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ABSTRACT 

Bioactivities of Milk Polar Lipids in Influencing Intestinal Barrier Integrity, Systemic  

 

Inflammation, and Lipid Metabolism 

 

 

 

by 

 

 

 

Albert Lihong Zhou, Doctor of Philosophy 

Utah State University, 2013 

 

 

 

Major Professor: Dr. Robert E. Ward 

Department: Nutrition, Dietetics and Food Sciences 

 

 

 

      Milk polar lipids reduce cholesterol, protect against bacterial infection, reduce 

inflammation, and help maintain gut integrity. Four rodent models were used to test the 

hypotheses that dietary milk polar lipids may increase intestinal barrier integrity, reduce 

systemic inflammation, and affect lipid metabolism during obesity and inflammatory 

stresses. 

 

      The dietary lipids and the polar lipids supplementation affected lipid partitioning, 

gene expression, and the liver pathology in a rat model (Chapter 2). In an obese mouse 

model (Chapter 3), the phospholipids increased gut permeability and systemic 

inflammation, decreased the liver mass and the liver lipids, and increased the plasma 

lipids; the gangliosides did not affect gut permeability, systemic inflammation, and lipid 
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metabolism. In a lipopolysaccharide (LPS) stressed mouse model (Chapter 4), the 

phospholipids decreased the liver mass and the polar lipids in the intestinal mucosa, and 

increased gut permeability and the plasma LPS level; the gangliosides did not affect gut 

permeability and systemic inflammation, and had little effect on lipid metabolism. In a 

diet-induced obesity (DIO) mouse model (Chapter 5), the phospholipids increased the 

body fat, the plasma LPS level and the gut permeability, increased the polar lipids level 

in the liver, and deceased the polar lipids level in the intestinal mucosa; the phospholipids 

did not affect the systemic inflammatory cytokines; the gangliosides increased the 

expression of the tight junction protein zonula occludens-1 in the colon mucosa, did not 

affect the plasma inflammatory cytokines, and had little effect on lipid metabolism. There 

were dynamic changes in plasma cytokines, gut permeability, and lipid metabolism in the 

LPS-stressed and the DIO models. 

 

      In summary, the milk polar lipids affected lipid partitioning and relevant gene 

expression in rats. The milk phospholipids increased gut permeability in all three mouse 

models. The phospholipids increased the plasma LPS level and reduced liver mass and 

liver lipids in genetic obesity and during the LPS stress. The phospholipids increased the 

body fat in the diet-induced obesity model. The milk gangliosides did not significantly 

affect gut permeability, systemic inflammation, and lipid metabolism in all three mouse 

models. Milk phospholipids as dietary supplements may have undesirable effects on gut 

permeability, systemic inflammation, and lipid metabolism during obesity and 

inflammatory responses. 

                                                                                                                              (284 pages) 
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PUBLIC ABSTRACT 

Bioactivities of Milk Polar Lipids in Influencing Intestinal Barrier Integrity, Systemic 

inflammation, and lipid Metabolism 

 

by 

Albert Lihong Zhou, Doctor of Philosophy 

Utah State University, 2013 

      The purpose of lactation is for nutrient provision and also importantly for protection 

from various environmental stressors. Milk polar lipids reduce cholesterol, protect against 

bacterial infection, reduce inflammation and help maintain gut integrity. Dynamic 

interactions within dietary fat, lipid metabolism, gut permeability and inflammatory 

cytokines remain unclear in the context of obesity and systemic inflammation. A rat 

model and three mouse models were developed to test the hypotheses that dietary milk 

polar lipids may affect lipid metabolism and intestinal integrity and may protect against 

systemic inflammation in the context of stressful diet, systemic inflammation, and obesity. 

 

The milk polar lipids isolates had complex effects on lipid metabolism and associated 

gene expression in the rat model. There were complex dynamics in lipid metabolism, gut 

permeability and systemic inflammation at different time points in all mouse models. The 

milk phospholipids increased gut permeability in genetic and diet-induced obesity and 

during the lipopolysaccharide (LPS) -induced inflammation. The phospholipids increased 

the plasma LPS level in genetic obesity and during the LPS stress. The phospholipids 
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reduced liver mass and liver lipids in genetic obesity and during the LPS-induced 

inflammation. The phospholipids increased the body fat in the diet-induced obesity model. 

The milk gangliosides did not significantly affect gut permeability, systemic 

inflammation, and lipid metabolism in all three mouse models. 

 

Current estimate by the Centers for Disease Control is that about 1/3 Americans are 

obese (body mass index, BMI ≥ 30) and 1/3 Americans are overweight (25 ≤ BMI < 30). 

More than 25% of Americans today have a fatty liver which could lead to further health 

problems. The data from this dissertation shed light on the complicated interrelationships 

between gut permeability, systemic inflammation, and lipid metabolism in obesity. The 

results contribute to our understanding of the bioactivities of milk polar lipids and 

provide scientific evidence for the role of milk polar lipids rich materials in affecting 

biological functions. The study of the influence of milk polar lipids on gut barrier 

integrity adds new information on understanding the mechanisms of gut leakiness and 

recovery. The investigation of the impact of milk polar lipids on lipid metabolism reveals 

new perspectives for the development of diet-induced obesity.  
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CHAPTER 1 

INTRODUCTION 

      Milk provides the primary source of nutrition for young mammals. Interestingly, 

comparative evolutionary biology suggests that the origins of lactation are not 

exclusively for nutrient provision, but rather protection from various environmental 

stressors (1). In modern society, especially the western world, milk and other dairy 

products are common food items among all age groups. Despite their wide applications, 

milk and other dairy products have not been assessed extensively for their potential 

protective effects against environmental stresses. The early lactation milk, colostrum, 

carries the mother's antibodies to the baby thereby reducing the risk of many diseases in 

the infant. Rich in nutrients, milk provides protection for the gut and enhances the 

immune system of the newborn (2, 3). The composition of milk results from selective 

pressure to promote the health of infants through nutrient provision and protection against 

environmental insults. Among the nutrients in milk, lipids are important in delivering 

energy and providing substrates for metabolism. One fraction of the lipids, milk fat 

globule membrane (MFGM) polar lipids including phospholipids (PL) and gangliosides 

(GG), may have important roles in biological functions such as maintaining 

gastrointestinal barrier integrity and affecting systemic inflammation, and lipid 

metabolism. 

