
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2013

Processing and Manipulation of Data Collected from the Processing and Manipulation of Data Collected from the

Educational On-Line Game Refreaction Educational On-Line Game Refreaction

Xiaotian Dai
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Dai, Xiaotian, "Processing and Manipulation of Data Collected from the Educational On-Line Game
Refreaction" (2013). All Graduate Plan B and other Reports. 320.
https://digitalcommons.usu.edu/gradreports/320

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fgradreports%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/320?utm_source=digitalcommons.usu.edu%2Fgradreports%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PROCESSING AND MANIPULATION OF DATA COLLECTED FROM THE

EDUCATIONAL ON-LINE GAME REFRACTION

by

Xiaotian Dai

A report submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Statistics

Approved:

Dr. Jürgen Symanzik Dr. Daniel C. Coster
Major Professor Committee Member

Dr. H. Taylor Martin
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

2013

ii

ABSTRACT

Processing and Manipulation of Data Collected from the Educational On-line Game

Refraction

by

Xiaotian Dai, Master of Science

Utah State University, 2013

Major Professor: Dr. Jürgen Symanzik
Department: Mathematics and Statistics

A team of students, artists, and researchers at the Center for Game Science at the

University of Washington are trying to create video games that can discover optimal

pathways for learning. They have focused so far on early mathematics education,

including topics such as fractions and algebra, which are some of the main bottlenecks

preventing students from pursuing a career in science. As a result, the educational

on-line game “Refraction” was created, which is aimed at students who start learning

fraction computations. When the students are playing the game online, all the data

and information, such as mouse movements and mouse clicks, are stored in datasets

of different formats. In this MS report, we will develop functions in the R software

environment that will allow other researchers to easily process and manipulate the

data generated from this game for future statistical analyses.

(70 pages)

iii

CONTENTS

Page

ABSTRACT . ii

LIST OF FIGURES . v

1 INTRODUCTION . 1
1.1 The Refraction game . 1
1.2 JSON data . 3
1.3 XML data . 4
1.4 Data manipulation using R . 4
1.5 Objectives . 5

2 REORGANIZING REFRACTIONGAMEDATA FROMTHE ORIG-
INAL JSON FORMAT INTO R DATA FRAMES 7

2.1 Structure of JSON objects . 7
2.2 Programming in R . 10
2.3 Input JSON data . 10
2.4 Data and information in the JSON objects 13

2.4.1 General information frame . 13
2.4.2 Bin pieces data frame . 14
2.4.3 Win pieces data frame . 15
2.4.4 Board pieces data frame . 16
2.4.5 Detailed information of pieces 17

3 IMPLEMENTATION OF A JSON TREE IN R 20
3.1 Introduction . 20
3.2 The basic JSON tree . 22
3.3 Union and intersection of JSON trees 25

4 REORGANIZING REFRACTIONGAMEDATA FROMTHE ORIG-
INAL XML FORMAT INTO R DATA FRAMES 28

4.1 Structure of XML objects . 28
4.2 Programming in R . 30
4.3 Input XML data . 31
4.4 Data and information in the XML objects 33

4.4.1 Attributes data frame . 34
4.4.2 Laser objects data frames . 35
4.4.3 Other keys in the XML objects 37

iv

5 CONCLUSIONS . 39
5.1 Summary of research . 39
5.2 Future research . 39

APPENDICES . 43
APPENDIX A R CODE . 44
A.1 R code for Chapter 2 . 44
A.2 R code for Chapter 3 . 52
A.3 R code for Chapter 4 . 60

v

LIST OF FIGURES

Figure Page

1 Screen shot of the web page of Refraction on September 28th, 2013
http://centerforgamescience.org/portfolio/refraction/ . . . 2

2 JSON object showing level “43” of the Refraction game 8

3 Screen shot of level “43” of the Refraction game 9

4 JSON object showing level “43” of the Refraction game 21

5 JSON tree structure plot for level “43” of the Refraction game 24

6 Union tree of all levels of the Refraction game 26

7 Intersection tree of all levels of the Refraction game 27

8 XML object showing level “111” of the Refraction game 29

http://centerforgamescience.org/portfolio/refraction/

CHAPTER 1

INTRODUCTION

1.1 The Refraction game

In an effort to relieve the crisis in Science, Technology, Engineering, and Math-

ematics (STEM) education, a team of graduate students, artists, and researchers at

the Center for Game Science (CGS) at the University of Washington have created

video games focused on scientific discovery, discovering optimal learning pathways

for STEM education, cognitive skill training, and games that explore collective over

individual intelligence (Center for Game Science CGS , 2012). Their games can be

accessed at http://centerforgamescience.org/games/. We are working with data

from their Refraction game in this MS research project.

The Refraction game (see Figure 1) was designed for students who are learning

early mathematics topics, especially fraction computations. Currently, there are many

competing theories how best to teach these subjects, and a lack of experimental data

to evaluate these teaching methods prevents the development of effective learning tools

(Center for Game Science CGS , 2012). The rising popularity of the educational game

Refraction may provide us some useful information about the optimal educational

pathways.

Refraction is developed on a model of fraction understanding centered on split-

ting or equal partitioning idea. The objective of this game is to free animals that

are trapped in spaceships. To release the animals, the spaceships require different

fractions of power that are supplied by lasers (such as 1/2, 1/3, 1/6, or 1/9 of a full

laser beam). A full laser beam (with power 1) originally comes out of a laser source.

Students need to bend and split lasers by using the benders and splitters supplied.

http://centerforgamescience.org/games/

2

Fig. 1: Screen shot of the web page of Refraction on September 28th, 2013
http://centerforgamescience.org/portfolio/refraction/

Usually, students apply combinations of 1/2 and 1/3 splitters to split the laser and

use the benders to change the direction of the laser beam. When the required frac-

tions of laser beams hit on the spaceships, the trapped animals will be freed and this

game level is successfully passed. The splitters are the primary mathematical tool

students have (Aghababyan et al., 2013). How to split the laser correctly involves

simple fraction computations.

The educational games created by CGS have already become a hit in the educa-

tional community. Refraction won the Grand Prize in the Disney Learning Challenge

at SIGGRAPH 2010 and Best Work in the Primary School Category at NHK Japan

2011 (Japan Broadcasting Corporation NHK , 2011). More and more players are

visiting the Refraction game at http://centerforgamescience.org/portfolio/

refraction/. Figure 1 shows the staring web page of the Refraction game. All of

the user interactions in this game are stored, including mouse movements and mouse

http://centerforgamescience.org/portfolio/refraction/
http://centerforgamescience.org/portfolio/refraction/
http://centerforgamescience.org/portfolio/refraction/

3

clicks. Internally, these user actions are translated into game pieces placed or moved

on the game board, completion of a game level, etc. We have access to some of the

stored Refraction game data. These datasets are in XML and JSON formats. We will

discuss how to process and manipulate these datasets in the R software environment

(R Development Core Team, 2012) in this MS report.

In fact, the creators of the Refraction game have already published several re-

search papers with focus on computational education based on the stored game data.

Andersen, Liu, Snider, Szeto, Cooper and Popović (2011) argue that secondary ob-

jectives that support the primary goal of the game are consistently useful, while

secondary objectives that do not support the main goal require extensive testing to

avoid negative consequences. For instance, as a result, the bonus coins in the Refrac-

tion game can distract from the primary goal and cause many players to play for less

time. Andersen, Liu, Snider, Szeto and Popović (2011) discuss whether aesthetic im-

provements such as music, sound effects, and animations can be useful for attracting

and retaining players. Their research revealed that music and sound effects had little

or no effect on player retention during the game, while animations caused users to

play more.

1.2 JSON data

JavaScript Object Notation (JSON) is a programming language model data in-

terchange format (Crockford, 2006). It is easy for humans to read and write. It is

also easy for computers to parse and generate because JSON is a natural presentation

of data. A JSON object is a collection of key and value pairs. The keys are strings

and the types of values presented in JSON can be strings, numbers, booleans, object,

arrays, or even NULL. A colon separates the keys from the values, and a comma

separates the pairs. The pairs of keys and values are wrapped in curly braces and the

4

arrays are wrapped in square brackets.

The JSON format is often used for serializing and transmitting structured data

over a network connection. It is used primarily to transmit data between a server

and web application, serving as an alternative to XML (Crockford, 2006). There

exist JSON libraries or built-in JSON support for many programming languages and

systems. The JSON libraries built in R will be discussed in Chapter 2.

