
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2013

Digital Labeling and Narrative Mapping in Mobile Remote Audio Digital Labeling and Narrative Mapping in Mobile Remote Audio

Signage: Verbalization of Routes and Generation of New Verbal Signage: Verbalization of Routes and Generation of New Verbal

Route Descriptions from Existing Route Sets Route Descriptions from Existing Route Sets

Tharun Tej Tammineni
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tammineni, Tharun Tej, "Digital Labeling and Narrative Mapping in Mobile Remote Audio Signage:
Verbalization of Routes and Generation of New Verbal Route Descriptions from Existing Route Sets"
(2013). All Graduate Plan B and other Reports. 301.
https://digitalcommons.usu.edu/gradreports/301

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/301?utm_source=digitalcommons.usu.edu%2Fgradreports%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DIGITAL LABELING AND NARRATIVE MAPPING IN MOBILE REMOTE AUDIO

SIGNAGE: VERBALIZATION OF ROUTES AND GENERATION OF NEW

VERBAL ROUTE DESCRIPTIONS FROM EXISTING ROUTE SETS

by

Tharun Tej Tammineni

A report submitted in partial fulfillment

 of the degree requirements for the degree

of

MASTER OF SCENCE

in

Computer Science

Approved:

_____________________ _____________________

Dr. Vladimir A. Kulyukin Dr. Daniel Watson

Major Professor Committee Member

Dr. Curtis Dyreson

Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

2013

ii

Copyright © Tharun Tej Tammineni 2013

All Rights Reserved

iii

ABSTRACT

Independent navigation is a great challenge for people with visual impairments. In

this project, we have designed and implemented an assisted navigation solution based on

the ability of visually impaired travelers to interpret and contextualize verbal route

descriptions. Previous studies have validated that if a route is verbally described in

sufficient and appropriate manner then VI can use their orientation and mobility skills to

successfully follow the route.

In this project, we do not consider the issue how the VI will interpret the route

descriptions, but we aim to identify and generate new verbal route descriptions from the

existing route descriptions. We discuss different algorithms that we have used for

extracting the landmarks, building graphs and generation of new route descriptions from

existing route info.

 (68 pages)

iv

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Vladimir

Kulyukin for the continuous support of my Masters Study and research, for his patience,

motivation, enthusiasm and immense knowledge. It is largely because of him that I

completed this work. He always gave me achievable deadlines for the project completion.

I thank my committee members, Dr. Dan Watson, Dr. Curtis Dyreson for their

helpful feedback.

I would also like to thank all my friends who helped me in some way or other in

completing the project.

 Tharun Tej Tammineni

v

CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

CONTENTS .. v

TABLE OF TABLES ... vii

TABLE OF FIGURES ... viii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: RELATED WORK .. 4

RoboCart ... 4

ShopTalk ... 5

ShopMobile ... 6

Navigation Systems .. 7

CHAPTER 3: TASK ANALYSIS .. 10

CHAPTER 4: ANDROID SMARTPHONE APPLICATION FOR DIGITAL

LABELING AND NARRATIVE IN REMOTE INFRARED AUDIO SIGNAGE 12

Hardware Used.. 13

Technical Details .. 14

CHAPTER 5: ANDROID APP DEMO .. 18

CHAPTER 6: VERBAL ROUTES FRAMEWORK .. 22

Introduction ... 22

Volunteered Geographic Information ... 24

vi

Framework .. 24

Route Analysis Engine .. 25

CHAPTER 7: LANDMARK AUTOTAGGING .. 26

Sentence Segmentation or Sentence Detection ... 26

Tokenization ... 27

Part-Of-Speech Tagger ... 28

Named Entity Recognition .. 29

Chunking ... 32

CHAPTER 8: PATH INTERFERENCE .. 33

CHAPTER 9: ROUTE NAVIGATION ANDROID APP .. 48

Mode 01 .. 48

Mode 02 .. 49

Application Installation Instructions ... 50

Database Schema .. 51

Android App Execution Technical Details ... 52

CHAPTER 10: LIMITATIONS AND FUTURE WORK .. 55

CHAPTER 11: CONCLUSION ... 56

REFERENCES ... 57

vii

TABLE OF TABLES

Table 4.1 ID URL title database table .. 15

Table 8.1 Route Sentences Table storing all the sentences .. 44

Table 8.2 Table containing route landmarks ... 44

Table 8.3Table storing adjacent landmarks .. 45

Table 8.4 Table showing updated list of adjacent landmarks ... 46

Table 9.1 Database for ID and corresponding URL ... 48

viii

TABLE OF FIGURES

Figure 2.1 RoboCart (left); RoboCart’s handle with Belkin 9-numeric keypad (right) 5

Figure 2.2 ShopTalk’s hardware ... 6

Figure 2.3 Barcode scanner with the added stabilizers, resting of a shelf lip 6

Figure 2.4 ShopMobile system consisting of camera equipped smart phone in hard......... 7

Figure 4.1 Demonstration of shopping using Android smartphone in RIAS equipped mall

... 13

Figure 4.2 RIAS Transmitters fitted to aisles ... 13

Figure 4.3 RIAS Receiver ... 14

Figure 4.4 Android Mobile Devices ... 14

Figure 5.1 Requesting user to turn on the Bluetooth .. 18

Figure 5.2 Menu Options Display ... 19

Figure 5.3 Preferences Screen ... 19

Figure 5.4 Showing list of Bluetooth enabled devices ... 20

Figure 5.5 Pairing Request on the App ... 21

Figure 5.6 Receiving the ID and displaying on the browser... 21

Figure 6.1 Google Maps standard user interface .. 22

Figure 6.2 Example walking route generated by Google Maps .. 23

Figure 7.1 Trie data structure representing tokens “SAN JOSE,” “SANTACLARA,”

“LEHI,” and “PROVO” .. 31

Figure 8.1 Route Map from Tandoori Oven to Western Surgery Center 33

Figure 8.2 Route Map from Brooklane Apartments to Spectrum 34

Figure 8.3 Algorithm to insert the tokens in to Trie data structure 37

ix

Figure 8.4 Algorithm to search for words matching the prefix in Trie data structure 38

Figure 8.5 Partial Graph representing Landmarks using few set of Landmarks 39

Figure 8.6 Partial Graph representing Landmarks using other few set of Landmarks 39

Figure 8.7 Final Graph with intersections representing Landmarks using all Landmarks 39

Figure 8.8 Algorithm to store the landmarks as a Adjacency List in the database 41

Figure 8.9 Algorithm for graph Traversal between the start and destination landmarks . 42

Figure 9.1 Database Schema Used.. 51

Figure 9.2 App receiving ID ... 53

Figure 9.3 Landmarks that can be reached from received ID landmark 53

Figure 9.4 Route description between the start and end lanmakrs 54

1

CHAPTER 1

INTRODUCTION

In a recent study by the World Health Organization (WHO, 2012), it was reported

that a total of about 285 million people are visually impaired across the globe (VI), of

whom 39 million are blind and 246 have low vision. Approximately 90% of visually-

impaired individuals are living in developing countries. The main cause of visual

impairment is uncorrected refractive errors. Accessibility and mobility are big problems

to visually impaired people as compared to sighted individuals.

Usually, VI people are accompanied by another person in a given environment to

aid and guide them. This says that the visually impairment causes them to be dependent

on others, which can affect their mental health. Inability to navigate an environment is a

major hurdle for VI individuals (LaPlante & Carlson, 2000).