 

Milk Fat Globule Membrane 

      MFGM is a biological membrane synthesized and secreted by the mammary 

epithelial cells. Surrounding a triglyceride (TG) core, MFGM forms a 4- to  
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10-nm multilayer membrane composed primarily of cholesterol, proteins, and polar lipids 

(4). MFGM contains approximately 60% proteins and 40% lipids (Table 1.1) (5-7). 

Recent proteomic and lipidomic characterizations (8-11) have shown that MFGM is the 

most diverse fraction of milk. Although there are a lot of minor components in MFGM, 

xanthine oxidase, periodic acid/schiff 6/7, adipophilin, and butyrophilin are the most 

abundant MFGM-associated proteins (12), and polar lipids are the major lipids secondary 

to TG in MFGM. Polar lipids include phospholipids and sphingolipids. The major 

phospholipids include phosphatidylethanolamine (PE), phosphatidylcholine (PC), 

phosphatidylserine (PS), and phosphatidylinositol (PI). The major sphingolipids are 

glucosylceramide, lactosylceramide, and sphingomyelin (6, 13).  

 

Isolation of MFGM Polar Lipids 

      Milk polar lipids are mainly situated in the MFGM. Mechanical treatments, such 

as heating (14), homogenization (15), aeration, and agitation (16), have been used to 

release MFGM from the fat globules into the corresponding serum phase. Phase inversion, 

such as churning, releases MFGM from the fat globules into the serum fraction (i.e., 

buttermilk and butter serum). Once MFGM is disrupted and released into the serum, it 

needs to be separated from the other components of milk. Larger amounts of MFGM can 

be produced as a byproduct from buttermilk or cheese whey during butter or cheese 

making processes. Tangential filtration is one of the most common techniques for the 

isolation of MFGM from whey, the byproduct of cheese and casein manufacturing (17). 

The isolating procedures can be easily carried out in industrial settings. MFGM polar 

lipids can be harvested from dried milk cream through ethanol extraction. The resulting 



3 
 

lipid extract can be further processed to obtain GG enriched concentrates and PL 

enriched concentrates.  

Biological Properties of MFGM Polar Lipids 

      Forming a lipid tri-layer, MFGM stabilizes milk fat globules in the milk serum and 

protects them from enzymatic attack by lipases (16, 18) so that milk fats can be passed 

from mothers to babies for utilization. Both lipid and protein fractions of MFGM have 

been found to have health-promoting effects (19). Due to its unique lipid profile, relative 

polar lipids enrichment and widespread availability, MFGM has been suggested as a 

nutraceutical (20). One type of polar lipids isolated from MFGM, sphingolipids, have 

very specific nutritional benefits. Sphingolipids are hydrolyzed in the gastrointestinal 

tract into ceramide, sphingosine, sphingosine 1-phosphate, and other metabolites, all of 

which can modulate cell growth, differentiation, and apoptosis (21). Studies have been 

conducted to investigate the physiological properties of MFGM sphingolipids, which 

have been shown to reduce the uptake of cholesterol (22, 23), protect against bacterial 

infections in the gut (24-26), reduce inflammatory response (27-30), and inhibit the 

development of preneoplastic lesions in rodent models of colon cancer (31-33).  

 

      Sphingomyelin, one subfraction of sphingolipids, plays an important role in gut 

maturation during the suckling period in rats (34). Recent work shows that 

sphingomyelin content in intestinal cell membranes may regulate cholesterol absorption 

(35). Another subfraction of sphingolipids, dairy GG inhibits degradation of gut occludin 

tight junction (TJ) protein during lipopolysaccharide (LPS)-induced acute inflammation 

(36).  Dietary GG affect intestinal immune system maturation in mice during weaning 



4 
 

(37). Dietary GG can be absorbed in the small intestine and distributed to different tissues. 

Dietary GG alters GG levels in the intestinal mucosa, plasma and brain (38).  

 

      Dietary supplemented PL may enrich PL in circulating lipoproteins and enhance their 

endotoxin-neutralizing capabilities (39). High-density lipoprotein (HDL) has the highest 

percentage of PL among the lipoproteins. MFGM PL may increase plasma HDL level, 

which neutralizes endotoxins in the blood (40, 41). Oral time-release capsules of PC 

ameliorate gastrointestinal symptoms and facilitate recovery in patients with chronic 

ulcerative colitis (42, 43). Some of this protection by PC may be partially due to its    

anti-inflammatory property on human intestinal cells (44). As a constitutively developing 

tissue, the gut epithelium is the most vigorously self-renewing tissue of adult mammals 

(45) and is constantly differentiating from stem cells in a progenitor pool throughout the 

life of the organism (46). As an essential component of cell membrane, polar lipids may 

be actively involved in the process of gut epithelium regeneration and barrier 

maintenance. 

 

      Being digested and incorporated into tissues, MFGM polar lipids and their 

metabolites may be actively involved in lipid metabolism. The effects of dietary PL on 

hepatic lipid metabolism have been studied in rats and dietary PL reduced liver TG and 

cholesterol (47). A MFGM isolate increases PL and TG levels in plasma in rat (Chapter2, 

48). The isolate lowers TG and total lipids levels in adipose tissue. It also reduces free 

fatty acids (FFA), cholesterol esters (CE) and total lipids in the liver. PL-rich MFGM 

extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat 
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diet (49).  The extract also positively regulates genes associated with fatty acid synthesis 

and cholesterol metabolism. A methionine and choline-deficient diet reduces PC 

biosynthesis, which results in reduced very-low-density lipoprotein (VLDL) secretion 

(50). The decrease of VLDL secretion is one of the many factors contributing to the 

pathogenesis of hepatic steatosis and non-alcoholic steatohepatitis (NASH). High dietary 

sucrose results in hepatic steatosis (51) and dietary PC may relieve the condition. The 

beneficial effects of MFGM could be partially due to the choline contributed by PC when 

the diets were high in sucrose in most of the aforementioned studies.   

