Utah State University

Digital Commons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2013

3-Way Test Suite Prioritization and Fault Detection: A Case Study

Arjun Roy Chaudhuri
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

b Part of the Computer Sciences Commons

Recommended Citation

Roy Chaudhuri, Arjun, "3-Way Test Suite Prioritization and Fault Detection: A Case Study" (2013). All
Graduate Plan B and other Reports. 324.

https://digitalcommons.usu.edu/gradreports/324

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Plan B and /[x\

other Reports by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()Al UtahStateUniversity
contact digitalcommons@usu.edu. /rg;m MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/324?utm_source=digitalcommons.usu.edu%2Fgradreports%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

3-WAY TEST SUITE PRIORITIZATION AND FAULT DETECTION: A CASE STUDY

by

Arjun Roy Chaudhuri

A report submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Computer Science

Approved:
Dr. Nicholas Flann Dr. Vicki Allan
Major Professor Committee Member

Dr. Dan Watson
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

2013

Copyright -© Arjun Roy Chaudhuri 2013

All Rights Reserved

ABSTRACT
3-Way Test Suite Prioritization and Fault Detection: A Case Study
by
Arjun Roy Chaudhuri, Master of Science
Utah State University, 2013

Major Professor: Dr. Nicholas Flann
Department: Computer Science

GUI and web based applications are becoming universal. Functional accuracy of those
applications is vital. Software defects caused by poor software testing can cost billions of dollars.
Further, web application defects can be costly due to the fact that most web applications handle
regular user interaction. By improving the time efficiency of software testing, many of the costs
associated with defects can be saved. Web application users generate large numbers of possible test-
cases and out of all those test-cases only some of them are vital for functional testing. Therefore
testing correctness of these applications is expensive and time consuming and hence challenging at
times. However, software testing is often under time and budget constraints. Earlier studies came up
with different abstract models to face this kind of challenges where a tester can select and execute a
subset of all the possible test-cases (test-case prioritization) based on some criterion to assure
performance goal. In the context of test suite prioritization, earlier studies showed that 2-way inter-
window interaction coverage/criteria are effective at finding faults quickly in the test execution cycle.
However, since faults may be caused by interactions between more than 2 parameters, in this project
we exercise test suite prioritization by t-way combinatorial coverage of inter-window interactions on
an existing web application Music-Store. Our results show that the rates of fault detection for 2-way

and 3-way prioritization are very close to each other.

ACKNOWLEDGMENTS

Most significantly, | would like to convey my hearty gratitude to Dr. Nicholas Flann for giving
me the opportunity in this project. He has been an outstanding advisor and guide. His guidance and
support throughout my graduate career and during the course of this project are invaluable. The
experience and knowledge | have gained throughout my graduate course work with him will stay with
me for years to come. | am grateful to Dr. Dan Watson and Dr. Vicki Allan for both of their input and
interest in this report.

I would also like to make a special thanks to Dr. Sampath and Dr. Renee Bryce; their help
through my graduate research experience has been truly rewarding. It was nice learning experience
to use different software testing tools like Replay tool, Test Oracle, CPUT made and maintained by her
and her students. | would like to thank undergraduate and graduate researchers Chelynn Day and
Schuyler Manchester for their contributions to the open-source software testing tool CPUT.

| would like to thank my parents for their continuous support and encouragement without
which pursuing Master’s degree in Utah State University would not have been possible. Finally, |

thank my friends for their support and interest.

TABLE OF CONTENTS

Page

ABSTRACT oeieiiei ettt e e e e e e st a e e e e e e e s s s bbbt et e e e s s ssssbbtraaeaeeeeesssatraaaaeeeeeeas iii
ACKNOWLEDGIMENTS ..ttt ettt ettt sttt ettt st sbe e bbb st esbeesbeebesaeesaee e iv
TABLE OF CONTENTS ..ottt ettt ettt ettt s b ettt saee b et enee e v
LIST OF FIGURES ...ttt sttt sttt sttt ss e sa e s st naesneeneene vii
LIST OF TABLES ...ttt ettt st b et et sae e s b e sb e et et e sbeesae e beenbesneeas ix
| INTRODUCTION ..oitiiiiiieieeteeite sttt ettt sttt et et st be et et saeeshe e be e e saeesmeenbeeeeeaee 1
(O T0Ld [T oLl il Y=Y o Yo o SR 1
II. BACKGROUND AND PREVIOUS WORK......cc.eiiuiiiiniieienieeieeee ettt st 3
Web application T8STING ..ccvviviiieieeiiie ettt ae e sae e saaeesaae e e 3
Fig. 2.1 example of a user session of music store web applicationccccceeevverennnen. 4
Test sUIte Prioritization ..o 5
PrevioUs WOTK.....co.eieiiieieeteete ettt sttt st sb et et saee b ens 6
Web ApPlication tESTING ..cccvviie it e e 6
2.3.2 User $es5ion based teStiNGc..evvieciieiiiiiie e e 6
2.3.3 Test-suite prioritizationcoccuuiiiiiiiiiie e 7

I ALGORITHM ..ttt sttt s sttt s smeen e e e 9
Example of t-way Prioritization..........ccoeeveeeiicie e 9
Existing algorithm for t-way Prioritizationc.ccceecveeiiieeniieesieesieeciee e 10
IV, EXPERIMENT ..ottt sttt sttt ettt st s e s ne s 14
SUDBJECt APPIICAION w.eiiiiiieie e 14
TESE SUITES 1.ttt 15
FAUIES .ttt 15
Prioritization Criterid......cueei e s 17
EXPeriment FrameWOorKccueoiiie ettt st sare e 18
Vo RESULTS ettt sttt sttt et st sbe e b et e e e saeesbeeneenne s 19
VI. MUSIC STORE WEB APPLICATIONoovtiiiieiieiieniiesieeieetesee e sieeteeeesaeesseeneeenee s 23

INEFOAUCTION 1.ttt ettt e e e e e e tbe e e e eba e e e sabeeeeebeeeeeanseeeeenres 23

vi

Database DESIZNeeiveeiieeiiieiiiesciee et ettt re e st e st e s e e st e e st e e st e e sbe e st e e nnreenane 23
AdMIN FEATUIES ..ottt s 24
Common UsSer FEAtUresccooviiiiiiiiiiiii e 30
VII. CONCLUSION AND FUTURE WORK.......ccoeciriiiiiiiiiiinieniinenrese e 34
FULUPE WOTK ..ttt 34
REFERENCES ...ttt ettt e s s e s e s s e e e s nnne e s ennneeeeans 35

APPENDICES ..ot 38

vii

LIST OF FIGURES

Figure Page
3.1 Algorithm for test suite prioritization by t-way combinatorial coverage............... 11
4.1.1 Common User Home Page view of Music Store web applicationc.ccceeue.... 14
4.1.2 Admin Home Page view of Music Store web applicationccccceeevvericerennnnnnn. 15
5.1 APFD for common user test suite of Music-Store web applicationcccceeuenn. 20
5.2 APFD for admin test suite of Music-Store web applicationcccceevevevrereceeennns 21

... 24
6.3.1 Admin Shop Configuration Page of Music Store web applicationccccuu...... 25
6.3.2 Admin Shop Configuration Page of Music Store web applicationcccc.ue...... 25
6.3.3 Admin Shop Configuration Page of Music Store web applicationcccc.uu...... 26
6.3.4 Admin Shop Configuration Page of Music Store web applicationcccc........ 26
6.3.5 Admin Shop Configuration Page of Music Store web applicationc.ccc........ 27
6.3.6 Admin Shop Configuration Page of Music Store web applicationcccccc.e...... 27
6.3.7 Admin Shop Configuration Page of Music Store web applicationccccc.ue...... 28
6.3.8 Admin Shop Configuration Page of Music Store web applicationcccu.u....... 29
6.3.9 Admin Shop Configuration Page of Music Store web applicationcccu.ue...... 29
6.4.1 Common user search result page of Music Store web application 30

6.4.2 Common user view category/product page of Music Store web application ...31

6.4.3 Common user add to cart page of Music Store web applicationcccoevuueeee 31
6.4.4 Common user view/update cart page of Music Store web application 32
6.4.5 Common user check out page 1 of Music Store web applicationccc......... 32
6.4.6 Common user check out page 2 of Music Store web applicationccc......... 33
AL CPUT: OVEIVIEW .ttt s s ene st sbe st s b st st sbe s s sbesesss b s 39

A.2 CPUT screen with options to load log file into databaseccceevveveevececeeenneen. 40

viii

A3 CPUT: SCrEENSNOL ...ttt ettt ettt eb e st eb et s e b e s s e s en e s bene 41
B.1 Sample test case (part 1) from test SUITEccevevevericeiecieeee e e 42
B.2 Sample test case (part 2) from test SUILEccvveeerereceieerce e e 43
B.3 Sample test case (part 3) from test SUILEccvveeevevece i 44
B.4 Sample test case (part 4) from teSt SUILEcceeerirereire vt 45
B.5 Sample test case (part 5) from test SUILEcceveeeeerevereeeeee s e 46
D.1 Fault category distribution for 68 seeded faultsccoereeverinicenenncererece e 52
D.2 User type distribution for 68 seeded faultscoeveeinirnieinnincire e 52

D.3 Logic fault sub-category distribution for 30 seeded logic faultscccccuvevnenenn. 53

LIST OF TABLES
Table Page
2.1 Example User-Session-Based TeSt CASEccccevireieriireeeneinesenssiressesssssessesssasessessnens 5
3.1 Web Testing Example with Four Factors and Three Levels for Each Factor 9
3.2 Test Suite Example of Table 3.1 Web Testing Exampleccccoevveeievvineneneinennennne 10
3.3 2-way and 3-way P-V covered from test suite in Table 3.2ccooeevevvceveieecenns 12
5.1 Average APFD of the common USEr tESt SUILEccccevveeeereieece s e ees 19
5.2 Average APFD of the admin teSt SUItEccovevueuieeieeeice s et 20
5.3 Execution Time and Size of Test Suites for Music-Store Logscccveeveveevreersrinenna. 22
6.1 Database table summary of the Music Store Web Applicationccccceeevvveennne 23
6.2 Technical summary of the Music Store Web Application and Test Suite 33
C.1 Summary (Part 1) of Percent Code Coverage and Number of Lines Covered by
EQch INdiVidUal TESt CASEcuevieireeieeietee sttt st st st s et st s e enes a7
C.2 Summary (Part 2) of Percent Code Coverage and Number of Lines Covered by
EQch INiVidUal TESt CASEceeeucirueicieiiceciriet ettt s e s ses e st 48
C.3 Summary (Part 3) of Percent Code Coverage and Number of Lines Covered by
EQch INiVIdUl TEST CASE ...uveueeieecieieeeceet ettt sttt e e s b bbb et 49
C.4 Summary (Part 4) of Percent Code Coverage and Number of Lines Covered by
EQch INdiVidUal TESt CASEcvevirireriecircice sttt st st s e s et st s enes 50
C.5 Summary (Part 5) of Percent Code Coverage and Number of Lines Covered by

EQACh INAIVIAUAI TEST CASEevivieeeeeete ettt rsr e et st ss s s s ste st e s aes s eaeeteseen 51

I. INTRODUCTION

Software testing is an expensive and time-consuming activity that is often restricted by
limited project budgets. Accordingly, the National Institute for Standards and Technology (NIST)
reports that software defects cost the U.S. economy close to $60 billion a year [1]. They suggest that
approximately $22 billion can be saved through more effective testing. There is a need for advanced
software testing techniques that offer an effective cost-benefit ratio in identifying defects.