VI people face challenges navigating in different environments. The motivation of

this project is Shopping independently is the next biggest things that needs to happen

after driving. One of the most challenging environments is the shopping complex (Food

Marketing Institute Research Department, 2006). A recent study by the Food Marketing

Institute Research Department (2006), shows that a typical modern supermarket store has

an average of 45,000 products and has a median store size of 4,600 square meters.

There are assistive devices such as wheelchairs, scooters, canes, and guide dogs

that help VI individuals be more mobile and independent. These may be helpful for

navigation in open spaces (Helal, Moore, & Ramachandran, 2001), but in a place like a

shopping mall, it is difficult for them to identify the products and get the required items

independently.

2

The study in Kulyukin & Pentico (2007), states that grocery shopping is a barrier

for independence, and they usually go with sighted guides or they do not go at all. So,

there is a need for a device that would help them to do grocery shopping independently

and a help them to navigate to different locations.

The navigation for a sighted person is totally different from a VI because the

sighted person can make observations, such as noticing sidewalks, intersections,

directions. But for a VI person he/she must physically encounter these sidewalks and

intersection to actively sense them with a cane, but he/she may not know the orientations

with respect to the direction.

The other motivation for building this automatic verbal route engine is that

existing maps like Google Maps (2013) and Mapquest (2013) are geared primarily to

sighted individuals. VI individuals require more detailed verbal route descriptions for

independent travel.

The objective of this project is to help the VI person to navigate dynamic and

complex environments by following verbal route directions and narrative maps. A

narrative map is a verbal description of instructions that are used to assist people in

navigation. Wayfinding is the process of planning how to get to a desired destination. We

also aim at building new set of verbal route descriptions from the existing set of route

descriptions.

This report is organized as follows: Chapter 2 provides the related work and

information of different researches done on assistive technology. Chapter 3 analyses the

task and provides brief information on different stages of shopping. We also briefly

describe the solution we implement. Chapter 4 provides the technical details of the

3

hardware and software components that are used in developing the app. Chapter 5

presents the demo of the app. Chapter 6 provides information regarding the existing

maps, and then we discuss the verbal route framework that is used by VI people. Chapter

7 describes the process of extraction of the landmarks and the tools used. Chapter 8

provides the details of generating verbal routes and the algorithms used. A detailed

example is also provided. Chapter 9 provides the demo of the navigation app. Chapters

10 and 11 discuss limitations, future work, and conclusions of the study.

4

CHAPTER 2

RELATED WORK

In order to assist VI people with shopping effectively in grocery stores, different

tools have been invented. The user has two tasks when shopping: to identifying the

product that he/she is holding, and to find where a product is located within the store. A

few VI people have partial vision so they can navigate within the store, but they find

difficulties in identifying and reading the labels of the products. A magnifying glass helps

to some extent, but is not always useful for everyone.

A portable device called i.d. mate Quest (En-Vision America, 2013), is a talking

barcode scanner that uses text-to-speech to help individuals identify products. It has a

built-in database with additional information like instructions, ingredients, and item

warnings. This device has the MP3 capabilities that allow the user to store and access

audio files. Users can thus record instructions to help them in finding products, but this

would not scale for large data sets. There are other devices that use image recognition to

inform the details of the product to the user, but none of them are helpful in localizing the

product. Some of the research has aimed in solving these issues.

RoboCart

RoboCart is a shopping cart with a robotic base (Brooks & Montanez, 2006). This

cart helps the users to navigate to the respective product location that they have entered.

The cart has a laser based Monte Carlo Markov localization (MCL), which interacts with

the RFID tags placed on mats that are present on the floor to identify its location (Fox,

1998). Disadvantages of this tool are the cost and speed at which it travels. Shoppers

were able to move faster than the RoboCart.

Figure 2.1 RoboCart (left);

ShopTalk

ShopTalk is a wearable small

identify specific products

a barcode reader and a numeric keypad.

A topological map is built by connecting the

areas, and cashier lanes, and is stored in the computational device.

the data using the numeric keypad,

directions from the map.

the products; each barcode is a topological position for locating every product in the store

through verbal directions.

(left); RoboCart’s handle with Belkin 9-numeric

is a wearable small-scale system that helps VI people to effectively

identify specific products (Nicholson, Kulyukin, & Coster, 2009). This device consists of

a barcode reader and a numeric keypad.

A topological map is built by connecting the store entrance, aisle entrances, open

and is stored in the computational device. When the user enters

using the numeric keypad, the system generates verbal route and product search

. A super markets places barcodes on the front of shel

each barcode is a topological position for locating every product in the store

through verbal directions.

5

numeric keypad (right)

scale system that helps VI people to effectively

. This device consists of

store entrance, aisle entrances, open

When the user enters

the system generates verbal route and product search

barcodes on the front of shelves beneath

each barcode is a topological position for locating every product in the store

6

Figure 2.2 ShopTalk’s hardware

Figure 2.3 Barcode scanner with the added stabilizers, resting of a shelf lip

ShopMobile

ShopMobile is a camera equipped smartphone that is placed in a hard case with

two plastic stabilizers (Kulyukin & Kutiyanawala, 2010). These stabilizers are used align

the camera with the barcode. The barcode scanning method identifies the barcodes and

7

upon successful detection the system requests the user to slide the phone along the shelf.

Once barcode is identified, the user can pick up the product.

Figure 2.4 ShopMobile system consisting of camera equipped smart phone in hard

Navigation Systems

Talking Lights is a system that uses existing light fixtures in indoor environments

to provide localization and navigation support (T.L., LLC, 2009). Since the tool uses

store lighting systems, it is confined to indoor-based areas.

Talking Signs is a device developed by the Smith-Kettlewell Eye Research

Institute that uses infrared transmitters for navigating the user (Crandall, Bentzen, Myers,

& Brabyn, 2001). In this tool, transmitters encode and transmit recordings of human

speech. The user holds a receiver while actively moving it in order to find the transmitted

signals. Once the signal is detected Talking Signs decodes the speech and navigates the

user towards the signals. It can be used in indoor and outdoor environments.

In his book, Lynch (1960) discusses on how the people perceive cities and, states

that people orient themselves using mental maps in urban situations. He describes way-

finding as a strategic link in which people organize the elements in a pattern. According

8

to Lynch, the mental maps usually consist of five elements, namely paths, edges, districts,

nodes, and landmarks that are necessary to organize urban mobility. Lynch also describes

Legibility as the ease at which people can understand the layouts of a place. The five

elements are explained below:

• Paths are the places where people usually travel. They can be walkways,

streets, and railroads. These are the most frequent elements that people will

have in their image while they travel.

• Edges can be boundaries, dividing lines, or line breaks in continuity. These

are usually linear elements that are not considered as paths by the observer.

Edges can be railroad cuts, shores, and walls.

• Districts are large sections of city separated by identity or character. These

are medium-to-large areas of the city, usually believed as two dimensional, in

which the persons can mentally enter. Districts can be center, midtown, and

suburbs.

• Nodes are usually strategic focus points in the city that are used for

orientation like junctions and squares. These can be places of a break in

transportation, a crossing or convergence of paths, or moments of shift from

one structure to another.

• Landmarks are points of references used to identify where the person is

located. They can be physical objects like buildings, signs, or stores.