 

Physiology and Pathophysiology of Intestinal Barrier Integrity 

      The mammalian intestinal epithelium, composed of a single layer of epithelial cells,  

carries out the primary functions of digestion and absorption of nutrients and forms a 

barrier against luminal pathogens (52). The intestinal barrier has several components 

which can be divided into extrinsic barriers and intrinsic barriers (53). The extrinsic 

barrier, also known as "unstirred layer," stabilizes the microenvironment adjacent to 

epithelial cell apical membranes. The intrinsic barrier has two components: the epithelial 

cells (transcellular pathway) and the spaces around these cells (paracellular pathway) (54). 

The major permeability route across the epithelium is located within the paracellular 

pathway (55), which has two components: the TJ and the subjunctional paracellular space 

(54). The TJ is the main determinant of intestinal barrier integrity. TJ are formed by 

specific interactions of a wide spectrum of proteins (56). Occludin (57), claudins (58), 

and junctional adhesion molecule (JAM) (59) are the important ones. The cytoplasmic 

domains of these proteins interact extensively with scaffolding and regulatory proteins 

such as zonula occludens (ZO)-1, ZO-2, ZO-3 (56). TJ are dynamically regulated in both 
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health and disease by many mechanisms (60).  Compromised function of intestinal TJ has 

been implicated in the pathogenesis of several intestinal disorders such as inflammatory 

bowel disease (IBD) and celiac disease (61).  

 

      Several studies have shown that gastrointestinal surface hydrophobic properties 

decrease under pathological conditions. Maintenance of the PC in the hydrophobic 

surface may play an important role in health and prevention of disease (62). In the ileal 

and colonic mucus from patients suffering from ulcerative colitis, the concentration of PC 

was significantly lower compared with that of healthy controls (63). The PL 

concentration and species composition of the intestinal mucus barrier are significantly 

altered in patients with ulcerative colitis. The alterations in PL may be important for the 

pathogenesis of diseases associated with disruption of intestinal barrier integrity. The 

enzymatic breakdown of intestinal PL has been linked to a higher rate of intestinal 

permeability in Caco-2 cells (64).  

 

Adipose Tissue, Obesity and Inflammation 

      Excess energy can be reversibly stored as lipids in adipocytes (65).  Excess TG 

accumulation in adipose tissue results in hypertrophy and hyperplasia (66). Adipogenesis, 

proliferation and differentiation of preadipocytes into new adipocytes, results in 

hyperplasia (67). Hypertrophy and hyperplasia of adipocytes contribute to excessive 

adipose tissue growth, which eventually leads to obesity (68). Adipocyte function can be 

impaired by excessive fat accumulation in the cell. Cellular lipid loading may initiate 

inflammation and  lipid mediators could play important roles in this process since they 

are precursors to inflammatory signaling molecules (69). In obesity, the hypoxic adipose 
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tissue may release proinflammatory cytokines that may initiate systemic inflammation 

(70-72). 

 

      Adipose tissue contains many different types of cells, including adipocytes, 

fibroblasts, leukocytes, and macrophages. These cells may jointly produce 

proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), and interleukin-6 

(IL-6) (69).  The close location of adipocytes with immune cells facilitates continuous 

dynamic interactions between immune and metabolic responses (73). Macrophages and T 

lymphocytes are the main components of the innate immune system in adipose tissue (74-

77). Monocytes are recruited to adipose tissue and become macrophages through 

interaction with dysfunctional adipocytes during obesity in animal models (78). 

Preadipocytes can be converted into macrophages in a macrophage environment (79). 

Macrophages contribute to local proinflammatory environment in adipose tissue and also 

influence systemic inflammation especially in chronic inflammatory states (80).  

 

      Adipocytes might be both the source and target of proinflammatory signals since 

adipocytes express receptors for several proinflammatory molecules such as TNF-α and 

IL-6 (75). Local inflammatory effectors in adipose tissue can act on adipocytes in a 

paracrine manner and exacerbate inflammation and adipocyte dsyfunction (74, 75, 81). 

Systemic inflammatory effectors may affect adipose tissue in a similar manner. Adipose 

tissue in a lean body has the potential to develop inflammation upon systemic 

inflammatory stimulation. It is not clear yet which original factor(s) triggers 

inflammation in adipose tissue. Endotoxemia caused by periodontal gram-negative 
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pathogens in patients with severe periodontitis might lead these people to obesity (82).  It 

is possible that proinflammatory signals resulting from systemic metabolic inflammation 

may trigger an inflammatory response in adipose tissue and therefore cause adipocyte 

dysfunction and subsequent obesity development. Proinflammatory signals resulting from 

metabolic endotoxemia caused by dietary fat and associated bile release might be one of 

the initiating factors for inflammation in adipose tissue during the development of            

diet-induced obesity (DIO). Then in the context of DIO, systemic metabolic 

inflammation and subsequent inflammation in adipose tissue may precede obesity 

development, which is still lack of supporting evidence.   

 

High Fat Diet, Intestinal Barrier Integrity, Endotoxemia, Systemic Inflammation 

and Obesity 
 

      A link between high fat diets and endotoxemia has been suggested. A chronic high fat 

diet could increase endotoxin absorption during the digestion of dispersed dietary lipids. 

The resultant metabolic endotoxemia leads to low-grade metabolic inflammation (83). 