Due to their user-centric nature, web applications routinely go through changes as part of
their maintenance process. In such situations, a large number of test-cases may be available from
testing previous versions of the application that are often reused to test the new version of the
application. However, running such tests may take a significant amount of time. Due to time
constraints, a tester must often select and execute a subset of these test-cases, which is known as
test-case prioritization [2].

Test-cases can be prioritized based on different criteria [3]. One of the criteria is parameter
value interaction coverage based criteria. Interactions between multiple parameter-values make an
application program follow a distinct execution path, and thus it delivers faults in the system. 1-way,
2-way, and n-way parameter value interaction coverage are possible. Interactions include
combinations of options for different parameters. For example, a 2-way interaction for an online
community can be [(new member, basic membership) or (new member, priority membership)].
Parameter-value interaction coverage is useful when exhaustive testing of all parameter-option
interactions is not possible. Very recently, test suites have been prioritized by 2-way inter-window
event coverage for event-driven systems, i.e., web and GUI systems [3]. Previous work introduces test
prioritization to the domain of web applications and prioritizes user-session-based test-cases, i.e.,
test-cases created from usage logs of the web system [3]. Though 2-way is one of the best
prioritization criteria, observations from the latest research and studies have shown some faults are
missed by 2-way interaction test suites, so we decided to investigate higher strength prioritization
strategies, such as 3-way.

Outline of Report
Chapter 2 discusses background and previous work on higher strength prioritization

strategies (2-way, 3-way), while Chapter 3 illustrates existing algorithms for higher strength

prioritization technique (t-way prioritization) used in this project. Chapter 4 provides information on
experiments that have been done to investigate the efficiency of t-way prioritization techniques in
terms of fault detection. Chapter 5 summarizes the results, and Chapter 6 demonstrates the web
application Music Store. Chapter 7 concludes the project and discusses the scope of possible future
work.

Appendix A contains the details of CPUT. Appendix B shows sample XML test suites.
Appendix C shows the code coverage details and Appendix D provides information on various faults

seeded in Music Store application for this project.

1I. BACKGROUND AND PREVIOUS WORK

Our study applies to test suite prioritization in the domain of web applications where we
prioritize user session based test-cases. User session based test-cases are typically those that are
created from the usage logs of web servers. So here, we will discuss related work in two areas: (1)
web applications and user-session-based testing, and (2) test suite prioritization.

Web Application Testing

A web application consists of a set of pages that are accessible by users through a browser
and are transmitted to the end-user over a network. A web page can be static—where content is
constant for all users—or dynamic—where content changes with user input. Web applications exhibit
characteristics of distributed, GUI, and traditional applications. They can be large with millions of lines
of code and may involve significant interaction with users. Also, web applications are written using
many programming languages, such as JavaScript, Ajax, PHP, ASP, JSP, Java servlets, and HTML.
Languages such as JavaScript are referred to as client-side languages, whereas languages such as PHP,
ASP, JSP are referred to as server-side languages. Even a simple web application can be written in
multiple programming languages, e.g., HTML for the front-end, Java or JSP for the middle tier, and
SQL as the back-end language—which makes testing difficult.

In web applications, an event can manifest itself in two ways: (1) an event triggered in the
client-side code by a user results in a change to the page displayed to the user, without any server-
side code execution, e.g., when a user moves the mouse over an HTML link, an event may be
triggered that causes the execution of a JavaScript event handler, which in turn results in the link
changing color; (2) an event is triggered in the client-side code by a user that results in server-side
code being executed, e.g., when the user fills in a form and clicks on the submit button, the data is
sent to a server-side program, and the server-side program executes and returns the outcome of the
execution to the user. In our work, we focus on the latter types of events, i.e., events triggered by a
user that result in server-side code execution, as they are readily available in the form of POST or GET
requests in server web logs; we use the logs as the source for our web application test-cases.

Web application testing, can be defined as implementing the entire application code by
generating URL-based inputs with the intent of finding failures that occur in output response HTML

pages. Testing of web program code to identify faults in the program is largely a manual task.

Capture-replay tools capture tester interactions with the application and are then replayed on the
web application [9].

Web application testing research has explored techniques to enable automatic test-case
generation. Several approaches exist for model-based web application test-case generation [4, 5, 6, 7,
8, and 9]. These approaches investigate the problem of test-case generation during the development
phase of an application. Another approach to generating test-cases, and the one used in this paper is
called user-session-based testing; it advocates the use of web application usage data as test-cases
[10].

In user-session-based testing, a test-case is a series of HTTP requests having base requests
and name-value pairs that are recorded when a user accesses the application. Fig. 1 shows a user
session of music store web application and Fig. 2 shows an example of a test-case from that user
session for following request: Login.php&name="arjun”&pwd="admin”, the base request is Login.php
and the parameter-value pairs are name="arjun” and pwd=“admin”. Base requests can be HTTP
request accesses to both static and dynamic web page content. In previous work, Sampath et al. [11]
and Sprenkle et al. [12] generate user-session-based test-cases from usage logs. When available,
cookies were used to generate a user-session based test case. Otherwise, a user-session-based test-
case begins when a request from a new IP address arrives at the server and ends when the user

leaves the web site or the session times out.

T[T e — T PR 2 i

I TOGETHERg" (O 1T

Sewch

F N |

Fig. 2.1 example of a user session of music store web application

index.php
search.php?query=mandolin&search=1
login.php?name=arjun&pwd=admin

Base Request Parameter-Value pairs
index.php Null

login.php name=arjun, pwd=admin
search.php query=mandolin,search=1

Table 2.1 example of base request and parameter-value pair
Test Suite Prioritization

To transform a user session into a test-case, each logged request is changed into an HTTP
request that can be sent to a Web server. A test-case consists of a set of HTTP requests that are
associated with each user session. Different strategies can be applied to construct test-cases for the
collected user sessions [9, 13, 17]. In such situations, a large number of test-cases may be available
from testing previous versions of the application, which are often reused to test the new version of
the application.

However, running such tests may take a significant amount of time. Rothermel et al. report
an example for which it takes weeks to execute all of the test-cases from a previous version of the
application [2]. Due to time constraints, a tester must often select and execute a subset of these test-
cases. Test-case prioritization is the process of scheduling the execution of test-cases according to
some criterion to satisfy a performance goal.

Consider the function for test prioritization as formally defined in \[2, 14].\ Given T, a test suite, 1, the

set of all test suites obtained by permuting the tests of T, and f, a function from I to the set of real
numbers, the problem is to find i € M such that Vri_ € N, f(rt) > f(r_). In this definition, N refers to the
possible prioritizations of T and f is a function that is applied to evaluate the orderings. The selection

of the function f leads to many criteria to prioritize software tests.

Sarah 4/8/13 10:17 PM

Comment [1]: You need to list the author here.
The numbers will not do.

Previous Work
Web Application Testing

Today, a lot of different techniques are available for generating test-cases for web
applications. For example, tools like HTTPUnit [27] and RationalRobot [28] let testers record test
sequences and measure performance. Some tools verify broken links, validate HTML code, and
measure performance. Another example is Veriweb, which offers a simple solution that starts at a
given URL and non-deterministically navigates links in a web application [21]. Kung et al. added object
relations, state, and page navigation diagrams in a web test model (WTM) [22]. Ricca and Tonella [6]
used UML models to automatically generate test-cases for white box testing. Liu et al. used data flow
interactions among clients [23]. Halfond and Orso [8] revealed web application interfaces from server
code. Wang et al. found interaction faults by generating test-cases that cover pair wise interactions
between five web pages [7]. Offut et al. used HTTPUnit and HtmlUnit to run bypass tests that bypass
client-side checks [24]. Qian [25] used a genetic algorithm utilizing crossover and mutations to
generate a large volume of test-cases for a test suite.

Cohen et al. [26] studied one test generating framework: automatic efficient tests generator
(AETG). In that experiment, pair-wise test sets that were generated by AETG gave over 90% block
coverage. They also did a comparison of pair-wise testing and random input testing and found better
coverage for pair-wise testing.

All of these strategies generate test-cases from models of the web system. Additional work
to test rich internet applications exists, but such work is outside of the scope of this project. We focus
on a particular type of web testing that occurs during the maintenance phase of the system, user-
session-based testing.

User Session Based Testing

Elbaum et al. have completed empirical studies and showed that user-session-based testing
is a good way to enhance white box testing techniques as they found various faults [29]. Sampath et
al. [31] and Sprenkle et al. [12] provided a framework for user-session-based testing of web systems.
As per their extended work, test-cases are formatted in XML format and parsed from Apache web
server [19]. Even though user-session-based testing has advantages, it has two major inconveniences:

(1) user-sessions may become invalid during regression testing (i.e., the structure of the web

application changes, including page names, links, options on a page, etc.), and (2) a large number of
user-sessions build up, making it unrealistic to run all tests in practice. Alshahwan and Harman [33]
present work on the first issue of repairing user-session-based test-cases for use in regression testing.
Two approaches have been taken to address the second issue of managing large test suites: test suite
prioritization [3, 30] and reduction [11, 32].