1.3 XML data

Extensible Markup Language (XML) describes a class of data objects called

XML documents and partially describes the behavior of computer programs which

process them (Bray et al., 1997). XML files are in a format that is both human-

readable and machine-readable. XML files are created to store and transport data

and information. The design goals of XML emphasize simplicity, generality, and

usability over the Internet (Bray et al., 1997). Similarly to JSON, the XML files have

a basic format of key and value pairs and they are designed to be self-descriptive with

information wrapped in tags. However, XML is designed to store data rather than

displaying data. Hence, functions are written in R to process and display data stored

in the XML files. More details will be discussed in Chapter 4.

1.4 Data manipulation using R

The first and often the toughest or most time-consuming task in an analytical en-

vironment for a new project is getting the data loaded into the analytical software. In

addition, obtaining and storing data from various types of databases requires different

data types. Fortunately, R has different internal data types such as lists, arrays, and

data frames and this feature offers multiple options to efficiently handle the datasets.

In many cases, information makes more sense to humans when it is presented in a

5

rectangular data format with rows for records and columns for variables. Many statis-

tical analyses, both model-based and graphical, are based on data frames. However,

the JSON and XML datasets for the Refraction game cannot easily be stored in data

frames directly, even with the help of the existing R packages. We will discuss in this

MS report how to reorganize the Refraction game data from the original formats into

R data frames.

After the data are reorganized into data frames, it is also helpful to determine

how the datasets are structured. The structure of a JSON object is a typical example

of a hierarchical data structure. Tree representations can be useful for summarizing

the structures of hierarchical data (Al-Khalifa et al., 2002). The tree representation

of the JSON data structure can be referred to as an implementation of the so-called

“JSON tree”. Some researches are devoted to the plotting of “JSON tree” in other

programming languages, such as jQuery4u.com (2013). So far, however, “JSON tree”

was not implemented in R.

The R language provides a rich environment for working with data, especially

data to be used for statistical modeling or graphics (Spector, 2008). In fact, there

are many useful features in R, for instances, built-in functions, vectors or matrices

manipulations, and so on. So far, there are more than 4700 available packages in R

software environment (http://cran.us.r-project.org). R has become an essen-

tial computer tool for many statistical computing projects. It continuously inspires

researchers to come up with new and exciting ways of using it.

1.5 Objectives

The goal of this research is to process and manipulate data from the Refraction

game that are stored in different external JSON and XML files. The data and infor-

mation, once read into R, can be used for future research. As such, the objectives of

http://cran.us.r-project.org

6

this MS research project are:

1. Reorganizing Refraction game data from the original JSON format into R data

frames (Chapter 2).

2. Implementation of a JSON tree in R (Chapter 3).

3. Reorganizing Refraction game data from the original XML format into R data

frames (Chapter 4).

The three objectives listed above will be accomplished using the R programming

language. This can be the start of future research about the educational Refraction

game.

Overall, for many researchers interested in the educational Refraction game, the

R functions developed in this MS research project should make it easier for other

researchers to process and manipulate data from this game for their analyses.

7

CHAPTER 2

REORGANIZING REFRACTION GAME DATA FROM THE ORIGINAL JSON

FORMAT INTO R DATA FRAMES

2.1 Structure of JSON objects

The first goal of this research is to read in the Refraction game data stored in a

JSON file and reorganize the data into a meaningful format for future processing in

R. It is important to understand the structure of a JSON data file.

A JSON object is a collection of key and value pairs. A colon separates the

keys from the values, and a comma separates the pairs. The keys are strings and the

types of value presented in JSON can be strings, numbers, booleans, object, arrays,

or even NULL (Crockford, 2006). The keys are wrapped in quote marks and they

can be understood as the names of the variables. The data wrapped in curly braces

or square brackets after a colon represent lower level variables included in the higher

level variable, which is the key string in front of the colon. Generally, JSON is a

human-readable format and a natural presentation of data.

Figure 2 shows the first object in the JSON file of the Refraction game data,

representing game level “43”, and Figure 3 shows a screenshot of the game board of

this level. The first pair of this object has a variable named “concepts” and an empty

value. There are five other keys at the first level of the object, which are “game id”,

“bin pieces”, “qid”, “win pieces”, and “board pieces”. More details about these keys

will be discussed in Section 2.4.

8

"43" : {

"concepts" : [],

"game_id" : 11,

"bin_pieces" : {

"bender" : [{

"id" : 2

}

]

},

"qid" : 43,

"win_pieces" : {

"bender" : [2]

},

"board_pieces" : {

"source" : [{

"id" : 0,

"value" : {

"denom" : 1,

"num" : 1

}

}

],

"target" : [{

"id" : 1,

"value" : {

"denom" : 1,

"num" : 1

}

}

],

}

}

Fig. 2: JSON object showing level “43” of the Refraction game

9

Fig. 3: Screen shot of level “43” of the Refraction game

10

2.2 Programming in R

R has different data types, such as lists, arrays, and data frames. These data

types provide multiple options to handle the datasets. In order to manipulate the

Refraction data file of JSON format, the functions descibed in the following sections

will read in the JSON dataset and reorganize the data from its original format into

R data frames. The names of the R functions are listed below:

1. loadJSON

2. JSON general

3. JSON bin pieces

4. JSON win pieces

5. JSON board pieces

6. pieces

More details about these functions will be discussed in the following sections.

2.3 Input JSON data

There exist JSON libraries or built-in JSON support for many programming

languages and systems. Since R is an open-source software, two packages have been

contributed to the Comprehensive R Archive Network (CRAN) that contain built-in

functions for data of JSON format, which are named rjson (Couture-Beil, 2012) and

RJSONIO (Temple Lang, 2011). The functions included in the RJSONIO package are

built on the C programming language, which can significantly speed up the processing

11

of the data. More importantly, RJSONIO can analyze large collections of JSON

objects without unpacking the whole dataset, which is a useful feature for handling

the datasets of the Refraction game. Hence, we will use the parser provided by the

RJSONIO package to input JSON files and store the data in R as a list data type.

In R, a list is a generic data structure containing other objects and the objects can

be of different types or lengths. This is an essential way to store the JSON data. The

first function listed above, loadJSON, is written to read JSON data into R. The

following output is the R list produced by the loadJSON function based on the first

JSON object (Figure 2).

> data = loadJSON("refraction.json")

> data[[1]]

$concepts

list()

$game_id

[1] 11

$bin_pieces

bin_piecesbender

bin_piecesbender[[1]]

bin_piecesbender[[1]]$id

[1] 2

$qid

[1] 43

12

$win_pieces

win_piecesbender

[1] 2

$board_pieces

$board_pieces$source

$board_pieces$source[[1]]

$board_pieces$source[[1]]$id

[1] 0

$board_pieces$source[[1]]$value

$board_pieces$source[[1]]$value$denom

[1] 1

$board_pieces$source[[1]]$value$num

[1] 1

$board_pieces$target

$board_pieces$target[[1]]

$board_pieces$target[[1]]$id

[1] 1

$board_pieces$target[[1]]$value

$board_pieces$target[[1]]$value$denom

[1] 1

$board_pieces$target[[1]]$value$num

13

[1] 1

2.4 Data and information in the JSON objects

After the JSON objects are read into R, we want to extract data and information

of particular interest. There are 147 JSON objects contained in the Refraction game

data file. Each JSON object is labled by a unique“qid”value, which is an identifier for

the levels of the Refraction game. The following sections will describe the R functions

in detail.

2.4.1 General information frame

The keys “concepts”, “game id”, and “qid” have a value directly after the colons

and they are the general information or identifiers for one unique level of the Refrac-

tion game. The function called JSON general has the purpose to extract values of

these three keys for all the objects in the data file. The data frame general frame is

generated from the general information of the JSON objects. The first six elements

of the data frame are shown below. If a JSON object has more than one value for the

key “concepts”, all of the “concepts” values for an object will be stored in the same

cell of the data frame and seperated by commas, such as the sixth row of the data

frame below.

> general_frame = JSON_general(data)

> head(general_frame)

concepts game_id qid

1 11 43

2 11 44

14

3 11 46

4 11 47

5 11 48

6 p1, pu 11 50

2.4.2 Bin pieces data frame

In order to successfully finish one level of the Refraction game, the player needs

to choose appropriate pieces from the available “bin pieces” and put them in the

right places of the game board, so that the light can hit right on the target. The

available “bin pieces” are “bender”, “splitter”, “combiner”, and “converter”. The key

“bin pieces” contains information of all the available pieces for the player in one level.

Of particular interest is how many“bin pieces” there are and what the available pieces

are. The function called JSON bin pieces detects names of all the available pieces

and returns a data frame which contains the number of available pieces for each game

level.