In order to make sure that the person’s orientation is correct, , a clear mental map

is required. A mental map is an individual’s own map of their known world, and makes

people feel emotionally secure. Lynch states that mobility is a process of identifying the

9

environment through clear maps rather than just free flowing movement. He says that

design should be made in three related movements, namely mapping, learning, and

shaping. First, people should have clear mental map of their environment. Second, in the

given environment they should learn how to travel. Third, in the given environment

people should be able to operate and act.

10

CHAPTER 3

TASK ANALYSIS

Shopping usually involves three stages for a sighted individual who has a list of

items that needs to be purchased. In the first stage the user pulls a cart in a particular

direction and starts searching for the product that is listed on his/her shopping list. Let us

call this current item the target item. In the second stage, the user searches for the target

item and proceeds to the second item on the shopping list if the target item is found. In

the third stage, the user travels from the last target item to the cashier counter, pays, and

leaves the store.

The first and third stages are simpler than the second stage. Here we will focus on

the second stage of the shopping task. This second stage can be seen as two sub stages:

product localization and product identification. In product localization, the particular

product location is identified, and then the user navigates to that aisle. In product

identification the user makes sure that the product he/she is looking at is the exact target

item. This is important because two products may look similar in shape and dimensions

until the user reads the text on the product. For example, two different cereal boxes may

appear to be similar in shape and dimension but hold different types of cereal. In this

study, we will only focus on product localization, i.e. navigating the user towards the

aisle that contains the desired products.

To meet this aim, we generate a set of verbal route descriptions for the user to

navigate effectively within the store, as well as in outside environments. We use the

concept of RIAS in order to find the aisles that contain different products.

11

In our experiment it is assumed that the shopping store is equipped with RIAS

transmitters and that the user will be carrying a RIAS receiver that has Bluetooth enabled

in it. Whenever the user moves around the shopping store he/she will receive different

signals with respect to transmitters. Once the signal is received by the receiver it is

captured by the Android mobile device using the Bluetooth communication. There will

be a prebuilt database associated with this signal ID that is stored. Whenever we receive

this ID, the device will check against the database and then give the aisle details in

speech format so that the user can hear.

Edwards, Ungar, and Blades (1998) state that the way-finding process for sighted

is different from the same process for the VI. VI people require clearer verbal route

descriptions that include landmarks. Sometimes, the VI person will not be familiar with

the adjacent landmarks and will miss the shortest routes to their destinations. In our

experiment, we aim to generate a new set of verbal routes from the existing route

descriptions. This concept works in any dynamic and complex environment. Wikipedia is

considered as a source for our experiment’s verbal route descriptions. We break each

route description into sentences and identify the landmarks. A graph is constructed with

all the extracted landmarks. We store the corresponding sentences for each landmark. In

this experiment, it is assumed that each RIAS transmitter is associated with a landmark.

We know the set of landmarks that are reachable from that particular landmark. Once the

user selects his destination landmark then we traverse the graph, identify the landmarks,

and replace it with sentences stored to frame new verbal route descriptions. A detailed

procedure with examples is discussed in Chapters 8 and 9.

12

CHAPTER 4

ANDROID SMARTPHONE APPLICATION FOR DIGITAL LABELING AND

NARRATIVE IN REMOTE INFRARED AUDIO SIGNAGE

The aim of this app is to help VI people to shop independently without requiring

any assistance from other people. It is assumed that the shopping mall has RIAS

transmitters installed on its premises. A shopper carries a wireless Bluetooth-enabled

RIAS receiver and an Android smartphone with Wi-Fi or 3/4G and Bluetooth.

As the VI person walks through the store the RIAS receiver will receive the RIAS

transmitter IDs. The Android application will poll the RIAS receiver via Bluetooth to

receive the ID of the currently noted transmitter. Upon receiving the ID, the application

will translate the ID to a URL. Once the URL is retrieved, the data is extracted and will

be either shown in the browser or be read out loud using the Android text to speech

module so that the VI person can hear the data.

13

Figure 4.1 Demonstration of shopping using Android smartphone in RIAS equipped mall.

Hardware Used

Figure 4.2 RIAS Transmitters fitted to aisles

14

Figure 4.3 RIAS Receiver

Figure 4.4 Android Mobile Devices

Technical Details

The data related to the RIAS transmitter IDs are stored in the database as follows:

15

ID URL TITLE

0x0100 Food snacks

0x0200 Frozen

0x0300 Breakfast

0x0400 Cosmetics

0x0500 Vegetables

0x0600 Electronics

0x0700 Dairy Products

 Table 4.1 ID URL title database table

 For developing this app, we used an Android mobile device that has Bluetooth

enabled and software with a minimum SDK version of 10. It also has the ability to

connect to the internet using Wi-Fi or 3/4G.

The Android SDK provides the classes that manage the Bluetooth functionality,

such as scanning for devices, connecting with devices and managing the data transfer

between them (Android, n.d.). The following are the few steps that are to be implemented

for successful communication of the devices using the Bluetooth module.

1. Setting Up Bluetooth: Before starting the application it is necessary to check

if the device has the Bluetooth support. If the mobile supports Bluetooth, but

it is turned off, then we will prompt the user to turn on the Bluetooth by

displaying a dialog box.

2. Bluetooth Permissions: If the application wants to use the Bluetooth features,

then we need to declare either one of the permissions namely Bluetooth or

Bluetooth Admin. If the application wants to request a connection, accept a

16

connection or transfer the data and then give the app Bluetooth permission in

the Android manifest file.

3. Finding Devices: Once the Bluetooth is turned on we need to find the devices

in which we are interested in communicating. In this step we scan for the

Bluetooth enabled devices in the local area. We obtain the name and unique

MAC address of each device. Using this we can initiate the connection.

During the first connection, a pairing request is automatically presented to the

user. Once pairing is complete, we can scan for already paired devices that are

stored.

4. Querying Paired Devices and Discovering Devices: It is useful to check

already paired devices to see if our target device already exists. We discover

the devices through scanning for about 12 seconds, then the list of available

devices with their Bluetooth names will be displayed. Since the discovery

process is heavy and consumes lot of resources, we need to stop the discovery

before a connection is established.

5. Connecting Devices: To establish the communication between the devices we

need to establish a connection between them. This is a server client

architecture where one will open a server socket and other device must initiate

a connection. The server and client have established a successful connection if

they are on same RFCOMM channel.

6. Managing Connection and Establishing Communication: After the two

devices are connected then each one will have a Bluetooth socket. This socket

is used for the data exchange. In our app there is a dedicated thread that will

17

constantly scans the hardware device in order to fetch the RIAS IDs. Once the

IDs are received, we perform identify the aisle in which the user currently

resides.

18

CHAPTER 5

ANDROID APP DEMO

The following is a demo of the operations for establishing a connection.

Open the App: If the Bluetooth is not turned on then it will prompt the user to

turn it on in order to proceed further.

Figure 5.1 Requesting user to turn on the Bluetooth

Menu Options: The user has 4 options available in the Menu as displayed.

• Close option: Used to close the app.

• Search for a device: Used to scan for the devices.

• Use default device: Used to store a default device that can be connected

automatically.

• Preferences: Provides the user with different options that he can enable.

19

Figure 5.2 Menu Options Display

Preferences Screen: This screen provides the user different options. First, the

user can either hear the description of the product or he/she can view it in the browser.

Second, the user can use the Bluetooth or run the device without enabling the Bluetooth.

Figure 5.3 Preferences Screen

20

Scanning for devices: We scan and select the device with which want to

establish the communication.