Elbaum et al. [13] provided promising results that demonstrate the fault detection
capabilities and cost effectiveness of user-session-based testing. Their user session-based techniques
discovered certain types of faults; however, faults associated with rarely entered data were not
detected. In addition, they observed that the effectiveness of user-session-based testing improves as
the number of collected session’s increases; however, the cost of collecting, analyzing, and replaying
test-cases also increases. User-session-based testing techniques are complementary to the testing
performed during the development phase of the application [2], [14], [15], [16]. In addition, user-
session-based testing is particularly useful when the program specifications and requirements are not
available for test case generation.

Xie et al. examined the characteristics of a good GUI test suite. The authors found there are
two primary characteristics that increase the rate of fault detection: (1) diversity of states in which an
event executes, and (2) the event coverage of a test suite. Several criteria have been applied for test
suite prioritization to user-session-based test suites.

Test-Suite Prioritization

Previous work by Bryce and Memon [34] examines 2-way and 3-way inter-window event
coverage for test suite prioritization on GUI applications. For each application, they applied 2-way and
3-way inter-window event coverage, unique event coverage, length of test-cases (longest to shortest
and shortest to longest in terms of the number of parameter- values) and random ordering. The first
application, a calculator, only had two windows, so with the exception of 3-way, each technique was
applied. The results show that 2-way provides the best rate of fault detection. In the other three
applications, there were three or more windows so the authors were able to apply all of the
prioritization criteria. For a paint program, choosing the longest tests first resulted in the best rate of
fault detection, followed by 3-way and finally 2-way. For a spreadsheet program, unique event

coverage provided the best rate of fault detection in the first half of the test suite, but then 2-way and

3-way alternated in providing the overall best rate of fault detection in the latter half of the test suite.
Finally, in a word-processing application example, 2-way and 3-way alternated in producing the best
rate of fault detection. This work provides some motivation to explore the application of 3-way inter-
window parameter-value interaction coverage in the domain of web applications.

Bryce et al. [3] examine several prioritization criteria, including the combinatorial criterion,
pair-wise inter-window parameter-value interaction coverage (2-way), applied to user-session-based
test suites, and empirically evaluate them on three web applications, including an online bookstore, a
course project manager (CPM), and a conference management system. All three applications were
seeded with faults, i.e. bugs were added in the applications. They found that prioritization criteria
based on the longest tests with respect to the number of POST/GET requests, longest tests with
respect to the number of parameters that users assigned values, and 2-way combinatorial coverage of
inter-window inter- actions were usually efficient techniques compared to the original order in which
test-cases were logged or ordered at random.

However, since existing literature recognizes that certain faults are detected by interactions
between parameters that are stronger than pair-wise interactions (2-way), we will demonstrate
competence and efficacy of the 3-way combinatorial interaction coverage in terms of rate of fault
detection with less memory usage and in less time for our music store web application and user-

session-based testing.

IIl. ALGORITHM
Here we will explain t-way test suite prioritization technique for t = 2 and t = 3 and discuss

the existing prioritization algorithm using a simple example.

Example of t-way Prioritization

Consider an example of an online community where different membership options are
possible. Table 3.1 shows the four possible pages of that online community web application. In the
first page, the user may appear as one of the three options for the member status. There after user
may select one of the three membership types in the second page. On third page user may choose

one of the three discount offers. On the final page the user can opt for any of the three annual gift

options.

Page-1, Member Page-2, Member Page-3, Monthly Page-4, Annual Gift

Status Type Discount offer offer

New Member Basic N/A Up to $5 Wal-Mart

Unverified gift card

New Member Verified | Silver 10% off on $1000 Up to $50 Wal-Mart
purchase in eBay gift card

Existing Member Gold 20% off on $500 Up to $500 Wal-Mart
purchase in eBay gift card

Table 3.1 Web Testing Example with Four Factors and Three Levels for Each Factor

Selecting different options will execute different lines of code in the system. For instance, if
the user selects any discount option other than “N/A”, the system generates a unique discount value
and takes him to next page that describes conditions of corresponding discount offer. Thus, having
test coverage for the several values for tracking could potentially uncover a fault that might have
been overlooked by a different test. Table 3.2 shows an example test suite for the above application

example in Table 3.1. This test suite contains a total of 3 different test-cases.

10

Test case #

Member status

Member type

Discount offer

Annual Gift
offer

Parameter-
Value

T1

New Member,
unverified

Basic

N/A

$5 gift card

Status: New
unverified
Type: Basic
Discount: N/A
Gift: $5

T2

New Member,
verified

Gold

10% off

$500 gift card

Status: New
verified
Type: Gold
Discount: $10
Gift: $500

T3

Existing
Member

Silver

20% off

$50 gift card

Status: Existing
Type: Silver
Discount: $20
Gift: $50

Table 3.2 Test Suite Example of Table 3.1 Web Testing Example

Existing Algorithm for t-way Prioritization

Based on the above example we will now demonstrate the existing algorithm for t-way

prioritization. Figure 3.1 provides the pseudo code of the t-way prioritization algorithm. There are two

parts in this algorithm.

Part 1 processes each test-cases in the test suite to create the parameter-value combinations

for each page/URL and store them in memory as tuples (t-way). Part-2 does the actual t-way

prioritization on the tuples stored in memory.

11

Part-1 (Pre-processing of test suite)

sizeOfTestSuite = 0
foreach test case t(i) in the test suite TS

{
foreach URL w in t(i)
{
foreach parameter p assigned a value v in t(i)
{
tuplet(x) =w+p+v
if tuplesList does not have t(x)
add t(x) in tuplesList
}
}
sizeOfTestSuite++
}

// Generate all t-tuple combinations and insert into t-tuplesList
t-wayTuplesList = generate-t-wayTupleList(tuplesList)

Part-2 (Test Suite Prioritization)

test(bestTestCase) = choose a testcase that covers the most unique t-way tuples from t-wayTuplesList
add test(bestTestCase) to prioritized test suite TS(priority)
mark test(bestTestCase) as covered
delete t-way tuples that is present in test(bestTestCase) from t-wayTuplesList
selectedTestCount = 1
do
{
tCountMax = -1
for counter=1 to (sizeOfTestSuite-selectedTestCount)
{
if test(counter) is not covered
{
compute tCount as the number of newly covered t-way tuples from t-wayTuplesList
in test(counter)
if (tCount > tCountMax)
{
tCountMax = tCount
test(bestT est)= counter
}
else if (tCount == tCountMax)
choose randomly

add test(bestTestCase) to TS(priority)
mark test(bestTestCase) as covered
delete t-way tuples that is present in test(bestTestCase) from t-wayTuplesList
selectedTestCount++
}while (selectedTestCount < sizeOfTestSuite)

Fig. 3.1 Algorithm for test suite prioritization by t-way combinatorial coverage

Now we will explain the algorithm based on the example given in section 3.1.For the above
algorithm, certainly input will be the test suite shown in Table 3.2. After the execution of Part 1 of the
algorithm we will be able to get the t-way tuples (in this case 2-way and 3-way tuples are shown).

Table 3.3 shows the deduced 2-way and 3-way parameter values covered from the example test

12

suites given in Table 3.2. The tuples stand for the inter-window parameter-value interactions in the

test case.

Test case # 2-way tuples covered 3-way tuples covered

T1 [Status: new/unverified, type: [Status: new/unverified, type:
basic] basic, offer: N/A]
[Status: new/unverified, offer: [Status: new/unverified, type:
N/A] basic, gift: $5]
[Status: new/unverified, gift: $5] | [Status: new/unverified, offer:
[Offer: N/A, gift: $5] N/A, gift: $5]
[Offer: N/A, type: basic] [type: basic, offer: N/A, gift: $5]
[Type: basic, gift: $5]

T2 [Status: new/verified, type: [Status: new/verified, type: gold,
gold] offer: 10%]
[Status: new/verified, offer: [Status: new/verified, type: gold,
10%)] gift: $500]
[Status: new/verified, gift: $500] | [Status: new/verified, offer:
[Offer: 10%, gift: $500] 10%, gift: $500]
[Offer: 10%, type: gold] [type: gold, offer: 10%, gift:
[Type: gold, gift: $500] $500]

T3 [Status: existing, type: basic] [Status: existing, type: basic,
[Status: existing, offer: 20%] offer: 20%]
[Status: existing, gift: $50] [Status: existing, type: silver,
[Offer: 20%, gift: $50] gift: $50]
[Offer: 20%, type: silver] [Status: existing, offer: 20%, gift:
[Type: silver, gift: $50] $50]

[type: silver, offer: 20%, gift:
$50]

Table 3.3 2-way and 3-way P-V covered from test suite in Table 3.2

As per Part 2 of the algorithm, prioritizing by 2-way, we select the first test-case such that it
covers the largest number of 2-tuples. The second column of Table 3.3 shows that all four test-cases
cover six 2-tuples. We then break the tie at random, select T2, and mark the 2-tuples in this test as
covered. We next examine which of the remaining tests cover the most remaining uncovered 2-
tuples. Again there is a tie between T3 and T1 as both of them have six uncovered 2-tuples. We select
T1 and mark it as covered. Hence the ordering for the 2-way prioritization is (T2, T1, and T3).

To prioritize by 3-way, we select the first test case that covers the most 3-tuples. All four
test-cases cover four 3-tuples, so we break the tie at random and select T3. We next examine which

of the remaining tests cover the most remaining uncovered 3-tuples. Again there is a tie between T2

13

and T1 as both of them have four uncovered 3-tuples. We select T1 and mark it as covered. Hence the

ordering for the 3-way prioritization is (T3, T1, and T2).

14

IV. EXPERIMENT
Subject Application
Our subject application is a web-based application called Music Store. It is written in PHP and
uses MySQL as database server. It runs on an Apache 2.2 web server. Music Store is a simple web
application such as online stores like eBay/Amazon, but the functionalities built within the application
are very basic to use it for a web testing research purpose. There are two different types of users that
can log into this application: (1) admin, and (2) common user. Music Store Web application is
discussed in detail in Chapter 6. Figure 4.1.1 and Figure 4.1.2 show the home pages of common user

and admin of music store application.

