addresses the over-sampling prob­
lem. It is an attempt to set the minimum sample 
time step size. Moreover, as the maximum sam­
ple time addresses aliasing, the minimum sample 
time addresses the loss of dynamical information 
within the sampled signal. Therefore, by con­
necting mutual information theory with the TBC 
problem, a claim can be made: by using TBC as 
the means to produce a symbol train, one gains 
over-sampling protection as well as clusters that 
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contain more of the original signals dynamical 
properties, as discussed earlier. The tie to dy­
namical properties comes from the idea that a 
point is only a member of a cluster if it starts 
within a traditional cluster and evolves in time 
to a traditional final cluster. 

The mutual information process for choosing 
the optimal sample time is simple to understand. 
The concept is based on choosing a sample time 
that has as short a time lag as possible but also 
produces the minimum amount of information 
content about the next time sample from the cur­
rent time sample. Moreover, the optimal sample 
time should maximize the dynamical information 
in between each sampled time step. This is done 
by choosing the minimum informational content 
time step on the informational curve. The reason 
for choosing the minimum informational content 
is that we want the data to change as much as 
possible in between each time sample but still be 
relatively close in time. This concept is the over­
sampling idea. However as was discussed above, 
there is a special case. If the mutual information 
curve does not contain any local minimum then 
the choice of the time step sample should be 1[8]. 
This occurs for all simple mapping functions like 
the tent map, Lozi system, etc [3]. 

The mutual information curve can be calcu­
lated with the following equation: 

Bin(M) 

• • • 
Bin(2) 

Bin(l) 

~ x(n) 

I 
1\ I 

~ 
~ 

I I 
I I 
1 
1 r' 

Tune n 

Figure 4: Example of uniform quantinization 
used within the calculation of mutual informa­
tion. 

Bin(M) Compress into 

• Histogram 
• • 

Bin(2) Calculate the 
Probability of 

Bin(l) Each Bin 

Figure 5: A method for calculating symbol prob­
ability used in the calculation of mutual informa­
tion. 

has been made into a simple histogram, see Fig­
ure 5, the probability of each symbol (Pi(K)) 
can be easily calculated by dividing the number 
points within each bin by the number of points 
within the signal. Notice that as the symbol 
string grows in length the Pi ( K) becomes con-
stant for all choices of K . Therefore, if the sym­

M M [ Pw(T) ] 
I (T ) = ~~Pw(T) log2 Pb(O)Pb'(T) (8) bol string is long then we need only calculate 

the histogram in Figure 5 once. Thus, we do 
not need to calculate the Pi(K) for each time 
sifted (by K) signal. Likewise, Pw(T) is calcu­
lated by creating a 2 dimensional histogram for 
symbol pairs separated by T time steps within 
the uniform coarsened symbol train, see Figure 
6. Once the probabilities have been calculated 
the mutual information curve is simple to cre­
ate. This has only been an overview of mutual 
information, if the reader wants a more detailed 
coverage I suggest reading Abarbanel's paper [8]. 

where the probabilities Pb(O), Pb'(T) and the 
joint probabilities Pw (T) are calculated from the 
uniformly sampled/coarsened signal. Moreover, 
Pi(K) is defined as the probability of symbol 
i within the sampled signal, s(n + K). Also, 
Pii(K) is defined as he probability of symbol i 
being followed K steps later by symbol j within 
the symbol train s(n). Note that this notation 
is not standard, however it is hoped that it will 
limit confusion within the above equation. Also 
note, that there is a minor typographical error 
within Abarbanel's paper[8] on how to calcu­
late the mutual information curve. Continuing 
on, the mutual information curve is calculated 
by first uniformly sampling/coarsening the sig­
nal into M bins, see Figure 4. Once the signal 

Using the methods above, the mutual in­
formation curve for the well known Lorenz 
system[4],[3] was calculated. It was found that 
the Lorenz's mutual information curve had an in­
verse relationship to the cost function obtained 
from the TBC problem, see Figure 7. This re-



Create the 20 Histogram Based on 
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Bin(M) 
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Figure 6: Example of the joint symbol probabil­
ity calculation used within the mutual informa­
tion calculation. 
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Figure 7: A plot of the normalized Lorenz mu­
tual information curve and the normalized in­
verse constant D cost function from the TBC 
problem. 
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Figure 8: A plot of the normalized ROssler mu­
tual information curve and the normalized in­
verse constant D cost function from the TBC 
problem ( 4 bins). 