One study found that high fat diet increases intestinal permeability in rats primarily 

through excessive dietary fat and increased luminal bile juice levels instead of obesity 

and metabolic disorders (84). A recent study revealed that chylomicrons could be 

postprandial carriers for LPS and the digestion of emulsified dietary lipids can enhance 

intestinal endotoxin absorption in healthy young men (85). The increased endotoxemia 

upon high-fat diet might be contributed by enhanced endotoxin absorption through the 

small intestine instead of the large intestine (84, 86). 
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      Current evidence suggests that high fat diets may decrease gut barrier integrity and/or 

increase endotoxin absorption, which may lead to systemic inflammation independent of 

obesity. Obesity may also decrease intestinal barrier integrity. Increased intestinal 

permeability has been observed in obese animals (86, 87). As animals become more 

obese, their intestines become larger with an increased surface area due to a larger 

amount of intestinal mucosa needed to absorb the surplus of ingested nutrients (88).  This 

increased surface area has been shown to be caused by intestinal hyperplasia (89). The TJ 

proteins may not be increased accordingly and distributed properly, which could lead to 

the decrease of barrier integrity (88). Leptin-deficient C57BL/6J ob/ob (ob/ob) mice were 

shown to have an abnormal distribution of TJ proteins within the intestinal mucosa that 

causes compromised intestinal barrier integrity leading to portal endotoxemia (90). The 

genetic obesity model of ob/ob mice have been reported to have increased intestinal 

permeability when fed a standard chow diet (90). Plasma levels of       

lipopolysaccharide-binding protein (LBP), a marker of endotoxemia, were increased in 

ob/ob mice and mice with DIO compared with lean mice (91). The systemic 

inflammatory state in obesity is associated with endotoxemia resulting from increased gut 

barrier permeability (92).    

 

      Obesity may potentiate systemic inflammation and the proinflammatory cytokines 

can reach the gut through the circulation and result in local inflammation. Intestinal 

inflammation leads to an increase of mucosal permeability and bacterial translocation. In 

obese subjects, inflammatory cytokine levels stay high. These cytokines may alter 

structure and localization of TJ and thereby cause malfunction of the intestinal barrier (93, 
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94). For example, TNF-α, interferon (IFN)-γ, IL-4 and IL-13 have been shown to 

increase barrier permeability in vitro (95) by altering TJ morphology and distribution (96).  

Therefore, obesity, systemic inflammation and increased intestinal permeability may 

generate a self-perpetuating vicious cycle (Figure 1.1) (97). 

 

      In summary, current evidence suggests that during the development of high-fat DIO, 

increased gut barrier permeability, endotoxemia, systemic inflammation and obesity may 

occur in sequential steps. It is also possible that in the context of high-fat DIO, obesity 

develops before any other aforementioned conditions. Once obesity is developed, the 

adipose tissue may release proinflammatory cytokines that may initiate systemic 

inflammation. The inflammatory state may increase gut barrier permeability, which could 

lead to endotoxemia and worsen the condition of inflammation (Figure 1.1). Therefore, 

increased gut barrier permeability, endotoxemia, systemic inflammation and DIO are 

complexly interrelated events. Lipid metabolism could be an important linkage among 

these events. Diet supplemented with the buttermilk MFGM isolate was effective in 

promoting mucosal integrity against LPS stress in mice (98). The effects of MFGM polar 

lipids on intestinal barrier integrity could have an influence on endotoxemia and systemic 

inflammation. MFGM polar lipids could also influence systemic lipid metabolism and 

may interfere with the development of DIO. Dietary supplementation of MFGM polar 

lipids in the context of preexisting obesity and during the development of DIO may 

facilitate the understanding of the interrelationships among intestinal barrier integrity, 

endotoxemia, systemic inflammation and obesity. 
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Rationale for Animal Models and Diets Selections  

      The main endpoints of the project are gut permeability, systemic inflammation, and 

lipid metabolism in the context of obesity. The C57BL/6J ob/ob (ob/ob) and wild type 

mice were used. The reason to use ob/ob mice was that these mice have preexisting 

obesity and its complications such as increased gut permeability and systemic 

inflammation. Since these mice are leptin deficient, caution should be taken in 

interpreting the data. By using these mice, MFGM polar lipids can be tested to see if they 

have any beneficial effects on gut permeability and systemic inflammation, which may 

result from obesity and may be sustained and/or exacerbated by fat intake. For wild type 

mice, it took time for them to develop obesity even when they were fed a high fat diet. 

High fat diet feeding has been shown to increase gut permeability and induce subsequent 

metabolic inflammation. Wild type mice were used to determine if MFGM polar lipids 

can prevent the increase of gut permeability and systemic inflammation during the 

development of obesity. Data from this study may shed some light on how the 

supplements may affect the complicated causal relationships among gut permeability, 

systemic inflammation and DIO.       

 

      Diets based on AIN-93G rodent diet were used. Part of the fat source in experimental 

diets was provided by MFGM polar lipids. The fat provided 34% energy (16.8% by 

weight). This amount of fat is considered high compared with 16% (energy) fat in regular 

mice chow diet. High fat diets with 30% or more fat as energy have successfully induced 

obesity in C57BL/6J mice (99). Data from National Health and Nutrition Examination 

Survey (NHANES 2007-2008) indicates that the mean amount of fat consumed per 
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individual American is 34% by energy. Using diets with 34% (energy) fat emulated real 

dietary practices in America. Current estimates by Centers for Disease Control is that 

about 1/3 Americans are obese (BMI ≥ 30) and 1/3 Americans are overweight (25 ≤ BMI 

< 30). So it could be common practice to have diets with 34% (energy) fat in the 

background of obesity or overweight.     

 

      When the same diets were used in both animal models, these two experiments could 

be compared to generate hypotheses. The DIO model had at least two stressors, high 

dietary fat and DIO. Dietary fat was a constant stressor while DIO was added on later. 