TR — T TR ————Tvy o O b

I TOGETHER g™

Seanch

2 N\ |

Fig. 4.1.1 Common user Home page view of Music Store web application

15

(S 144 wusicsesn admin e e)
€ AW brycecsusuedu/music/zdmin/indecohp e | (49 Google olal e~
2} Most Visited @) Getting Started = Latest Headlines 4\ MATLAB Central- Ne... I3 ek bangla bane nyara-... 3 Bookmarks
BA - (somin B8 O E (e 2 @ e a1+

o o HEnEEEEEE @ o @ N

Admin Main Page

Choose a menu from the left navigation to get started

Fig. 4.1.2 Admin Home Page view of Music Store web application

Test Suites
The test suites for this study were gathered by a graduate student instructor. As an instructor
of an undergraduate computer science class, he instructed his students to login to the web
application and test out as many web pages as possible. The test-cases are constructed using the IP
addresses that are associated with each GET/POST request. As per standard, if there is more than a
45-minute break in between a GET/POST request from the same user, we begin a new test-case. We
initially collected a large test suite with 165 test-cases. Appendix B shows a detailed sample test-case
and appendix C shows the code coverage information of each of those test-cases.
Faults
A total of 68 faults were seeded into Music Store by a graduate student. Each seeded faulty
version belongs to two categories: (1) user type, and (2) fault classification. We seeded faults for each
type of user of the system, i.e., admin and common user. Sampath et al. [11] and Guo and Sampath
[18] presented a fault classification for web applications, which we used when seeding faults in Music
Store (described below).
* Appearance faults: Faults in the application code that change the display of a web page.
An example is that a missing print statement in the PHP code can sometimes cause the

code to display in an incorrect manner.

16

* Link faults: Faults in the application code that manipulate the page pointed to by a URL.
An example is a link that points to a non-existent page causing an error to display.

* Data Store faults: Faults in the code that modify data storage within the application. An
example includes swapping variables for an SQL Insert query, which causes the data to
be stored improperly.

* Form faults: Faults in the application code that manipulate a form's name-value pairs. An
example includes swapped variables for the text and values for an HTML option list,
which causes incorrect text to be displayed, and incorrect values to be sent to the
server.

* logic faults: Faults in the application code that manipulate control flow and/or business
logic. An example is displaying an improper date format that causes the date to be saved
incorrectly.

Logic faults have seven subcategories, of which we use five because the remaining categories

were not applicable for our subject application, Music Store. The five subcategories we used are:

* Session faults: Faults in the application code that manipulate the current session state of
the application or faults that manipulate other session-based operations such as using
sessions to save information entered on a form and display the information after the
sessions have been validated. An example is accidentally setting a variable that
determines what menu navigation screen is displayed; this causes undesired behavior.

* Paging faults: Faults in the application code that manipulates the display of large
amounts of data. An example is using a '<' instead of a '<=' when iterating through the
pages of users, which causes the last page of users to never be displayed.

* Server-side parsing faults: Faults in the application code that change server-side parsing
of data. An example is an escaped variable that causes the variable name to be saved
instead of the value assigned to that variable.

* Encoding/decoding faults: Faults in the application code that encode or decode

information during transmission, storage, and/or display. An example is a missing

17

convert from a database function that causes the data to not be decoded into a more
readable format.
Locale faults: Faults that exist in code that manipulate locale-specific information within

the application, such as date format or language.

Appendix D shows details on the fault type distribution.

Prioritization Criteria

For our study we have following prioritization criteria in the prioritization tool CPUT [19]:

1.

2-way orders test-cases in descending order of the number of unique 3-way parameter-
value interactions between windows in each test case. Once a pair is covered in a test,
we mark it as “covered” and only count unique pairs that have not been covered in
previously selected tests. Ties are broken at random.

3-way orders test-cases in descending order of the number of unique 3-way parameter-
value interactions between windows in each test case. Once a pair is covered in a test,
we mark it as “covered” and only count unique pairs that have not been covered in
previously selected tests. Ties are broken at random.

Length (Gets/Posts) selects the test-cases in descending order of the number of
GET/POST requests. Ties are broken at random.

Number of parameter-values selects the test-cases in descending order of the number
of parameter-values. Ties are broken at random.

Random ordering uses the random function that is available in Java to randomly swap
the ordering of the test-cases. The tool will produce a different random ordering each

time that the user chooses to prioritize at random.

18

Experiment Framework

The usage logs for music store are converted into test-cases and then prioritized within our
tool, CPUT [19]. The n-way prioritization algorithm is implemented in CPUT for n =2 and n = 3, in
addition to other criteria, such as length, random, and frequency-based. Apache logs will be parsed
and XML format test-cases are created. The test-cases are then be prioritized using the different
prioritization criterion.

We then executed the test-cases using a replay tool we created that could execute the XML
format test-cases. We also conducted the fault detection experiments using the framework presented
by Sprenkle et al. [20]. Initially, we will execute the test-cases on a clean version of the application
and save the returned files. That will be the expected output, since we consider the non-fault-seeded
version of the application as our gold standard. Then, one fault will be seeded in the application at a
time, and all the test-cases will be executed. The returned HTML files are saved (this is the actual
output). The test oracle will then be executed on the returned files to determine if the test-case
detects the fault. The struct-oracle [20] compares the expected and actual output in terms of the
HTML tags in the files, to identify differences. A fault matrix will be generated that will show how
many faults and which faults are detected by each test-case.

After that we computed Average Percentage of Fault Detection (APFD) [2]. APFD measures
the area under the curve that plots test suite fraction and the number of faults detected by the test

ordering.

19

V. RESULTS

Here we will present our findings about the effectiveness of prioritization by the 3-way inter-
window parameter value interaction coverage in terms of fault-detection for our application Music
Store, and later we will show the effectiveness of our algorithm in terms of space and execution time
measurement.

We executed our algorithm five times for each of the criterion and we got the results as
average of those executions. Our experiment shows 2-way and 3-way are little better than others.

Table 5.1 and Fig. 5.1 show average APFD (Average Percentage of Faults Detected) data for
common users of the Music Store web application. Table 5.2 and Fig. 5.2 show average APFD data
admin of the Music Store web application. Out of total 68 faults the full test suite detected 49.

From the plotting it clearly shows that 2-way is a little better in comparison with the other
prioritization criteria for both user and admin test suites. The next best criteria are 3-way. P-V and
GET/POST criterions are very close to each other, though for both admin and common user test suites

GET/POST criterion has performed slightly better than P-V.

% of test suite 2-way 3-way GET/POST P-Vs Random
10% 65.7 65.8 61.1 60.4 60.5
20% 69.9 68.4 64.6 63.9 61.9
30% 70.1 68.4 64.6 63.9 62.6
40% 70.1 69.1 66.4 65.8 63.2
50% 70.9 69.1 66.6 65.8 63.8
60% 70.6 69.52 66.9 65.8 64.1
70% 70.7 69.7 67.4 66.4 64.5
80% 71.1 69.9 67.4 66.5 64.7
90% 71.1 70.3 67.4 66.5 64.9

100% 71.2 70.4 67.6 66.8 64.9

Table 5.1 Average APFD of the Common User Test suites

20

74
72
70
68
— —_way
66
[—3-way
g 64
< I GET/POST
62 {7
=—Pp-Vs
60
====Random
58
56
54
% Test Suite
Fig. 5.1 APFD plotting for Common User test suite of Music-Store web application
% of test
suite 2-way 3-way GET/POST P-Vs Random
10% 67.9 65.2 54.1 60.8 55.1
20% 79.2 76.3 62.2 61.3 59.4
30% 79.2 78.7 64.5 63.5 61.1
40% 81.3 78.1 67.8 64.8 61.9
50% 81.3 79.1 67.8 65.6 62.3
60% 81.3 79.1 67.8 66.2 62.9
70% 82.8 79.1 68.8 66.7 69.8
80% 83.4 81.9 69.8 66.9 72.2
90% 90.2 84.1 85.6 69.6 78.8
100% 92.4 84.1 85.6 73.7 78.9

Table 5.2 Average APFD of the Admin Test suites

21

100

90

80 / =] —

ZZ é —2-way
£ 5o ey
< 2 GET/POST

30 ===P-Vs

20 Random

10

0
% Test Suite

Fig. 5.2 APFD plotting for Admin test suite of Music-Store web application

Next we are going the present the observations for time and memory efficiency of our t-way
prioritization algorithm. To examine this, we measured each component’s execution time and space
requirement of the output. The experiment was run on a machine with a Windows 7 OS with 3 GB of
RAM and with an Intel i3 processor with 2.40 GHz speed. In this study, we split the log into 1-day
usage, 3-day usage, 5-day usage, and 12-day usage (which is the entire log file), and doubled the size
of the log file. To double the size of the log file, we modified the log file by changing the year from
2011 to 2012 to manually create different usage logs.

We present the results for each log file separately. For each log file, we present the time
taken by the test-case creation engine and the different prioritization and reduction criteria (column
4). We also present the space occupied by the output of the different components of the framework
(column 5). Execution time shows time taken for parsing the web log into test-cases, storing the data

from the test suite and prioritization of the test suites.

22

Component Execution
Log File | Component name output Time Output Space
XML format
1 day Test-case creation engine Test-case 0.003 | 31 kb (4 test-cases)
Test Prioritization (Length) Order file 0.003 | 42 bytes
Test Prioritization (No of
Parameters) Order file 0.005 | 42 bytes
Test Prioritization (2 way) Order file 0.043 | 42 bytes
Test Prioritization (3 way) Order file 0.072 | 42 bytes
XML format 230 kb (19 test-
3 day Test-case creation engine Test-case 0.005 | cases)
Test Prioritization (Length) Order file 0.004 | 111 bytes
Test Prioritization (No of
Parameters) Order file 0.004 | 111 bytes
Test Prioritization (2 way) Order file 0.049 | 111 bytes
Test Prioritization (3 way) Order file 0.996 | 111 bytes
XML format 302 kb (51 test-
5 day Test-case creation engine Test-case 0.009 | cases)
Test Prioritization (Length) Order file 0.008 | 293 bytes
Test Prioritization (No of
Parameters) Order file 0.004 | 293 bytes
Test Prioritization (2 way) Order file 0.422 | 293 bytes
Test Prioritization (3 way) Order file 1.08 | 293 bytes
XML format 473 kb (76 test-
12 day Test-case creation engine Test-case 0.013 | cases)
Test Prioritization (Length) Order file 0.008 | 352 bytes
Test Prioritization (No of
Parameters) Order file 0.005 | 352 bytes
Test Prioritization (2 way) Order file 0.536 | 352 bytes
Test Prioritization (3 way) Order file 1.137 | 352 bytes
XML format 756 kb (165 test-
double | Test-case creation engine Test-case 0.023 | cases)
Test Prioritization (Length) Order file 0.008 | 678 bytes
Test Prioritization (No of
Parameters) Order file 0.005 | 678 bytes
Test Prioritization (2 way) Order file 0.805 | 678 bytes
Test Prioritization (3 way) Order file 1.885 | 678 bytes

Table 5.3 Execution Time and Size of Test Suites for Music-Store Logs

Table 5.3 summarizes the results. From these results, we note that the time taken by the t-

tuple prioritization algorithm is in the order of a few seconds. Therefore, our algorithm has the

potential to scale to larger usage logs and test-cases on which the test prioritization criteria need to

be applied.

