Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1968

A Study of Free Surface and Viscous Effects on Simulated Rough Open Channel Beds

Julian B. Andersen

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Civil and Environmental Engineering Commons

Recommended Citation

Andersen, Julian B., "A Study of Free Surface and Viscous Effects on Simulated Rough Open Channel Beds" (1968). *All Graduate Theses and Dissertations*. 1550. https://digitalcommons.usu.edu/etd/1550

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

ł

A STUDY OF FREE SURFACE AND VISCOUS EFFECTS ON SIMULATED ROUGH OPEN CHANNEL BEDS

:

by

Julian B. Andersen

Return To:

UTAH WATER RESEARCH LABORATORY UTAH STATE UNIVERSITY LOGAN, UTAH 84322

A STUDY OF FREE SURFACE AND VISCOUS EFFECTS ON

SIMULATED ROUGH OPEN CHANNEL BEDS

by

Julian B. Andersen

A dissertation submitted in partial fulfillment of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Civil Engineering

Approved:

Major Professor

Head of Department

Dean of Graduate Studies

UTAH STATE UNIVERSITY Logan, Utah

ACKNOWLEDGMENTS

The writer wishes to express his gratitude and appreciation to the National Science Foundation and the Utah Water Research Laboratory for their financial assistance which made this project possible.

Special ackowledgment is extended to Dr. Dean F. Peterson, major professor and thesis director for his interest, encouragement, guidance, thoroughness and critical review during preparation of this dissertation.

The writer would like to express appreciation to the members of the doctoral committee; Dr. A. A. Bishop, Dr. G. Z. Watters, Dr. L. E. Rich, and Dr. R. L. Hurst for their guidance and assistance.

Appreciation is also extended to the IBM Corporation, G. Moseley and D. Parry who made time available for the completion of this dissertation, and to all others who have helped in any way.

The writer extends recognition and appreciation to his wife, Coleen, for her encouragement, patience and time spent in editing and typing the manuscript.

Julian B. Andersen

TABLE OF CONTENTS

•

										•			
<u>Chapter</u>													Page
I	INTRODUCTION	•	•	•	•	• .	•	•	•.	•	•	•	1
	The Problem	•	•	•	•	•	•	•	٠	•	•	•	1
	Objectives	•	•	•	•	٠	•	•	•	•	•	•	2
II	REVIEW OF LITH	ERATI	URE	•	•	•	•	•	•	0	•	•	: 4
	Open Channel	Ex	peri	ment	5	•	•	•	•	•	•	•	4
	Utah St	tate	Uni	vers	ity	Exper	rime	nts	•	٠	•	•	7
III	DESIGN OF EXPL	ERIM	ENT	•	•	•	•	0	•	•	•	• .	12
	Dimensional	Ana	lysi	S.	•	•	•	•	•	•	•	•	12
	Design of Ex	mer:	imen	t	•	•	•	•	•	•	•	•	13
IV	EXPERIMENTAL H	EQUI	PMEN	T	•	•	•	•	•	•	•	•	16
	Air Supply	•	•	•	•	•	•	•	•	•	•	•	16
	The Duct	•				•	•	•	•	•	•	•	16
	Orifice Mete	er	•		•	•		•		•		• •	19
	Static Press	sure	Mea	suri	ng 1	lubes	•	•	•	•	•	•	19
	Point Gage	•			•						•	•	19
	Draft Gages	•			•	•		•	•		•	•	22
	Miscellaneo	e Is E	• auir	ment	•	•	•	•	•	•	•	•	22
V	EXPERIMENTAL.	2020	a urt Eulurt	F AND	• D M3		• ন্যান্নম	• ጥና	•	•	•	C	22
v	Bod and Pour	- 1.00 - hao		7 omo		5 <u>4001</u> 11	111111 1	10	•	•	•	•	2)
	Creding	Sune	55 E	Leilei	nus	•	•	٠	٠	•	•	•	2)
	Grading .	•	•	•	•	•	•	•	•	•	•	•	23
	Fixing Eleme	ents	٠	с	•	8	•	•	¢	•	•	٠	25
	Roughness Me	easu	reme	ents	•	•	•	•	•	•	٠	•	30
	Miscellaneou	1S	e	0	0	•	٠	•	•	•	•	•	30

TABLE OF CONTENTS (continued)

Chapter			Page
VI	GENERAL OBSERVATIONS	•	31
· · ·	Velocity Direction at Center-line • • • •	. •	31
	Velocity Profiles	•	31
VII	ANALYSIS	•	33
	Parameter Analysis	•	33
	Data Analysis	•	: 34
VIII	RESULTS AND DISCUSSION	•	38
	Bed Analysis	•	38
	Flow Analysis	•	42
	Energy Dissipation Due to Presence of Free S	Surface	42
	Reynolds Number Analysis	•	54
	Relative Roughness	•	60
IX	SUMMARY	•	64
	Objectives	•	64
	Conclusions	•	64
	LITERATURE CITED	•	66
	APPENDIXES	•	68
	Appendix A. Distribution of Bed Element Heights (Zero Points Included)	•	69
	Appendix B. Distribution of Bed Element Heights	•	75
	Appendix C. Data for Closed Conduit	•	81
	VITA	•	87

LIST OF TABLES

Fabl	<u>e</u>	Page
1.	Two-inch grading design data by number of elements per 8 square foot panel	28
2.	Four-inch grading design data by number of elements per 8 square foot panel	29
3.	Values of various intensity parameters for experimental flume beds	40
4 .	Data for closed conduit	82

LIST OF FIGURES

Figu	re									Page
1.	Illustration of experiment	: wit	th an	nd wi	thou	it frė	e surf	ace	•	15
2.	Duct details	•	э	•	•	• •	•	•	•	17
3.	Experimental setup showing reservoir	g ori •	fice.	e met '•	•	duct	and ai •	r •	• :	18
4.	Diagram of static pressure	e tub	oe pl	acen	ient	in du	ct.	•	•	20
5.	Static pressure measuring	tube	e	•	•	• •	•	•	•	21
6.	Roughness grading curves	•	•	•	•	• •	•	٠	•	24
7.	Panel subdivision for place number table	emer•	nt of •	bec •	d ele •	ments	by ra •	ndom •	•	26
8.	Samples of experimental be	eds ı	ised	•	•	• •	•	•	•	27
9.	Sketch of the Morris conce	ept _. d	of fl	LOW (over	rough	surfa	ces	•	35
10.	Plot of $C/g^{\frac{1}{2}}$ versus θ .	•	•	•	•	• •	•	•	•	41
11.	Velocity versus slope for	bed	21	•	•	• •	•	•	• ,	43
12.	Velocity versus slope for	bed	23	•	•	• •	•	•	•	44
13.	Velocity versus slope for	bed	25	•	•	• •	•	•	•	45
14.	Velocity versus slope for	bed	43	•	•	• •	•	•	•	46
15.	Velocity versus slope for	bed	45	•	•	• •	•	٠	•	47
16.	$C/g^{\frac{1}{2}}$ versus R_{K} for bed 21	•	•	•	•	• •	•	•	•	48
17.	$C/g^{\frac{1}{2}}$ versus R_{K} for bed 23	٠	•	•	•	• •	•	•	•	49
18.	$C/g^{\frac{1}{2}}$ versus R_{K} for bed 25	•	•	•	•	• •	•	•	•	50
19.	$C/g^{\frac{1}{2}}$ versus R_{K} for bed 43	•	•	•	•	• •	•	•	•	51
20.	$C/g^{\frac{1}{2}}$ versus R_{K} for bed 45	٠	•	•	•	• •	•	•	•	52
21.	P versus D/K ₂₅ • •	0	•	•	•	• •	•	•	•	53
22.	$C/g^{\frac{1}{2}}$ versus R_{D} for bed 21	6	5	٠	•	• •	•	•	•	55

LIST OF FIGURES (continued)

Figu	re			j	Page
23.	$C/g^{\frac{1}{2}}$ versus R_{D} for bed 23	•	•	•	56
24.	$C/g^{\frac{1}{2}}$ versus R_{D} for bed 25	•	•	•	57
25.	$C/g^{\frac{1}{2}}$ versus R_D for bed 43	•	•	•	5 8
26.	$C/g^{\frac{1}{2}}$ versus R_{D} for bed 45	•	٠	•	59
27.	$C/g^{\frac{1}{2}}$ versus D/K_{16}	•	•	•	61
28.	Plot of $C/g^{\frac{1}{2}}$ versus θ^{-1}	•	•	•	62
29.	Distribution of bed element heights for bed 21 (zero points included)	•	•	•	70
30.	Distribution of bed element heights for bed 23 (zero points included)	•	٠	•	71
31.	Distribution of bed element heights for bed 25 (zero points included)	•	•	•	72
32.	Distribution of bed element heights for bed 43 (zero points included)	•	٠	•	73
33.	Distribution of bed element heights for bed 45 (zero points included)	•	•	•	74
34.	Distribution of bed element heights for bed 21	•	•	• •	76
35.	Distribution of bed element heights for bed 23	•	•	•	77
36 .	Distribution of bed element heights for bed 25	•	•	٠	78
37.	Distribution of bed element heights for bed 43	•	•	•	79
38.	Distribution of bed element heights for bed 45	•	•	•	80

NOTATION

A	Area
Ao	Area of orifice opening
A _r	Free surface instability parameter
A _v	Vertical projected bed element area
a	A constant
В	Flume width
C	Chezy coefficient
C	Orifice coefficient
c ₁ , c ₂ , c ₃ , c', c"	A constant
с _ь	Bed element shape factor
C _s	Shape correction factor
D	Depth of flow
F	Froude number
ſ	Denotes functional relationship
g	Acceleration due to gravity
I _j , I ₁ , I ₂ , i	Roughness spacing ratio
ĸ	Roughness height
K _n	Roughness height were n is percent larger
m	A constant
N	Number of bed elements
n	Constant or a percent larger
P	Parameter denoting a ratio of $C/g^{\frac{1}{2}}$
R	Hydraulic radius
R _D	Reynolds number based on depth
R _K	Reynolds number based on roughness height

NOTATION (continued)

s, s ₁ , s ₂	Slope of free surface and channel bed
u	Uniformity coefficient
V	Mean velocity of flow
x	Longitudinal spacing of grid
y, y _n	Normal depth
2	Lateral spacing of grid
8	Specific weight
Δp	A pressure difference
θ	Non-dimensional parameter expressing relative spacing of bed elements
K	The von Karman turbulence coefficient
м	Viscosity of fluid (dynamic)
٤	Indicates summation
x	Roughness density parameter

ABSTRACT

A Study of Free Surface and Viscous Effects on

Simulated Rough Open Channel Beds

by

Julian B. Andersen, Doctor of Philosophy

Utah State University, 1968

Major Professor: Dr. Dean F. Peterson Department: Civil Engineering

An experiment was designed to eliminate the free surface from simulated naturally roughened open channel beds from which results were compared to data with a free surface from another study. All other pertinent variables were held constant. From this comparison, a relationship was established for the additional energy loss due to the presence of a free surface in the flow over these channel beds.

 $P = 0.23 - 0.28 D/K_{25}$

where P is the proportion that the channel conductance coefficient $(C/g^{\frac{1}{2}})$ is reduced due to presence of a free surface, D is the flow depth, K_{25} is a measurement of roughness height and D/K_{25} is the relative roughness and was varied from 1 to 7.

The channel conductance coefficient was found to be non-dependent upon Reynolds number.

A parameter describing bed element spacing was identified as the ratio of vertical projected area of all bed elements to the total bed area, and was found to be constant for a particular channel bed, Roughness spacing had only a minor effect on the channel conductance parameter. The channel conductance coefficient was related to the relative roughness by a power function and the following prediction equation was established relating the channel conductance coefficient to the relative roughness and spacing parameter:

 $C/g^{\frac{1}{2}} = 3.0 (D/K_{16})^{0.317} \exp(0.007/\theta)$

where D/K_{16} is the relative roughness and θ is the spacing parameter.

(98 pages)

:

CHAPTER I

INTRODUCTION

The Problem

Open channel flow has long been of interest to engineers. Antone Chezy presented the first relationship by which open channels of differing cross-section, slope and boundary roughness could be related to one another within a limited range. Other developments and modifications have been made by Bazin, Kutter, Manning, and others.

In the past few years, Albertson, Robinson, Einstein, Sayre, Powell, Morris, and others have presented research papers relating to the effects of boundary roughness using geometrical shaped roughness elements at uniform spacings.

Under the direction of D. F. Peterson at Utah State University, Mohanty, Attieh, Mirajgaoker and Al-Khafaji used various geometric roughness elements in a flume to classify flow regimes and to study boundary drag where bed elements are large in relation to flow depth and gradient is sufficiently high to cause at least localized supercritical flow. Kharrufa extended the research to a simulated idealized natural roughened channel in which gravel elements were glued to the bed and related the mean velocity to the depth of flow, slope, relative roughness height, and a roughness intensity factor. Judd took the problem to the field and made observations on various alluvial rivers and streams in the Wasatch mountain area of northern Utah, and also in Colorado and New Mexico. He related the mean velocity to the depth of flow, relative roughness height and roughness intensity or spacing. In the studies to date, separation of gravity and viscous effects has not been possible. In order to accomplish this, viscosity or gravity would have to be varied and it would be helpful if the free surface effects could be eliminated.