The effects of the milk polar lipids on the stresses caused by dietary fat (and maybe also 

bile) were tested during the early part of the experiment. Once the animals developed 

obesity, the effects of the milk polar lipids on complications of DIO were also tested. The 

results from the ob/ob model were negative and the results from the DIO model were 

positive for the early part but negative for the latter part, meaning that the milk polar 

lipids prevented the detrimental effects of dietary fat but could not ameliorate the 

complications of obesity. The milk polar lipids did not ameliorate complications in ob/ob 

mice and did not improve complications of DIO, meaning that the lack of beneficial 

effects of milk polar lipids on obesity complications may not be leptin-dependent.  

 

      The LPS injection is widely used in mice for modeling the acute and chronic systemic 

inflammation. The subcutaneous injection of LPS induces endotoxemia and intestinal 

stress in mice (100, 101). The intraperitoneal injection of LPS increases the level of the 

plasma inflammatory cytokines (102). Six percent of the subcutaneously injected LPS is 
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still retained at the injection site 32 days after the injection (103). The subcutaneous LPS 

injection induces both the acute and chronic inflammatory responses. The LPS injection 

will increase gut leakiness, endotoxemia and systemic inflammation. The combination of 

the high fat diet and the LPS injection should increase the severity of gut leakiness, 

endotoxemia and systemic inflammation (Figure 1.1) and should make it easier to detect 

the potential beneficial effects of the polar lipids on these endpoints. The mouse model of 

the LPS stress and the high fat diet is a great platform for studying the effects of the milk 

polar lipids on gut permeability and systemic inflammation.  

 

Dissertation Outline 

      During this dissertation research, I explored the effects of milk polar lipids on gut 

permeability, systemic inflammation, and lipid metabolism during inflammation and 

obesity. The following hypotheses were tested (Figure 1.1): 1) Dietary milk polar lipids 

will reduce liver lipid levels and affect the expression of genes associated with fatty acid 

synthesis and cholesterol regulation in the liver in both C57BL/6J ob/ob and wild type 

mice fed a diet with 34% fat by energy; 2) Dietary milk polar lipids will reduce intestinal 

permeability and systemic inflammation in C57BL/6J ob/ob mice fed a diet with 34% fat 

by energy; 3) Dietary milk polar lipids will improve intestinal barrier integrity, lipid 

metabolism and systemic inflammation during acute and chronic systemic inflammation 

induced by LPS injected subcutaneously; 4) Dietary milk polar lipids will prevent gut 

permeability increase and subsequent systemic inflammation during the development of 

DIO in C57BL/6J wild type mice fed a diet with 34% fat by energy.    
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      To begin with, I tried to explore the effects of dietary milk polar lipids isolate on lipid 

metabolism and gene expression in a rat model. I obtained the lipid profiles of liver, 

gonadal adipose and skeletal muscle samples from a previous rat study on the effects of 

milk polar lipids isolate on the development of aberrant crypt foci in the colon. I also 

analyzed microarray gene expression data of those tissue samples. The results are 

reported in Chapter 2. The milk polar lipids reduced liver lipid levels and the reduction of 

liver lipids coincided with the increase of lipids in the plasma. The effects of the milk 

polar lipids on tissue gene expression were complex in the rats. 

 

      To test the aforementioned hypotheses, I used three mouse models, a genetic obesity 

model, a LPS-induced inflammation model, and a diet-induced obesity model.  The first 

hypothesis was tested in all three models. I analyzed the liver samples from all three 

mouse studies. As reported in Chapters 3, 4, and 5, the milk polar lipids reduced the liver 

lipid level and slightly affected gene expression associated with the liver lipid 

metabolism in all three mouse models.  

 

      To test the second hypothesis, I used the ob/ob mouse model. The ob/ob mice were 

fed moderately high-fat diets. As reported in Chapter 3, the milk polar lipids did not 

prevent the increase of gut permeability.  The milk phospholipids increased the colon 

permeability and the plasma IL-6 level, decreased the liver mass and the liver cholesteryl 

ester level, and increased the plasma levels of FFA, DG, SM, and PL. The milk 

gangliosides decreased ZO-1 and increased occludin in the colon mucosa but had little 

effect on gut permeability, systemic inflammation, and lipid metabolism.  
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      To test the third hypothesis, I used a LPS-induced inflammation model. Lean 

C57BL/6J mice were injected subcutaneously with LPS. The effects of the milk polar 

lipids were tested during acute and chronic inflammation induced by the injected LPS. As 

reported in Chapter 4, the subcutaneous injection of the LPS at 5 mg/kg body weight 

successfully induced leaky gut and acute and chronic systemic inflammation. The milk 

phospholipids decreased occludin expression in jejunum mucosa and increased   ZO-1 & 

occludin in colon mucosa; increased plasma LPS; decreased liver mass, muscle TG, liver 

expression of Acacb & Hmgcr and plasma CE; decreased PC & PE in ileum mucosa and 

PE & GG in colon mucosa. The milk gangliosides decreased adipose PE, PC & SM, 

hepatic FFA & PI; increased liver expression of Acaa2. LPS stress in combination with 

high fat diets increased gut permeability and plasma proinflammatory cytokine levels. 

LPS stress reduced plasma insulin level, blocked the accumulation of body fat, and 

increased plasma IL-6 level. The experimental feeding increased plasma LPS but did not 

raise plasma cytokine levels.  

 

      To test the last hypothesis, I used a diet-induced obesity model. C57BL/6J lean mice 

were fed the AIN93G based diets with 34% fat by energy. As reported in Chapter 5, the 

milk phospholipids promoted body fat accumulation and increased obesity; increased gut 

permeability and plasma LPS; decreased occludin in jejunum mucosa; increased liver PE, 

PC & SM and plasma TG; decreased plasma FFA & PC; decreased PC & SM in colon 

mucosa. The milk gangliosides decreased adipose SM, plasma FFA & PC; increased liver 

PE & SM; increased ZO-1 in colon mucosa. The experimental feeding increased body fat 

and plasma CE; increased colon permeability and plasma levels of LPS, leptin, resistin, 
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insulin and glucose; decreased insulin sensitivity as indicated by the increased HOMA-IR; 

increased plasma IL-6 before the establishment of DIO; decreased permeability of the 

small intestine. 