lationship occurs for a very special case of the 
TBC problems. This special case is where the 
values of the D's are held constant for each clus­
ter within the clustering problem. This in fact 
is the mutual information's time step choice ana­
log within the TBC problem. By holding the D's 
constant for each cluster, we are simulating the 
use of a global embedding time step within the 
problem. Notice that the embedding time step 
is what mutual information theory is designed 
to find. Thus by comparing these two curves 
once normalized they should match. The inverse 
relationship comes from the idea that the clus­
tering problem penalizes for informational mis­
matches with a higher cost, while mutual infor­
mation theory gives a lower value for information 
mismatches. Therefore, we should expect the 
inverse relationship and that is what has been 
found. 

Wait! This isn't the whole story. By using the 
ROssler system as an example, the concepts of 
mutual information theory can be extended into 
a local solution instead of the global solution it 
gives currently. What does this mean? Mutual 
information theory allows one to only calculate a 
global information relation between time steps. 
Likewise, by fixing the D's to be constant only 
the global mutual information calculation is ob­
tained by using TBC problem. This is shown in 
Figure 8. However, if the D's are allowed to vary, 
local informational calculations can be obtained 
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Figure 9: A plot of the normalized ROssler mu­
tual information curve and the normalized in­
verse constant D cost function from the TBC 
problem ( 2 bins). 
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Figure 10: A plot of the costs for the ROssler 
TBC problem for 2 clusters. 

using the TDC problem. It should be noted in 
the Figures 7 and 8, the number of bins was held 
to 4 for the mutual information calculation and 
4 clusters where used in the TBC problem. This 
is an attempt to make the comparisons as valid 
as possible. In this light, the ROssler system is 
simple enough, that useful mutual information 
curves for 2 bins is possible, see Figure 9. This 
allows us to use only 2 clusters in the TBC prob­
lem. By using only 2 clusters a plot of the whole 
TBC solution surface can be shown, see Figure 
10. As before this cost surface can be normalized 
and inverted to compare it with the expected re­
sults from mutual information theory, see Fig­
ures 11 and 12. If we compress the map into 2 
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Figure 11: View one of the normalized inverted 
costs for the ROssler TBC problem for 2 clusters. 
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Figure 12: View two of the normalized invertt::d 
costs for the ROssler TBC problem for 2 clusters. 
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Figure 13: Top view of the normalized inverted 

information surface is obtained. Furthermore, by 
considering the more advanced generalized TBC 
problem, see Figure 3, new more interesting opti­
mal attractor reconstruction could be attempted. 
These new reconstructions could be based on dif­
ferent embedding time steps used within the data 
embedding process. This concept is not readily 
available within the mutual information theory 
at the present. A more detailed discussion of 
these concept can be read in [3]. The ideas pre­
sented in this paper are just a jumping off point. 
Additional research is needed in this area to ex­
ploit this new generalization of the mutual infor­
mation concepts. 

costs for the ROssler TBC problem for 2 clusters. References 

dimensions, see Figure 13, the standard mutual 
information curve solution can be shown within 
this more rich localized TBC solution, i.e. the 
traditional mutual information solution is along 
the marked diagonal in Figure 13. The ability of 
the TBC problem to extended the ideas of mu­
tual information adds greatly to the advantages 
of using it for symbol string creation. 

5 Conclusions and Future Di­
rections 

The main purpose of this paper was to show 
that Time-Based Clustering(TBC) and mutual 
information theory are connected. This connec­
tion was shown through experimental compar­
isons between the TBC cost function results and 
the mutual information curves calculation for the 
Lorenz and ROssler systems. Moreover, the ex­
perimental relationship was discussed in terms 
of the underlining mathematical parallels within 
each problem. The importance of both TBC and 
mutual information theory to obtain the opti­
mal sample time was discussed briefly. How­
ever, the use of optimal sample time is a sep­
arate discussion outside of what is proper in this 
paper. More importantly, by showing the con­
nection between TBC and mutual information 
theory, a more generalized concept of a mutual 
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