It has been assumed that the resistance coefficient is independent of viscosity based on the grounds that most relevent experiments show no variation with Reynolds number at high Reynolds number. For high relative roughness, most experiments have utilized sharp-edged roughness elements which have a single point of separation for all flows. For flow around rounded objects, the point of separation changes even under conditions of high Reynolds number resulting in a change in the values of the drag coefficient. In natural streams, the bed elements include a wide array of sizes each of which has a different drag-velocity curve. What portion of the resistance originates from free surface conditions such as spills, etc. is also unknown.

The purpose of this project is to study the resistance to flow in naturally roughened open channels where relative roughness effects are important, and to clarify the effects of viscosity on the flow around these rounded, size distributed elements and to attempt to delineate losses associated with the free surface.

Objectives

1. To devise an experiment such that the effects of free surface on channel resistance can be studied and to establish some relationship for the additional amount of energy lost due to the presence of a free surface.

2. To study the significance of viscous effects on the channel drag using large rounded bed elements of graded gravel at fairly high Reynolds numbers.

3. To identify a hydraulically significant parameter describing bed element spacing.

4. To discuss and evaluate the validity of the Chezy equation for use in rough channels, in light of the data taken for this study.

CHAPTER II

REVIEW OF LITERATURE

Open Channel Experiments

In 1768, a French engineer A. Chezy, developed an equation for canal design. This equation contained a constant now known as the Chezy coefficient which has been studied extensively since that time by many investigators trying to simplify and investigate how the coefficient varies under differing conditions. The Chezy formula is

$$V = C (RS)^{\frac{1}{2}}$$
 (1)

where V is the mean velocity, C is the Chezy coefficient, S is the slope and R the hydraulic radius of the channel.

W. R. Kutter published a new formula for C in 1869 which contained a slope correction term. Bazin pioneered open channel research and developed a formula in 1897 which defined C for various design materials. The idea of roughness as a variable was not conceived until nearly the 20th Century. In 1891, R. Manning proposed an equation which gives

$$C = 1.49 R^{1/6} /n$$
 (2)

where n is a roughness coefficient. This equation is widely used throughout the world. Gauckler, Hagen, Strickler and others have also made investigations and developments.

In more recent times, Prandtl developed a formula showing the relation between momentum and viscosity as expressed by friction factor as a function of Reynolds number for smooth pipes in which smooth pipes were defined as those for which roughness elements did not protrude above the viscous boundary layer. In 1933, J. Nikuradse showed that for flow through rough-walled pipes at high Reynolds numbers the friction factor became independent of Reynolds number and the relative roughness rather than Reynolds number is the dominant factor.

Keulegan (1938) applying these ideas to open channel flow, developed an equation for rough-walled channels using Bazin's results. He attempted to do for open channels what Nikuradse did for pipe flow.

Johnson (1944) tested rectangular channels having rectangular strips fastened to the bottom perpendicular to the direction of flow and observed that maximum resistance occurred when the strips were spaced at about 16 times their height.

Powell (1946) performed similar tests to those of Johnson and developed a formula for Chezy C in the form

$$C = C_{s} + 40 \log_{10} (R/K)$$
 (3)

where C_s is a shape factor and K is roughness height.

Robinson and Albertson (1952) published a report on wide rectangular flumes roughened with fixed shape metal baffles under various spacing patterns. They concluded that Chezy C was a function of relative roughness (D/K) alone for a given roughness pattern. They used slopes up to 4 percent and values of D/K from 2.0 to 17.5.

Leopold and Maddock (1953) were the first to propose that for river channels; velocity, depth and width could be expressed as power functions of discharge.

Wolman (1954) proposed a method for sampling coarse river bed material and classifying the material with a frequency distribution and demonstrated its consistency in the field. Morris (1955) presented a new concept for rough turbulent flow. His assumption was that the energy loss in turbulent flow over rough surfaces is caused by the formation of wakes behind the roughness elements. Longitudinal spacing of the roughness is very important under this concept. In his study, he defines three types of flow: isolated-roughness flow, wake-interference and flow and skimming flow. Equations for the friction factor as a function of Reynolds number and roughness characteristics were derived for each of these types of flow.

The idea that free surface instability is an important factor for energy dissipation became apparent about 1950. Iwagaki (1954) found that the increase in channel resistance with rising Froude number was due to the increasing free surface instability. Chow (1959) in attacking the same problem presents the equation

$$C/g^{\overline{2}} = A_r + 5.75 \log (R/K)$$
 (4)

where A_r is a function of Froude number. If Froude number is less than 1.0, A_r experiences very little change. If Froude number is greater than 1.0, A_r decreases.

Koloseus (1958) substantiated Iwagaki's conclusion regarding free surface instability and in addition proposed that the resistance coefficient in a rough channel where roll waves form is independent of gravitational effects if the Froude number is less than 1.6.

Blench (1963) suggested that for rough conduits, a more adequate relationship exists in the form

$$\mathbf{V} \propto (\mathbf{D}/\mathbf{K})^{\frac{1}{4}} (2\mathrm{gDS})^{\frac{1}{2}}$$
(5)

where D is the flow depth, K is the roughness height and g is the acceleration due to gravity.

Goncharov (1962) in studying massive roughness in natural streams states that the average roughness height will be determined by the largest 5 percent (by volume) and that

$$c \sim 2.22 (D/K)^{1/6}$$
 (6)

Sayre and Albertson (1963) derived an expression for the conductance coefficient from the von Karman-Pradtl equation of logarithmic velocity distribution such that

$$C/g^{\overline{2}} = (2.30/\kappa) \log (y/\varkappa)$$
 : (7)

where \varkappa is the von Karman turbulence coefficient, y is the normal depth and \varkappa is a parameter describing roughness by relating size, shape and spacing, i.e.:

$$\chi = f(i)K \tag{8}$$

where i is the ratio of vertical projected area of the roughness strips to the total bed area. They concluded that γ was an adequate definition of roughness spacing or density.

Herbich and Shulits (1964) studied large scale roughnesses at various spacings (large scale in that roughness heights were protruding from surface or nearly so). They tried various dimensionless parameters to describe the height and density of the roughness. One seemed most useful for practical use:

$$= \xi A_{y}/A$$

where θ is the roughness parameter, A_v is the sum of the vertical areas of cubes and A is the horizontal bed area.

Utah State University Experiments

θ:

About 1958, a series of studies of steep slope channels with large roughness elements was begun. Mohanty (1959) used bar and cube

7

(9)

roughness elements spaced at regular intervals. He was able to classify the resulting flow into three separate regimes: rapid, tumbling and tranquil.

For the rapid and tranquil regimes, the spacing of the roughness elements was important. For the tumbling regime, hydraulic jumps formed behind the roughness elements then the flow became supercritical before the next element was encountered.

Attieh (1961) and Mirajgoaker (1961) ran tests on cubes, hemispheres and circular disks to study the drag, pressure distribution and flow patterns for single elements.

Al-Khafaji (1961) used bar elements in a flume to gather more information about flow regimes. He proposed additional criteria for classifying flow regimes and studied in detail an unstable regime in which traveling roll waves formed.

Beginning with Kharrufa (1962) attention was turned to the problem of large graded natural roughness elements under a wide range of slopes and discharges. Kharrufa cemented these elements to the bed of à laboratory flume. Flow in such an environment becomes very complex. Some of the roughness elements may protrude through the surface, most of the roughness elements extend to an appreciable proportion of the flow depth, the free surface becomes unstable and rough and the velocity distribution is complex and constantly changing with distance along the channel. Energy is dissipated through vortex formation, disruption of flow as it jets between two such roughness elements and hits the face of another and through spills and jumps forming around some of the roughness elements. This type of flow must be treated as being statistically uniform for a given reach if it is to be analyzed at all.

From his study, Kharrufa presented an equation for the rapid regime in the form

$$C/g^{\frac{1}{2}} = f(A^{\frac{1}{2}}/K_{10})$$
 (10)

for D/K_3 from 0.36 to 4.85 and Froude number from 1.2 to 2.48, K_3 and K_{10} are the average heights of the highest three and ten elements in the horizontal bed area A. Further in the tranquil, tumbling and transitional regimes

$$C/g^{\frac{1}{2}} = 2.1 (D/K_3)^{1/3} (A^{\frac{1}{2}}/K_3)^{1/3}$$
 : (11)

where D/K_3 ranged from 0.36 to 4.85 and Froude number from 0.38 to 1.2, and D is piezometric depth.

Judd (1963) investigated rough high-gradient natural streams in some of the mountainous areas of Utah, New Mexico and Colorado. He related the bed characteristics of such streams to hydraulic parameters. The stream beds were represented by a normal distribution when heights above the mean plane measured from points on a horizontal grid were plotted against cumulative percentile of the sample which was larger. To represent the spacing parameter of these beds, Judd considered a grid system covering area A. At the grid points vertical roughness heights were measured and an arithmetic mean bed height found. Heights above and below the mean plane were calculated and plotted against cumulative percentile larger by number on normal probability paper. These plots show a normal distribution and from them he describes his intensity relationship as

$$I_{j} = A^{\frac{1}{2}} / K_{n} N^{u}$$
 (12)

where I_j is a measure of the area associated with one bed element, N is the number of bed elements equal to or greater than K_n in height, u is a uniformity coefficient having a value of $\frac{1}{2}$ if the distribution of bed elements is normal and n is a percentage varying from 0 to 100. I_j remains constant for a particular bed. An equation involving the bed parameters was formulated as

$$C/g^{\frac{1}{2}} = C_1 C_b I_j^{-0.71} (D/W)^{1/3} (D/K_n)^{1/3}$$
 (13)

where C_1 is a constant C_b is a bed element shape factor and W is the width of the water surface. Froude number varied from 0.2 to 0.7 and slopes varied from 1 to 4 percent.

Abdelsalam (1965) simulated high gradient naturally roughened open channels similar to those of Kharrufa and demonstrated the validity of the Chezy equation for his experiment, and classified his flow into six zones which could be related to Froude number. For each zone, he expressed the conductance coefficient $C/g^{\frac{1}{2}}$ as a function of relative roughness D/K_n and an intensity or spacing parameter I_1 . The general form of these equations is

$$C/g^{\frac{1}{2}} = C_2 I_1^m (D/K_{25})^n$$
 (14)

and

$$C/g^{\frac{1}{2}} = C_{3}I_{1}^{m} \log_{10} (D/K_{25})$$
 (15)

where C2, C3, m and n are constant and

$$I_{1} = A^{\frac{1}{2}} K_{25} / (N^{\frac{1}{2}} K_{n} x^{\frac{1}{2}} z^{\frac{1}{2}})$$
(16)

where N is the number of points of height K_n or higher in area A, and x and z are the longitudinal and lateral spacings of the grid used to measure the elements heights and n is the percentile of the fraction by number of the set larger than K_n . I_1 was found to remain constant for any bed regardless of value used for n and A if the sample size was sufficient. Another parameter describing the bed element spacing

$$I_2 = (\leq A_v) x/AK_{25}$$
 (17)

was tried by Abdelsalam where A_v is the vertical projection of area of the roughness elements in an area A.

Paralleling the work at Utah State University, Mirajgoaker and Charlu (1963) at Roorkee University studied the effects of large natural roughness in open channel flow. They used uniform-sized gravel elements and placed them according to six different geometric patterns. They found that

$$C/g^{\frac{1}{2}} = 5.28 \log (y_n/\chi) + 1.72$$
 (18)

where y_n is the normal depth of flow and \mathcal{X} is the parameter as used by Sayre and Albertson (1963).

In conclusion, most investigators have found the conductance coefficient to be related to relative roughness but there seems to be two models which can express this relationship: a logarithmic model and a power model. If the relative roughness values are small and the elements are of rounded shapes and spaced without pattern the power model seems to prevail. If on the other hand if D/K values are larger, elements are of geometric regularity and spaced according to some pattern, the logarithmic model more nearly describes the relationship.

CHAPTER III

DESIGN OF EXPERIMENT

Dimensional Analysis

To approach a solution to the questions under study, the following pertinent variables, assuming size and shape of roughness are established:

and a second
urface and channel bed
fluid
e to gravity
ty
w depth
t where n is percent
d element spacing or eal distribution

$$f_1$$
 (S, V, D, $K_n, \rho, \mu, \Theta, B, g) = 0$ (19)

Combining variables

$$V/(DSg)^{\frac{1}{2}} = f(\rho VD/_{\mathcal{U}_{1}}, V/(Dg)^{\frac{1}{2}}, D/K_{n}, \Theta, D/B)$$
 (20)

or

$$C/g^{\frac{1}{2}} = f(R_{D}, F, D/K_{n}, \theta, D/B)$$
(21)
where $C/g^{\frac{1}{2}} = V/(DSg)^{\frac{1}{2}}$ and $C = Chezy$ coefficient = $V/(DS)^{\frac{1}{2}}$
 $e^{VD/x} = R_{D} = Reynolds$ number based on depth
 $V/(Dg)^{\frac{1}{2}} = F = Froude$ number

 D/K_n will be referred to as relative roughness.

The parameter D/B measures the side wall effect of a finite width stream. Because the side walls of the duct used in this experiment were relatively smooth, D/B will be assumed to have a relatively negligible effect upon $C/g^{\frac{1}{2}}$. The foregoing equation may then be reduced to

 $C/g^{\frac{1}{2}} = f(R_{D}, F, D/K_{n}, \Theta)$ (22)

Design of Experiment

The effect of viscosity upon $C/g^{\frac{1}{2}}$ can be studied if all other terms in equation 22 except Reynolds number can be held constant, i.e., by holding depth, discharge, roughness height and spacing constant while varying slope and viscosity. However, as far as surface disturbances are concerned D/K_n , F, θ and possibly viscosity all have some effect.