 

      In addition to testing the aforementioned hypotheses, I also tried to explore the 

dynamic changes of gut permeability, systemic inflammation, and lipid metabolism 

during genetic obesity, the LPS-induced inflammatory response, and diet-induced obesity. 

The endpoints were measured at multiple time points. Often times the measurements did 

not stay in one direction. The repeated measurements also indicated that dietary 

supplementations had different effects at different time points.  

 

      In this dissertation, I demonstrated that repeated measurements are important for 

monitoring the dynamic changes of biological endpoints and evaluating the effects of 

dietary supplementations. The milk polar lipids in general did not have strong positive 

effects on gut permeability and systemic inflammation during obesity and the acute and 

chronic inflammatory responses. The milk polar lipids tended to have more positive 

effects when the animals were under more stressful conditions such as preexisting obesity 

and the LPS-induced inflammation. Several of the unexpected findings are quite 

interesting. The milk phospholipids promoted body fat accumulation in C57BL/6J lean 

mice. The milk polar lipids decreased the polar lipid levels in the intestinal mucosa and 

sometimes in the liver and the skeletal muscle. The LPS absorbed through the gut did not 

induce strong systemic inflammation while the LPS injected subcutaneously stimulated 

much stronger inflammation. As described in Chapter 6, many hypotheses can be 
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generated from the data collected in this dissertation. Further studies are needed to test 

those hypotheses and reveal the mechanisms for the observed new findings.  
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Table 1.1 Major components of MFGM in bovine milk (adapted from Ref (7)). 

Lipids % 

Triglycerides 62 

Diglycerides 9 

Monoglycerides Trace 

Sterols 0.2-2 

Sterol esters 0.1-0.3 

Free fatty acids 0.6-6 

Hydrocarbons (squalene 

and phytene derivatives) 

1.2 

Phospholipids 26-31 

Polar lipids % 

Sphingomyelin 22 

Phosphatidylcholine 36 

Phosphatidylethanolamine 27 

Phosphatidylinositol 11 

Phosphatidylserine 4 

Lysophosphatidylcholine 2 

Proteins 

Mucin 1 

Xanthine oxidoreductase 

PAS III 

CD 36 

Butyrophilin 

PAS 6/7 

Adipophilin 

Fatty acid binding protein 
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Figure 1.1 Complex links between dietary lipids, leaky gut, endotoxemia, obesity, 

NAFLD and metabolic inflammation and the effect of the LPS injection. T shaped arrows 

indicate the hypothesized effects of polar lipids on NAFLD (①), leaky gut (②, ④), 

endotoxemia (③), and systemic inflammation (②, ③, ④). Milk polar lipids decrease gut 

permeability and NAFLD and therefore decrease endotoxemia and metabolic 

inflammation in mice during the high fat diet feeding and during the LPS stress in 

combination with the high fat diet. SQ: subcutaneous injection. NAFLD: nonalcoholic 

fatty liver disease. LPS: lipopolysaccharide.  
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CHAPTER 2 

DIETARY FAT COMPOSITION INFLUENCES TISSUE LIPID PROFILE AND 

GENE EXPRESSION IN FISCHER-344 RATS 

 

Abstract  

      The AIN-76A diet causes fatty liver in rodents when fed for long periods of time. The 

aim of this study was to utilize fatty acid analysis and transcriptomics to investigate the 

effects of different fat sources in the AIN-76A diet on tissue lipid profiles and gene 

expression in male, weanling Fischer-344 rats. Animals were fed isocaloric diets that 

differed only in the fat source: 1) corn oil (CO) 2) anhydrous milk fat (AMF) and 3) 

AMF supplemented with 10% phospholipids from the milk fat globule membrane  

(AMF-MFGM). There were no differences in food intake, body weight, growth rate or 

body fat composition among the groups, and the fatty acid compositions of red blood 

cells (RBCs), plasma, muscle and visceral adipose tissues reflected the dietary fat sources. 

Modifying the fat source resulted in 293 genes differentially regulated in skeletal muscle, 

1,124 in adipose and 831 in liver as determined by analysis of variance (ANOVA). While 

tissue fatty acid profiles mostly reflected the diet, there were several quantitative 

differences in lipid classes in the liver and plasma. The AMF diet resulted in the highest 

level of hepatic triglycerides, but the lowest level in plasma. The CO diet decreased 

DGAT expression and activity and resulted in significant accumulation of hepatic 

unesterified fatty acids, a potential trigger for steatohepatitis. These results indicate that 

the fatty acid composition and presence of polar lipids in the AIN-76A diets have 

significant effects on lipid partitioning, gene expression, and potentially the development 

of liver pathology.  
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Introduction 

      The AIN-76 diet is a purified rodent diet that was developed in the late 1970’s by an 

ad hoc committee formed by the American Institute of Nutrition (AIN) (1). One rationale 

for developing this diet was to provide researchers with a nutritionally adequate diet that 

would allow for standardizing studies between laboratories. Not long after this diet was 

developed several groups reported undesirable physiological effects linked to the diet, 

such as hemorrhagic deaths (2), nephrocalcinosis (3) and fatty liver (4). An amended 

formulation of the diet (AIN-76A) was developed in 1980 with an increased vitamin K 

content to address the hemorrhagic effect (5).  In 1993 two revised diets were formulated 

to replace the AIN-76A, a version for growing animals (AIN-93G) and a maintenance 

formula for mature animals (AIN-93M). These revised diets contained a higher 

calcium:phosphorous ratio (from 0.75 to 1.3) to prevent the nephrocalcinosis found in 

female rats consuming the  AIN-76A diet (1). In addition, the carbohydrate composition 

was changed from 50% sucrose and 15% cornstarch in the AIN-76A formula to ~40% 

cornstarch, 15% dextrinized cornstarch and 10% sucrose in the AIN-93G diet. This 

change represents a 5-fold decrease in the fructose content of the diet and is not 

Reprinted with modifications from Zhou AL, Hintze KJ, Jimenez-Flores R, and Ward 

RE. Dietary Fat Composition Influences Tissue Lipid Profile and Gene Expression in 

Fischer-344 Rats. Lipids. 2012. 47(12):1119-30. doi: 10.1007/s11745-012-3729-3. 