Figure 5.4 Showing list of Bluetooth enabled devices

Selecting the Target device: Once the target device is selected, the user will be

asked to pair it.

21

Figure 5.5 Pairing Request on the App

Connecting and Listening to the Receiver: The app will be listening to the

receiver and when it receives the ID it would either display the text in the browser or it

will be read out loud using the text to speech engine.

Figure 5.6 Receiving the ID and displaying on the browser

22

CHAPTER 6

VERBAL ROUTES FRAMEWORK

Introduction

Edwards, Ungar, and Blades (1998) state that the route descriptions provided by

sighted people and VI people are different. VI people have longer memory in describing

routes compared to that of sighted individuals. The route descriptions provided by the VI

include tactile information and hazards like protrusions in the environment, which are not

provided by sighted individuals.

Observations in the route descriptions provided by the VI included more

information on distance, directions, landmarks, and obstacles along the routes (Bramberg,

1983). From this information we can understand that route descriptions provided for the

VI must be different from the descriptions provided for sighted people. The map oriented

websites like Google Maps (2013), MapQuest (2013), and YahooMaps (2013) are not

useful for VI people because much of the information is presented in visual form.

Figure 6.1 Google Maps standard user interface

23

Figure 6.1 shows the information in the standard user interface, which is not

helpful for VI people. A Google map provides walking descriptions for particular routes.

These route descriptions are clearly not really useful for the VI because a warning

message stating “Use caution–This route may be missing sidewalks or pedestrian paths”

is not clearly identified in the text. Other reasons that these tools are not useful for the VI

are the lack of designation if the streets are one-way or two-way, lack of the number of

intersections that are present, no information if intersections have traffic signals or stop

signs, and no description of possible obstacles such as low hanging tree branches on the

sidewalk. Moreover, the description does not say when exactly the turn is to be

performed, it just has only turns and distances.

Figure 6.2 Example walking route generated by Google Maps

24

Volunteered Geographic Information

Volunteered Geographic Information (VGI) was initiated in order to overcome the

shortcomings of the commercial mapping services discussed above. It encourages the

volunteers to provide data used to build maps, so VGI sites often contain more

information compared to others (Goodchild, 2007). The reason is that people living in a

particular location will be more familiar with those areas than others. There are different

VGI websites that provide professionally created GIS websites. One of them is

OpenStreetMap, which provides tools that are used for creating large sets of map data

(Haklay & Weber, 2008). These map data sets are similar to Google Maps. In

OpenStreetMap it has a facility where a user can edit and add the information regarding

landmarks such as sidewalks and buildings.

Wikimapia is a VGI site that takes advantage of user’s local GIS knowledge

(TerraMetrics, 2013). These maps contain additional information of building names,

descriptions, photos etc. Trailpeak is a VGI site that allows users to edit, view and

download information related to activities like hiking, biking, and kayaking in the U.S.

and Canadian areas (TrailPeak, 2013). The important feature of this site is that users are

familiar with the areas as they live or travel so they can upload and edit the information

of those trails and be treated as more credible sources. These routes are helpful for the VI

people to navigate comfortably.

Framework

From above studies we know that the VI people can use their everyday skills and

abilities in order to travel independently if they have clear verbal route descriptions. In

order to model the environment as a set of route descriptions, we filter the landmarks

25

from text and build a directed graph of these landmarks. A landmark is defined as a

location, object in the environment, building, or intersection that a VI person may

mention in his/her route description.

A route description usually has three properties that navigate the person from start

to end location, namely starting location, ending location, and a natural language

description. In our app we store the natural language descriptions and we break them into

sentences for analysis. From these route sentences we extract the landmarks and maintain

them in a hierarchy. Each landmark is stored in a table that is associated with the

sentence ID. This process of identifying the landmarks in the route sentences is known as

auto tagging.

Auto Tagging serves different purposes. First, the users can export landmark tags

along with natural language route sentences. Secondly, users having little information of

route areas that they are travelling can get more detailed information of the landmarks

present in their path. It also gives the sequence of landmarks that occur. Thirdly, we can

develop new routes from these landmarks in natural language terms.

Route Analysis Engine

In the Route Analysis Engine we do two things: auto tagging and path

interference. To perform auto tagging of landmarks we have used several different

natural language processing tools described in Chapter 7. After auto tagging is complete,

we infer new routes from the existing routes, which is known as path interference. For

example, if we have a route from A to C with B as an intersection, and E to D with B as

an intersection, then we can infer new routes from A to E and A to D with B as an

intersection.

26

CHAPTER 7

LANDMARK AUTOTAGGING

The written route descriptions are usually provided in natural language text which

can be understood by humans but not handled efficiently by computers. The data should

be present in a well-structured format in order for computers to better understand. One of

the techniques used to extract meaningful information from unstructured data is

Information Extraction (IE) (Cowie & Lehnert, 1996).

Wide research on IE has been carried out over a decade, and now different tools

are available that can be used for information extraction. One among them is the Apache

OpenNLP, which is a machine learning based toolkit used for processing natural

language text (The Apache Software Foundation, 2010). OpenNLP supports different

natural language processing tasks such as:

1. Sentence Segmentation

2. Tokenization

3. Part-of- speech

4. Named entity extraction

5. Chunking

6. Parsing

7. Coreference resolution

Sentence Segmentation or Sentence Detection

This detector can detect sentences from a given text. It considers the punctuation

character marks and intelligently identifies if the punctuation is really the end of the

sentence or not. For Example, it takes care of notations like Mr. and Jan.. Sentence

27

detection is the first step, even before the text is tokenized. In OpenNLP most of the

components expect input in the form of segmented sentences.

API Usage:

• Step 1: “en-sent.bin” is the model used for sentence detection. It should be

loaded first. InputStream modelIn = new FileInputStream("en-sent.bin");

• Step 2: Instantiate the SentenceDetectorME. SentenceDetectorME

sentenceDetector = new SentenceDetectorME(model);

• Step 3: The Sentence Detector can output an array of strings where each

string is one sentence. String sentences[] = sentenceDetector.sentDetect("

The route begins at the junction of SR-48 on the rural western end of West

Jordan, near copperton. It continues north as a two-lane road and curves

northwest past its junction with 7800 South. ");

This would trim out the extra spaces before, between, and after the input string.

The sentence array will contain two statements.

Tokenization

The OpenNLP tokenizer divides the input character sequence into tokens. Tokens

can be words, punctuation, or numbers. OpenNLP has different tokenizer

implementations:

• Whitespace Tokenizer: The sequence of words containing non spaces are

identified as tokens.

• Simple Tokenizer: Tokens are sequences of same character.

• Learnable Tokenizer: Detects tokens based on the probability model.

28

Different OpenNLP components work with text tokenized in a specified manner.

We should make sure that tokenization is done in the required format of the components.

API Usage:

• Step 1: “en-token.bin” is the model used for sentence tokenization. It

should be loaded first.

• Step 2: Instantiate Tokenizer. Tokenizer tokenizer = new

TokenizerME(model);

• Step 3: The tokenizer outputs the array of strings where each string is an

token. String tokens[] = tokenizer.tokenize("The highway widens to four

lanes."); The output tokens contains “The”, “highway”, “widens”, “to”,

”four”, ”lanes”,”.”