As spacing is varied, one can expect a different pattern in the forces acting on the boundary which may possibly relate to the Morris concepts of isolated-roughness, wake-interference and skimming flow. Gradation of roughness elements would also be expected to have an influence on drag with changing Reynolds number. If all elements were of the same size and shape, the variation of form drag due to change in point of separation as Reynolds number changes would occur in unison and would be cumulative. With size gradation, however, the drag coefficient will change differently for each element size and the cumulative effect will more closely resemble a uniform noise level so that cumulative Reynolds effects for all of the elements might remain uniform as velocity changes.

In order to study the effects of the free surface, two identical cases could be compared, one with a free surface present and one having

the free surface eliminated, but with other parameters in equation 22 unchanged. The open flume experiments could be compared with similar ones using a rectangular conduit of twice the depth with an inverted roughness bed at the top. The difference in the conductance coefficient $C/g^{\frac{1}{2}}$ should then be a measure of the effect of the free surface. Reynolds number can be used as a means of comparison between the two cases.

Briefly, the principle of this comparison can be explained in a simplified manner by the use of figure 1. The difference between S_1 and S_2 will be the difference in specific energy losses for the free surface for the same velocity and roughness, or the parameter $C/g^{\frac{1}{2}}$ in the latter case would be completely attributable to the drag on the boundary through viscosity, i.e., a function of Reynolds number.

It was decided to build and test such a system as shown in figure 1. Open channel flume data were available from the study of Abdelsalam (1965) but since data were being collected simultaneously another set of roughness beds was built to correspond exactly with those of Abdelsalam. For convenience air was used instead of water for testing. Greater velocities are necessary using air in order to obtain a corresponding range of Reynolds numbers which would cause the Froude number range to exceed that of the open channel case. All other variables were tested in the same range as in the open channel study.

Figure 1. Illustration of experiment with and without free surface. Longitudinal cross-section.

CHAPTER IV

EXPERIMENTAL EQUIPMENT

Air Supply

An 18-inch axial flow fan supplied air to a plenum. The duct entered through an opening in the side of the plenum. The axial flow fan was powered by a $7\frac{1}{2}$ -Hp, variable-speed, direct-current motor which in turn was regulated by a speed variator or rheostat. The plenum was 8-feet by 4-feet by 4-feet and contained screen partitions at various levels to scale down turbulence.

The Duct

The duct was 24-feet long by 1-foot high and had a variable width. The sides of the duct contained the gravel elements under study.

Each side of the duct consisted of three 1-foot by 8-feet plywood boards with the gravel elements attached to them. These boards were placed end-to-end. The top and bottom of the duct were fabricated of $3\frac{1}{4}$ -inch wide tongue and groove lumber, hence the width (simulating twice the flow depth in the flume), could be varied by the insertion of one or more tongue and groove boards to the top and bottom.

The front of the duct was fitted with a tapered or wedge shaped "leading edge." The sharp leading edge protruded into the plenum leaving approximately an 1/8-inch space around the outside of the duct to allow air to bleed off, thus creating a near uniform velocity profile at the duct entrance (see figures 2 and 3).

Figure 2. Duct details.

Figure 3. Experimental setup showing orifice meter, duct and air reservoir.

Orifice Meter

An orifice meter was used to measure the flow. The metering device consisted of a large drum which held the sharp-edged orifice plate at one end. Several sizes of orifice plates were used as needed. The other end of the drum was fitted with a plywood mask to fit over the duct. Inside the drum, screens were placed to damp out turbulence and obtain a nearly uniform velocity profile. Four pressure taps were placed around the periphery of the drum so that an integrated pressure inside the drum could be measured (see figure 3). A table of standard orifice coefficients was used for the flow calculations.

Static Pressure Measuring Tubes

Static pressure measuring tubes were used to obtain the pressure drop at 4-foot intervals along the duct. These tubes were constructed from 1/8-inch outside diameter stainless steel tubing. The main tube had five transverse tubes parallel to the mean flow direction and spaced 2-inches apart protruding from it. Each of these transverse tubes had 8 holes (0.010-inch) giving 40 holes with which to measure an integrated pressure at a given cross-section. The tips of these transverse tubes were rounded to hemispheres. See figures 4 and 5.

Point Gage

A point gage was used to measure roughness heights of bed elements attached to the plywood boards. These measurements were taken on a grid pattern at 0.1-foot by 0.2-foot intervals. The point gage was mounted on a carriage so it could be easily placed at the grid points.

Figure 4. Diagram of static pressure tube placement in duct.

Draft Gages

Variable slope draft gages were used to measure pressure losses along the duct at 4-foot intervals and the pressure difference across the orifice. This gage could measure to an accuracy of 1/25 mm of 0.824 specific gravity oil pressure difference. The draft gage used at the orifice meter could measure to an accuracy of 0.01-inch of water.

Miscellaneous Equipment

A mercury barometer was used to measure barometric pressure for use in calculating air density.

A wet and dry bulb thermometer was used to measure relative humidity also for use in calculating air density. A psychometric chart was used also.

A thermometer was used to measure temperature inside the drum containing the orifice meter for use in determining viscosity, density and humidity.

CHAPTER V

EXPERIMENTAL PROCEDURE AND MEASUREMENTS

Bed and Roughness Elements

Judd (1963) found that in natural large bed element (LBE) highgradient alluvial channels the grid point measurements of the roughness heights followed a normal distribution by number (not by weight). For this reason the beds were constructed using natural gravel elements such as occur in natural streams and were designed so that the sizes had a normal distribution so they would compare with natural open channels. Size and spacing were both varied. The 5/8-inch plywood beds were painted and the roughness elements attached to them according to the size and spacing designs explained later.

Grading

Two sizes and three spacing levels were used. The two size ranges were 4-inch maximum to a $\frac{1}{2}$ -inch minimum and 2-inch maximum to $\frac{1}{4}$ -inch minimum.

A design curve for size gradation (figure 6) was drawn to simulate Judd's data taken from natural stream beds. For the 4-inch maximum size beds, 1 percent of the number of roughness elements were larger than 4-inches and 99 percent of these elements were larger than $\frac{1}{2}$ -inch. For the 2-inch maximum size beds, 1 percent of the number of roughness elements were larger than 2-inches and 99 percent of them larger than $\frac{1}{4}$ -inch.

Size retained (inches)

Figure 6. Roughness grading curves.

The roughness elements were sized by United States Standard Sieves of the following sizes: 4, 3, $2\frac{1}{2}$, 2, $1\frac{1}{2}$, 1, 3/4, $\frac{1}{2}$, 3/8, and $\frac{1}{4}$ -inches. After sizing, the appropriate number of each size was counted and washed before being attached to the wooden beds.

Fixing Elements

The elements were attached to the plywood beds by means of Marsh Adhesive. Spacing or intensity was determined by finding a standard number (the number of roughness elements of a particular size distribution that could be placed on 1 square foot such that no elements were on top of another yet they were all touching).

The intensities used were: 1 standard number on 1 square foot, 1 standard number on 3 square feet, and 1 standard number on 5 square feet for both 2-inch and 4-inch sizes.

Each panel was subdivided into 100 small rectangles and numbered from 00 to 99. Before an element was attached to the bed, a random number was read from a table of random digits, Snedecor (1956) and placed on a small rectangular subdivision according to the 2 digit random number selected (figures 7 and 8, tables 1 and 2).

The following identification and description was used:

Identification

Description

21	1	standard	number	on	1	square	foot,	2-inch	to	$\frac{1}{4}$ -inch	sizes
23	1	standard	number	on	3	square	feet,	2-inch	to	±_inch	sizes
. 25	1	standard	number	on	5	square	feet,	2-inch	to	¹ / ₄ −inch	sizes
43	1	standard	number	on	3	square	feet,	4-inch	to	$\frac{1}{2}$ -inch	sizes
45	l	standard	number	on	5	square	feet,	4-inch	to	$\frac{1}{2}$ -inch	sizes

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
140	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58 ·	59
60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81.	82	83	84	85	86	87	88	89	90 [°]	91	92	93	94	95	96	97	98	99

Figure 7. Panel subdivision for placement of bed elements by random number table.

Figure 8. Samples of experimental beds used.

Table 1. Two-inch grading design data by number of elements per 8 square foot panel.

	Size	Percentage	Bed	Bed Identification			
And the second		by Number	21	23	25		
Number of sieve and	elements passing 2-inch retained on $l\frac{1}{2}$ -inch sie	ve 15.0	85	28	17		
Number of sieve and	elements passing 12-inc retained on 1-inch siev	h e 47.0	265	89	53		
Number of sieve and	elements passing 1-inch retained on 3/4-inch si	eve 21.0	120	40	12		
Number of sieve and	elements passing $3/4$ -in retained on $\frac{1}{2}$ -inch siev	ch e 11.0	64	22	13		
Number of sieve and	elements passing $\frac{1}{2}$ -inch retained on $3/8$ -inch si	eve 2.5	16	5	3		
Number of sieve and	elements passing $3/8$ -in retained on $\frac{1}{2}$ -inch siev	ch e 1.5	10	` 3	2		

	999 - 1999 -	Size	Percentage	Bed	Bed Identification Number			
-	and the state of the		by <u>Number</u>	41	43	45		
Number of sieve and	elements retained	passing 4-inch on 3-inch sieve	14.0	22	7	4		
Number of sieve and	elements retained	passing 3-inch on $2\frac{1}{2}$ -inch sieve	19.0	29	10	6		
Number of sieve and	elements retained	passing $2\frac{1}{2}$ -inch on 2-inch sieve	26.0	40	13	8		
Number of sieve and	elements retained	passing 2-inch on l_2^{\pm} -inch sieve	2i.0	32	11	6		
Number of sieve and	elements retained	passing $l_2^{\frac{1}{2}}$ -inch on l-inch sieve	13.0	20	7	4		
Number of sieve and	elements retained	passing l-i nch on 3/4-inch sieve	3.0	5.	2	l		
Number of sieve and	elements retained	passing $3/4$ -inch on $\frac{1}{2}$ -inch sieve	2.0	3	1	- 1		
Number of sieve and	elements retained	passing $\frac{1}{2}$ -inch on $\frac{1}{4}$ -inch sieve	1.0	2	l	0		

Table 2. Four-inch grading design data by number of elements per 8 square foot panel.

Roughness Measurements

After roughness elements were attached to the beds one panel from each set was selected at random for measurement. It was divided into a grid system 0.2-foot by 0.1-foot and the heights measured with a point gage at the grid points. Three-hundred-and-sixty-one points on each of the 5 different beds were measured.

Miscellaneous

Each of the 5 sets of beds were used at 3 different depths (changing number of tongue and groove boards between panels containing roughness elements). At each depth, the velocity was varied over 15levels by changing the speed of the fan.

CHAPTER VI

GENERAL OBSERVATIONS

Velocity Direction at Center-line

A pitot tube was used to find the direction of the velocity along the center-line between the roughness elements at 2-inch intervals. The velocity was held at approximately 15-feet per second for each of 15 runs. In every case, the center-line velocity vector was found to deviate not more than 10 degrees from the center-line of the duct, even for relative roughness values near 1.0. This indicates that the precision with which the pressure could be measured in the duct with the static pressure tubes (which were located only on the center-line) should be very good as a pitot tube yields good accuracy up to 15 degrees deviation of flow from its axis of symmetry. However, near the roughness elements, the direction of flow was found to vary continuously from parallel to the duct, to an adverse direction.

Velocity Profiles

Several velocity profiles were taken near the entrance of the duct to check the uniformity of the approaching velocity profile. If the entrance velocity profile was not uniform, the duct was moved in or out to change the amount of air being "bled off" at the leading edge until a uniform profile was obtained. Measurements with a pitot tube showed the velocity profile to be uniform at the center-line but becoming very erratic near the roughness elements. Near the elements, pressure measurements were taken which indicated anything from stagnation velocity to slightly greater than the mean velocity. The velocity at the duct center-line was found to be very near the mean velocity in every case, which gave a check on the flow rate measurements taken with the orifice meter.

CHAPTER VII

ANALYSIS

Parameter Analysis

The parameter $C/g^{\frac{1}{2}}$ is a constant which measures the ability of an open channel to conduct flow of a fluid as depth and slope are varied, therefore, it can be called a conductance coefficient. The conductance coefficient accounts for the resistance due to skin friction as well as the form drag resulting from flow deformation which includes free surface effects associated with gravity, principally gravity waves and spills. $C/g^{\frac{1}{2}}$ decreases with increasing surface waves.

The free surface activity is generally modeled with Froude number, both form drag and skin friction may vary with R_D which also measures the relative importance of viscosity. In consideration of the importance of form drag the roughness height K_n might just as well be used as the length parameter in the Reynolds number, giving R_K . R_D and R_K are proportional for any particular bed.

The relative roughness D/K_n has a great influence upon $C/g^{\frac{1}{2}}$ as it is the primary factor controlling the development of the boundary layer, the amount of flow deformation and surface activity. As D/K_n increases $C/g^{\frac{1}{2}}$ increases also.