> bin_frame = JSON_bin_pieces(data)

> head(bin_frame)

qid bender splitter combiner converter

2 43 1 0 0 0

3 44 4 0 0 0

4 46 2 0 0 0

5 47 3 0 0 0

6 48 3 0 0 0

7 50 1 2 0 0

As shown in the data frame above, there are four kinds of “bin pieces” that ex-

ist in the 147 levels of the game. In the first “qid” level, there is only one “bender”

available for the player, as shown in Figure 2. The JSON bin pieces function only

15

counts the number of the“bin pieces” in each object. Futhermore, the function pieces

will work on the detailed information of the pieces, such as the “id” of a single piece.

2.4.3 Win pieces data frame

As mentioned in the last section, the player needs to choose appropriate“bin pieces”

and put them in the right places of the game board, so that the light can hit right on

the target. The information of the appropriate “bin pieces” is stored under the key

“win pieces”. More importantly, the pieces should be organized correctly to pass the

game level and the order of the pieces does matter. The function JSON win pieces

returns a data frame which contains the “win pieces” for each “qid” level and their

associated “id” and order.

> win_frame = JSON_win_pieces(data)

> win_frame[(win_frame$qid >= 43) & (win_frame$qid <= 50),]

qid pieces id order

2 43 bender 2 1

3 44 bender 3 1

4 46 bender 2 1

5 46 bender 3 2

6 47 bender 2 1

7 47 bender 3 2

8 47 bender 4 3

9 48 bender 2 1

10 48 bender 3 2

11 48 bender 4 3

12 50 splitter 6 1

In the data frame above, there is information of“win pieces” for the first six levels

of the game. For the “qid” level 46, the player needs to choose two benders from the

16

“bin pieces” to win this level and the bender with “id” number 2 should be put on the

right spot prior to choosing the bender with “id” number 3.

2.4.4 Board pieces data frame

In contrast to “bin pieces”, which are the available pieces for the player, the

“board pieces” refer to the pieces that are already placed in their spots of the game

board. The “board pieces” are essential and can not be removed by the player, such

as light “source” and “target”. In different levels, the designers of the game may add

more “board pieces” in order to increase the difficulty and attraction of the game.

For instance, the “board pieces” “blocker” is an object that the light can not pass

through and hence, the player needs to modify the path of the light in case the light

will be blocked by the “blocker”. Since the “board pieces” for each level of the game

are of particular interest, the function called JSON board pieces detects names of

all the pieces under the key “board pieces” and returns a data frame which contains

the information about “board pieces”.

> board_frame = JSON_board_pieces(data)

> head(board_frame)

qid source target blocker multitarget

2 43 1 1 0 0

3 44 1 1 0 0

4 46 1 1 0 0

5 47 1 1 4 0

6 48 1 1 22 0

7 50 1 3 5 0

As shown in the data frame above, there are four kinds of “board pieces” in the

147 levels of the game. In the first “qid” level, there is only one source and one target,

17

as can be seen in the JSON object in Figure 2.

2.4.5 Detailed information of pieces

Each piece under “bin pieces” and “board pieces” has more detailed information

such as “id”. For instance, the piece “source” in the first JSON object shown in

Figure 2 has two keys under it, which are “id” and “value”, and “value” has another

two keys (“denom” and “num”) mapped onto it.

In order to extract all the useful information, the function pieces gets all the

keys and values for each piece and presents the data in a data frame. The function

takes two arguments: the JSON data and the name of the pieces of interest. For

example, if we are interested in the detailed information about “source”, then we call

the function as follows:

> piece_frame1 = pieces(data, "source")

> piece_frame1[(piece_frame1$qid >= 43) & (piece_frame1$qid <= 50),]

qid id denom_value num_value

1 43 0 1 1

2 44 0 1 1

3 46 0 1 1

4 47 0 1 1

5 48 0 1 1

6 50 0 1 1

> piece_frame2 = pieces(data, "target")

> piece_frame2[(piece_frame2$qid >= 43) & (piece_frame2$qid <= 50),]

qid id denom_value num_value

1 43 1 1 1

2 44 1 1 1

3 46 1 1 1

18

4 47 1 1 1

5 48 1 1 1

6 50 1 3 1

7 50 2 3 1

8 50 3 3 1

The piece “source” and “target” are both “board pieces”. If we are interested in

some of the pieces from “bin pieces”, then we call the same function and obtain other

data frames.

> piece_frame3 = pieces(data, "bender")

> piece_frame3[(piece_frame3$qid >= 43) & (piece_frame3$qid <= 50),]

qid id

1 43 2

2 44 2

3 44 3

4 44 4

5 44 5

6 46 2

7 46 3

8 47 2

9 47 3

10 47 4

11 48 2

12 48 3

13 48 4

14 50 4

> piece_frame4 = pieces(data, "splitter")

> piece_frame4[(piece_frame4$qid >= 43) & (piece_frame4$qid <= 50),]

19

qid id value

1 50 5 2

2 50 6 3

In all the returned data frames above,“qid”serves as the primary identifier for the

JSON objects and it always takes the first column of the data frames. The function

pieces can also be applied to all the other “board pieces” and “bin pieces”. Overall,

all the data contained in the JSON data file can be extracted and prepared for future

analyses in R.

20

CHAPTER 3

IMPLEMENTATION OF A JSON TREE IN R

3.1 Introduction

In general, JSON is a human-readable data interchange format used for repre-

senting simple data structures (Crockford, 2006). Especially in the JSON format used

for the Refraction game data, the JSON objects are easy to understand and quickly

mastered. However, there may be some other JSON data files which are not organized

so well. Hence, it is beneficial to obtain a better understanding of the structure of a

JSON object.

Wilhelm (2009) mentions that tree representations can be useful for presenting

hierarchical data on the screen and uses JSON objects as a typical example of hi-

erarchical data. In fact, primitive tree-structured relationships are parent-child and

ancestor-descendant, which can be referred to as hierarchical relationships. Finding

all occurrences of these relationships in a dataset is a core operation for the tree

representation of the data structure (Al-Khalifa et al., 2002). Wang (2011) discusses

how the JSON structure can be abstracted as a multi-branch tree and how the JSON

objects can be parsed by recursive traversal of its tree parsing. Overall, the JSON ob-

jects can be summarized as a tree structure. There already exist some free JSON tree

viewers online, such as jQuery4u.com (2013). Currently, all of them are built in pro-

gramming languages other than R, such as JavaScript. The research goal presented

in this chapter is creating a tree plot in R to make a simple visual presentation of the

structure of a JSON object. The first object in the JSON file from the Refraction

game, shown in Figure 4, will be used as an example again to document the newly

developed R functions.

21

"43" : {

"concepts" : [],

"game_id" : 11,

"bin_pieces" : {

"bender" : [{

"id" : 2

}

]

},

"qid" : 43,

"win_pieces" : {

"bender" : [2]

},

"board_pieces" : {

"source" : [{

"id" : 0,

"value" : {

"denom" : 1,

"num" : 1

}

}

],

"target" : [{

"id" : 1,

"value" : {

"denom" : 1,

"num" : 1

}

}

],

}

}

Fig. 4: JSON object showing level “43” of the Refraction game

22

3.2 The basic JSON tree

As mentioned in the previous section, the stucture of a JSON object can be

described as a multi-branch tree, in which there are several nodes on each level of the

tree object. The nodes may be terminated or they may contain more child nodes. In

the JSON object shown in Figure 4, there are six keys at the first level. They are

“concepts”, “game id”, “bin pieces”, “qid”, “win pieces”, and “board pieces”. Three of

the keys have values and three other keys contain other key/value pairs. Each of

the child nodes is only referred to by its parent node, and none of the child nodes

connects with the root node directly. Hence, a tree data structure can be defined

recursively as a collection of nodes starting from the root node. In order to sketch

the tree structure, the function needs to find all the nodes of the tree.

The tree plot can be organized similarly to the original JSON object, in which

the keys of the same level will be placed around one vertical line and the child nodes

will be placed on the lower right side of its parent node.

A data frame is used to store the information of this structure temporarily and

the function JSONtree will take in a JSON object and return such a data frame.