23

VI. MUSIC STORE WEB APPLICATION

Introduction

The Music Store web application we made here is a basic one without any sophisticated

features. The store has admin pages (where the shop admin can create categories, add products, etc),

and shopper pages where all the shopping process take place.

After a user browses around she/he will see that the basic flow of the store is:

1.

A customer visit the site

She/he browse the pages, clicking between categories
She/he can search product/categories.

View the product details that she/he found interesting
Add products to shopping cart

Checkout (entering the shipping address, payment info)

Leave (hopefully to return another time)

The customer doesn't need to register for an account.

Database Design

The database design for our shopping cart is quite simple. Below is the summary of what

tables we need for this shopping cart plus the short description of each table.

. Table Name Description

tbl_category Storing all product categories

tbl_product Storing all the products

tbl_cart When the buyer decided to put an item into the
shopping cart we'll add the item here

tbl_order This is where all orders are saved

tbl-order_item The items ordered

tbl_user Stores all shop admin user account

tbl_shop_config Contain the shop configuration like name,

address, phone number, email, etc

Table 6.1 Database table summary of the Music Store Web Application

—

< FK1 | pd_id

24

tbl_cart
PK |ct id

ct_session_id
ct_qty
ct_date

tbl_category
PK |cat_id
tbl_product
FK1 | cat_parent_id N
cat_name <+ PK |pdid
cat_‘descnptlon FK1 | cat_id
cat_image
pd_name
pd_description
pd_price
pd_qty
tbl_order pd_image
A pd_thumbnail
PK [od id pd_date
od_date pd_last_update
od_last_update
od_status
od_memo

od_shipping_first_name
od_shipping_last_name
od_shipping_address1
od_shipping_address2
od_shipping_phone
od_shipping_state
od_shipping_city
od_shipping_postal_code
od_shipping_cost
od_payment_first_name
od_payment_last_name
od_payment_address1
od_payment_address2
od_payment_phone
od_payment_city
od_payment_state
od_payment_postal_code

tbl_order_item

FK1 |od_id
FK2 |pd_id
od_qty

tbl_shop_config

sc_name
sc_address
sc_phone
sc_email
sc_shipping_cost
FK1 | sc_currency

tbl_user

PK |user_id

user_name

user_regdate

user_password

user_last_login

'

tbl_currency

PK |cy id

cy_code
cy_symbol

Fig. 6.2 Entity Relationship (ER) diagram of the Music Store web application database

Admin Features

Our music store admin page consists of the following:

® Login: The admin enter its username and password, script check whether that username

and password combination do exist in the database. If it is set the session then go the

admin main page else show an error message. Figure 6.3.1 shows an admin login page

screen shot.

25

\BGCORA | Music6a0 Admin-Login | + | o
€ T bryce cousuedu dmin : | [$8- Googe olal =

5 Most Visited @ Getting Storted = Latest Headlines 4 MATLAB Centrol - Ne... €3 ek bangla bane nyoro-.. 3 Bookmarks

= Sl8-s (O |1 & e Yt
®) v 1 -

6O E0E 8 @ pay e

UserName
Password

Fig. 6.3.1 Admin Login Page view of Music Store web application

* Category:
o Add Category: Add a new category.
o View Category: List all the category we have. We can also see all the child categories
and show many products in each category
o Modify Category: Update a category information, the name, description and image

o Delete Category: Remove a category.

Figure 6.3.2, Figure 6.3.3, and Figure 6.3.4 show the corresponding screenshots.

11 Shop Admin Control Pane |
€ > C A [brycecsusuedu/music/admin/category/ PRI S
\d® 7] —
!
(OO

Oraer
Shop Config - £
User
Logout
Been psste
. psste
Dum psste
e Vinabowng flss vosty Dese
1213 Next s
i Cagy

om0 - usu some e 2

Fig. 6.3.2 Admin View/Delete Category Page of Music Store web application

26

144 Shop Adrmin Cortrol Panc

& C A [brycecsusuedu/music/admin/category/index.php?view=add

Add category

Home
ICategors] Category Name.
Product,
Description
Order
Shop Config
image Choose Fie] No fle chosen
User -
Logout ‘Add Category | [Cancel

Conyrht © 2011 - USU Sattare

Fig. 6.3.3 Admin Add Category Page of Music Store web application

4 Shop Admin Control Panc | O
€ & € # [brycecsusuedy/music/admin/catego dify&

Fig. 6.3.4 Admin Modify Category Page of Music Store web application

* Product:
o Add Product: Insert an item into our store. We also need to supply the product
image and we'll create a thumbnail automatically from this image.
o View Product: View all the products we have. Since our online shop can have many

products we can view the products grouped by category.

27

o Modify Product: Modify product information. We can also remove the product
image from this page.

o Delete Product: Remove a product from the shop.

Figure 6.3.5, Figure 6.3.6, and Figure 6.3.7 show the corresponding screenshots.

14 Shop Admin Control Pane o o
€« C A [brycecsusu.edu/music/admin/product, %l
oy - 1) =

Fig. 6.3.5 Admin View/Delete Product Page of Music Store web application
14 Shop Admin Control Pan B o O
€« C & [bryce.csusuedu/music/admin/product/index.php?view=add&catld=0 vol ol A

e o [Coosecopmy T3]
o= ot e
Shop contia
Trer
Logout. Description

e [—

L S w—

o ChossaFi it s

Aad ot

Copyright 2011 - USU Sofuare Testn Lab

Fig. 6.3.6 Admin Add Product Page of Music Store web application

28

144 Shop Admin ControlPan

€ & € # D brycecsusuedu/music/admin/product/indexphp difyproductid=19 FIEY

-

Prce

ay nsiosk

cmgnomn-

Fig. 6.3.7 Admin Modify Product Page of Music Store web application

* Order:

o View Orders: Here we can see all the orders we have and their status. When you
click the "Order" link on the left navigation you will go straight to the "Paid" orders.
The reason is so you can respond immediately upon your customers that already
paid for their purchase.

o Modify Orders: Sometimes a customer might contact us saying that she made the
wrong order like specifying the wrong product quantity or simply want her order
cancelled so she can repeat the buying process again. This page enables the admin

to do such a thing.

144 Shop Admin Control Panc

e C A [brycecsusuedu/music/admin/order/index.php

Home

Category

Product

Order

Shop Config.

User

82 AA $25 2012-06-17 16:46:01 | Shipped
1081 Sdas Asdads $38 20120430 17:11:32| SOmPleted
Cancelled

80 DirkHodkins $38 2012:04-2521:17:32
79 AL $128 2012:04-14 100410 New
78 FoaFda §$128 2012:04-002223:12 New
7 AstFa $32 201204-0221:39.02 New
76 EE §128 2012.04-02212059 New
75 EicFa $128 201204-0221:19:56 New
74 GKK| §$128 2012:03-06 175358 New

Fig. 6.3.8 Admin Order Management Page of Music Store web application

Copyight ©2011 - USU Softuare Testing Lab

29

¢ Shop Configuration: This is where we can set and change our online shop appearance,

behavior and information (shop name, main url, etc). Figure 6.3.9 shows the admin shop

configuration screenshot.

144 Shop Admin Control Panc

€ = C #i D brycecsusuedu/music/admin/config

[shop Configuration

Sop tnn usc90 -8 sl e ma shop
0 Heuman vow Tower,
aaas
ET—— J
Tophone sz a7
et

Currency vso+]

Shipping Cost [t
SendEmailon New Order @ ves © No
Update Confly

Fig. 6.3.9 Admin Shop Configuration Page of Music Store web application

30

Common User Features
Our music store common user page consists of the following:
* Search category/product: Here customer can search for a specific category or product.

Figure 6.4.1 shows a search result screenshot of this feature.

[Musich80-—-World of Mu

Modify Search/Search again

, g" e [,
MUSICE L |
N k@) il i L4

Harmonium Tabla piano Violin Fute Guitar Mandotin BEEN No products in this category Shopping Cart Is Empty © 2011 - Music6890
hitp:/bryce.cs usu.edu/music/index php?c=0 - 2.6kb

€l C' A [bryce.csusuedu/music/search.php?query=pianods
Displaying results 1 - 10 of 55 matches (0.03 seconds)

Flute Guitar Mandolin BEEN Banjo BEEN dhaak Drum Flute Guitar harmonica Harmonium Mandolin octopad piano Tabla
hitp:/bryce.cs.usu.edw -45kb
3. Banjo
Harmonium Tabla piano Violin Flute Guitar Mandolin BEEN 4 string banjo Price : $75 Out O Stock string banjo Price : $123 6 string banjo Price : $177 Out Of Stock
hitp:/bryce.cs usu.edu/music/index php’c=3 - 3.4kb
4. Shruti Harmonium
Harmonium Tabla piano Violin Flute Guitar Mandolin BEEN No products in this category Shopping Cart Is Empty © 2011 - Music6890
hitp:/bryce.cs.usu.edwmusic/index php2c=27 - 2.8kb
5. Tanjore
Harmonium Tabla piano Violin Flute Guitar Mandolin BEEN No products in this category Shopping Cart Is Empty © 2011 - Music6890
hitp:/bryce.cs.us.edu/music/index php2c=28 - 2.9kb

Fig. 6.4.1 Common user search result page of Music Store web application

* Browse category/product: Here customer can see a specific category or product. Figure

6.4.2 shows a corresponding screenshot of this feature.