Robert Ward and Korry Hintze raised the rat, collected the tissue samples and obtained 

the microarray raw data. Albert Lihong Zhou did the lipid profiling of the diets and the 

tissues, carried out the RT-PCR, histology and enzyme assay, processed the microarray 

data, carried out data analyses and statistical analyses, interpreted all of the data and 

prepared the first draft of the manuscript. Robert Ward revised the manuscript. Korry 

Hintze provided the reagents for the RT-PCR experiment. The only contribution to this 

work from Rafael Jimenez-Flores was to provide the testing material, the MFGM 

isolate.  
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associated with the accumulation of hepatic lipids caused by long term feeding of the 

high sucrose levels (6). Despite the availability of the improved rodent diets, the        

AIN-76A remains popular in specific research fields, such as in studies investigating the 

effects of diet on colon cancer using the aberrant crypt foci model (ACF). In fact, in a 

database maintained to compare the efficacy of diet modulation on the incidence of ACF, 

the overwhelming majority of studies have utilized the AIN-76A (7) .  

 

      The propensity of the AIN-76A diet to result in accumulation of hepatic lipids is 

potentially of interest to human nutrition, as it is estimated that between 20% and 30% of 

adults in Western countries have nonalcoholic fatty liver disease (NAFLD) and this level 

rises to between 70% and 90% in obese individuals and those with diabetes (8). To test 

the hypothesis that high levels of dietary fructose are responsible for the accumulation of 

hepatic lipids, Bacon et al. tested the effects of modifying the sucrose content of the   

AIN-76A diet in a three week feeding study  in rats (9). According to the results, diets 

containing greater than 25% sucrose resulted in significantly higher hepatic triglycerides 

(TG) than ones with less than 20% sucrose or chow. 

 

      We recently conducted an aberrant crypt foci (ACF) study utilizing the AIN-76A diet 

to investigate the potential chemopreventive effects of a complex milk fat fraction (10). 

In the study we used three diets with different fat compositions: 1) corn oil (CO), 2) 

anhydrous milk fat (AMF), and 3) anhydrous milk fat supplemented with milk fat globule 

membrane (AMF-MFGM). CO diet is the standard fat source for the AIN-76A diet, and 

for the AMF diet, the 5% mass of fat was replaced with AMF. Formulation of the    
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AMF-MFGM diet was achieved by utilizing an isolate of MFGM (providing 10% 

phospholipids of total fat) that was isolated from cream, and which also contained protein, 

carbohydrate and minerals in addition to the fat. The details of the diet formulation have 

been reported previously (10) and are shown in Table 2.1. 

 

      MFGM is derived from the apical surface of mammary epithelial cells and surrounds 

the fat droplets in milk (11). It is composed primarily of TG, proteins, and phospholipids 

(PL) (12). The composition of the polar lipids of MFGM can vary according to the 

method of isolation, but the major constituents are phosphatidylcholine (~32%), 

phosphatidylethanolamine (32%), sphingomyelin (~24%), phosphatidylinositol (~4%), 

phosphatidylserine (~3%) and gangliosides (~3%) (13). A large amount of this material is 

produced in the US each year as a byproduct of butter production, and is available as a 

food ingredient. Due to its unique lipid profile and membrane protein profile, MFGM has 

been suggested as a potentially bioactive food ingredient with novel nutritional 

functionalities (14).  Despite this supposition, few studies have been conducted in vivo 

with either animal models or humans to evaluate the potential of this material as a 

bioactive ingredient. 

 

      The goal of this study was to investigate lipid metabolism in rats fed a diet known to 

induce hepatic stress. Our approach involved subjecting lipid metabolizing tissues to two 

different, yet comprehensive analytical techniques (lipid and gene expression profiling) 

to understand how the dietary fats affected lipid metabolism.  
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Materials and Methods 

Animals and diets 

      Eleven animals used in this study were among a group of sixty-three male, weanling 

Fischer-344 rats (Charles River Laboratories) used in another study (10). They were 

randomly assigned to one of three isocaloric dietary treatments that differed only in the 

fat source (10). After a 7 day acclimation period on standard chow diets, the rats were 

individually housed in a room controlled for temperature, humidity, and light cycle and 

were given free access to experimental diets and deionized water. Food intake and body 

weight were measured weekly. All experimental protocols involving animals were 

approved by the Utah State University Institutional Animal Care and Use Committee. 

 

      Animals were fed experimental diets for twelve weeks. After MRI analysis of body 

composition (EchoMRI-900™), rats were sacrificed by cardiac puncture following 

ketamine/xylazine anesthesia. The liver, the gonadal adipose tissue, and the skeletal 

muscle and the blood samples were collected, flash frozen in liquid nitrogen, and stored 

at -80 
o
C until the time of analysis.  

 

Lipid extraction 

      Tissue samples were removed from the freezer and a sample of tissue was cut into 

small pieces with a razor and placed in a mortar with liquid nitrogen and ground to obtain 

a fine homogenous powder. About 200 mg of the tissue powder from each sample was 

weighed and put into a glass tube with screw cap. Surrogate standards, including 

sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, 



36 
 

diglycerides (DG), free fatty acids (FFA), TG, and Cholesteryl esters (CE), were prepared 

in chloroform. 100 µl surrogate standards for different lipid classes were added to each 

sample and weights were recorded. Lipids were extracted by the method of Folch et al. 