The spacing of the roughness elements as measured by θ or I also influences $C/g^{\frac{1}{2}}$. Under idealized roughness and depending upon the spacing and velocity the flow may take one of the following forms:

- 1. Isolated-roughness flow
- 2. Wake-interference flow
- 3. Quasi-smooth flow

as suggested by Morris and shown in figure 9. Isolated-roughness flow occurs when the wake and vortex of each element is dissipated before the next element is encountered. Wake-interference flow occurs when the wake and vortex from one element interferes with one or more elements downstream. The resulting flow pattern becomes very complex. Quasismooth flow prevails when the roughness elements are spaced so close that the flow skims the tops of the elements and a hydraulically smooth boundary condition is approximated.

Data Analysis

In addition to the data taken using the air duct, raw data for the open channel phase of the study were taken from Abdelsalam's dissertation. These data included:

- 1. Discharge
- 2. Depth D
- 3. Slope S

4. Viscosity

5. Average roughness height

6. Velocity V

- 7. Froude number $F = V/(Dg)^{\frac{1}{2}}$
- 8. Reynolds number $R_D = \rho VD/\mu$ and $R_K = \rho VK_n/\mu$
- 9. Conductance coefficient $C/g^{\frac{1}{2}} = V/(DSg)^{\frac{1}{2}}$

10. Relative roughness D/K,

All values of K_n in equations 21 and 22 are K_{25} which is the roughness height for which 25 percent of the roughness heights are larger.

Figure 9. Sketch of the Morris concept of flow over rough surfaces. Adopted from <u>Open Channel Hydraulics</u> by V. T. Chow (1959).

For the closed conduit, the following information was tabulated and analyzed using the IEM 1620 Computer System:

1. Velocity $V = (C_A/A) (2 \triangle p/\rho)$.

2. Depth D = one-half the distance back to back of the boards on which the roughness elements were mounted minus twice the effective roughness height. Effective roughness height is the height of the volume of the roughness elements if they were all melted down to the same level.

3. Area A = D since the width was 1-foot.

4. Air density ρ = specific weight of air/g. Specific weight of air was found by the use of a psychrometric chart knowing the barometric pressure and the wet and dry bulb temperature.

5. Conductance $C/g^{\frac{1}{2}} = V/(D \triangle p/\varrho)^{\frac{1}{2}}$ as slope $S = \triangle p/specific$ weight of air.

6. Reynolds number $R_{D} = \rho VD/\mu$ and $R_{K} = \rho VK_{n}/\mu$.

7. Slope $S = \triangle p/specific weight of air.$

8. Relative roughness D/K_{25} and D/K_{16} .

The relative roughness D/K_{25} was used so that results could be compared to the free surface case. Abdelsalam's bed element distribution curves were drawn with points of zero height excluded (appendix B) and K_{25} values for each bed were taken from these curves. For the analysis other than the free surface phase, the writer prefers to use the method of Judd in which the bed element distribution curves for the same data are drawn including zero points (appendix A). K_{16} values are obtained from these distributions for each bed. The 16-percent-larger size K_{16} was chosen to be the characteristic bed element height because the higher elements cause most of the disturbance and are therefore more effective in characterizing the flow. The calculated parameters for the closed conduit experiment are included in appendix C of this dissertation.

CHAPTER VIII

RESULTS AND DISCUSSION

Bed Analysis

The beds were described statistically by using the roughness height measurements taken at the grid points. The average of all points for each bed was calculated, this is the effective roughness height. The effective roughness height was subtracted from the individual readings, then the cumulative percent larger was plotted against the height above and below the mean plane (effective roughness height) on normal probability paper. See appendix A. These plots show straight lines only for the beds having the closest roughness spacing. An inspection of the curves shows that the zero points are causing the non-linearity to occur, so plots were drawn using only the grid points of height greater than zero (appendix B), these show a somewhat normal distribution and are the same as those of Abdelsalam (1965), and similar to the findings of Judd (1963) on natural streams.

The most difficult task involving the spacing parameter is finding a truly descriptive relationship for it. Judd described his spacing relationship as

$$I_{j} = A^{\frac{1}{2}} / K_{n} N$$
⁽²³⁾

where I_j appeared to be a constant for a particular bed. Abdelsalam used two methods to express a spacing parameter

$$I_{1} = (A/xzN)^{\frac{1}{2}} K_{25}/K_{n}$$
(24)
$$I_{2} = x A_{y}/AK_{25}$$
(25)

 $I_2 = x A_v / AK_{25}$

and both I_1 and I_2 are constant for a particular bed.

Herbich and Shulits (1964) used a method of measuring roughness spacing for geometrically uniform roughness elements spaced at regular intervals. In this method, the vertical projection of area of all roughness elements is expressed as a ratio to the total bed area

$$\theta = \leq A_{\rm rr} / A \tag{26}$$

where θ is the spacing parameter and $\leq A_v$ is the sum of the vertical projected areas of all roughness elements contained in area A. θ is readily evaluated for geometrical shapes but for the rounded natural roughness elements used in this experiment, θ was calculated assuming the roughness elements to be spheres. The number of elements of each size was counted and multiplied by their respective vertical projected areas, these were then summed and divided by the total bed area A.

I_j, I₁ and θ can be written in terms of each other, from equations 23 and 24

$$I_{j} = I_{1} (xz)^{\frac{1}{2}} / K_{25}$$
 (27)

also

$$\Theta = \leq A_v / A$$

substituting

$$A = I_1^2 Nxz K_n/K_{25}$$

from equation 24 and

$$A_v \propto NK_n^2$$

 $\Theta = C' K_n K_{25} / I_1^2 xz = C'' / I_j^2$
(28)

Table 3 gives spacing parameter values for each method discussed.

denter generative and the	and a second	and a second	ى بلى الى بالى بن برى بين مى مى بين بين بين بين بين بين بين بين بين بين	ورد به منه میشور باد به مان از می و د مشال از بر از بین از البری و د از از بر
Bed	Ij	l	I ₂ .	θ
21	2.33	2.32	5.47.	0.392
23	4.00	4.50	2.02	0.133
25	5.20	4.88	1.74	0.078
43	3.82	3.31	2.27	0.151
45	5.00	4.82	1.17	0.088

Table 3.Values of various intensity parametersfor experimental flume beds.

The data from this study showed $C/g^{\frac{1}{2}}$ to be at a minimum value when θ is between 0.15 and 0.25 (figure 10). This can be related to the Morris concept of flow over rough surfaces as shown in figure 9. Where θ is a minimum, resistance to flow is maximum. This occurs when the predominant larger elements that control the flow are spaced such that on a statistical basis their wakes are dissipated just before another of these elements is encountered or so that the balanced effect of the spacing produces a maximum resistance to flow through wake and surface activity formation. If the elements are spaced farther apart so that θ approaches zero, channel resistance decreases and in effect an isolated-roughness condition occurs. As the larger elements are placed closer together so that θ exceeds the minimum value, the predominant effect would be that some of the larger element wakes would begin to interfere with flow around downstream elements and again the channel resistance would decrease.

Figure 10. Plot of $C/g^{\frac{1}{2}}$ vs. θ

The shape of the roughness elements has an influence on the wake formed behind them. Spheres and hemispheres seem to cause less wake than irregular and angular elements as born out by the fact that in this experiment when θ was at a minimum value the wake length is about 5K while others have found wake lengths between 10K and 15K for baffles and angular roughness elements.

The larger elements contribute a large amount to the channel resistance. Judd has shown this to be true by establishing good : correlations using only the largest elements in the channel.

Flow Analysis

Plots were drawn from experimental values of velocity versus slope at various depths for each of 5 beds tested (figures 11 through 15). These plots of the experimental data show that velocity varies as the square root of the slope, confirming the validity of the Chezy equation.

Energy Dissipation Due to Presence of Free Surface

No free surface existed in this experiment, but all other factors such as Reynolds number, beds and relative roughness were designed to be the same as for the free surface data. Plots were drawn of $C/g^{\frac{1}{2}}$ versus R_{K} at various values of D/K_{25} (figures 16 through 20). Conductance coefficients between the open channel and closed conduit were compared at corresponding values of R_{K} and D/K_{25} . Another plot was drawn having the proportion of $C/g^{\frac{1}{2}}$ lost due to the presence of a free surface as the ordinate and D/K_{25} as the abscissa as shown in figure 21. A curve fitting method which minimizes the sum of squared orthogonal deviations was used to fit the data to a line

Figure 11. Velocity versus slope for bed 21. Slope of lines 0.501.

£

Figure 12. Velocity versus slope for bed 23. Slope of lines 0.501.

⊳

Figure 13. Velocity versus slope for bed 25. Slope of lines 0.501.

⊳

Figure 15. Velocity versus slope for bed 45. Slope of lines 0.522.

₽

Figure 17. $C/g^{\frac{1}{2}}$ versus R_{K} for bed 23.

Ę,

Figure 18. $C/g^{\frac{1}{2}}$ versus R_{K} for bed 25.

ጽ

Figure 19. $C/g^{\frac{1}{2}}$ versus R_{K} for bed 43.

Ц

Figure 20. $C/g^{\frac{1}{2}}$ versus R_{K} for bed 45.

Figure 21. P versus D/K₂₅.

iy U

$$P = 0.23 - 0.028 D/K_{25}$$

where D/K_{25} varied from 1 to 7 and P is the proportion of $C/g^{\frac{1}{2}}$ lost due to presence of a free surface. This model produced a correlation coefficient of 0.66 and an F-test value of 9.8 at 1 and 13 degrees of freedom which is significant at more than 0.99 confidence level. Other models containing the parameter θ were also tested but θ was found to contribute nothing to improve the correlation and in fact decreased the F-test value. When the relative roughness $D/K_{25} \sim 7.0$ there was no appreciable difference in the energy loss between the case with a free surface and the case without a free surface, if relative roughness decreases there is an additional loss of energy in the free surface case caused by breaking surface waves and local spills and jumps. This additional loss of energy appears to be about 20 percent when a relative roughness of 1.0 is reached.

Reynolds Number Analysis

Plots of the conductance coefficient versus R_{K} and R_{D} at various D/K_{25} values were made for each of the 5 beds tested (figures 16 through 20 and 22 through 26). These plots show the Reynolds number had no significant effect upon the conductance coefficient in the range of

 $3 \times 10^3 < R_K < 6 \times 10^4$ $3 \times 10^3 < R_D < 1 \times 10^5$

therefore, equation 22 can be written as

$$C/g^{\frac{1}{2}} = F(D/K_n, \theta)$$
 (30)

for the closed conduit.

54

(29)

Figure 22. $C/g^{\frac{1}{2}}$ versus R_{D} for bed 21.

Figure 23. $C/g^{\frac{1}{2}}$ versus R_{D} for bed 23.

Х

Figure 24. $C/g^{\frac{1}{2}}$ versus R_{D} for bed 25.

Figure 25. $C/g^{\frac{1}{2}}$ versus R_D for bed 43.

. K

Figure 26. $C/g^{\frac{1}{2}}$ versus R_{D} for bed 45.
Relative Roughness

The relative roughness ranged between 3.0 and 12.0 based upon K_{16} , a roughness height at which 16 percent of the sample is larger. This value was chosen both because the larger elements are more effective in characterizing the flow due to their shadowing effect on the smaller elements and to follow the precedent set by Judd, although any other value of K_n might have been used. The natural logarithm of the data plot as a family of parallel lines (figure 27). Each of these parallel lines represents a particular value of the spacing parameter Θ . $C/g^{\frac{1}{2}}$ plotted against Θ^{-1} shows approximate straight lines (figure 28). The data was fit to a surface by the method of minimum sum of squared orthogonal deviations having the form

$$\ln (C/g^{\frac{1}{2}}) = a \ln (D/K_{16}) + f(\theta)$$
(31)

Seven different models were evaluated using the Univac 1108 Computer. The best fit surface can be expressed as

$$\ln (C/g^{\frac{1}{2}}) = 0.317 \ln (D/K_{16}) + 0.007/\theta + 1.096$$
(32)

or taking antilog

$$C/g^{\frac{1}{2}} = 3.0 (D/K_{16})^{0.317} \exp(0.007/\theta)$$
 (33)

The model produced a correlation coefficient of 0.87 with an F-test value of 25.5 at 2 and 17 degrees of freedom which is significant at a 0.999 confidence level. Models containing θ , θ^2 , θ^3 were also tried. Some gave higher correlation coefficients but none were as significant in the F-test. In addition, these terms complicated the relationship. Judd proposed a similar equation for Abdelsalam's beds in a recent unpublished study. His equation is

$$C/g^{\frac{1}{2}} = 4.0 (D/K_{25})^{0.33} f(\theta)$$
 (34)

Figure 27. $C/g^{\frac{1}{2}}$ versus D/K_{16} .

പ്പ

Figure 28. Plot of $C/g^{\frac{1}{2}}$ vs $1/\theta$.

Some investigators have found a logarithmic relationship between $C/g^{\frac{1}{2}}$ and D/K when using roughness elements of a geometric shape spaced at regular intervals, and at large values of D/K. Examination of equation 33 shows that D/K₁₆ has the major influence on $C/g^{\frac{1}{2}}$, the contribution of θ the spacing parameter is very small in comparison with that of the relative roughness. This is consistent with the findings of Sayre and Albertson (1963) as reported in their paper on roughness spacing in open channel flumes. They suggest that while the parameter $C/g^{\frac{1}{2}}$ varies appreciably with channel shape and roughness form that roughness spacing causes only minor variations.