When we test this function on the object shown in Figure 4, we will get the following

data frame, called matrix:

> matrix = JSONtree(data[[1]])

> matrix

[,1] [,2] [,3] [,4]

[1,] "concepts" NA NA NA

[2,] "game_id" NA NA NA

[3,] "bin_pieces" NA NA NA

[4,] NA "bender" NA NA

[5,] NA NA "id" NA

[6,] "qid" NA NA NA

23

[7,] "win_pieces" NA NA NA

[8,] NA "bender" NA NA

[9,] "board_pieces" NA NA NA

[10,] NA "source" NA NA

[11,] NA NA "id" NA

[12,] NA NA "value" NA

[13,] NA NA NA "denom"

[14,] NA NA NA "num"

[15,] NA "target" NA NA

[16,] NA NA "id" NA

[17,] NA NA "value" NA

[18,] NA NA NA "denom"

[19,] NA NA NA "num"

attr(,"class")

[1] "JSONtree"

This data frame contains the location information of the keys to be placed in

a plot. We just need some lines to connect the nodes and sketch a “tree”. The

function print.JSONtree can finish this job and produce a sketch of the JSON tree.

This function is built based on the S3 object-oriented programming models and the

output matrix above with a class “JSONtree” can be inherited by the generic function

print(), which means users of the function can call the function print() directly

instead of print.JSONtree().

As shown in Figure 5, the sketch of the JSON object is a simple tree-like visual

presentation of the structure. The JSONtree function is designed to be a general

purpose function that can be used for managing various datasets stored in JSON

format. However, it is not an actual “graph”. The JSON tree may be implemented

as a real graph using plot() methods in the future.

24

> print(matrix)

JSON

|

| - - - - concepts

|

| - - - - game_id

|

| - - - - bin_pieces

| |

| | - - - - bender

| |

| | - - - - id

|

| - - - - qid

|

| - - - - win_pieces

| |

| | - - - - bender

|

| - - - - board_pieces

|

| - - - - source

| |

| | - - - - id

| |

| | - - - - value

| |

| | - - - - denom

| |

| | - - - - num

|

| - - - - target

|

| - - - - id

|

| - - - - value

|

| - - - - denom

|

| - - - - num

Fig. 5: JSON tree structure plot for level “43” of the Refraction game

25

3.3 Union and intersection of JSON trees

The function JSONtree is designed to sketch the tree struture of every single

JSON object. There are 174 JSON objects in the JSON data file of the Refraction

game. Instead of calling the JSONtree function 174 times, we need another function

to find the union of the 174 JSON trees. We can easily see which keys are contained

in the whole dataset based on the union JSON tree. The function uniontree returns

the union of the 174 JSON trees. The different child nodes in different JSON objects

are grouped under their corresponding parent nodes.

The union of all the JSON trees in Figure 6 provides us with some further infor-

mation about which keys are contained in this JSON dataset. In fact, as mentioned in

Section 2.1, there are six keys at the first level of all the objects, which are “concepts”,

“game id”, “bin pieces”, “qid”, “win pieces”, and“board pieces”. Hence, the union tree

also has these six keys at the first level and other child nodes in the dataset that do

not appear in the JSON tree for level “43”, shown in Figure 5.

It is also of interest to identify the keys that are included in every JSON object.

In order to achieve this goal, the function intersecttree returns the intersection of

the 174 JSON trees. A key is included in this intersection tree only if this key is

contained in every JSON object.

The intersection tree in Figure 7 shows the joint structure of the 174 JSON

objects. Indeed, the six keys mentioned above are used in each level. Except for the

“source” branch from “board pieces”, no other keys from the union of all trees (see

Figure 6) appears in the intersection of all trees (see Figure 7).

26

> uniontree(data)

JSON

|

| - - - - game_id

|

| - - - - bin_pieces

| |

| | - - - - bender

| | |

| | | - - - - id

| |

| | - - - - splitter

| | |

| | | - - - - id

| | |

| | | - - - - value

| |

| | - - - - combiner

| | |

| | | - - - - id

| |

| | - - - - converter

| |

| | - - - - id

| |

| | - - - - value

| |

| | - - - - denom

| |

| | - - - - num

|

| - - - - qid

|

| - - - - win_pieces

| |

| | - - - - bender

| |

| | - - - - splitter

| |

| | - - - - combiner

| |

| | - - - - converter

|

| - - - - board_pieces

| |

| | - - - - source

| | |

| | | - - - - id

| | |

| | | - - - - value

| | |

| | | - - - - denom

| | |

| | | - - - - num

| |

| | - - - - target

| | |

| | | - - - - id

| | |

| | | - - - - value

| | |

| | | - - - - denom

| | |

| | | - - - - num

| |

| | - - - - blocker

| | |

| | | - - - - id

| |

| | - - - - multitarget

| |

| | - - - - id

| |

| | - - - - value

| |

| | - - - - denom

| |

| | - - - - num

|

| - - - - concepts

Fig. 6: Union tree of all levels of the Refraction game

27

> intersecttree(data)

JSON

|

| - - - - concepts

|

| - - - - game_id

|

| - - - - bin_pieces

|

| - - - - qid

|

| - - - - win_pieces

|

| - - - - board_pieces

|

| - - - - source

|

| - - - - id

|

| - - - - value

|

| - - - - denom

|

| - - - - num

Fig. 7: Intersection tree of all levels of the Refraction game

The tree representations of the JSON objects can easily be extended to other JSON

files. The same approach can also be applied to other tree-structured data formats,

or, say, data formats with a hierarchical database model, such as the XML format.

28

CHAPTER 4

REORGANIZING REFRACTION GAME DATA FROM THE ORIGINAL XML

FORMAT INTO R DATA FRAMES

4.1 Structure of XML objects

In addition to the JSON file discussed in Chapter 2, Refraction game data are

stored in another file with XML format. Both datasets contain similar information of

each level of the Refraction game. However, there are differences between them since

they are generated with different details. Hence, we also want to reorganize the data

from the original XML format into data frames for future processing in R.

By definition, an XML document is a string of characters. The characters making

up an XML document are divided into markup and content, which may be distin-

guished by the application of simple syntactic rules (Bray et al., 1997). Generally,

strings that constitute markup begin with the character “<” and end with a “>”.

These strings are called tags. There are start-tags and end-tags. The strings in the

tags are the “keys”, i.e., they can be referred to as the names of the variables. The

end-tags start with “/” and the strings in the end-tags must match those in the start-

tags. Between the start-tag and the end-tag, there can be one value or other pairs of

keys and values. If an XML object consists of key/value pairs within a start-tag, the

contents within the start-tag are describing the attributes of the XML object.

29

<pipesLevel id="TheBeginning" name="The beginning" qid="111" version="1.0">

<useSpecialLevel>1</useSpecialLevel>

<enableMagnify>0</enableMagnify>

<partitionLasers>1</partitionLasers>

<partitionUnit>

<num>1</num>

<denom>1</denom>

</partitionUnit>

<laserObject>

<className>FGLaserSink</className>

<inputDirection>WEST</inputDirection>

<index>88</index>

<targetValue>

<num>1</num>

<denom>1</denom>

</targetValue>

</laserObject>

<laserObject>

<className>FGLaserSource</className>

<outputDirection>SOUTH</outputDirection>

<index>32</index>

</laserObject>

<laserObject>

<className>FGLaserDivider</className>

<inputDirection>NORTH</inputDirection>

<outputDirection>EAST</outputDirection>

<index>82</index>

</laserObject>

<concept>

<name>bend</name>

<level>1</level>

</concept>

<numMoves>1</numMoves>

</pipesLevel>

Fig. 8: XML object showing level “111” of the Refraction game

30

Figure 8 shows the first object in the XML file of the Refraction game data.

The first line is the start-tag of the object, inside which there are four pairs of keys

and values. Similar to Section 2.4, the keys “id”, “name”, “qid”, and “version” are

the attributes of the first XML object. There are also other attributes in other XML

objects, such as “type”, “time”, and “representation”. Besides the attributes, the XML

objects contain various key/value pairs. More details about the XML objects will be

discussed in Section 4.4.

4.2 Programming in R

As discussed in Section 2.2, R has different data types, such as lists, arrays, and

data frames. These data types provide multiple options to handle the datasets. In

order to manipulate the Refraction data file of XML format, the functions described

in the following sections will read in the XML dataset and reorganize the data from

its original format into R data frames. The names of the R functions are listed below:

1. loadXML

2. XML attrs

3. XML laserObject

4. laserObject

5. XML info

More details about these functions will be discussed in the following sections.

31

4.3 Input XML data

Many programming languages have built-in functions to aid software developers

with the processing of XML data. The XML package in R (Temple Lang, 2012)

contains built-in functions for handling data of XML format. It provides the parser

to read in XML data and store the data in R as a list data type. The first function

listed above, loadXML, is written to input XML data. The following output is the

R list produced by the loadXML function based on the first XML object (Figure 8).