Part-Of-Speech Tagger

The POS tagger identifies the tokens with their respective word type based on the

context used and tokens itself. To predict the correct pos tag from the tag set, OpenNLP

POS tagger uses a probability model. A token can belong to multiple pos tags depending

on the context used and the token. A tag dictionary is used in order to limit the possible

tags for a token.

API usage:

• Step 1: “en-pos-maxnet.bin” is the model used for POS. We also load the pos

model into memory.

modelIn = new FileInputStream("en-pos-maxent.bin"); POSModel model =

new POSModel(modelIn);

• Step 2: POSTagger is instantiated.

29

POSTaggerME tagger = new POSTaggerME(model);

Step 3: The input should be a tokenized sentence represented by array. This

will tag the most likely pos tag sequence for a sentence. The tags array will

have one part-of-speech tag for each token in the input array.

String sent[] = new String[]{“The”, “highway”, “widens”, “to”, ”four”,

”lanes”,”.”}; String tags[] = tagger.tag(sent)

Named Entity Recognition

The Named Entity Recognition is used to find the named entities and numbers in

a given text. It is used to identify the landmarks from the text. The entities can be of

different types like name of the person or name of the location, so it has different models

that are trained based on the entity type. For example to find the name of a person in the

text we use the “en-ner-person.bin” model. To find names of locations we use the “en-

ner-location.bin” model. OpenNLP has different pre-trained name finder models.

API Usage:

• Step 1: We load the name finder

InputStream modelIn = new FileInputStream("en-ner-location.bin");

TokenNameFinderModel model = new

TokenNameFinderModel(modelIn);

• Step 2: NameFinderME is instantiated.

 NameFinderME nameFinder = new NameFinderME(model);

Few important things that are to be taken care here are NameFinderME

should be called from only one thread as it is not thread safe. The input for

this can be of any form like documents, sentences, tokens.

30

• Step 3: nameSpans arrays contains the named entities.

String sentence[] = new String[]{ "freeway", "connects","the", "county",

"Salt" "Lake", "City" };

Span nameSpans[] = nameFinder.find(sentence);

Problems and Solutions: A problem we noticed here is identifying exact

landmark names. For example, we get the input in the form of individual tokens where

the set of tokens may form a landmark and an individual token may not. In our case we

receive the tokens “Salt,” “Lake,” “City” and we know it is a name of city when

combined “Salt Lake City.” However, when the individual token is considered it is not a

name of the city.

One approach for addressing this issue is to store these landmarks in a file and

load it into the memory and scan for words starting with the prefix of the current word.

The data structure that we use to store these landmarks is Trie (Wikimedia Foundation,

2013).

Trie Datastructure: Trie is an ordered tree data structure that stores key values

as strings. An important property it possesses is all the descendants of a node will have

the same prefix of the string associated with that node and root is an empty string.

We use this data structure in order to store the tokens in each of the node values.

Whenever we get a token, we check it against this trie and check if there are any words

starting with the same prefix, and if so then we continue to search the next token by

combining it with previous. In this way we search until the word is found or it has

reached the end of the tree.

31

Figure 7.1 shows the sample format of the trie data structure we use to store the

landmarks. When we get a token we check it against this data structure, and if it returns

true then we will combine this current token with its next incoming token and check it in

this way.

For example, let the first token be “SAN.” This is checked against the data

structure and returns true. Now we will combine this with the next token, “JOSE,” so our

search token will be “SAN JOSE.” When we search this combined token we get a true

value returned so we will check if it is contained in our database. If so we stop here and

continue with other tokens or else we combine it with the next token and search until we

get false or the desired word is found.

Figure 7.1 Trie data structure representing tokens “SAN JOSE,” “SANTACLARA,”

“LEHI,” and “PROVO”

32

Chunking

In chunking the text is arranged in the form of groups, noun groups, and verb

groups.

API Usage:

• Step 1: We use “en-chunker.bin” model for chunker. It should be loaded on to

memory from disc.

InputStream modelIn = new FileInputStream("en-chunker.bin");

ChunkerModel model = new ChunkerModel(modelIn)

• Step 2: ChunkerME is instantiated.

ChunkerME chunker = new ChunkerME(model)

• Step 3: Now the chunker is ready to tag data. It has a method called chunk

which takes two inputs namely array of Strings from text and array of POS

with respect to the words.

String tag[] = chunker.chunk(sent, pos); sent as an array of strings, pos is an

array of parts of speech for each string in sent array.

These are the few apis that we have considered for our purpose. We describe the

different algorithms that we have used in the next chapter.

33

CHAPTER 8

PATH INTERFERENCE

 In his study, Golledge (1993) states that VI people see the world in terms of

routes. They usually remember the routes as a set of landmarks. VI people may fail to

identify that the routes share common areas and landmarks if they are in an unfamiliar

area, which makes them travel in longer routes potentially missing short cuts. We aim to

solve this problem by generating new routes from the existing set of routes.

Figure 8.1 Route Map from Tandoori Oven to Western Surgery Center

The Figures 8.1 and 8.2 show the sample route maps of two different start and end

locations that sharing the same intersection point. From these two maps we can generate

new set of routes. In the following example we will show how the landmarks are

34

extracted, construction of graphs using these landmarks, and traversing and displaying

route descriptions for any two given landmarks.

Figure 8.2 Route Map from Brooklane Apartments to Spectrum

Sample Route Description: SR-152 begins at the four-way intersection of Van

Winkle Expressway and 900 East just south of Big Cottonwood Creek (SR-71

turns west from 900 East onto Van Winkle Expressway, which defaults onto 700

East). Immediately to the east, there is an unsignalized three-way intersection (at

which SR-152 traffic does not stop) with Murray-Holladay road (former SR-174),

which heads straight east (SR-71 intersects the western portion of former SR-174

just west of SR-152's starting point). From there, SR-152 heads southeast as a

35

four-lane divided highway with limited at-grade access through an undeveloped,

low-lying, and wooded strip of land. For a short distance in this area, the road

forms the border between Murray and Millcreek Township, but south of that, SR-

152 is always the border between Murray and Holladay. Past an intersection at

the terminus of former SR-181 (1300 East), the route dips south-southeast to

intersect with 5600 South near Cottonwood High School and a small commercial

area. The route once again veers to the southeast before crossing the Jordan and

Salt Lake Canal in a low-density residential area (including horse properties).

Upon reaching the intersection with Vine Street (former SR-173) and 6100 South

(a very short street connecting to the northern section of Highland Drive), the

Van Winkle Expressway enters a commercial area and soon turns into (the

southern section of) Highland Drive; a short one-way segment of Highland Drive

provides an alternate route between the (much wider) northern and southern

segments of that street for northbound vehicles. South of the 6100 South

intersection, SR-152 has six lanes and sidewalks and loses its wide unpaved

median in favor of a center turn lane. The route terminates seven-tenths of a mile

later at an interchange with I-21 (The Apache Software Foundation, 2010).

 We used Wikipedia as a source for extracting the text. During the extraction of

text if any word was hyperlinked, then it is stored in a file in order to check if it is a valid

landmark or not. The following are the different stages in path inference:

Stage 1: Landmark Autotagging

• Step 1: The text is divided into sentences using the OpenNLP sentence

splitter.

36

• Step 2: Each sentence is the given to OpenNLP sentence tokenizer in order to

divided the sentence into tokens.

• Step 3: Each token is passed to OpenNLP, The NamedEntityRecognition is a

module of OpenNLP that it has already trained with set of popular data. If the

token matches the trained data then it will be identified as a landmark.