CHAPTER IX

SUMMARY

Objectives

The objectives of this dissertation were to establish the relationis ship for the amount of energy lost due to the presence of a free surface in naturally roughened open channels, to study the significance of viscous effects on channel drag for these channels, and to identify a hydraulically significant parameter describing bed element spacing.

An experiment was designed which eliminated the free surface. From this, the results were compared to data from another study containing a free surface.

From the data gathered, a spacing parameter was identified and a prediction equation was established relating the variables under study and a relationship for energy loss established for the free surface case.

Conclusions

1. The following relationship was established for the amount of energy dissipated because of the presence of a free surface

$$P = 0.23 - 0.028 D/K_{2r}$$
(35)

where P is the proportion the conductance coefficient is reduced due to presence of a free surface, and D/K_{25} varied from 1 to 7. This loss of energy is caused by breaking surface waves and local spills and jumps over roughness elements.

2. The channel conductance coefficient was found to be non-dependent upon R_D through the range 3 x $10^3 < R_D < 1 \times 10^5$, hence viscous effects were constant.

3. The ratio $\theta = \leq A_v/A$ which is the vertical projected area of roughness elements to the total horizontal area of the bed was found to be the best definition of the intensity parameter of those proposed.

4. Roughness spacing causes only a minor effect on the channel conductance coefficient in channels of the type tested herein.

5. The Chezy equation is valid for this experiment as was born out by the fact that the velocity plotted as a function of slope to approximately the 0.5 power.

6. The channel conductance coefficient is related to the relative roughness by a power function if the roughness elements are of a natural rounded type having a normal distribution of size as described in Chapter 5.

7. A relationship among the parameters $C/g^{\frac{1}{2}}$, D/K_{16} and θ was established as

 $C/g^{\frac{1}{2}} = 3.0 (D/K_{16})^{0.317} \exp(0.007/\theta)$ For a particular bed, both θ and K_n are constant.

(36)

LITERATURE CITED

- Abdelsalam, M. W. 1965. Flume study of the effect of concentration and size of roughness elements on flow in high-gradient natural channels. Ph D dissertation. Utah State University Library, Logan, Utah.
- Al-Khafaji, Abbas Nasser. 1961. The dynamics of two-dimensional flow in steep, rough, open channels. Ph D dissertation. Utah State University Library, Logan, Utah.
- Attieh, Abdelbagi O. 1961. Pressure distribution and flow patterns around a cube in open channel flow. MS thesis. Utah State University Library, Logan, Utah.
- Blench, T. 1963. Discussion of roughness spacing in rigid, open channels by William W. Sayre and Maurice L. Albertson. Proceedings of the American Society of Civil Engineers. Vol. 87HY7:251-257.
- Chow, Ven Te. 1959. Open channel hydraulics. McGraw-Hill Book Co. Inc., New York.
- Einstein, H. A. and N. L. Barbarossa. 1952. River channel roughness. Transactions of the American Society of Civil Engineers. Vol. 117.
- Goncharov, V. N. 1962. Dynamics of channel flow. Israel Program for Scientific Translations, Jerusalem.
- Herbich, John B. and Sam Shulits. 1964. Large scale roughness in open channel flow. American Society of Civil Engineers Journal of the Hydraulics Division, paper No. 4145, November, HY6.
- Iwagaki, Y. 1954. On the laws of resistance to turbulent flow in open rough channels. Proceedings of 4th Japan Natl. Congress for Applied Mechanics, pp. 229-233.
- Johnson, J. W. 1944. Rectangular artifical roughness in open channels. Transactions of the American Geophysical Union. Vol. 25, pp. 906.
- Judd, Harl E. 1963. A study of bed characteristics in relation to flow in rough, high-gradient, natural channels. Ph D dissertation. Utah State University Library, Logan, Utah.
- Keulegan, Gabris. 1938. Laws of turbulent flow in open channels. Journal of Research, U. S. National Bureau of Standards, 21:707-741.
- Kharrufa, Najib A. 1962. Flume studies of flow in steep, open channels with large graded natural roughness elements. Ph D dissertation. Utah State University Library, Logan, Utah.
- Koloseus, H. J. 1958. The effect of free-surface instability on channel resistance. Ph D dissertation. State University of Iowa Library, Iowa City, Iowa.

- Leopold, L. B., and T. Maddock, Jr. 1953. The hydraulic geometry of stream channels and some physiolgraphic implications. U. S. Geological Survey Professional Paper 252.
- Mirajgoaker, Ambadas. 1961. Effects on single large roughness elements in open channel flow. Ph D dissertation. Utah State University Library, Logan, Utah.
- Mirajgaoker, Ambadas and K. L. N. Charlu. 1963. Natural roughness effects in rigid open channels. American Society of Civil Engineers Journal of the Hydraulics Division, paper No. 3630, September, HY5.
- Mohanty, P. K. 1959. The dynamics of turbulent flow in steep, rough, open channels. Ph D dissertation. Utah State University Library, Logan, Utah.
- Morris, H. M., Jr. 1955. A new concept of flow in rough conduits. Transactions of the American Society of Civil Engineers. Vol. 120:373-410.
- Peterson, Dean F., Jr. and P. K. Mohanty. 1960. Flume studies in steep rough channels. Proceedings of the American Society of Civil Engineers Journal of Hydraulics Division. No. HY9.
- Powell, R. W. 1946. Flow in a channel of definite roughness. Transactions of the American Society of Civil Engineers, Vol. III.
- Robinson, A. R., and M. L. Albertson. 1952. Artificial roughness standards for open channels. Transactions of the American Geophysical Union. 33:881-888.
- Sayre, W. W., and M. L. Albertson. 1963. Roughness spacing in rigid open channels. Transactions of the American Society of Civil Engineers. Vol. 123, Part I.
- Snedecor, G. W. 1956. Statistical methods. Iowa State University Press, Ames, Iowa.

Wolman, M. G. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union. 35(6):951-956.

0

• • •

APPENDIXES

. • .

•

٩

:

Appendix A

Distribution of Bed Element Heights (Zero Points Included)

Figure 29. Distribution of bed element heights for bed 21. (zero points included)

Figure 30. Distribution of bed element heights for bed 23. (zero points included)

Figure 31. Distribution of bed element heights for bed 25. (zero points included)

Figure 32. Distribution of bed element heights for bed 43. (zero points included)

Figure 33. Distribution of bed element heights for bed 45. (zero points included)

Appendix B

Distribution of Bed Element Heights

:

Figure 34. Distribution of bed element heights for bed 21.

Figure 35. Distribution of bed element heights for bed 23.

Figure 36. Distribution of bed element heights for bed 25.

Figure 38. Distribution of bed element heights for bed 45.

Appendix C

Data for Closed Conduit

:

Table 4. Data for closed conduit

Bed	V	D	S	$C/g^{\frac{1}{2}}$	D/K ₁₆	D/K ₂₅	R _D	RK
21	3.80	0.175	0.083	5.54	5.0	2.6	3423	1332
21	7.82	0.175	0.419	5.09	5.0	2.6	7033	2737
21	11.31	0.175	0.888	5.06	5.0	2.6	10172	3 9 <i>5</i> 8
21	14.23	0.175	1.424	5.03	5.0	2.6	12806	4983
21	15.79	0.175	1.726	5.06	5.0	2.6	14203	5527
21	21.57	0.175	3.100	5.16	5.0	2.6	19403	7550
21	25.36	0.175	4.291	5.16	5.0	2.6	22818	8879
21	27.51	0.175	5.112	5.13	5.0	2.6	24755	9633
21	30.46	0.175	6.704	4.96	5.0	2.6	27402	10663
21	34.31	0.175	8,380	5.00	5.0	2.6	30866	12011
21	37.03	0.175	9.973	5.02	5.0	2.6	33860	13176
21	40.93	0.175	11.017	5.02	5.0	2.6	36829	14331
21	44.40	0.175	15.700	5.04	5.0	2.6	39818	15494
21	10 51	0.175	16 083	5.04	5.0	2.0	41094 111105	10224
21	14501 14 54	0.310	10,905	6 73	5.0 8.0	2.0 h. 6	22203	±1219
21	18.63	0.310	0.768	6.72	8.9	4.6	29859	6544
21	23.37	0.310	1.203	6.74	8.9	4.6	37445	8207
21	27.17	0.310	1.604	6.79	8.9	4.6	43549	9544
21	30.41	0.310	2.005	6.79	8.9	4.6	48731	10680
21	34.08	0.310	2.472	6.86	8.9	4.6	54613	11969
21	35.53	0.310	2.706	6.83	8.9	4.6	56938	12479
21	40.70	0.310	3.759	6.64	8.9	4.6	65232	14296
21	46.04	0.310	4.762	6.68	8.9	4.6	73786	16171
21	48.06	0.310	5.263	6.63	8.9	4.5	77016	16879
21	36.91	0.310	3.174	6.55	8.9	4.6	59144	12962
21	42.96	0.31.0	4.310	6.55	8.9	4.6	68846	15089
21	46.54	0.310	5.012	6.58	8.9	4.6	74578	16345
21	49.99	0.310	5.848	6.54	8.9	4.6	80118	17559
21	52.91	0.310	6.516	6.56	8.9	4.6	84785	18582
21	12.23	0.446	0.202	7.18	12.7	6.6	27919	4261
21	10.33	0.446	0.353	7.25	12.7	6.6	37285	5690
21	19.43	0.440	0.471	7.47	12.7	6.6	44370	6771
21	21.00	0.440	0.572	7.03	12.7	6.6	49910	7617
21	25.02	0.440	0.741	7.67	12.7	6.6	57118	8717
21	イン•ソン マローロ	0.440	0.000	7.02	12.7	0.0	59258	9043
21	2(+1)	0 446	1 182	(•)(ウ hワ	1201	6.6	6000h	7430 10681
21	32,86	0.446	1.334	(•**/ 7.51	12.7	6.6	ロフフンマー	10001 11/12
21	34.68	0.446	1.486	7.51	12.7	6.6	78031	12045
21	34.80	0.446	1.520	7.45	12.7	6.6	79212	12088
21	35.70	0.446	1,588	7.48	12.7	6.6	81258	12401
21	36.26	0.446	1.655	7.44	12.7	6.6	82525	12594
21	37.39	0.446	1.757	7.45	12.7	6.6	85103	12987
21	38.32	0.446	1.875	7.39	12.7	6.6	87209	13309