> data = loadXML("FGSpecialLevelswithQids_joined.XML")

> data[[1]]

$useSpecialLevel

[1] "1"

$enableMagnify

[1] "0"

$partitionLasers

[1] "1"

$partitionUnit

$partitionUnit$num

[1] "1"

$partitionUnit$denom

[1] "1"

$laserObject

$laserObject$className

[1] "FGLaserSink"

32

$laserObject$inputDirection

[1] "WEST"

$laserObject$index

[1] "88"

$laserObject$targetValue

$laserObject$targetValue$num

[1] "1"

$laserObject$targetValue$denom

[1] "1"

$laserObject

$laserObject$className

[1] "FGLaserSource"

$laserObject$outputDirection

[1] "SOUTH"

$laserObject$index

[1] "32"

$laserObject

$laserObject$className

[1] "FGLaserDivider"

$laserObject$inputDirection

33

[1] "NORTH"

$laserObject$outputDirection

[1] "EAST"

$laserObject$index

[1] "82"

$concept

$concept$name

[1] "bend"

$concept$level

[1] "1"

$numMoves

[1] "1"

$.attrs

id name qid version

"TheBeginning" "The Beginning" "111" "1.0"

4.4 Data and information in the XML objects

After the XML objects are read into R, we want to extract data and information

of particular interest. There are 174 XML objects contained in the Refraction game

34

data file. Each XML object is corresponding to a specific game level. The following

sections will describe the R functions in detail.

4.4.1 Attributes data frame

There are pairs of keys and values within the start tags of all XML objects.

These are defined as the attributes of the objects. These attributes provide general

information about the XML objects. The function XML attrs returns a data frame

that contains the attributes for each of the XML objects.

> attrs_frame = XML_attrs(data)

> head(attrs_frame)

id name qid version type time representation

1 TheBeginning The Beginning 111 1.0 <NA> <NA> <NA>

2 LearningBenders Fender Bender 112 1.0 <NA> <NA> <NA>

3 MultipleBends Step Up 142 1.0 <NA> <NA> <NA>

4 LearningBlockers On the Rocks <NA> 1.0 <NA> <NA> <NA>

5 urn U-Turn <NA> 1.0 <NA> <NA> <NA>

6 Halfsies Halfsies 113 1.0 <NA> <NA> <NA>

Recall that the “qid” value can serve as the primary identifier for the JSON

objects in Chapter 2. Unfortunately, many of the XML objects miss the “qid” value

in their attributes and it doesn’t make sense to use“qid”as the only identifier for XML

objects any more. As can be seen in the data frame above, the “version” attribute

has the same value “1.0” for all objects. Many of the objects don’t have the last

three keys (“type”, “time”, and “representation”) in their attributes. The following

data frames will include the attributes “id”, “name”, and “qid” as the identifiers for

the XML objects.

35

4.4.2 Laser objects data frames

Each of the XML objects contains one or more keys that are called “laserObject”.

Each “laserObject” key provides detailed information of a specific laser object in a

game level. The “laserObject” keys are of particular interest since the laser objects

can be referred to as the “pieces” in the JSON objects, which we have discussed in

Section 2.4. The function XML laserObject returns a data frame containing the

counts of the laser objects in each level of the Refraction game.

> laserObject_frame = XML_laserObject(data)

> head(laserObject_frame)

id name qid FGLaserSource FGLaserSink FGLaserModifier

1 TheBeginning The Beginning 111 1 1 0

2 LearningBenders Fender Bender 112 1 1 0

3 MultipleBends Step Up 142 1 1 0

4 LearningBlockers On the Rocks <NA> 1 1 0

5 urn U-Turn <NA> 1 1 0

6 Halfsies Halfsies 113 1 2 0

FGLaserDivider FGLaserRecombiner FGLaserSubtractor FGLaserBlocker FGCoin Edge

1 1 0 0 0 0 0

2 4 0 0 0 0 0

3 2 0 0 0 0 0

4 3 0 0 4 0 0

5 2 0 0 0 0 0

6 4 0 0 4 0 0

As shown in the data frame above, there are nine kinds of laser objects that

exist in the 174 levels of the game. These are “FGLaserSource”, “FGLaserSink”,

“FGLaserModifier”, “FGLaserDivider”, “FGLaserRecombiner”, “FGLaserSubtractor”,

“FGLaserBlocker”, “FGCoin”, and “Edge”. While the function XML laserObject

36

returns how many of these objects exist in each level of the game, we need another

function that can extract information about every single piece of the laser objects.

In order to extract this additional information, the function laserObject gets

all the keys and values for each laser object and presents the data in a data frame.

The function takes two arguments: the XML data and the name of the laser ob-

ject of interest. For example, if we are interested in the detailed information about

“FGLaserSource”, then we can call the function as follows:

> source_frame = laserObject(data, "FGLaserSource")

> head(source_frame)

id name qid className outputDirection index

1 TheBeginning The Beginning 111 FGLaserSource SOUTH 32

2 LearningBenders Fender Bender 112 FGLaserSource WEST 78

3 MultipleBends Step Up 142 FGLaserSource EAST 71

4 LearningBlockers On the Rocks <NA> FGLaserSource EAST 71

5 urn U-Turn <NA> FGLaserSource EAST 42

6 Halfsies Halfsies 113 FGLaserSource WEST 57

targetValue.num targetValue.denom

1 <NA> <NA>

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

If we are interested in the “FGLaserBlocker”, then we call the same function and

change the second argument:

> blocker_frame = laserObject(data, "FGLaserBlocker")

> head(blocker_frame, n = 8)

37

id name qid className index

1 LearningBlockers On the Rocks <NA> FGLaserBlocker 95

2 LearningBlockers On the Rocks <NA> FGLaserBlocker 85

3 LearningBlockers On the Rocks <NA> FGLaserBlocker 75

4 LearningBlockers On the Rocks <NA> FGLaserBlocker 65

5 Halfsies Halfsies 113 FGLaserBlocker 43

6 Halfsies Halfsies 113 FGLaserBlocker 33

7 Halfsies Halfsies 113 FGLaserBlocker 63

8 Halfsies Halfsies 113 FGLaserBlocker 73

As shown in the data frame above, “FGLaserBlocker” shows up four times in the

XML object with attributes “id”=“LearningBlockers” and “name”=“On the Rocks”

and also four times in the XML object with “id”=“Halfsies” and “name”=“Halfsies”.

In all the returned data frames, the keys “id”, “name”, and “qid” always take up three

columns of the data frames, and together, they serve as the identifiers for the XML

objects. Similar calls to the laserObject function can also be made with all the

other laser objects.

4.4.3 Other keys in the XML objects

Except for the key “laserObject”, the XML objects don’t contain consistent in-

formation. Some of the keys are included in some of the objects, while the rest of

the objects don’t contain similar information. Since all keys may be useful in the

ongoing research, the function XML info returns all keys that show up at least once

and their values in the XML objects, except for “laserObject” keys.

> info_frame = XML_info(data)

> head(info_frame)

id name qid useSpecialLevel enableMagnify

1 TheBeginning The Beginning 111 1 0

2 LearningBenders Fender Bender 112 <NA> <NA>

38

3 MultipleBends Step Up 142 <NA> <NA>

4 LearningBlockers On the Rocks <NA> <NA> <NA>

5 urn U-Turn <NA> <NA> <NA>

6 Halfsies Halfsies 113 <NA> <NA>

partitionLasers partitionUnit.num partitionUnit.denom concept.name

1 1 1 1 bend

2 <NA> <NA> <NA> bend

3 <NA> <NA> <NA> bend

4 <NA> <NA> <NA> bend

5 <NA> <NA> <NA> bend

6 <NA> <NA> <NA> <NA>

concept.level numMoves theme type text concept.name.1 concept.level.1

1 1 1 <NA> <NA> <NA> <NA> <NA>

2 5 1 <NA> <NA> <NA> <NA> <NA>

3 5 1 <NA> <NA> <NA> <NA> <NA>

4 6 <NA> <NA> <NA> <NA> <NA> <NA>

5 3 <NA> <NA> <NA> <NA> <NA> <NA>

6 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

Overall, all the data contained in the XML data file can be extracted and pre-

pared for future analyses in R.

39

CHAPTER 5

CONCLUSIONS

5.1 Summary of research

The research presented in this report allows to manipulate data from JSON and

XML format datasets from the educational Refraction game. All the research objec-

tives described in the last three chapters were accomplished using the R programming

language, since R provides a rich environment for working with data and useful tools

for handling various datasets. As a result of this research, the data of the Refraction

game stored in JSON and XML format are reorganized into data frames, and the data

frames can be used for future analyses and visualizations (Aghababyan et al., 2013).