W4 harmonica

31

& C [brycecsusuedu/music/indexphp?c=5

Fig. 6.4.2 Common user view category/product page of Music Store web application

14 Chromatic Harmonics

€« cn Ubrycecsusueau music,

s ﬁwsm

TOGETHER

;‘ v
g s;, num
R lll

[Searcn)

All Category
dnaak
Drum
Banjo
octopad

Chromati
Harmonica

Diatonic
Harmonica

Tanpura
Harmonium
Tabla

Violin

Flute
Guitar
Mandolin

BEEN.

= u

Chromatic Harmonica
Price : $25

Diatonic Harmonica
Price : $20

Shopping Cart s
Empty

Add to Cart: Here customer can add a specific product to his/her shopping cart. Figure

6.4.3 shows the corresponding screenshot.

" MUS]C

TOGETHER

FE

All Category
dhaak
Drum

Banjo

octopad

Harm
Diatonic

Harmonica

Tanpura

Harmonium

Tabla

piano

Violin

Flute

Guitar

Mandolin

BEEN

Chromatic Harmonica

Chromatic Harmonica
Price : $25

Towl| 526}

Fig. 6.4.3 Common user add to cart page of Music Store web application
View/Update shopping Cart: Here customer can view/update his/her shopping

before finalizing order or before. Figure 6.4.4 shows the corresponding screenshot.

cart

32

14 Mosic6890—World of M)
« C i | [brycecs.usu.edu/music/cartphp?action=view Yol ol X
I S T T T

Chromatc Hormenca s s

]

[Froveed ToCheckaut>>

© 2011 - Music6890 - a simple online music shop

Fig. 6.4.4 Common user view/update cart page of Music Store web application

* Checkout Cart: Here customer provides shipping and payment information. Figure 6.4.5

and Figure 6.4.6 show the corresponding check out screenshots.

/) Music680-—-World of Moz % __\ OSSN
€ - C f [brycecsusu.edu/music/checkoutphp?step=1 ol A

Step 1 03 Enter Shipping And Payment Information

e [—]
v —
e
— [——
e
T —
o E—

EEEEN © e © oo

© 2011 - Musie6$90 - 2 simple onine mosic shop

Fig. 6.4.5 Common user check out page 1 of Music Store web application

33

[} Music680---World of Mus
« C A [brycecsusu.edu/music/checkout.php?step: vl il X
Step 20¢3 : Confiom Oder -
[= o=
s E
st v

&
i

o vos— R

u

Fig. 6.4.6 Common user check out page 2 of Music Store web application

Table 6.1 summarizes the technical characteristics of the application, information about the

test suite, and seeded faults.

Blank Lines 1812
Classes 0
Lines of Code 9940
Functions 207
Files 130
Executable statements 5152
No of branches 427
Declarative Statements 324
Comment to Code ratio 0.10
Comment lines 975
Lines 14146
Total no of test-cases 165
Total URL 3577
Largest no of GET/POST in a test-case 467
Average no of GET/POST in a test-case 21.68
Largest no of parameters in a test-case 808
Average no of parameters in a test-case 28.72
No of added faults 68
Largest 2-way score covered in a test suite 41666
Largest 3-way score covered in a test suite

32492

Table 6.2 Technical summary of Music Store Web Application and Test Suite

34

VII. CONCLUSION AND FUTURE WORK

Algorithms for combinatorial interaction testing provide systematic coverage of t-way
interactions in a system. Our application of t-way combinatorial coverage for test suite prioritization
of user-session-based testing differs in that the test suite already exists and may not contain all
possible t-way interactions in a system, since test-cases are generated by users that visit a website. It
is unlikely that users of many systems will exhaustively cover all t-way interactions during their visits,
particularly when users have unique user ids, passwords, and personal information that they enter
into a system. This raises the need for an algorithm that does not enumerate all possible t-tuples to
track, and instead only stores the valid t-tuples in the test suite in order to save memory. Our
experiments show that our approach scales well for a medium-sized web application and user base in
which we capture test-cases for 12 days and then double the log. Further, our empirical study
examines the application of 3-way inter-window parameter-value interaction coverage applied to the
Music Store web application that was seeded with 68 faults. We collected test suites for each of the
three user types for Music Store, prioritized the test suites, and compared the rate of fault detection
with five prioritization criteria. Prioritization by 2-way and 3-way criteria were most effective, both
performing within 1% of each other. However, 2-way prioritization provided a slightly better rate of
fault detection. A closer look at the data revealed that the system contained more faults triggered by
2-way than by 3-way inter-window parameter-value interactions.

Future Work

Future work may examine a larger set of empirical studies with applications in which faults
may potentially be triggered by higher strength interactions. Future work may also look at intra-
window event interactions. Also, these higher order prioritization techniques can be applied to Rich
Internet Applications (RIAs), specifically RIAs with many AJAX type requests to the server. Another
area would be to have a slight variation on the way the calculation. For instance weights may be
applied for preference to specific pages, parameters, or values. Also, other algorithmic techniques

may be used to prioritize test suites.

1)

2)

3)

4)

5)

6)

8)

9)

10

11

12

13

14

15

16

35

REFERENCES

National Institute of Standards and Technology, The Economic Impacts of Inadequate
Infrastructure for Software Testing, U.S. Department of Commerce, May 2002.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test-cases for regression
testing,” IEEE Trans. on Software Engineering, vol. 27, no. 10, pp. 929-948, Oct 2001.

R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a Single Model and Test
Prioritization Strategies for Event-Driven Software” IEEE Trans. on Software Engineering, vol.
37, pp. 48-64, Jan-Feb 2011.

Andrews, J. Offutt, and R. Alexander, “Testing web applications by modelling with FSMs,”
Software and Systems Modeling, vol. 4, no. 3, pp. 326—345, Jul 2005.

G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini, “Testing web applications,” in the IEEE
Intl. Conf. on Software Maintenance. Montreal, Canada: IEEE Computer Society, Oct. 2002,
pp. 310-319.

F. Ricca and P. Tonella, “Analysis and testing of web applications,” in the Intl. Conf. on
Software engineering. Toronto, Ontario, Canada: IEEE Computer Society, May 2001, pp. 25—
34,

W. Wang, S. Sampath, Y. Lei, and R. Kacker, “An interaction-based test sequence generation
approach for testing web applications,” in IEEE International Conference on High Assurance
Systems Engineering. Nanjing, China: IEEE Computer Society, 2008, pp. 209-218.

W. Halfond and A. Orso, “Improving test-case generation for web applications using
automated interface discovery,” in ESEC / 15. SIGSOFT Foundations of Software Engineering.
Dubrovnik, Croatia: ACM, Sep. 2007, pp. 145-154.

S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.Ernst, “Finding bugs in
dynamic web applications,” in ISSTA '08: Proceedings of the 2008 international symposium
on Software testing and analysis. Seattle, WA, USA: ACM, Jul. 2008, pp. 261-272.

S. Elbaum, G. Rothermel, S. Karre, and M. F. . Leveraging user session data to support web
application testing. IEEE Trans. on Software Engineering, 31(3):187-202, May 2005.

S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S. Greenwald. Applying concept analysis
to user-session-based testing of web applications. IEEE Trans. on Software Engineering,
33(10):643-658, Oct. 2007.

S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay and failure detection for
web applications. In The Intl. Conf. of Automated Software Engineering, pp. 253-262, Nov.
2005.

S. Elbaum, G. Rothermel, S. Karre, and M. F. . Leveraging user session data to support web
application testing. IEEE Trans. on Software Engineering, 31(3), pp. 187-202, May 2005.

S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test-case prioritization: A family of empirical
studies. IEEE Trans. On Software Engineering, 28(2), pp. 159-182, Feb. 2002.

F. Ricca and P. Tonella. Analysis and testing of web applications. In the Intl. Conf. on Software
Engineering, pp. 25-34, May 2001.

S. Pertet and P. Narsimhan. Causes of failures in web applications.Technical Report CMU-
PDL-05-109, Carnegie Mellon University, 2005.

17)

18)

19

20

21

22

23)

24)

25

26)

27

28

29

30

31

32

36

D. Jeffrey and N. Gupta. Test-case prioritization using relevant slices. In the Intl. Computer
Software and Applications Conf., pp. 411-418, Sep. 2006.

Y. Guo and S. Sampath , “Web application fault classification - an exploratory study”, ESEM
'08 Proceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, pp. 303-305.

S. Sampath, R. C. Bryce, S. Jain and S. Manchester. A tool for combinatorial-based
prioritization and reduction of user-session-based test suites. In International Conference on
Software Maintenance: Tool Demo Track, pp. 574 -577, Sep. 2011.

S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay and failure detection for
web applications. In International Conference of Automated Software Engineering, pp. 253-
262, Nov. 2005.

M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically testing dynamic web sites.
In the Eleventh International Conference on World Wide Web (May 2002).

D. C. Kung, C.-H. Liu, and P. Hsia, An object-oriented web test model for testing web
applications. In the Asia-Pacific Conference on Quality Software, (Oct. 2000), IEEE Computer
Society, pp. 111-120

C. Liu, D. Kung, P. Hsia, and C. Hsu. “Structural testing of web applications.” In International
Symposium on Software Reliability Engineering , pp. 84-96, Oct. 2000

J. Ofutt, Y. Wu, X. Du, and H. Huang. Bypass testing of web applications. In International
Symposium on Software Reliability and Engineering (Nov. 2004), IEEE Computer Society, pp.
187-197.

Z. Qian. Test-case generation and optimization for user session-based web application
testing. Journal of Computers 5, 11, pp. 1655-1662, 2010.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The aetg system: An approach to
testing based on combinatorial design. IEEE Transactions on Software Engineering 23, 7, pp.
437-444, Jul 1997.

HttpUnit. http://httpunit.sourceforge.net/, accessed on Dec. 19, 2011.

Rational Robot. http://www.ibm.com/software/awdtools/tester/robot/, accessed on Dec.
19, 2011.

S. Elbaum, S. Karre, and G. Rothermel. Improving web application testing with user session
data. In International Conference on Software Engineering (Sep. 2003),pp. 49-59.

S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A. G. Koru. Prioritizing user-session-
based test-cases for web application testing. In International Conference on Software
Testing, Verification and Validation (Apr. 2008), pp. 141-150.

S. Sampath, V. Mihaylov, A. Souter, L. and Pollock. Composing a framework to automate
testing of operational web-based software. In International Conference on Software
Maintenance (Sep. 2004), IEEE Computer Society, pp. 104-113.