235.470.1990.1685.274.42.455802302238.470.1990.5044.714.42.4863735642312.880.1991.2104.634.42.41313654202315.890.1991.8244.654.42.41613266562319.880.1992.7704.724.42.42018183262323.150.1993.7844.704.42.42350196962328.770.1995.9424.674.42.423667149632335.900.1998.9984.734.42.433406137832335.900.19918.8144.734.42.44321215972240.680.19917.3174.754.42.444552183812346.760.19915.1094.764.42.444254194922349.900.3340.3036.017.44.11858645612316.390.3340.3036.017.44.1280668862321.100.3341.6845.977.44.143548106862322.5430.3341.6845.977.44.143548168662321.100.3343.7175.727.44.1457311330823	Bed	v	D	S	C/g ^{1/2}	D/K ₁₆	D/K ₂₅	R _D	R _K
23 5.47 0.199 0.168 5.27 4.4 2.4 5580 2302 23 8.47 0.199 0.507 4.61 4.4 2.4 10685 4408 23 10.47 0.199 1.824 4.63 4.4 2.4 13136 5420 23 15.89 0.199 1.824 4.63 4.4 2.4 16132 6656 23 23.15 0.199 2.770 4.72 4.4 2.4 23501 9696 23 28.77 0.199 5.942 4.67 4.4 2.4 23667 14963 23 35.90 0.199 8.998 4.73 4.4 2.4 36267 14963 23 34.98 0.199 11.381 4.73 4.4 2.4 43812 15972 23 40.98 0.199 15.109 4.71 4.4 2.4 44352 18381 23 46.76 0.199 15.109 4.76 4.4 2.4 49266 26866 23 1	<u></u>						ر ~ من من من من		
238.470.1990.5044.714.42.41068544082312.880.1991.2104.634.42.41068544082315.890.1991.8244.654.42.41313654202315.890.1992.7704.724.42.4235019662323.150.1995.9424.674.42.4235019662328.770.1995.9424.674.42.423061137832335.900.1991.8844.704.42.438712159722340.980.19911.8844.704.42.44398170802340.980.19915.514.734.42.444525183812346.760.19915.1094.764.42.444525183812340.980.3340.3036.017.44.11858845612345.900.3340.2075.947.44.12.48935120882310.860.3340.7075.947.44.11858845612324.300.3341.2465.937.44.114548106862328.580.3342.3575.677.44.148935120882331.670.3342.8635.717.44.1686616850	23	5.47	0.199	0.168	5.27	4.4	2.4	5580	2302
2310.470.1990.8074.614.42.41313654202315.890.1991.2104.634.42.41313654202315.890.1991.2104.654.42.41613266562319.880.1992.7704.724.42.42018183262323.150.1993.7844.704.42.4230196662328.770.1995.9424.674.42.423068119932335.900.1998.9984.734.42.434612159722340.980.19910.3564.714.42.441398170802344.100.19913.5814.734.42.444552183812346.760.19915.1094.764.42.444552183822310.860.3340.3036.017.44.11858845612316.390.3341.2465.977.44.13717791232325.430.3341.2465.977.44.143548106862328.580.3342.3575.677.44.143548106862324.570.3342.8575.777.44.161716151442340.230.3345.9135.707.44.1617216154423	23	8.47	0.199	0.504	4.71	4.4	2.4	8637	3564
2312.880.1991.2104.634.42.41313654202315.890.1991.8244.654.42.41313654202319.880.1992.7704.724.42.42018183262323.150.1993.7844.704.42.42350196962328.770.1995.9424.674.42.42350196962335.900.19919.8694.734.42.433406137832335.900.19910.3564.714.42.44398179802340.980.19911.8844.704.42.44398179802340.990.19915.1094.764.42.44452183812346.760.19915.1094.764.42.447244194222349.990.19917.3174.754.42.447244194222349.990.3340.7075.947.44.11858845612325.430.3341.6845.977.44.12846268862321.710.3341.2465.937.44.14548106862326.580.3343.7175.727.44.14548106862341.710.3345.9755.777.44.1617161514424<	23	10.47	0.199	0.807	4.61	4.4	2.4	10685	4408
2315.890.1991.8244.654.42.42018183262319.880.1992.7704.724.42.42018183262323.150.1993.7844.704.42.42350196962328.770.1995.9424.674.42.42350196962335.900.1997.8094.684.42.436267149632338.320.19910.3564.714.42.443712159722340.980.19911.8844.704.42.441398170802344.100.19913.5814.734.42.444552183812444.660.19915.1094.764.42.447244194922349.990.19917.3174.754.42.449552183812316.390.3340.3036.017.44.12806268862321.710.3341.2465.937.44.12806268862325.430.3341.6845.977.44.149548106862328.580.3342.3575.677.44.149548106862324.570.3341.68425.787.44.171676151442440.230.3345.9755.777.44.17436618709<	23	12.88	0.199	1.210	4.63	4.4	2.4	13136	5420
2319.880.1992.7704.724.42.42018183262323.150.1993.7844.704.42.42350196962328.770.1995.9424.674.42.423061137832335.900.1998.9984.734.42.433406137832338.320.19910.3564.714.42.4438712159722340.980.19911.8844.704.42.441398170802344.100.19913.5814.734.42.444552183812346.760.19915.1094.764.42.444552183812346.760.19917.3174.754.42.447244194922349.990.19917.3174.754.42.44052628382316.390.3340.3036.017.44.1185845612316.390.3341.2465.937.44.12806268862321.710.3341.2465.977.44.148935120082336.160.3342.3575.677.44.148935120082336.160.3345.717.44.168666168502341.710.3344.8325.787.44.1617161514424 <td< td=""><td>23</td><td>15.89</td><td>0.199</td><td>1.824</td><td>4.65</td><td>4.4</td><td>2.4</td><td>16132</td><td>6656</td></td<>	23	15.89	0.199	1.824	4.65	4.4	2.4	16132	6656
2323.150.1993.7844.704.42.42350196962328.770.1995.9424.674.42.42306119932333.070.1997.8094.684.42.433406137832338.320.19910.3564.714.42.436267149632338.320.19911.8844.704.42.441398170802340.980.19911.8844.704.42.444552183812444.760.19915.1094.764.42.444552183812346.760.19917.3174.754.42.447244194922349.990.19917.3174.754.42.447244194922349.990.19917.3174.754.42.447244194922349.990.3340.3036.017.44.11858845612316.390.3340.3075.947.44.12806268862321.710.3341.2465.937.44.143548106862325.430.3342.3575.677.44.1419351120882336.160.3343.7175.727.44.164666164502340.230.3345.9135.707.44.17483618364<	23	19.88	0.199	2.770	4.72	4.4	2.4	20181	8326
2328.77 0.199 5.942 4.67 4.4 2.4 29068 11993 2335.07 0.199 7.809 4.68 4.4 2.4 33406 13783 23 35.90 0.199 8.998 4.73 4.4 2.4 36267 14965 23 40.98 0.199 11.884 4.70 4.4 2.4 439812 15972 23 40.98 0.199 11.884 4.70 4.4 2.4 44552 18381 23 44.10 0.199 15.109 4.76 4.44 2.4 47244 19492 23 49.99 0.199 17.317 4.75 4.44 2.4 47244 19492 24 49.99 0.334 0.303 6.01 7.4 4.1 18588 4561 23 16.86 0.334 0.303 6.01 7.4 4.1 28662 68866 23 21.71 0.334 1.2465 5.97 7.4 4.1 37177 9123 23 25.43 0.334 2.357 5.67 7.4 4.1 43548 106866 23 21.71 0.334 2.863 5.71 7.4 4.1 61716 151444 23 40.23 0.334 2.867 7.4 4.1 61726 18719 23 36.16 0.334 5.755 5.77 7.4 4.1 61726 18719 23 44.23 0.334 <td>23</td> <td>23.15</td> <td>0.199</td> <td>3.784</td> <td>4.70 .</td> <td>4.4</td> <td>2.4</td> <td>23501</td> <td>9696</td>	23	23.15	0.199	3.784	4.70 .	4.4	2.4	23501	9696
2333.07 0.199 7.8094.684.42.433406137832335.90 0.199 10.3564.714.42.438712159722340.98 0.199 11.8844.704.42.441398170802344.10 0.199 13.5814.734.42.444152183812344.76 0.199 15.1094.764.42.444552183812344.76 0.199 15.1094.764.42.444552183812344.76 0.199 17.3174.754.42.444552183812344.76 0.394 0.303 6.017.44.1185845612316.39 0.334 0.707 5.94 7.44.12806268862321.71 0.334 1.246 5.97 7.44.143548106862328.58 0.334 2.357 5.67 7.44.143935120082336.16 0.334 3.717 5.72 7.4 4.168666187192340.23 0.334 5.975 5.77 7.4 4.171197174712344.69 0.334 5.975 5.77 7.4 4.174836183642343.84 0.334 5.973 7.4 4.174836183642344.50 0.334 5.973 7.4 <	23	28.77	0.199	5.942	4.67	4.4	2.4	29068	11993
2335.90 0.199 8.9984.734.42.436267149632336.32 0.199 10.3564.714.42.438712159722340.98 0.199 11.8844.704.42.441398170802344.10 0.199 15.514.734.42.444552183812346.76 0.199 15.1094.764.42.447244194922349.99 0.199 17.3174.754.42.447244194922349.99 0.334 0.303 6.017.44.11858845612316.86 0.334 0.303 6.017.44.12806268862321.71 0.334 1.246 5.937.44.13717791232325.43 0.334 1.246 5.977.44.143548106862321.71 0.334 1.684 5.977.44.143548106862322.543 0.334 2.357 5.677.44.15423113082336.16 0.334 3.77 5.787.44.168666168502341.71 0.334 4.892 5.787.44.1617661544244.69 0.334 5.975 5.777.44.174836183642340.23 0.334 5.991 5.707.4	23	33.07	0.199	7.809	4.68	4.4	2.4	33406	13783
23 38.32 0.199 10.356 4.71 4.4 2.4 38712 15972 23 40.98 0.199 11.884 4.70 4.4 2.4 41398 17080 23 44.10 0.199 13.581 4.73 4.4 2.4 44552 18381 23 46.76 0.199 15.109 4.76 4.4 2.4 47244 19492 23 49.99 0.199 17.317 4.75 4.4 2.4 47244 19492 23 49.99 0.334 0.303 6.01 7.4 4.1 18588 4551 23 16.39 0.334 0.707 5.94 7.4 4.1 28062 6886 23 21.71 0.334 1.246 5.97 7.4 4.1 37177 9123 23 25.43 0.334 1.684 5.97 7.4 4.1 43548 10686 23 28.58 0.334 2.357 5.67 7.4 4.1 43548 10686 23 31.67 0.334 2.863 5.71 7.4 4.1 61716 15144 24 40.23 0.334 4.932 5.78 7.4 4.1 71666 18719 23 41.71 0.334 4.932 5.77 7.4 4.1 71676 19059 23 41.71 0.334 5.991 5.70 7.4 4.1 71676 19059 23 43.84 <t< td=""><td>23</td><td>35.90</td><td>0.199</td><td>8.998</td><td>4.73</td><td>4.4</td><td>2.4</td><td>36267</td><td>14963</td></t<>	23	35.90	0.199	8.998	4.73	4.4	2.4	36267	14963
23 40.98 0.199 11.884 4.70 4.4 2.4 41398 17080 23 44.10 0.199 15.109 4.76 4.4 2.4 44552 18381 23 46.76 0.199 15.109 4.76 4.4 2.4 47244 19492 23 49.99 0.199 17.317 4.75 4.4 2.4 47244 19492 23 49.99 0.334 0.303 6.01 7.4 4.1 18588 4561 23 16.39 0.334 0.303 6.01 7.4 4.1 28062 6886 23 21.71 0.334 1.246 5.93 7.4 4.1 43548 10686 23 25.43 0.334 1.246 5.97 7.4 4.1 43935 12008 23 25.43 0.334 2.357 5.67 7.4 4.1 43935 12008 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 23 40.23 0.334 5.775 7.4 4.1 7187 1797 23 40.63 0.334 5.575 7.7 7.4 4.1 71668 1879 23 41.71 0.334 5.5913 5.77 7.4 4.1 71668 1879 23 43.84 0.334 5.913 5.77 7.4 4.1 74836 18264 23 45.50 0.334	23	38.32	0.199	10.356	4.71	4.4	2.4	38712	15972
23 44.10 0.199 13.581 4.73 4.4 2.4 44552 18381 23 46.76 0.199 15.109 4.76 4.4 2.4 47244 19492 23 49.99 0.199 17.317 4.75 4.4 2.4 50506 20838 23 10.86 0.334 0.303 6.01 7.4 4.1 18588 4561 23 16.39 0.334 0.707 5.94 7.4 4.1 28062 6886 23 21.71 0.334 1.246 5.93 7.4 4.1 37177 9123 23 25.43 0.334 1.684 5.97 7.4 4.1 49351 12008 23 28.58 0.334 2.357 5.67 7.4 4.1 49351 12008 23 31.67 0.334 2.857 5.77 7.4 4.1 54231 1308 23 36.16 0.334 3.717 5.72 7.4 4.1 68666 16850 23 41.71 0.334 4.832 5.78 7.4 4.1 7197 17471 23 40.63 0.334 5.975 5.77 7.4 4.1 74836 18364 23 45.50 0.334 5.975 5.77 7.4 4.1 74836 18364 23 45.50 0.334 5.975 5.77 7.4 4.1 74836 18364 23 45.50 0	23	40.98	0.199	11.884	4.70	4.4	2.4	41398	17080
2346.760.19915.1094.764.42.447244194922349.990.19917.3174.754.42.450506208382310.860.3340.3036.017.44.11858845612316.390.3340.7075.947.44.12806268862321.710.3341.2465.937.44.12806268862325.430.3341.6845.977.44.149351120082331.670.3342.3575.677.44.149355120082336.160.3343.7175.727.44.168666168502340.230.3344.4945.787.44.168666168502341.710.3344.8325.787.44.171197174712344.690.3345.5755.777.44.171866187192343.840.3345.4915.707.44.174836183642345.500.3345.9135.707.44.181045198872343.840.3346.4205.717.44.181045198872345.500.3347.1805.687.44.181045198872345.700.4700.2726.3410.45.7306205347 <t< td=""><td>23</td><td>44.10</td><td>0.199</td><td>13.581</td><td>4.73</td><td>4.4</td><td>2.4</td><td>44552</td><td>18381</td></t<>	23	44.10	0.199	13.581	4.73	4.4	2.4	44552	18381
23 49.99 0.199 17.317 4.75 4.4 2.4 50506 20838 23 10.86 0.334 0.303 6.01 7.4 4.1 18588 4561 23 16.39 0.334 0.707 5.944 7.4 4.1 28062 6886 23 21.71 0.334 1.246 5.93 7.4 4.1 43548 10686 23 25.43 0.334 1.246 5.97 7.4 4.1 43548 10686 23 28.58 0.334 2.357 5.67 7.4 4.1 48935 12008 23 31.67 0.334 2.863 5.71 7.4 4.1 54231 13308 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 23 40.23 0.334 4.892 5.78 7.4 4.1 61716 15144 23 40.23 0.334 5.757 5.77 7.4 4.1 61766 18719 23 41.69 0.334 5.775 5.77 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18374 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18372 23 45.50 0.334 5.913 5.70 7.4 4.1 81045 19887 23 45.50	23	46.76	0.199	15.109	4.76	4.4	2.4	47244	19492