Another task accomplished in this research is the implementation of the “JSON tree”,

which provides a simple visual presentation of the structure of a JSON object. The

functions built to plot JSON trees do not only work with the current Refraction JSON

file, but they can also generate “tree” plots for other JSON data files.

5.2 Future research

The ultimate goal of this research is to study the effect of the Refraction game

on students’ learning, and, in particular, whether students become more familiar with

fraction computations or not after playing this game. The research presented here will

serve as a start of future, more general research to analyze data from the Refraction

game. These future studies most likely will involve more statistical techniques that

have been implemented in R. Overall, this will allow us to decide whether educational

games such as the Refraction game are helpful for students who are learning early

mathematics topics. More importantly, this research will hopefully help the game

40

designers to develop advanced versions of educational games so that future generations

of students will have further benefits from playing such games.

41

REFERENCES

Aghababyan, A., Symanzik, J. and Martin, T. (2013), Visualization of “states” in

online educational games, in ‘Proceedings of the 59th World Statistical Congress,

Hong Kong, China, International Statistical Institute’.

URL: http: // www. statistics. gov. hk/ wsc/ CPS007-P7-S. pdf

Al-Khalifa, S., Jagadish, H., Koudas, N., Patel, J. M., Srivastava, D. and Wu, Y.

(2002), Structural joins: A primitive for efficient XML query pattern matching,

in ‘Data Engineering, 2002. Proceedings. 18th International Conference on’, IEEE,

pp. 141–152.

Andersen, E., Liu, Y.-E., Snider, R., Szeto, R., Cooper, S. and Popović, Z. (2011),

On the harmfulness of secondary game objectives, in ‘Proceedings of the 6th Inter-

national Conference on Foundations of Digital Games’, ACM, pp. 30–37.

Andersen, E., Liu, Y.-E., Snider, R., Szeto, R. and Popović, Z. (2011), Placing a value

on aesthetics in online casual games, in ‘Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems’, ACM, pp. 1275–1278.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. and Yergeau, F. (1997),

‘Extensible Markup Language (XML)’, World Wide Web Journal 2(4), 27–66.

Center for Game Science CGS (2012), ‘Refraction’.

URL: http: // centerforgamescience. org/ portfolio/ refraction/

Couture-Beil, A. (2012), ‘rjson: JSON for R’, R package version 0.2.8 .

Crockford, D. (2006), ‘JSON: The fat-free alternative to XML’, URL: http: // www.

json. org/ fatfree. html .

http://www.statistics.gov.hk/wsc/CPS007-P7-S.pdf
http://centerforgamescience.org/portfolio/refraction/
http://www.json.org/fatfree.html
http://www.json.org/fatfree.html

42

Japan Broadcasting Corporation NHK (2011), ‘NHK Japan Prize’.

URL: http: // www. nhk. or. jp/ jp-prize/ english/ index. html

jQuery4u.com (2013), ‘Online JSON tree viewer tool’.

URL: http: // www. jquery4u. com/ demos/ online-json-tree-viewer/

R Development Core Team (2012), R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–

900051–07–0 (http://www.R-project.org/).

Spector, P. (2008), Data manipulation with R, Springer, New York, NY.

Temple Lang, D. (2011), ‘Rjsonio: Serialize R objects to JSON, JavaScript object

notation’, R package version 0.95-0 .

Temple Lang, D. (2012), ‘XML: Tools for parsing and generating XML within R and

S-plus.’, R package version 3.9-4 .

Wang, G. (2011), Improving data transmission in web applications via the translation

between XML and JSON, in ‘2011 Third International Conference on Communica-

tions and Mobile Computing (CMC)’, IEEE, pp. 182–185.

Wilhelm, M. (2009), ‘Tree representations: Graphics libraries for displaying hierar-

chical data’, Code4Lib Journal .

URL: http: // journal. code4lib. org

http://www.nhk.or.jp/jp-prize/english/index.html
http://www.jquery4u.com/demos/online-json-tree-viewer/
http://www.R-project.org/
http://journal.code4lib.org

43

APPENDICES

44

APPENDIX A

R CODE

A.1 R code for Chapter 2

###

library(RJSONIO)

library(plyr)

###

###Input JSON file.

loadJSON = function(json_file) {

data = fromJSON(json_file)

return(data)

}

###General information data frame.

JSON_general = function(data) {

n = length(data)

concepts = list(n)

game_id = list(n)

qid = list(n)

concepts = sapply(data, "[", "concepts")

concepts = sapply(concepts, paste, collapse = ", ")

game_id = sapply(data, "[", "game_id")

qid = sapply(data, "[", "qid")

basic = as.data.frame(cbind(concepts, game_id, qid))

45

return(basic)

}

###bin_pieces data frame

JSON_bin_pieces = function(data) {

tempList = list(0, 0)

nameList = list("qid", "bender")

names(tempList) = nameList

newFRAME = as.data.frame(tempList)

for (i in 1:length(data)) {

name = names(data[[i]]$"bin_pieces")

number = list()

for (j in 1:length(data[[i]]$"bin_pieces")) {

number[[j]] = length(data[[i]]$"bin_pieces"[[j]])

}

number = c(data[[i]]$"qid", number)

names(number) = c("qid", name)

frame = as.data.frame(number)

List = list(newFRAME, frame)

newList = do.call(rbind.fill, List)

newFRAME = as.data.frame(newList)

}

bin_pieces = newFRAME[-1,]

bin_pieces[is.na(bin_pieces[,])] = 0

return(bin_pieces)

}

46

###board_pieces data frame

JSON_board_pieces = function(data) {

tempList = list(0, 0)

nameList = list("qid", "source")

names(tempList) = nameList

newFRAME = as.data.frame(tempList)

for (i in 1:length(data)) {

name = names(data[[i]]$"board_pieces")

number = list()

for (j in 1:length(data[[i]]$"board_pieces")) {

number[[j]] = length(data[[i]]$"board_pieces"[[j]])

}

number = c(data[[i]]$"qid", number)

names(number) = c("qid", name)

frame = as.data.frame(number)

List = list(newFRAME, frame)

newList = do.call(rbind.fill, List)

newFRAME = as.data.frame(newList)

}

board_pieces = newFRAME[-1,]

board_pieces[is.na(board_pieces[,])] = 0

return(board_pieces)

}

###win_pieces data frame

JSON_win_pieces = function(data) {

tempList = list(0, "bender")

47

nameList = list("qid", "pieces")

names(tempList) = nameList

newFRAME = as.data.frame(tempList)

for (i in 1:length(data)) {

name = names(data[[i]]$"win_pieces")

number = list()

for (j in 1:length(name)) {

order = 1

for (k in 1:length(data[[i]]$"win_pieces"[[j]])) {

number = list(data[[i]]$"qid", name[j],

data[[i]]$"win_pieces"[[j]][k], order)

names(number) = c("qid", "pieces", "id", "order")

order = order + 1

frame = as.data.frame(number)

List = list(newFRAME, frame)

newList = do.call(rbind.fill, List)

newFRAME = as.data.frame(newList)

}

}

}

win_pieces = newFRAME[-1,]

return(win_pieces)

}

###Detailed information of each piece.

pieces = function(data, PieceName) {

frame1 = JSON_bin_pieces(data)

frame2 = JSON_board_pieces(data)

48

list = list()

index = 1

if (length(which(PieceName == names(frame2))) != 0) {

for (i in 1:length(data)) {

if (length(data[[i]]$"board_pieces"

[PieceName][[1]]) > 0) {

for (j in 1:length(data[[i]]$

"board_pieces"[PieceName][[1]])) {

if (length(data[[i]]$"board_pieces"

[PieceName][[1]][[j]]) == 1) {

list[[index]] = c(data[[i]]$"qid",

data[[i]]$"board_pieces"

[PieceName][[1]][[j]]$"id")

names(list[[index]]) = c("qid", "id")

index = index + 1

} else if (length(data[[i]]$"board_pieces"

[PieceName][[1]][[j]]) > 1) {

if (length(data[[i]]$"board_pieces"

[PieceName][[1]][[j]]$"value") == 1) {

list[[index]] = c(data[[i]]$"qid",

data[[i]]$"board_pieces"

[PieceName][[1]][[j]]$"id",

data[[i]]$"board_pieces"

[PieceName][[1]][[j]]$"value")

names(list[[index]]) = c("qid", "id", "value")

index = index + 1

} else if (length(data[[i]]$"board_pieces"