S. Sampath, S. Sprenkle, E. Gibson, L. and Pollock. Web application testing with customized
test requirements|an experimental comparison study. In International Symposium on
Software Reliability Engineering (Nov. 2006), pp. 266-278.

37

33) N. Alshahwan, and M. Harman. Automated session data repair for web application regression
testing. In International Conference on Software Testing, Verification and Validation (Apr.
2008), pp. 298-307.

34) R. C. Bryce, and A. M. Memon. Test suite prioritization by interaction coverage. In Workshop
on Domain-Specific Approaches to Software Test Automation (Sep. 2007), pp. 1-7.

APPENDICES

39

APPENDIX A
CPUT

Combinatorial-based Prioritization for User-Session-Based Testing (CPUT) is an open source software
testing tool. There are 3 major functionalities of CPUT which can be listed as in the following...

i. New Logger module for Apache Web Server
ii. Conversion of web server usage logs into XML formatted test-cases
iii. Prioritization criteria

modlogpost

Apache5.3 module
webserver

Test Case
creation
module

Formatted
Apache weblog

XMLformatted testcases

Formatted Prioritization

.

Fig. A.1 CPUT Tool overview

Apache weblog

Figure A.1 gives an overview of CPUT functions. The logger for Apache is implemented as a module in
C. The remaining components of CPUT - the test-case creation engine, the prioritization engine, and
the user interface - are implemented in Java. A user of the tool first deploys the module in Apache to
enable the logging of user sessions. The user then loads the usage logs into CPUT which parses the log
to create XML-format test-cases. The XML test-cases can then be prioritized using a particular test
prioritization method.

i. New Logger module for Apache Web Server

The logger for Apache was implemented in C as a module. The module was generically designed to
deploy on Apache that is running on both Windows and Linux platforms. The module logs the HTTP
GET and POST requests. The HTTP GET requests are typically logged by default in most web servers.
HTTP POST requests generally transmit form data as part of the HTTP request body, instead of being
appended to the URL. Therefore, additional methods were necessary to gather the date associated
with an HTTP POST request. This module should be included with other Apache modules and can be

40

enabled by setting the Apache server's configuration file. Version 1.0 of this module logs the request
data in the following format:

[Date] J# IP Address]# Method]# URL]# Cookie Id]# Referrer J# POSTDATA

ii. Conversion of web server usage logs into XML formatted test-cases

The test-case generation utilizes previously used heuristics to convert a usage log into test-cases.
Specifically, the cookie information, the IP address, and the time stamp of each request are used to
assign a request with a test-case. The usage log and the test-cases are stored in a PostGreSQL
database. Figure A.2 shows the CPUT screen when a user specifies options to load the log _le into the
database. Storing the logs and test-cases in a database allows for efficient storage and retrieval. The
test-cases from the database table are then converted into test-cases in XML format. Figure A.3
shows the CPUT screen with all the XML test-cases parsed from the log _le. An XML format was
chosen because of the extensible and easily parsing nature of XML. Figure A.4 shows a sample test-
case. The important tags include: test suite denotes the test suite, session id represents the unique ID
of a test-case within the test suite, and URL represents a page that the test-case accesses and has an
associated request with a request type of GET or POST. Within a request, a baseURL includes the
specific page that is accessed and parameters (denoted as param) that have names for parameters
and values that are assigned to the parameter.

|2 ¢ PuT = E)
About
Start New Session ‘ Open Test Suite (xml) |
107 Srarsties Priprrzaron Seected Session STtisics
Tolal Sessivns: [‘ Seszion ID;
Total URLs: & (e o Params
Averaue # 0l Params: {Gels/Pusls):
Host Mame: [ozzlFost
Averaue Lenyth (Gets/Pusls): - Score:
Port 54321~
Scoru:
Username: |oostgres
S Password: [seeee
URL Information

> Mon-Unique URL ® Unilgue URL

Databasc Options

® Create New Database [smn

) Qverwmie | aating: \ |-

-

Fig. A.2 CPUT screen with options to load log file into database.

&) c-puT —ala=h
About
Start New Session ‘ ‘ Open Test Suite (.xml) ‘ Export Statistics (.txt) ‘ l Export Order (.txt) ’

Log Statistics Prioritization Selected Session Statistics

Total Sessions: 34 3-Way (Combinatorial) : ID: 1000016.XML

Total URLs: 2211 Time Elapsed: 1.274 Number of Params: 808

Average # of Params: 40.97 /) Length (Gets/Posts): 467

Average Length(Gets/Posts): 34.55 2-Way Score: N/A

Reduction
Reduce Combinatorial 3-Way Score: 41666
Test Suite
3-Way Prioritized 1000016.XML Details (Unique URLS)

11000016.XML 4| |<testSuite=

1000002.XML <session id="1000016 XML">

1000056.XML <url>

1000004 XML <request_type>GET</request_type>

g <baseurl>/music/</baseurl>

1000012.XML s

1000017.XML = leun=

1000013.XML <request_type>GET</request_type>

1000009.XML <baseurl>music/search.php</baseurl=

1000047.XML <param>

1000052.XML <name>query</name>

1000046 XML m <value=%2427<Nalue>

1000029.XML :’:;?';‘":

1000025.XML <name>search</name>

1000045.XML <value>1<Nalue>

1000022.XML <Iparam=

1000019.XML =hurl>

1000044.XML <url>

1000049.XML I <request_type>GET</request_type> o
1000008 vanL - <baseurl>/ </baseurl> bhud

Fig. A.3 CPUT: Screenshot
iii. Prioritization criteria

This allows a user to prioritize their test suite. The options include:

Length (Gets/Posts)
Number of parameters

Random

VVVYVYVYVYVYVY

Frequency-MFPS (Most frequently present sequence)
Frequency-APS (All present sequence)
Frequency-WF (Weighted Frequency)

2-way combinatorial (disabled for test suite files larger than 15 MB)
3-way combinatorial (disabled for test suite files larger than 12 MB)

42

APPENDIX B
TEST SUITES

The following figures show a test-case from the test suite used in the experiment described in this
paper. The test-case has 23 GETS/POSTS, 21 parameters, a 2-way score of 9 and a 3-way score of 89.

<testSuite>
<session id="1000019.XML">
<url>
<request_type>GET</request_type>
<baseurl>/music/</baseurl>
</url>
<url>
<request_type>GET</request_type>
<baseurl>/music/library/common.js</baseurl>
</url>
<url>
<request_type>GET</request_type>
<baseurl>/music/include/shop.css</baseurl>
</url>
<url>
<request_type>GET</request_type>
<baseurl>music/search.php</baseurl>
<param>
<name>query</name>
<value>mandolin</value>
</param>
<param>
<name>search</name>
<value>1</value>
</param>
</url>
<url>
<request_type>GET</request_type>
<baseurl>/music/index.php</baseurl>
</url>

Fig. B.1 Sample test-case (part 1) from test suite described in Section 4.2

43

<url>

</url>
<url>

</url>
<url>

</url>
<url>

</url>

<request_type>GET</request_type>
<baseurl>music/search.php</baseurl>
<param>
<name>query</name>
<value>mandolin</value>
</param>
<param>
<name>search</name>
<value>1</value>
</param>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>28</value>
</param>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>29</value>
</param>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>30</value>
</param>

Fig. B.2 Sample test-case (part 2) from test suite described in Section 4.2

44

<url>

</url>
<url>

</url>
<url>

</url>
<url>

</url>
<url>

</url>

<request_type>GET</request_type>
<baseurl>music/search.php</baseurl>
<param>
<name>query</name>
<value>logan</value>
</param>
<param>
<name>search</name>
<value>1</value>
</param>

<request_type>GET</request_type>
<baseurl>/music/index.php</baseurl>

<request_type>GET</request_type>
<baseurl>music/search.php</baseurl>
<param>
<name>query</name>
<value>dhaak</value>
</param>
<param>
<name>search</name>
<value>1</value>
</param>

<request_type>GET</request_type>
<baseurl>/music/index.php</baseurl>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>13</value>
</param>

Fig. B.3 Sample test-case (part 3) from test suite described in Section 4.2

45

<url>

</url>
<url>

</url>
<url>

</url>
<url>

</url>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>13</value>
</param>
<param>
<name>p</name>
<value>5</value>
</param>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>8</value>
</param>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>33</value>
</param>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>9</value>
</param>

Fig. B.4 Sample test-case (part 4) from test suite described in Section 4.2

46

<url>

</url>
<url>

</url>
<url>

</url>
<url>

</url>
<url>

</url>

<request_type>GET</request_type>
<baseurl>music/index.php</baseurl>
<param>
<name>c</name>
<value>10</value>
</param>

<request_type>GET</request_type>
<baseurl>music/search.php</baseurl>
<param>
<name>search</name>
<value>l1</value>
</param>

<request_type>GET</request_type>
<baseurl>/music/index.php</baseurl>

<request_type>GET</request_type>
<baseurl>music/search.php</baseurl>
<param>
<name>query</name>
<value>kkk</value>
</param>
<param>
<name>search</name>
<value>1</value>
</param>

<request_type>GET</request_type>
<baseurl>/music/index.php</baseurl>

</session>
</testSuite>

Fig. B.5 Sample test-case (part 5) from test suite described in Section 4.2

APPENDIX C

CODE COVERAGE

47

Following tables summarize the code coverage in terms of lines of code and percent covered for the
entire test suite used for the experiment.