• Step 4: If the token is identified as a landmark by the tool then we store it. If

the POS tagger identifies it as a noun and tool does not identify it as a

landmark then we check this token against our custom build data structure

called Trie, in order to verify if this is a valid landmark.

• Step 5: If our data structure returns true, then we will store this into our set of

landmarks.

The following are the algorithms that are used to store the tokens and search the tokens.

37

Function INSERT_INTO_TRIE(Token, CurrentNode)

Input Params:

 Token: Input string that needs to be stored.

 CurrentNode: Node pointing to our Trie data structure.

1. If Token.length = 0 // Empty string.

2. Set the current word as true.

3. End If.

4. for index =0 to Token.length

5. character = Token.charAt(index)

6. childNode = character

7. If childNode = null

8. childNode = new Trie(character)

9. Add to current childNodes(childNode, character)

10. Else

11. Point childNode to current.

12. End If Else

13. If index = Token.length

14. Set current word as true.

15. End If

16. End For

Figure 8.3 Algorithm to insert the tokens in to Trie data structure

The above algorithm first checks if the input token is empty or if its length is zero.

If it is zero, then it would set the marker as zero. If the input string length is greater than

zero then it will repeat for each character by checking if it is present in the child node of

the current node. If so, it is set to the child node. If the character is not present then we

will create a new node and will point our node to this newly created node. The marker

flag to true if we reach the end of the token.

38

Function PRINT_WORDS_MATCHING_PREFIX(Prefix, Node, EntirePrefix)

Input Params:

 Prefix: Current keyword

 Node: Node pointing to our Trie data structure.

 EntirePrefix: Initially it will be an empty string. We use it in our

 recursive calls for sending the word.

1. If Prefix is not empty

2. character = Prefix.charAt(0)

3. TrieNode child = getChildNode(character)

4. If child is not null

5. word = EntirePrefix + child

6. If child is word

7. Print word

8. End If

9. PRINT_WORDS_MATCHING_PREFIX

10. (prefix.substring(Prefix.indexOf(c)+1), child, word);

11. End If

12.

13. Else

14. //denotes reaching end of prefix,

15. // begin traversing to get matching words.

16. Map<Character, TrieNode> map = current.getChildNodes();

17. If map is not null

18. For each character in map

19. TrieNode child = getChildNode(character)

20. If child is not null

21. word = EntirePrefix +child

22. If child is word

23. Print word

24. End If

25. PRINT_WORDS_MATCHING_PREFIX

26. (“”, child, word);

27. End If

28. End For

29. End If

30. End If Else

Figure 8.4 Algorithm to search for words matching the prefix in Trie data structure

Stage 2: Building a Graph of Landmarks

Once the landmark auto tagging is complete, we build a graph with its landmarks.

39

Figure 8.5 Partial Graph representing Landmarks using few set of Landmarks

Figure 8.6 Partial Graph representing Landmarks using other few set of Landmarks

Figure 8.7 Final Graph with intersections representing Landmarks using all Landmarks

40

 For example, if you want to find a route between L5 and L4 then path will be

L5 L6 L3 L4 after traversing the graph. We can notice that we have inferred a

new route from existing set of routes.

Now after performing the above two stages, Landmark Autotagging and graph

construction, we now traverse the graph for two given points and find the landmarks that

are involved in the path. After this, we will replace this set of landmarks with the

corresponding verbal route descriptions from the database.

Stage 3: Traversing the Graph

In this phase, we will traverse the graph with given two landmarks namely start

and end landmarks and find the path. As we have the graph represented in the adjacency

list we first look for the end landmark in the graph and then we will see what the

landmarks that are prior to this are, and for each such landmark we repeat it until we find

by placing them in a Queue. Once the source is found then we will give the set of

landmarks that are in the path from source to destination.

After the graph traversal is done we will have a list of landmarks that are in the

path if route is found. Now for each landmark we extract the corresponding sentence

from the database and replace them to form a new verbal route description. In order to

clearly understand this example we will go through an example step by step.

41

Function SAVE_ADJACENCY_LANDMARKS(Ladmarks[])

Params:

 Landmarks[] : It is an array of landmarks

1. If Landmarks is not empty and is not null

2. For index =0 to Landmarks length-1

3. //query database to check if the current landmark is present already.

4. List list = query database

5. If list size is greater than zero

6. //We will update the particular record.

7. String existingLandmarks = query database to get landmarks.

8. If(index+1 < landmarks.length)

9. existingAdjacencyLandmarks +=","+landmarks[i+1]; //Storing as comma

10. // separated values

11. End If

12. Update the database with above values.

13. Else

14. String adjacencyLandmarks = ""

15. If(index+1 < landmarks.length)

16. adjacencyLandmarks=landmarks[i+1]

17. End If

18. Insert above values to database.

19. End If Else

20. End For

21. End If

Figure 8.8 Algorithm to store the landmarks as a Adjacency List in the database

42

Function : FIND_PATH(START, DESTINATION)

Params :

 START: Name of the start landmark.

 DESTINATION: Name of the landmark that needs to be reached.

1. Map<String, String> resultingPathMap

2. Stack finalLanmarks //That contains all the intermediate landmarks.

3. Queue landmarksQueue

4. Boolean Flag

5. List adjacencyList

6. List tempRemovedLandmarks

7. landmarks.enque(START)

8. while (landmarksQueue is not Empty)

9. tmpLandmark = landmarksQueue.dequeue()

10. tempRemovedLandmarks.add(tmpLandmark)

11. If (tmpLandmark is DESTINATION)

12. Flag = true

13. Break

14. End If

15. adjacencyList = getAdjacencyMap(tmpLandmark) // from database

16. For each landmark in adjacencyList

17. If (landmark is not present in tempRemovedLandmarks)

18. landmarksQueue.enquue(landmark);

19. resultingPathMap.add(landmark, tmpLandmark)

20. End If

21. End For

22. End while

23. If Flag is true

24. finalLanmarks = Landmarks from resultingPathMap //Iterate and assign.

25. End If

Figure 8.9 Algorithm for graph Traversal between the start and destination landmarks

43

Example Illustration: Let us take the following route descriptions and see how

we can apply the above algorithms.

The route begins at a partial diamond interchange at I-15 on exit 317. The route

continues through Bountiful and turns north on Main Street, a two-lane undivided

road. The route continues north into Centerville (Wikimedia Foundation, 2013).

Stage 1: Landmark Autotagging: We find the landmarks as described in stage 1

and store them in a database. We break the given text into sentences and pass each

sentence in order to identify the landmark.

• Step 1: The route begins at a partial diamond interchange at I-15 on exit 317.

Landmarks :{ diamond interchange, I-15}

• Step 2: The route continues through Bountiful and turns north on Main Street,

a two-lane undivided road.

Landmarks :{ Bountiful, Main Street}

• Step 3: The route continues north into Centerville

Landmarks :{ Centerville}

The following are the tables that are used to store the data.

44

Route_URL Sentence_ID Sentence

http://en.wikipedia.org/w

iki/Utah_State_Route_13

1

S1 The route begins at a partial diamond

interchange at I-15 on exit 317.

http://en.wikipedia.org/w

iki/Utah_State_Route_13

1

S2 The route continues through Bountiful and

turns north on Main Street, a two-lane

undivided road.

http://en.wikipedia.org/w

iki/Utah_State_Route_13

1

S3 The route continues north into Centerville.