[PieceName][[1]][[1]]$"value") > 1) {

list[[index]] = c(data[[i]]$"qid",

data[[i]]$"board_pieces"

49

[PieceName][[1]][[j]]$"id",

data[[i]]$"board_pieces"

[PieceName][[1]][[j]]$"value"[[1]],

data[[i]]$"board_pieces"

[PieceName][[1]][[j]]$"value"[[2]])

names(list[[index]]) = c("qid", "id", "denom_value", "num_value")

index = index + 1

}

}

}

}

}

} else if (length(which(PieceName == names(frame1))) != 0) {

for (i in 1:length(data)) {

if (length(data[[i]]$"bin_pieces"[PieceName][[1]]) > 0) {

for (j in 1:length(data[[i]]$"bin_pieces"[PieceName][[1]])) {

if (length(data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]) == 1) {

list[[index]] = c(data[[i]]$"qid",

data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]$"id")

names(list[[index]]) = c("qid", "id")

index = index + 1

} else if (length(data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]) > 1) {

if (length(data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]$"value") == 1) {

list[[index]] = c(data[[i]]$"qid",

data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]$"id",

data[[i]]$"bin_pieces"

50

[PieceName][[1]][[j]]$"value")

names(list[[index]]) = c("qid", "id", "value")

index = index + 1

} else if (length(data[[i]]$"bin_pieces"

[PieceName][[1]][[1]]$"value") > 1) {

list[[index]] = c(data[[i]]$"qid",

data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]$"id",

data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]$"value"[[1]],

data[[i]]$"bin_pieces"

[PieceName][[1]][[j]]$"value"[[2]])

names(list[[index]]) = c("qid", "id", "denom_value", "num_value")

index = index + 1

}

}

}

}

}

} else {

stop("Never seen such a piece!!")

}

frame = do.call(rbind, list)

return(frame)

}

###Call the functions.

data = loadJSON("refraction.json")

51

general_frame = JSON_general(data)

bin_frame = JSON_bin_pieces(data)

board_frame = JSON_board_pieces(data)

win_frame = JSON_win_pieces(data)

piece_frame1 = pieces(data, "source")

piece_frame2 = pieces(data, "splitter")

piece_frame3 = pieces(data, "usu")

52

A.2 R code for Chapter 3

###Input JSON file.

library(RJSONIO)

data = fromJSON("refraction.json")

###Generate a matrix of JSON tree structure.

JSONtree = function(JSONlist) {

#First level keys.

nodes = unique(c(names(JSONlist), names(unlist(JSONlist))))

nodeslist = strsplit(nodes, "\\.")

first = unique(sapply(nodeslist, "[", 1))

col = max(sapply(nodeslist, length))

mat = matrix(, length(first), col)

mat[, 1] = first

#Other level keys.

for(k in 2:col) {

n = length(which(is.na(mat[, k - 1]) == FALSE))

for(i in 1:n) {

row = which(is.na(mat[, k - 1]) == FALSE)[i]

branch = nodeslist

for(j in 1:(k - 1)) {

where = which(sapply(branch, "[", j) == mat[row:1, j]

[min(which(!is.na(mat[row:1, j])))])

branch = branch[where]

}

branch = sapply(branch, "[", k)

[is.na(sapply(branch, "[", k)) == FALSE]

branch = unique(branch)

53

newmat = matrix(, length(branch), col)

newmat[, k] = branch

if(row < dim(mat)[1]) {

mat = rbind(mat[1:row,], newmat,

mat[(row + 1):dim(mat)[1],])

} else if(row == dim(mat)[1]) {

mat = rbind(mat[1:row,], newmat)

}

}

}

class(mat) = "JSONtree"

return(mat)

}

###Print the JSON tree.

print.JSONtree = function(matrix) {

#Inherit output.

if(!inherits(matrix, "JSONtree"))

stop("Wrong Data!!")

matrix[is.na(matrix)] = " "

newmat = matrix(" ", dim(matrix)[1], 1)

matrix = cbind(newmat, matrix)

newmat = matrix(" ", 1, dim(matrix)[2])

matrix = rbind(newmat, matrix)

matrix[1, 1] = "ROOT"

mat = matrix

matrix = mat[1,]

newmat = matrix(" ", 1, dim(mat)[2])

54

for (i in 2:dim(mat)[1]) {

matrix = rbind(matrix, newmat, mat[i,])

}

for(i in 1:(dim(matrix)[2] - 1)) {

where = which(matrix[, i] != " ")

if(length(where) == 1) {

nwhere = which(matrix[, i + 1] != " ")

matrix[(where + 1):max(nwhere), i] = "|"

} else if(length(where) > 1) {

for(j in 1:(length(where) - 1)) {

if(max(which(matrix[(where[j] + 2),] != " ")) > i) {

nwhere = which(matrix[where[j]:

where[j + 1], i + 1] != " ")

matrix[(where[j]:where[j + 1])

[2:max(nwhere)], i] = "|"

}

}

if(where[length(where)] < dim(matrix)[1]) {

nwhere = which(matrix[where[length(where)]:dim(matrix)[1], i + 1] != " ")

if(length(nwhere) > 0) {

matrix[(where[length(where)]:dim(matrix)[1])[2:max(nwhere)], i] = "|"

}

}

}

}

mat = matrix[, 1]

newmat = matrix(" ", dim(matrix)[1], 1)

for (i in 2:dim(matrix)[2]) {

mat = cbind(mat, newmat, matrix[, i])

}

for(i in 1:(dim(matrix)[2] - 1)) {

55

for(j in 1:dim(matrix)[1]) {

k = 2 * i

if(mat[j, k - 1] == "|" && mat[j, k + 1] != " " &&

mat[j, k + 1] != "|") {

mat[j, k] = "- - - -"

}

}

}

write.table(format(mat, justify = "centre"),

row.names = F, col.names = F, quote = F)

}

###Generate union tree.

uniontree = function(data) {

nodes = unique(names(unlist(data)))

nodes = unique(sub("[0-9]?$", "", nodes))

nodes = unique(sub("[0-9]?$", "", nodes))

nodeslist = strsplit(nodes, "\\.")

nodeslist = sapply(nodeslist, "[", -1)

first = unique(sapply(nodeslist, "[", 1))

col = max(sapply(nodeslist, length))

mat = matrix(, length(first), col)

mat[, 1] = first

for(k in 2:col) {

n = length(which(is.na(mat[, k - 1]) == FALSE))

for(i in 1:n) {

row = which(is.na(mat[, k - 1]) == FALSE)[i]

branch = nodeslist

56

for(j in 1:(k - 1)) {

where = which(sapply(branch, "[", j) == mat[row:1, j]

[min(which(!is.na(mat[row:1, j])))])

branch = branch[where]

}

branch = sapply(branch, "[", k)[is.na(sapply(branch, "[", k)) == FALSE]

branch = unique(branch)

newmat = matrix(, length(branch), col)

newmat[, k] = branch

if(row < dim(mat)[1]) {

mat = rbind(mat[1:row,], newmat, mat[(row + 1):dim(mat)[1],])

} else if(row == dim(mat)[1]) {

mat = rbind(mat[1:row,], newmat)

}

}

}

class(mat) = "JSONtree"

return(mat)

}

###Generate intersection tree.

intersecttree = function(data) {

nodes = unique(c(names(data[[1]]), names(unlist(data[[1]]))))

nodeslist1 = strsplit(nodes, "\\.")

col = max(sapply(nodeslist1, length))

list = list()

for(j in 1:col) {

newlist = unique(lapply(nodeslist1, "[", 1:j))

k = 1

57

for(i in 1:length(newlist)) {

if(is.na(newlist[[k]][length(newlist[[k]])])) {

newlist[[k]] = NULL

k = k - 1

}

k = k + 1

}

list = c(list, newlist)

}

nodeslist = list

for(l in 1:length(data)) {

nodes = unique(c(names(data[[l]]), names(unlist(data[[l]]))))

nodeslist1 = strsplit(nodes, "\\.")

col = max(sapply(nodeslist1, length))

list = list()

for(j in 1:col) {

newlist = unique(lapply(nodeslist1, "[", 1:j))

k = 1

for(i in 1:length(newlist)) {

if(is.na(newlist[[k]][length(newlist[[k]])])) {

newlist[[k]] = NULL

k = k - 1

}

k = k + 1

}

list = c(list, newlist)

}

nodeslist = intersect(nodeslist, list)

}

first = unique(sapply(nodeslist, "[", 1))

col = max(sapply(nodeslist, length))

58

mat = matrix(, length(first), col)

mat[, 1] = first

for(k in 2:col) {

n = length(which(is.na(mat[, k - 1]) == FALSE))

for(i in 1:n) {

row = which(is.na(mat[, k - 1]) == FALSE)[i]

branch = nodeslist

for(j in 1:(k - 1)) {

where = which(sapply(branch, "[", j) == mat[row:1, j]

[min(which(!is.na(mat[row:1, j])))])

branch = branch[where]

}

branch = sapply(branch, "[", k)[is.na(sapply(branch, "[", k)) == FALSE]

branch = unique(branch)

newmat = matrix(, length(branch), col)

newmat[, k] = branch

if(row < dim(mat)[1]) {

mat = rbind(mat[1:row,], newmat, mat[(row + 1):dim(mat)[1],])

} else if(row == dim(mat)[1]) {

mat = rbind(mat[1:row,], newmat)

}

}

}

class(mat) = "JSONtree"

return(mat)

}

###Call Functions.