23 10.86 0.334 0.303 6.01 7.4 4.1 18588 4561 23 16.39 0.334 1.246 5.93 7.4 4.1 37177 9123 23 25.43 0.334 1.684 5.97 7.4 4.1 43548 10686 23 28.58 0.334 2.357 5.67 7.4 4.1 43548 10686 23 28.58 0.334 2.357 5.67 7.4 4.1 48955 12008 23 31.67 0.334 2.863 5.71 7.4 4.1 54231 1308 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 23 40.23 0.334 4.894 5.78 7.4 4.1 71107 1.7471 23 44.69 0.334 5.975 5.77 7.4 4.1 71297 1.7471 23 43.84 0.334 5.4911 5.70 7.4 4.1 71669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.70	23	49.99	0.199	17.317	4.75	4.4	2.4	50 506	20838
23 16.39 0.334 0.707 5.94 7.4 4.1 28062 6886 23 21.71 0.334 1.246 5.93 7.4 4.1 37177 9123 23 25.43 0.334 1.684 5.97 7.4 4.1 43548 10686 23 28.58 0.334 2.357 5.67 7.4 4.1 48935 12008 23 31.67 0.334 2.863 5.71 7.4 4.1 54231 13308 23 36.16 0.334 3.717 5.72 7.4 4.1 64716 15144 23 40.23 0.334 4.892 5.78 7.4 4.1 64266 16850 23 41.71 0.334 4.832 5.78 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 71297 17471 23 44.69 0.334 5.913 5.70 7.4 4.1 71691 19059 23 45.50 0.334 5.913 5.70 7.4 4.1 81045 19887 23 45.50 0.334 6.758 5.71 7.4 4.1 81045 19887 23 47.48 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0	23	10.86	0.334	0.303	6.01	7.4	4.1	18588	4561
23 21.71 0.334 1.246 5.93 7.4 4.1 37177 9123 23 25.43 0.334 1.684 5.97 7.4 4.1 43548 10686 23 28.58 0.334 2.357 5.67 7.4 4.1 43548 10686 23 31.67 0.334 2.357 5.67 7.4 4.1 48935 12008 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 24 40.23 0.334 4.494 5.78 7.4 4.1 61716 15144 23 40.23 0.334 4.892 5.78 7.4 4.1 6176 15144 24 40.23 0.334 4.892 5.78 7.4 4.1 6176 15144 24 40.23 0.334 5.575 5.77 7.4 4.1 61866 16850 23 41.71 0.334 4.832 5.77 7.4 4.1 7197 17471 23 44.69 0.334 5.913 5.70 7.4 4.1 76286 18719 23 43.84 0.334 6.420 5.71 7.4 4.1 81045 19887 23 45.50 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 85204 20908 23 12.87 0.4	23	16.39	0.334	0.707	5.94	7.4	4.1	28062	6886
2325.43 0.334 1.684 5.97 7.4 4.1 43548 10686 2328.58 0.334 2.357 5.67 7.4 4.1 48935 12008 23 31.67 0.334 2.863 5.71 7.4 4.1 54231 13308 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 23 40.23 0.334 4.494 5.78 7.4 4.1 61716 15144 23 40.23 0.334 4.494 5.78 7.4 4.1 61716 15144 23 40.23 0.334 4.832 5.78 7.4 4.1 61716 15144 23 40.23 0.334 4.832 5.78 7.4 4.1 61716 15144 23 40.23 0.334 5.575 5.77 7.4 4.1 71197 17471 23 44.69 0.334 5.491 5.70 7.4 4.1 76286 18719 23 45.50 0.334 5.913 5.70 7.4 4.1 7669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 12.87 0.47	23	21.71	0.334	1.246	5.93	7.4	4.1	37177	9123
2328.58 0.334 2.357 5.67 7.4 4.1 48935 12008 23 31.67 0.334 2.863 5.71 7.4 4.1 54231 13308 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 151444 23 40.23 0.334 4.494 5.78 7.4 4.1 61716 151444 23 40.23 0.334 4.494 5.78 7.4 4.1 68666 16850 23 41.71 0.334 4.832 5.78 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 76286 18719 23 43.84 0.334 5.491 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.491 5.70 7.4 4.1 74836 18364 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.420 5.71 7.4 4.1 81045 19887 23 49.92 0.334 7.180 5.68 7.4 4.1 81045 19887 23 12.87 0.470 0.272 6.34 10.4 5.7 39161 6838 23 12.87	23	25.43	0.334	1.684	5.97	7•4	4.1	43548	10686
23 31.67 0.334 2.863 5.71 7.4 4.1 54231 13308 23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 23 40.23 0.334 4.494 5.78 7.4 4.1 61716 15144 23 40.23 0.334 4.494 5.78 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 71297 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 76286 18719 23 43.84 0.334 5.491 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18364 23 46.71 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 16.46 0.470 0.272 6.34 10.4 5.7 39161 6838 23 12.87 0.470 0.647 6.34 10.4 5.7 59128 10325 23 26.31 <td< td=""><td>23</td><td>28.58</td><td>0.334</td><td>2.357</td><td>5.67</td><td>7.4</td><td>4.1</td><td>48935</td><td>12008</td></td<>	23	28.58	0.334	2.357	5.67	7.4	4.1	48935	12008
23 36.16 0.334 3.717 5.72 7.4 4.1 61716 15144 23 40.23 0.334 4.494 5.78 7.4 4.1 68666 16850 23 41.71 0.334 4.832 5.78 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 76286 18719 23 43.84 0.334 5.4911 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18364 23 45.50 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.420 5.71 7.4 4.1 81045 19887 23 49.92 0.334 7.180 5.68 7.4 4.1 81045 19887 23 12.87 0.470 0.272 6.34 10.4 5.7 39161 6838 23 19.82 0.470 0.783 6.41 10.4 5.7 59128 10325 23 26.31 <t< td=""><td>23</td><td>31.67</td><td>0.334</td><td>2,863</td><td>5.71</td><td>7.4</td><td>4.1</td><td>54231</td><td>13308</td></t<>	23	31.67	0.334	2,863	5.71	7.4	4.1	54231	13308
23 40.23 0.334 4.494 5.78 7.4 4.1 68666 16850 23 41.71 0.334 4.832 5.78 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 76286 18719 23 43.84 0.334 5.491 5.70 7.4 4.1 76286 18719 23 45.50 0.334 5.913 5.70 7.4 4.1 74836 18364 23 45.50 0.334 6.420 5.71 7.4 4.1 77669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.6477 6.34 10.4 5.7 59128 10325 23 22.07 0.470 0.987 6.43 10.4 5.7 59128 10325 23 26.31 <	23	36.16	0.334	3.717	5.72	7.4	4.1	61716	15144
23 41.71 0.334 4.832 5.78 7.4 4.1 71197 17471 23 44.69 0.334 5.575 5.77 7.4 4.1 76286 18719 23 43.84 0.334 5.491 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 77669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.70 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.783 6.41 10.4 5.7 59128 10325 23 22.07 0.470 1.586 6.29 10.4 5.7 59128 10325 23 26.31 <t< td=""><td>23</td><td>40.23</td><td>0.334</td><td>4.494</td><td>5.78</td><td>7.4</td><td>4.1</td><td>68666</td><td>16850</td></t<>	23	40.23	0.334	4.494	5.78	7.4	4.1	68666	16850
23 44.69 0.334 5.575 5.77 7.4 4.1 76286 18719 23 43.84 0.334 5.491 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 77669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.4422 6.36 10.4 5.7 39161 6838 23 19.82 0.470 0.647 6.34 10.4 5.7 59128 10325 23 26.31 0.470 1.586 6.29 10.4 5.7 79128 10325 23 27.78 <	23	41.71	0.334	4.832	5.78	7•4	4.1	71197	17471
23 43.84 0.334 5.491 5.70 7.4 4.1 74836 18364 23 45.50 0.334 5.913 5.70 7.4 4.1 77669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 83151 20404 23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 39161 6838 23 19.82 0.470 0.442 6.36 10.4 5.7 39161 6838 23 19.82 0.470 0.647 6.34 10.4 5.7 47168 8237 23 22.07 0.470 0.783 6.41 10.4 5.7 59128 10325 23 26.31 0.470 1.58 6.29 10.4 5.7 59128 10325 23 26.31 0.470 1.328 6.20 10.4 5.7 71109 12417 23 27.78 0.470 1.328 6.20 10.4 5.7 74956 13089 23 29.89 0.470 1.669 6.27 10.4 5.7 78167 13649 23 31.95	23	44.69	0.334	5.575	5.77	7.4	4.1	76286	18719
23 45.50 0.334 5.913 5.70 7.4 4.1 77669 19059 23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 83151 20404 23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.442 6.36 10.4 5.7 39161 6838 23 19.82 0.470 0.647 6.34 10.4 5.7 39161 6838 23 19.82 0.470 0.783 6.41 10.4 5.7 59128 10325 23 22.07 0.470 0.987 6.43 10.4 5.7 59128 10325 23 26.31 0.470 1.158 6.29 10.4 5.7 66093 11541 23 29.89 0.470 1.328 6.20 10.4 5.7 74956 13089 23 32.85 0.470 1.669 6.27 10.4 5.7 78167 13649 23 31.95 0.470 1.671 6.17 10.4 5.7 78167 13649 23 32.85 0.470 1.975 6.19 10.4 5.7 83539 14588 23 35.11 </td <td>23</td> <td>43.84</td> <td>0.334</td> <td>5.491</td> <td>5.70</td> <td>7.4</td> <td>4.1</td> <td>74836</td> <td>18364</td>	23	43.84	0.334	5.491	5.70	7.4	4.1	74836	18364
23 47.48 0.334 6.420 5.71 7.4 4.1 81045 19887 23 48.71 0.334 6.758 5.71 7.4 4.1 83151 20404 23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.272 6.34 10.4 5.7 39161 6838 23 19.82 0.470 0.647 6.34 10.4 5.7 47168 8237 23 22.07 0.470 0.783 6.41 10.4 5.7 52509 9169 23 24.85 0.470 0.987 6.43 10.4 5.7 59128 10325 23 26.31 0.470 1.158 6.29 10.4 5.7 62601 10931 23 27.78 0.470 1.328 6.20 10.4 5.7 71109 12417 23 31.50 0.470 1.669 6.27 10.4 5.7 74956 13089 23 32.85 0.470 1.839 6.23 10.4 5.7 78167 13649 23 31.95 0.470 1.975 6.19 10.4 5.7 80508 14058 23 35.11 0.470 1.975 6.19 10.4 5.7 83539 14588 23 35.11 </td <td>23</td> <td>45.50</td> <td>0.334</td> <td>5.913</td> <td>5.70</td> <td>7.4</td> <td>4.1</td> <td>77669</td> <td>19059</td>	23	45.50	0.334	5.913	5.70	7.4	4.1	77669	19059
23 48.71 0.334 6.758 5.71 7.4 4.1 83151 20404 23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.442 6.36 10.4 5.7 39161 6838 23 19.82 0.470 0.647 6.34 10.4 5.7 47168 8237 23 22.07 0.470 0.783 6.41 10.4 5.7 52509 9169 23 24.85 0.470 0.987 6.43 10.4 5.7 59128 10325 23 26.31 0.470 1.158 6.29 10.4 5.7 62601 10931 23 27.78 0.470 1.328 6.20 10.4 5.7 71109 12417 23 31.50 0.470 1.669 6.27 10.4 5.7 74956 13089 23 32.85 0.470 1.839 6.23 10.4 5.7 78167 13649 23 31.95 0.470 1.975 6.19 10.4 5.7 80508 14058 23 35.11 0.470 2.112 6.21 10.4 5.7 83539 14588	23	47.48	0.334	6.420	5.71	7.4	4.1	81045	19887
23 49.92 0.334 7.180 5.68 7.4 4.1 85204 20908 23 12.87 0.470 0.272 6.34 10.4 5.7 30620 5347 23 16.46 0.470 0.442 6.36 10.4 5.7 39161 6838 23 19.82 0.470 0.647 6.34 10.4 5.7 47168 8237 23 22.07 0.470 0.783 6.41 10.4 5.7 52509 9169 23 24.85 0.470 0.987 6.43 10.4 5.7 59128 10325 23 26.31 0.470 1.158 6.29 10.4 5.7 62601 10931 23 27.78 0.470 1.328 6.20 10.4 5.7 66093 11541 23 29.89 0.470 1.498 6.28 10.4 5.7 71109 12417 23 31.50 0.470 1.669 6.27 10.4 5.7 78167 13089 23 32.85 0.470 1.839 6.23 10.4 5.7 78167 13649 23 31.95 0.470 1.975 6.19 10.4 5.7 80508 14058 23 35.11 0.470 2.112 6.21 10.4 5.7 83539 14588	23	48.71	0.334	6.758	5.71	7.4	4.1	83151	20404
2312.87 0.470 0.272 6.34 10.4 5.7 30620 5347 2316.46 0.470 0.442 6.36 10.4 5.7 39161 6838 2319.82 0.470 0.647 6.34 10.4 5.7 47168 8237 2322.07 0.470 0.783 6.41 10.4 5.7 52509 9169 2324.85 0.470 0.987 6.43 10.4 5.7 59128 10325 2326.31 0.470 1.58 6.29 10.4 5.7 62601 10931 2327.78 0.470 1.328 6.20 10.4 5.7 66093 11541 2329.89 0.470 1.498 6.28 10.4 5.7 71109 12417 2331.50 0.470 1.669 6.27 10.4 5.7 78167 13649 2331.95 0.470 1.839 6.23 10.4 5.7 78167 13649 2331.95 0.470 1.975 6.19 10.4 5.7 80508 14058 2335.11 0.470 2.112 6.21 10.4 5.7 83539 14588	23	49.92	0.334	7.180	5.68	7.4	4.1	85204	20908
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	12.87	0.470	0.272	6.34	10.4	5.7	30620	5347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 23 -	16.46	0.470	0.442	6.36	10.4	5•7	39161	6838
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	19.82	0.470	0.647	6.34	10.4	5.7	47168	8237
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	22.07	0.470	0.783	6.41	10.4	5•7	52509	9169
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	24.85	0.470	0.987	6.43	10.4	5•7	59128	10325
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	26.31	0.470	1.158	6.29	10.4	5•7	62601	10931
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	27.78	0.470	1.328	6.20	10.4	5.7	66093	11541
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	29.89	0.470	1.498	6.28	10.4	5.7	71109	12417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	<u>50 مدر</u>	0.470	1.669	6.27	10.4	5.7	74956	13089
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	32.85	0.470	T.832	0.23	10.4	5•7	70107	13649
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	31.95	0.470	1.771	6.17	10.4	5•7	76016	13274
23 35.11 0.470 2.112 0.21 10.4 5.7 83539 14588	23	55.03	0.470	1.975	0.19	10.4	5.7	80508	14058
	23	55.11 25.00	0.470	2.112	0.21	10.4	5.7	03539	14508
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	36 30	0.470	2.214	0.2L 6 12		2•7 5 7	05507 8626 c	1 50.21