Table 8.1 Route Sentences Table storing all the sentences

ID Sentence_ID Landmark

1 S1 diamond interchange

2 S1 I-15

3 S2 Bountiful

4 S2 Main Street

5 S3 Centerville

Table 8.2 Table containing route landmarks

45

Stage 2: Graph Construction:

We use the algorithm shown in Figure 8.7 in order to construct and save the graph

in the adjacency list. Input will be the array of landmarks for a particular route URL. For

example we will take the array of landmark of the route shown above [diamond

interchange, I-15, Bountiful, Main Street, Centerville].

Now we clearly know that landmarks I-15, Bountiful, Main Street, Centerville can

be reached from the diamond interchange. So we place this in the adjacency list. We

similarly do this for each landmark and store it. If the landmark is already in this table

then we update the adjacent landmarks list.

ID Landmark Adjaceny_Landmarks

1 Diamond interchange I-15

2 I-15 Bountiful

3 Bountiful Main Street, Centerville

4 Main Street Centerville

Table 8.3Table storing adjacent landmarks

 If we have another list of landmarks such as [Bountiful, Farmington], we know

that Bountiful is already present so we just update the adjacency list as shown in the

following table.

46

ID Landmark Adjaceny_Landmarks

1 Diamond interchange I-15

2 I-15 Bountiful

3 Bountiful Main Street, Centerville, Farmington

4 Main Street Centerville

Table 8.4 Table showing updated list of adjacent landmarks

Stage 3: Graph Traversal: For given any two points we traverse the graph and

check if the path exists. If so we will have all the landmarks that are in the path. For each

landmark in the path we extract the corresponding sentence and replace it to form a set of

verbal route descriptions.

For example, we have Start Landmark be I-15 and End Landmark is Farmington.

We will push our start landmark in to a queue. Now the queue has [I-15]. While the

queue is not empty we dequeue the Queue and we get value as I-15. We check if this is

our destination, and if so we stop and print, if not for each landmark we will add it in to

the queue and continue, so the queue will have [Bountiful, Main Street, Centerville].

Similarly we update the queue with Bountiful adjacency list as [Main Street, Centerville,

Farmington]. We continue this until we find our destination. The final list of landmarks

involved in the path is [I-15, Bountiful, Farmington].

Now for each of the landmarks we extract the corresponding sentence from the

Route Sentences table:

I-15: The route begins at a partial diamond interchange at I-15 on exit 317.

Bountiful: The route continues through Bountiful and turns north on Main Street,

a two-lane undivided road.

47

Farmington: As the highway enters Farmington, 200 East becomes State Street.

So the final route description will be: The route begins at a partial diamond

interchange at I-15 on exit 317. The route continues through Bountiful and turns north on

Main Street, a two-lane undivided road. As the highway enters Farmington, 200 East

becomes State Street.

48

CHAPTER 9

ROUTE NAVIGATION ANDROID APP

The current application is paired with the new RIAS transmitter. The application

has been tested on Android 2.3+. and Android 4.2. Android 2.2. does not work with the

application. The literature and Bluetooth blogs state that Bluetooth is not stable on

Android 2.2, which appears to be the case. The application can operate in two modes.

Mode 01

On receiving the transmitter's ID, Mode 01 retrieves the text from a URL

associated with the transmitter’s ID. The database has the following schema:

ID URL

x0900 http://some.url.org

Table 9.1 Database for ID and corresponding URL

When the application retrieves "0x0900" from the RIAS transmitter, the

application translates this ID into http://some.url.org, connects to it via Wi-Fi or 3/4G,

and retrieves the associated text.

The user can specify how the info is to be displayed. The info can be displayed

either via a browser or via a TTS. If the user specifies that the info can be displayed in a

browser, then the default browser (this is any Android component that can handle an

Intent whose action is set to ACTION_VIEW) displays it. If the user specifies that the

info is to be TTSed, then the app splits the text into sentences and starts reading it to the

user sentence by sentence. The user can interrupt the TTS stream at any point. The app

also handles events, such as other applications popping up or incoming phone calls. If,

49

for example, there is an incoming phone call, the app stops the TTSing. When the user

comes back to the app, the TTSing starts from the place where it stopped.

Mode 02

The application has been recently extended to work in simulated mode and

generate route descriptions from landmark A to landmark B. The application currently

uses a set of Wikipedia route descriptions. Specifically, a database has been created of

Wikipedia route descriptions from Utah. Each route description is split into sentences,

and each sentence is searched for landmarks. Route descriptions are indexed in terms of

landmarks contained in individual sentences.

The databases are turned into a directed connected graph of landmarks. In Mode

02, the user can simulate the event of the Android phone receiving the ID from a RIAS

transmitter. It is assumed that each ID is associated with a landmark. To simulate this

detection, the user can choose the detected landmark from a list of landmarks.

For example, suppose that this landmark is A. The system then finds all

landmarks associated with the detected landmark via a path of landmarks in the

constructed graph and presents the user with the list of found landmarks. The user can

select the second landmark, which we will call B. The system then generates a route

description from the sentence database extracted from the Wikipedia route descriptions

and presents it to the user. This description can be either displayed in a browser or TTSed

as in Mode 01.

50

Application Installation Instructions

The following are the steps for installing and running the app. Note that to run this

application, you need to have either WiFi Connection or 3/4G connection.

• Step 1: Install the VerbalRouteNavigation.apk. The easiest way is to email

this app as an attachment and then access the email message from your

Android phone and press download. If you have an Eclipse IDE with the

Android plugin, you can use the DDMS perspective to push the app onto your

smartphone.

• Step 2: After successful installation of the app in smartphone, click on the

VerbalRouteNavigation app icon. You will see a screen with edit text field

and Test button. Enter a sample ID 0x0600 in the edit text field and hit Test

button.

• Step 3: Now you will see a list of destination places that can be reached from

the received ID (which represents a particular landmark). Select a landmark

from the list. This is the end landmark. Once the end landmark is chosen the

route description is displayed and read aloud to the user using the Text to

speech Engine.

51

Database Schema

Figure 9.1 Database Schema Used

Route Descriptions Table: This table contains a route URL id and route

description. The routeurlId is the primary key. We have extracted the route descriptions

from Wikipedia and have stored it in this table.

Route Sentences Table: For each route description from Route Descriptions

table we split the paragraph in to sentences using NLP tool and store it in this table. Auto

52

generated sentenseId field is used as a primary key. This table also includes different

attributes namely routeIdUrl (represent the url from where it is extracted), sentenseId (an

integer to represent sentese id), routeDescriptionPosition (position of the sentence in the

particular route description), sentences (sentence from the description).

Route Landmarks Table: This table is used to store the landmarks that are

extracted from the sentences using NLP tool. Each landmark has a unique ID and the

sentence ID that is associated with it.

Route Landmarks Graph Table: This table stores the directed graph in the form

of adjacency list. For each landmark the adjacent landmarks that can be reached from this

particular landmark are stored here.

Android App Execution Technical Details

Assume that we receive an id from a RIAS receiver. The ID has the format

0x0n00, where n can range from 1 to 9. For example, 0x0100, 0x0600, etc. This

restriction is for demo purposes only. The value of n can be arbitrarily large and depends

on the number of destinations in the database. For each ID stored in the database there is

a corresponding landmark and for each land mark there is a list of target landmarks that

can be reached from a given landmark.