59

matrix = JSONtree(data[[1]])

print(matrix)

uniontree(data)

intersecttree(data)

60

A.3 R code for Chapter 4

###

library(XML)

library(plyr)

###

###Input XML file.

loadXML = function(filename) {

xml_data = xmlParse(filename)

xml_list = xmlToList(xml_data)

return(xml_list)

}

###Attributes data frame

XML_attrs = function(data) {

pipeList = c(llply(data[1]$pipesLevel$.attrs))

nameList = c(llply(names(data[1]$pipesLevel$.attrs)))

names(pipeList) = nameList

frame = as.data.frame(pipeList)

for (i in 2:length(data)) {

pipeList = c(llply(data[i]$pipesLevel$.attrs))

nameList = c(llply(names(data[i]$pipesLevel$.attrs)))

names(pipeList) = nameList

frame = rbind.fill(frame, as.data.frame(pipeList))

}

return(frame)

}

61

###The counts of laserObject's.

XML_laserObject = function(data) {

xml_list = data

templist = c(rep(list(as.factor(0)), 4), rep(list(0), 9))

nameList = c(llply(names(xml_list[1]$pipesLevel$.attrs)),

"FGLaserSource", "FGLaserSink",

"FGLaserModifier", "FGLaserDivider",

"FGLaserRecombiner", "FGLaserSubtractor",

"FGLaserBlocker", "FGCoin", "Edge")

names(templist) = nameList

newFRAME = as.data.frame(templist)

for (i in 1:length(xml_list)) {

laserObject = xml_list[[i]][names(xml_list[[i]]) == "laserObject"]

pipeList = list()

nameList = list()

FGLaserSource = 0

FGLaserSink = 0

FGLaserModifier = 0

FGLaserDivider = 0

FGLaserRecombiner = 0

FGLaserSubtractor = 0

FGLaserBlocker = 0

FGCoin = 0

Edge = 0

if(length(laserObject) == 0) {

laserObject = laserObject

} else if(length(laserObject) > 0) {

for (j in 1:length(laserObject)) {

if(laserObject[[j]]$className == "FGLaserSource") {

62

FGLaserSource = FGLaserSource + 1

} else if(laserObject[[j]]$className == "FGLaserSink") {

FGLaserSink = FGLaserSink + 1

} else if(laserObject[[j]]$className == "FGLaserModifier") {

FGLaserModifier = FGLaserModifier + 1

} else if(laserObject[[j]]$className == "FGLaserDivider") {

FGLaserDivider = FGLaserDivider + 1

} else if(laserObject[[j]]$className == "FGLaserRecombiner") {

FGLaserRecombiner = FGLaserRecombiner + 1

} else if(laserObject[[j]]$className == "FGLaserSubtractor") {

FGLaserSubtractor = FGLaserSubtractor + 1

} else if(laserObject[[j]]$className == "FGLaserBlocker") {

FGLaserBlocker = FGLaserBlocker + 1

} else if(laserObject[[j]]$className == "FGCoin") {

FGCoin = FGCoin + 1

} else if(laserObject[[j]]$className == "Edge") {

Edge = Edge + 1

}

}

}

pipeList = c(llply(xml_list[i]$pipesLevel$.attrs),

FGLaserSource, FGLaserSink, FGLaserModifier, FGLaserDivider,

FGLaserRecombiner, FGLaserSubtractor,

FGLaserBlocker, FGCoin, Edge)

nameList = c(llply(names(xml_list[i]$pipesLevel$.attrs)),

"FGLaserSource", "FGLaserSink", "FGLaserModifier",

"FGLaserDivider","FGLaserRecombiner", "FGLaserSubtractor",

"FGLaserBlocker", "FGCoin", "Edge")

names(pipeList) = nameList

frame = as.data.frame(pipeList)

63

List = list(newFRAME, frame)

newList = do.call(rbind.fill, List)

newFRAME = as.data.frame(newList)

}

name = c("id", "name", "qid",

"FGLaserSource", "FGLaserSink", "FGLaserModifier",

"FGLaserDivider","FGLaserRecombiner", "FGLaserSubtractor",

"FGLaserBlocker", "FGCoin", "Edge")

newFRAME = newFRAME[, names(newFRAME) %in% name]

newFRAME = newFRAME[2:dim(newFRAME)[1],]

rownames(newFRAME) = 1:nrow(newFRAME)

return(newFRAME)

}

###Detailed information of each laser object.

laserObject = function(data, laser) {

list = list()

index = 1

for (i in 1:length(data)) {

if(length(which(names(data[[i]]) == "laserObject")) == 0) {

index = index

} else {

for (j in 1:length(names(data[[i]]) == "laserObject")) {

if(data[[i]][names(data[[i]]) == "laserObject"]

[[j]]$"className" == laser) {

list[[index]] = c(llply(data[i]$pipesLevel$.attrs),

unlist(data[[i]]

[names(data[[i]])

== "laserObject"][[j]]))

64

index = index + 1

}

}

}

}

frame = as.data.frame(list[[1]])

for (i in 2:length(list)) {

frame = rbind.fill(frame, as.data.frame(list[[i]]))

}

frame = frame[, !(names(frame) %in% c("version", "time", "representation"))]

laser = frame[, !(names(frame) %in% c("id", "name", "qid"))]

id = frame$id

name = frame$name

qid = frame$qid

frame = cbind(id, name, qid, laser)

return(frame)

}

###Other keys of each XML object.

XML_info = function(data) {

list = list()

for (i in 1:length(data)) {

temp = data[[i]][names(data[[i]]) != "laserObject"]

temp = temp[names(temp) != ".attrs"]

list[[i]] = c(llply(data[i]$pipesLevel$.attrs), unlist(temp))

}

frame = as.data.frame(list[[1]])

for (i in 2:length(list)) {

frame = rbind.fill(frame, as.data.frame(list[[i]]))

}

65

frame = frame[, !(names(frame) %in% c("version", "time", "representation"))]

return(frame)

}

###Call the functions.

data = loadXML("FGSpecialLevelswithQids_joined.XML")

attrs_frame = XML_attrs(data)

laserObject_frame = XML_laserObject(data)

info_frame = XML_info(data)

laser1 = laserObject(data, "FGLaserSource")

laser2 = laserObject(data, "FGLaserBlocker")

	Processing and Manipulation of Data Collected from the Educational On-Line Game Refreaction
	Recommended Citation

	Abstract
	List of Figures
	1 Introduction
	1.1 The Refraction game
	1.2 JSON data
	1.3 XML data
	1.4 Data manipulation using R
	1.5 Objectives

	2 Reorganizing Refraction game data from the original JSON format into R data frames
	2.1 Structure of JSON objects
	2.2 Programming in R
	2.3 Input JSON data
	2.4 Data and information in the JSON objects
	2.4.1 General information frame
	2.4.2 Bin_pieces data frame
	2.4.3 Win_pieces data frame
	2.4.4 Board_pieces data frame
	2.4.5 Detailed information of pieces

	3 Implementation of a JSON tree in R
	3.1 Introduction
	3.2 The basic JSON tree
	3.3 Union and intersection of JSON trees

	4 Reorganizing Refraction game data from the original XML format into R data frames
	4.1 Structure of XML objects
	4.2 Programming in R
	4.3 Input XML data
	4.4 Data and information in the XML objects
	4.4.1 Attributes data frame
	4.4.2 Laser objects data frames
	4.4.3 Other keys in the XML objects

	5 Conclusions
	5.1 Summary of research
	5.2 Future research

	Appendices
	Appendix A R Code
	A.1 R code for Chapter 2
	A.2 R code for Chapter 3
	A.3 R code for Chapter 4