î,

9

		Analisa ya ku in ga shu da s	an an ann an	1				in a di anggi a Chaille di Santan Santa Mandran Shan 4 Shadin - Anggi a Sha
Bed	V	D	S	C/g ²	D/K ₁₆	D/K ₂₅	R _D	RK
25	6.14	0.202	0.168	5.86	4.5	2.6	6327	2446
25	9.26	0.202	0.371	5.96	4.5	2.6	9541	3689
25	11.46	0.202	0.557	6.02	4.5	2.6	11809	4566
25	13.41	0.202	0.777	5•97	4.5	2.6	13824	5345
25	17.18	0.202	1.452	5•59	4.5	2.6	17506	6768
25	21.22	0.202	2.221	5.59	4.5	2.6	21623	8360
25	24.86	0.202	3.246	5.41	4.5	2.6	25328	9792
25	29.75	0.202	4.613	5.43	4.5	2.6	30310	11719
25	33.60	0.202	5.980	5.39	4.5	2.6	34237	13237
25	30.90 10 50	0.202	7.797	5.47	4.5	2.0	39900 Ja 26 r	15449
25	111 28	0.202	0.470	∑ •40 ≤ 10	4•) h 5	2.0	41205	エンソン4 コットルク
25	47.20	0.202	9.990	2•49 5 51	4. 5 Li 5	2.6	45110 18711	18845
25	49.79	0.202	12.473	5.53	4.5	2.6	50735	10615
25	51.67	0.202	13,499	5.52	4.5	2.6	52650	20355
25	11.85	0.337	0.304	6.52	5.5	4.3	20409	4721
25	18.45	0.337	0.675	6.81	5.5	4.3	31769	7349
25	22.11	0.337	0.979	6.78	5.5	4.3	38076	8808
25.	26.65	0.337	1.385	6.87	5.5	4.3	45898	10618
25	29.72	0.337	1.723	6.87	5.5	4.3	51179	11840
25	32.33	0.337	1.993	6.95	5.5	4.3	55676	12880
25	33.52	0.337	2.162	6.92	5.5	4.3	57725	13354
25	36.39	0.337	2.682	6.74	5.5	4.3	62364	14427
25	39.30	0.337	3.055	6.82	5.5	4.3	67361	15583
25	42.36	0.337	3.497	6.87	5•.5	4.3	72596	·16794
25	43.42	0.337	3.701	6.85	5.5	4.3	74417	17215
25	45.15	0.337	4.074	6.79	5.5	4.3	77388	1.7903
25	.41.77	0.337	3.531	6.75	5.5	4.3	71598	16563
25	47.30	0.337	4.516	6.76	5.5	4.3	81169	18777
25	49.95	0.337	5.059	6.74	5.5	4.3	85605	19804
25 25	10.90	0.473	0.170	6 82	10.5	0.1	20292	4339
25	1016	0.47)	0.540	0,02 רו תי	10.5	0.1 6 1	57103 hroon	0137
25	27 27	0.473	0.470	/•11 7 13	10.5	0.1 6 1	4007	8604
25	24.35	0.473	0.215	738	10.5	61	5831 0	0625
25	25.91	0.473	0.851	7.20	10.5	61	62037	10230
25	28.26	0.473	0.987	7.29	10.5	6.1	67668	11169
25	30.63	0.473	1.107	7.46	10.5	6.1	73346	12106
25	30.99	0.473	1.192	7.27	10.5	6.1	74203	12247
25	32.72	0.473	1.328	7.28	10.5	6,1	78346	12931
25	30.84	0.473	1.192	7.24	10.5	6.1	73842	12187
25	33.62	0.473	1.362	7.38	10.5	6.1	80508	13288
25	34.63	0.473	1.464	7.33	10.5	6.1	82921	13686
25	35.44	0.473	1.532	7.34	10.5	6.1	84862	14006
25	36.36	0.473	1.635	7.29	10.5	6.1	870 57	14360

Bed	V	D	S	$C/g^{\frac{1}{2}}$	D/K ₁₆	D/K ₂₅	^R D	R _K
43	8.59	0.175	1.396	3.06	1.8	1.0	7606	7312
43	12.60	0.175	2.827	3.16	1.8	1.0	11159	10727
43	14.22	0.175	3.508	3.20	1.8	1.0	12588	12102
43	15.46	0.175	4.258	3.16	1.8	1.0	13689	13161
43	18.70	0.175	5.961	3.23	1.8	1.0	16558	15919
43	20.54	0.175	6.983	3.28	1.8	1.0	18187	17485
43	21.97	0.175	7.920	3.29	1.8	1.0	19457	18705
43	24.58	0.175	10.049	3.27	1.8	1.0	21767	20927
43	27.36	0.175	12.263	3.29	1.8	1.0	24226	23290
43	28.71	0.175	13.455	3.30	1.8	1.0	25419	24437
43	31.01	0.175	15.669	3.30	1.8	1.0	27455	26395
43	33.35	0.175	17.883	3.32	1.8	1.0	29534	28393
43	36.50	0.175	20.949	3.36	1.8	1.0	32320	31071
43	38.55	0.175	22.823	3.40	1.8	1.0	34136	32817
43	38.82	0.175	23.504	3.38	1.8	1.0	34377	33049
43	11.70	0.310	0.572	4.89	3.2	1.8	18589	10068
43	17.38	0.310	1.313	4.80	3.2	1.8	27629	14965
43	22.91	0.310	2.223	4.86	3.2	1.8	36413	19722
43	26.39	0.310	2.930	4.88	3.2	1.8	41950	22722
43	29.84	0.310	3.637	4.95	3.2	1.8	47434	25692
43	32.35	0.310	4.277	4.95	3.2	1.8	51417	27850
43	30.11	0.310	5.288	4.97	3.2	1.8	57399	31089
43	J0.95	0.310	5.660	4.91	3.2	1.8	58537	31706
4) 12	40.10	0.310	0.509	4.94	3.2	1.8	63525	34408
4) 1/2	42.02 hh 7.9	0.210	7.510	4.92	3.2	1.0	67523	· 30573
47	18 68	0.310	0,110	4•91 // 02	3. 2	1.0	09994	57911
12	40.00 50 80	0.310	9.799	1.05	2.0	1.0 7 0	00670	41709
13	52 02	0.310	10.500	4.92)•~ 2 2	1.0 7 0	00010	43000
4)	53 50	0.310	11 822	4.92)•~ ? ?	1.0	02420 84000	44042
43	13 08	0.116	0 505	4.9) 1.86)•2 11 6	2.0	20965	47907
47 43	17 20	0.1116	0.808	4.00 5.08	4.0	207	29003	1/1886
47 43	20.89	0 446	1 1 45	515	4.6	27)940) 10680	19000
43	22.07	0.446	1 280	515	4.0 h.6	27	50301	18000
43	23.49	0.446	1.431	5.18	4.0 4.6	27	53635	20222
43	25.50	0.446	1.684	5.19	4.6	2.7	58232	21055
43	27.52	0.446	1,959	5.19	4.6	2.7	62627	23612
43	28.83	0.446	2.128	5.22	4.6	2.7	65608	24736
43	32.02	0.446	2,601	5.24	4.6	2.7	72868	27473
43	34.08	0.446	2,939	5.25	4.6	2.7	77574	29248
43	33.63	0.446	2.872	5.24	4.6	2.7	76548	28861
43	35.47	0.446	3.210	5.23	4.6	2.7	80725	30435
43	36.35	0.446	3.379	5.22	4.6	2.7	82734	31193
43	37.39	0.446	3.632	5.18	4.6	2.7	85103	32086
43	38.14	0.446	3.784	5.18	4.6	2.7	86812	32730

-	ومعادية والمراجع والمراجع والمتكارك	واعتلوهم ومحتدر ودول ومؤاكلا أعتاه وترمق	ومعادي المراجع البلية فالاستشاري والماحد البراب مؤاهده				Complete Manufacture on Casterion	an a
Bed	V	D	S	C/g ^{1/2}	D/K ₁₆	D/K ₂₅	R _D	RK
45	12,11	0.193	1.396	4.11	3.2	1.0	11829	11 <i>5</i> 38
45	19.60	0.193	3.406	4.26	3.2	1.0	19146	18674
45	21.94	0.193	4.172	4.31	3.2	1.0	21429	20901
45	24.27	0.193	5.024	4.35	3.2	1.0	23700	23116
45	26.58	0.193	6.012	4.35	3.2	1.0	25962	25322
45	28.42	0.193	6.727	4.40	3.2	1.0	27759	27075
45	29.74	0.193	7•545	4.35 .	3.2	1.0	29047	28331
45	32.44	0.193	8.686	4.42	3.2	1.0	31686	30905
45	36.55	0.193	11.036	4.42	3.2	1.0	35693	34813
45	40.89	0.193	13.625	4.45	3.2	1.0	39932	38948
45	43.40	0.193	15.158	4.47	3.2	1.0	42392	41347
45	46.74	0.193	17.458	4.49	3.2	1.0	45650	44525
45	50.47	0.193	20.098	4.52	3.2	1.0	49294	48079
4) he	56 00	0.102	21.400	4.54	3.4	1.0	51219	49957
~ጋ ኪና	20.09 11 27	0.328	24.011	4.54)•4 7 5	1.0	18652	10696
45	17.58	0.328	0.002	5 43)•) 5 5	1.7	20088	1666
45	22.86	0.328	1.643	5 40	55	17	27822	21673
45	26.33	0.328	2,122	J• 49 5- 56	J•J 5.5	1.7	13564	24055
45	29.48	0.328	2.635	5.59	5-5	1.7	48787	270L0
45	32.15	0.328	3.114	-5.60	5.5	1.7	53206	30480
45	34.83	0.328	3.628	5.62	5.5	1.7	57629	33014
45	36.84	0.328	4.120	5.58	5.5	1.7	60764	3481.0
45	38.54	0.328	4.550	5.56	5.5	1.7	63565	3641.5
45	41.36	0.328	5.151	5,61	5.5	1.7	68217	39080
45	43.88	0.328	5.700	5.65	5.5	1.7	72379	41.464
45	46.54	0.328	6.524	5.61	5.5	1.7	76770	43979
45	48.61	0.328	7.074	5.62	5•5	1.7	80183	45935
45	50.50	0.328	7.640	5.62	5.5	1.7	83304	47723
45	51.42	0.328	7.950	5.61	5•5	1.7	84821	48592
45	11.63	0.464	0.303	5.47	7.7	2.5	27629	11205
45	15.70	0.464	0.505	5.71	7•7	2.5	37285	15120
45	18.60	0.464	0.707	5.72	7•7	2.5	44189	17920
45	21.25	0.464	0.909	5.77	7•7	2.5	50470	20467
45	23.29	0.464	1.077	5.81	7.7	2.5	55331	22439
4) 115	24.51	0.464	1.178	5.84	7.7	2.5	58232	2361.5
49 h5	23,02	0.404		5.75	7.7	2.5	61140	24794
マノ 仏ち	20. /0 30 /18	0.404 0.16h	1 8022 1 802)•0) ょ 2n	7.1	2.5	00149	27636
45	32.25	0 161	2 007	5.01	(•)	2.5	72105	29273
45	33,41	0.464	2.106	5 83	(•(2. j 2 Ľ	07000	200974
45	32.85	0.464	2,128	5.83	(+(ウウ	ム• フ ク ビ	77720	27 Elio
45	34.23	0.464	2.374	5.82	ィ・/ ワ.ウ	25	81045	J1 J42 30866
45	35.11	0.464	2.433	5.83	7-7	2.5	831 51	32000
45	36.41	0.464	2.635	5.80	7.7	2.5	86212	34062

VITA

Julian B. Andersen

Candidate for the Degree of

Doctor of Philosophy

Dissertation: A Study of Free Surface and Viscous Effects on Simulated Rough Open Channel Beds

Major Field: Civil Engineering

Biographical Information:

Personal Data: Born at Logan, Utah, June 12, 1938, son of J. F. and Erma Bambrough Andersen; married Coleen Turner July 5, 1960; one child--Mark.

- Education: Attended elementary school in Weber County, Utah; graduated from Weber County High School in 1956; received Bachelor of Science degree from Utah State University, with a major in civil engineering, in 1961; completed requirements for the Doctor of Philosophy degree in civil engineering at Utah State University in 1968.
- Professional Experience: 1965 to present, Systems Engineer, International Business Machine Corporation, Seattle, Washington; 1964-65, teaching assistant in fluid mechanics, Utah State University; 1961-62, bridge engineer, U. S. Forest Service, Ogden, Utah.