Sample Screen 1: Let us say that 0x0200 is the ID received by the App. We

know the current location based on this ID. Based on this particular ID received by the

smartphone the navigator’s current location is determined.

53

Figure 9.2 App receiving ID

Sample Screen 2: When the Test button is punched based on the current location

we will display a list of target locations that can be reached.

Figure 9.3 Landmarks that can be reached from received ID landmark

Once the target location is selected a REST GET call is made to a server with two

parameters namely from (location) and to (location).

On receiving this request by the server, we will traverse the graph between from

location and to location using the adjacency list stored in the RouteLandmarksGraph

table, which gives the set of landmarks that are involved in the journey.

54

Then, for each of these landmarks, we will replace it with the verbal sentences

that are stored in RouteSentences table and return the route description to the user in the

JSON format.

When we receive this route description on client side (Android) we show it to the

user and read out using the text to speech engine.

Sample Screen 3: Let us say that the user has selected Hyrum. Now route

description from Cache County(current location) to Hyrum (target location) is displayed

and read out using Text to speech.

Figure 9.4 Route description between the start and end lanmakrs

55

CHAPTER 10

LIMITATIONS AND FUTURE WORK

Active research is ongoing in order to identify the current location of the user. We

have used the RIAS transmitter for identifying this, and signal modulation can be a

problem at receiving end if two signals collide. If GPS systems get improved this

hardware can be eliminated. In verbal route description generation an initial set needs to

be completed if there is any addition of new route descriptions. It takes more time

because we have to scan every word for identifying landmarks. We are using two

procedures for extracting landmarks, but if the tool is mature enough then we can use

only one procedure thereby reducing the setup time to some extent. Landmarks are

redundant, and while framing the verbal route description from the graph of landmarks

we are not sure which sentence should be replaced if there are many. This can be avoided

if the environment is small enough to avoid redundant landmarks. This idea can be

extended to any complex and dynamic environments. GPS advancements can be used to

locate the user’s current location.

56

CHAPTER 11

CONCLUSION

In this report we first discussed previous research and products built as part of

Computer Science Assistive Technology (CSATL). ShopTalk, ShopMobile, and

RoboCart are few products built in the CSATL lab. We explored existing map providers

that are useful for sighted persons but not as helpful for VI people as they lack some

important information represented verbally. These maps also do not have any information

regarding the landmarks involved in user paths. We developed a verbal route engine that

generates a new set of routes from the existing set, which includes a detailed description

of routes and landmarks involved in the path. We implemented this as Software As A

Service (SAAS), which is deployed over the cloud and can be used by any client using

REST communication. We used OpenNLP tool, as well as our custom procedure, in order

to identify the landmarks. This takes some significant amount of time to do the initial

setup. We can reduce the setup time only when the tool is mature enough to identify all

the landmarks effectively.

57

REFERENCES

Android. (n.d.) Bluetooth. Retrieved from

http://developer.android.com/guide/topics/connectivity/bluetooth.html

The Apache Software Foundation. (2010). Welcome to Apache OpenNLP. Retrieved

from http://en.wikipedia.org/wiki/Utah_State_Route_152

Bramberg, M. (1983). Language and geographich orientation for the blind. In Speech,

Place, and Action, R. J. Jarvella and W. Klein, Eds. John Wiley and Sons Ltd.,

p.203-218

Brooks, C.H., & Montanez, N. (2006). Improved annotation of the blogosphere via

autotagging and hierarchical clustering. Proceeding of the 15
th

 International

Conference on World Wide Web, ACM, (pp.625-632).

Cowie, J., & Lehnert, W. (1996). Information extraction. Communications of the ACM

39, 1, 80-91.

Crandall, W., Bentzen, B. L., Myers, L., & Brabyn, J. (2001). New orientation and

accessibility option for persons with visual impairments: Transportation

applications for remote infrared audible signage.

Edwards, R., Ungar, S., & Blades, M. (1998). Route descriptions by visually impaired

and sighted children from memory and from maps. Journal of Visual Impairment

and Blindness 92(7), 512-521.

En-Vision America. (2013). i.d. mate Quest. Retrieved from

http://www.envisionamerica.com/products/idmate/

Food Marketing Institute Research Department. (2006). The food retailing industry

speaks: Annual state of the industry review.

58

Fox, D. (1998). Markov localization: A probabilistic framework for mobile robot

localization and navigation (Doctoral dissertation). University of Bonn.

Golledge, R. G. (1993). Geography and the disabled: A survey with special reference to

vision impaired and blind populations. Transactions of the Institute of Britis

Geographers, 18, 63-65.

Google. (2013). Google Maps. Retrieved April 2013 from https://maps.google.com/

Goodchild, M. F. (2007). Citizens as voluntary sensors: Spatial data infrastructure in the

World of Web 2.0. International Journal of Spatial Data Infrastructures

Resources, 2, 24-32.

Haklay, M., & Weber, P. (2008). OpenStreetMap: User-generated street maps. IEEE

Pervasive Computer, 7(4), 12-8.

Helal, A. S., Moore, S. E., & Ramachandran, B. (2001). Drishti: An integrated navigation

system for visually impaired and disabled. Proceedings of the 5
th

 IEEE

International symposium on Wearable Computers (pp. 149). Washington, D.C.

Kulyukin, V., Gharpure, C., & Pentico, C. (2007). Robots as interfaces to haptic and

locomotor spaces. Proceedings of the ACM Conference on Human-Robot

Interaction (HRI 2007) (pp. 325-331). Washington, D.C.

Kulyukin, V. & Kutiyanawala, A. (2010). From ShopTalk to ShopMobile: Vision-based

barcode scanning with mobile phones for independent blind grocery shopping.

Kulyukin, V. & Nicholson, J. (2012). Toward blind travel support through verbal route

directions: A path inference algorithm for inferring new route descriptions from

existing route directions.

59

LaPlante, M. P. & Carlson, D. (2000). Disability in the United States: Prevalence and

causes. Washington, DC: U.S. Department of Education.

Lynch, K. (1960). The Image of the City. Cambridge MA: MIT Press.

MapQuest. (2013). MapQuest. Retrieved April 2013 from http://www.mapquest.com/

Nicholson, J., Kulyukin, V., & Coster, D. (2009). ShopTalk: Independent blind shopping

through verbal route directions and barcode scans. Open Rehabilitation Journal,

2, 11-23.

TerraMetrics. (2013). Wikimapia. Retrieved April 2013 from http://wikimapia.org/

T. L., LLC. (2009). Talking lights systems. Retrieved from http://www.talking-lights.com

TrailPeak. (2013). TrailPeak. Retrieved April 2013 from http://www.trailpeak.com/

Wikimedia Foundation. (2013). Trie. Retrieved from http://en.wikipedia.org/wiki/Trie

Wikimedia Foundation. (2013). Utah State route 131. Retrieved from

http://en.wikipedia.org/wiki/Utah_State_Route_131

World Health Organization. (2012). Visual impairment and blindness: Fact sheet no 282.

Retrieved from http://www.who.int/mediacentre/factsheets/fs282/en/index.html

Yahoo. (2013). YahooMaps. Retrieved April 2013 from http://maps.yahoo.com/

	Digital Labeling and Narrative Mapping in Mobile Remote Audio Signage: Verbalization of Routes and Generation of New Verbal Route Descriptions from Existing Route Sets
	Recommended Citation

	Microsoft Word - 351164-text.native.1375469580.docx