TestCase ID | %Code Covered | No. of Lines covered
1000000 1.18% 550
1000001 12.88% 604
1000002 17.70% 1671
1000003 13.25% 2339
1000004 5.83% 546
1000005 12.31% 1189
1000006 11.35% 775
1000007 39.02% 2091
1000008 13.70% 1658
1000009 55.29% 775
1000010 16.95% 2238
1000011 22.52% 1024
1000012 29.04% 1741
1000013 21.75% 1038
1000014 9.18% 550
1000015 10.08% 604
1000016 27.88% 1671
1000017 29.12% 2339
1000018 9.11% 546
1000019 19.84% 1189
1000020 12.93% 828
1000021 16.78% 740
1000022 37.32% 1192
1000023 34.88% 1093
1000024 27.66% 3588
1000025 12.93% 1758
1000026 37.34% 828
1000027 17.08% 740
1000028 29.05% 1192

Table C.1 Summary (Part 1) of Percent Code Coverage and Number of Lines Covered by Each

Individual Test-case

TestCase ID | %Code Covered | No. of Lines covered
1000029 17.32% 1093
1000030 22.76% 3588
1000031 16.58% 1758
1000032 23.59% 2458
1000033 18.15% 1094
1000034 15.28% 820
1000035 22.86% 1473
1000036 11.90% 1397
1000037 26.56% 856
1000038 15.88% 1202
1000039 54.20% 794
1000040 39.66% 1758
1000041 16.95% 2458
1000042 32.52% 1094
1000043 21.04% 820
1000044 16.68% 1473
1000045 48.65% 1397
1000046 13.16% 856
1000047 31.61% 1202
1000048 26.04% 794
1000049 16.80% 1007
1000050 26.66% 828
1000051 50.57% 740
1000052 16.58% 1192
1000053 23.59% 1093
1000054 18.15% 3588
1000055 15.28% 1758
1000056 22.86% 2458
1000057 11.90% 1094
1000058 26.56% 820
1000059 16.28% 1473
1000060 26.56% 1397
1000061 12.48% 856
1000062 17.12% 1202
1000063 29.23% 794
1000064 18.17% 1089
1000065 25.34% 1519
1000066 13.16% 789
1000067 26.59% 1594
1000068 11.90% 713

Table C.2 Summary (Part 2) of Percent Code Coverage and Number of Lines Covered by Each

Individual Test-case

48

TestCase ID | %Code Covered | No. of Lines covered
1000069 11.93% 715
1000070 16.03% 961
1000071 17.83% 1069
1000072 18.25% 1094
1000073 23.14% 1387
1000074 12.95% 776
1000075 16.68% 1000
1000076 48.65% 2916
1000077 13.16% 789
1000078 31.61% 1895
1000079 26.04% 1561
1000080 17.10% 1025
1000081 13.00% 779
1000082 12.23% 733
1000083 39.14% 2346
1000084 10.11% 606
1000085 44.23% 2651
1000086 12.38% 742
1000087 13.73% 823
1000088 15.67% 939
1000089 44.91% 2692
1000090 13.70% 821
1000091 14.51% 870
1000092 32.33% 1938
1000093 47.81% 2866
1000094 22.91% 1373
1000095 13.80% 827
1000096 13.98% 838
1000097 14.30% 857
1000098 14.46% 867
1000099 11.90% 713
1000100 12.50% 749
1000101 32.18% 1929
1000102 42.88% 2570
1000103 13.70% 821
1000104 13.25% 794

Table C.3 Summary (Part 3) of Percent Code Coverage and Number of Lines Covered by Each
Individual Test-case

TestCase ID | %Code Covered | No. of Lines covered
1000105 25.83% 1548
1000106 12.31% 738
1000107 15.35% 920
1000108 39.02% 2339
1000109 13.70% 821
1000110 55.29% 3314
1000111 20.19% 1210
1000112 38.89% 2331
1000113 39.32% 2357
1000114 17.50% 1049
1000115 18.80% 1127
1000116 12.51% 750
1000117 20.72% 1242
1000118 28.16% 1688
1000119 17.12% 1026
1000120 31.00% 1858
1000121 21.96% 1316
1000122 13.70% 821
1000123 18.42% 1104
1000124 14.95% 1024
1000125 8.63% 1741
1000126 28.50% 1038
1000127 7.74% 550
1000128 9.14% 604
1000129 33.18% 1671
1000130 37.79% 2339
1000131 15.88% 546
1000132 54.20% 1189
1000133 39.66% 828
1000134 16.95% 2331
1000135 32.52% 2357
1000136 21.04% 1049
1000137 16.68% 1127
1000138 48.65% 750
1000139 13.16% 1242
1000140 31.61% 1688

Table C.4 Summary (Part 4) of Percent Code Coverage and Number of Lines Covered by Each

Individual Test-case

50

TestCase ID | %Code Covered | No. of Lines covered
1000136 21.04% 1049
1000137 16.68% 1127
1000138 48.65% 750
1000139 13.16% 1242
1000140 31.61% 1688
1000141 26.04% 1026
1000142 17.10% 1858
1000143 13.00% 1316
1000144 12.23% 821
1000145 39.14% 1104
1000146 10.11% 1024
1000147 31.00% 1741
1000148 21.96% 1038
1000149 13.70% 550
1000150 18.42% 604
1000151 14.95% 1104
1000152 8.63% 1024
1000153 28.50% 1741
1000154 7.74% 1038
1000155 9.14% 550
1000156 33.18% 604
1000157 37.79% 1671
1000158 15.88% 2339
1000159 54.20% 546
1000160 12.23% 1189
1000161 39.14% 828
1000162 10.11% 2331
1000163 31.00% 2357
1000164 21.96% 1049

Table C.5 Summary (Part 5) of Percent Code Coverage and Number of Lines Covered by Each

Individual Test-case

51

52

APPENDIX D
SEEDED FAULT SUMMARY

The 68 seeded faults used for the experiment described in this paper are broken up by fault category
and user type. In addition, the logic fault category is broken down into five sub-categories.

Music Store All Bugs

B Appearance BLink ©Logic M DataStore M Form

Fig. D.1 Fault category distribution for 68 seeded faults

Music Store Logic Bugs

M parsing M Session MPaging Mlocale M Encoding/Decoding M Other

Fig. D.2 User type distribution for 68 seeded faults

53

Music Store Bugs by User type

B Admin B Common User

Fig. D.3 Logic fault sub-category distribution for 30 seeded logic faults

Music Store Fault Statistics

APPENDIX G

LIST OF FAULTS/BUGS

54

Appearanc
e Fault

Faults Failure Admin
which details and
affect which Commo
the web | affect n User
page the web
display. | page

display.
improp | The User Music.j Music 1.1 | Bug
er picture pg add
director | of ed
y listing | commo
as n user
image home
source page is

not

showing

properl

y
improp | The Admin Music 1.2 | Bug
er picture add
director | of ed
y listing | admin
as home
image page is
source not

showing

properl

y
Improp | Left Admin Music 1.3 | Bug
er CSS | navigati add
for on bar ed
admin of
pages admin

home

page is

not

showing

properl

y
Improp | The User Music 1.4 | Bug
er CSS | navigati add
for user | on bars ed
pages of the

home

page

are not

55

showing
properl
y
HTML is | The User 1 Top.php | Music 1.5 | Bug
not search Line 40 add
coded bar in ed
properl | home
y for | page is
search not
function | showing
properl
y.
Search/
Submit
button
is
missing
Top.php | The User 1 Car.php | Music1.6 | Bug
is search , add
include | bar s Checko ed
d in | coming ut.php,
every each Success.
user and php
pages every
page
Improp | The User 1 Top.php | Music 1.7 | Bug
er logo in solv
director | user ed
y listing | home
for user | page is
logo not
showing
Improp | The Admin 1 Main.ph | Music 1.8 | Bug
er logo in p solv
director | admin ed
y listing | home
for page is
admin not
logo showing
Link Fault Faults in | Failure Admin 17
the details and
applicat | in the | Commo
ion applicat | n User
code ion
that code
changes | that
the changes
Page the
pointed | Page
to by an | pointed
URL. to by an
URL.
Wrong The Admin 1 Templat | Music 1.9 | Bug
hyperlin | categor e.php add
k set y link of Line 31 ed
admin

56

57

58

Logic Fault Faults in | Failure Admin 12
the details and

59

applicat | in the | Commo
ion applicat | n User
code ion
that code
implem | that
ent implem
Busines | ents
s logic | Busines
and s logic
control | and
flow. control

flow.

Other Onclick | The User cart- Music Bug
delete delete function | 1.23 add
function | button s.php ed
wrongly | in user Line
coded shoppin 103-113

g cart is
not
working

Other Onclick | The User cart- Music Bug
updatec | update function | 1.24 solv
art button s.php ed
function | in user Line
wrongly | shoppin 131-160
coded g cart is

not
working

Paging Wrong Displayi | User searchf | Music Bug
paging ng all uncs.ph | 1.26 add
logic the p ed

search Line
results 600-612
is not

proper.

Only

first 10

records

are

being

displaye

d.

Encoding | Md5 is | Once Admin change Music Bug

/ done the Pass.ph | 1.27 add

decoding | while passwor p ed
changin | d is Line 17
g change
passwor | d user
d but | will not
while be able
login to login
md5S with the
hashing | new
is not | passwor

60

done to | d in
check admin
the page.
passwor | Because
d while
matche | checkin
sornot | g user
in
function
.php the
passwor
d is not
encrypt
ed.

Encoding The add | Admin process | Music Bug

/ user User.ph | 1.28 add

decoding link in p ed

admin Line 32-
home 35
page is

adding

new

user but

the

newly

created

user is

not able

to login.

Other on click | The add | Admin List.php | Music Bug
event is | user Line 49 131 add
blank button ed

link in
admin
home
page is
not

working

Paging Paging the Admin Functio | Music Bug
variable | show all ns.php 1.32 add
value is | order Line ed
kept link in 281-301
static, it | admin
is not | home
dynami | page is
cally showing
populati | only
ng one

order
per
page

Locale Date The Admin Detail.p | Music Bug
format detail hp 1.36 solv
is not | order Line 58- ed
used link in 65

61

while admin
displayi | home
ng page is
dates not
showing
date in
proper
format.

Parsing PHP The Admin Main.ph | Music Bug
variable | email p 1.35 add
s and | link in Line 59 ed
codes admin
are shop
wrongly | config.
enclose | page is
d in | not
HTML . properl

y HTML
parsed.

Parsing PHP The User Top.php | Music Bug
variable | search 1.39 add
s and | button ed
codes in the
are user
wrongly | home
enclose | page is
d in | not
HTML . showing

"search
" rather
it is
showing
the PHP
variable

Session login Admin Admin Functio | Music Bug
session | pages ns.php 1.40 add
is not | are not Line 56- ed
being being 72
store properl

Yy
navigat
ed for
admin
login.
Form Faults in | Failure Admin
Faults the details
applicat | in the
ion applicat
code ion
that code
controls | that
) controls
Modifie |,
s and | Modifie
displays | s and

62

63

64

65

66

67

68

69

70

	3-Way Test Suite Prioritization and Fault Detection: A Case Study
	Recommended Citation

	Arjun Roy Chaudhuri