(15) with slight modifications. Samples were mixed with 5 ml chloroform/methanol (2:1 

with butylated hydroxytoluene, BHT). The whole mixture was sonicated and then 

agitated for 15-20 minutes in an orbital shaker at room temperature. The mixture was 

washed with 0.2 volumes (1 ml for 5 ml solvent mixture) of 0.9% NaCl solution and 

vortexed for 20 seconds. Subsequently, the mixture was centrifuged at 1,500 × g for 10 

minutes to separate the two phases. The lower chloroform phase containing lipids was 

collected and evaporated under a nitrogen stream and then reconstituted in a small 

volume of hexane with BHT in a 4ml amber vial and stored at -80 ºC until further 

analysis. 

 

Separation and recovery of different lipid classes 

      Individual lipid classes of the extracted lipid were separated using thin layer 

chromatography (TLC). Extracted lipid from each tissue was diluted by hexane with 

BHT such that 20 µl of solution contained around 2.5 mg of lipid. Aliquots of 20 µl were 

spotted on a 20 × 20 cm silica gel 60 Å analytical plate (500 µm layer) (Whatman Inc., 

Florham Park, NJ). Lipid class standards were also spotted for detecting target bands. 

Total lipid classes were separated by developing the plate in a solvent system containing 

hexane, diethyl ether, and formic acid in the ratio of 80:20:2 (v/v). The TLC plate was 

then sprayed with 0.05% primulin in acetone:water (8:2 v/v). Individual lipid bands on 

the TLC plate were detected under a hand-held UV lamp and the margins were marked 

with a pencil. Target lipid class bands were scraped from the TLC plate using a small 
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razor blade and collected into glass tubes with screwed caps. Recovered lipid classes 

from total lipid TLC plate were: PL, DG, FFA, TG, and CE.  

 

Fatty acid methyl esters 

      Recovered lipid classes were transesterified into fatty acid methyl esters (FAMEs) 

using the method of Curtis et al. (16) with slight modifications. In each tube, 0.8 ml 

hexane and 1.2 ml 10% (v/v) acetyl chloride in methanol were added. Tubes were 

capped, vortexed for 20 seconds and placed in 100 °C oven for 40 minutes. Upon 

completion of incubation period, samples were removed and allowed to cool down to 

room temperature. Then 2 ml 6% sodium carbonate solution and 0.4 ml hexane were 

added into each tube. On subsequent vortexing and centrifuging of tubes two distinct 

phases were obtained. The top organic layer was removed and transferred to gas 

chromatography (GC) vials. Solvent was evaporated under a nitrogen stream and fatty 

acid methyl esters were collected in 100 µl of hexane with BHT and transferred to GC 

vial inserts. The samples were subsequently analyzed by GC using a GC2010 (Shimadzu 

Scientific Instruments, Columbia, MD).  

 

GC data analysis 

      For each GC run, standard curves were generated using commercially available 

FAME standards (Nu-Chek Prep, Elysian, MN). To establish the linearity of the detector 

response, a three point calibration was generated with every sample set. The calibration 

standard, GLC-463, contained 42 fatty acids representing most of the common species 

found in mammalian tissues and dairy products. Chromatograms of sample FAMEs were 

compared with those of FAME standards to identify target fatty acids. The peak area for 
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each fatty acid was then normalized to the peak area and concentration of the 

corresponding surrogate standard. Next, the molar concentration of the analytes was 

calculated and then converted to moles of the corresponding lipid classes through 

molecular weight calculations. The molar concentration of lipid classes was normalized 

to tissue sample weights to obtain concentrations (µmole/g tissue) in each tissue. Lastly, 

the mole percentage of each fatty acid species was calculated. 

 

Gene expression analysis 

      Total RNA was extracted from liver, muscle, and adipose tissue as previously 

described (10). Tissue samples were homogenized in Trizol with a tissue homogenizer. 

Total RNA was extracted using the RNAqueous kit (Ambion) according to the 

manufacturer’s protocol. Frozen total RNA was sent to Genome Quebec for analysis. 

Microarray data were generated by Genome Quebec using the Illumina platform 

(Illumina, Inc., San Diego, CA). Data were analyzed using FlexArray 1.6, a custom 

statistical software program developed by Genome Quebec (17). The expression data 

were filtered to remove feature ids that have not been detected. Next, a background 

adjustment and normalization were carried out using the Lumi algorithm (based on lumi 

Bioconductor package) in FlexArray 1.6. Background correction was carried out by using 

negative controls. Variance was stabilized by the Variance-Stabilizing Transformation 

(VST) method and subsequently a robust spline normalization was conducted. Analysis 

of variance (ANOVA) was conducted to evaluate significant diet effects on gene 

expression across treatment groups. The Cyber-T algorithm was employed to identify 

differentially regulated genes (CT gene lists) among tissues between treatment groups 

from ANOVA gene lists (18) followed by the Benjamini-Hochberg False Discovery Rate 
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multiple testing correction (19). The CT gene lists were then subjected to KEGG pathway 

analysis using ArrayTrack v.3.5.0 (NCTR/FDA) (20). 

 

Real time PCR 

      Total RNA was extracted from liver samples using the RNAeasy Mini-Kit (Qiagen, 

Valencia, CA). RNA quality was checked and the concentration measured by NanoDrop 

1000 (Thermo Fisher, Waltham, MA). One microgram RNA was converted to cDNA 

using high capacity cDNA reverse transcription kit (Life Technologies, Carlsbad, CA). 

Validated and predesigned TaqMan primers and probes (Life Technologies) were used to 

quantify cytochrome P450, family 8, subfamily b, polypeptide 1 (Cyp8b1, ID: 

Rn00579921_s1), 1-acylglycerol-3-phosphate O-acyltransferase 2 (Agpat2, ID: 

Rn01438505_m1), and angiopoietin-like 4 (Angptl4, ID: Rn01528817_m1). Actin, beta 

(Actb, ID: ID Rn00667869_m1) was used as an endogenous control. Real-time PCR 

amplifications were carried out in a DNA Engine Opticon® 2 Two-Color Real-Time 

PCR Detection System (Biorad, Hercules, CA). PCR results were analyzed with the 

Opticon Monitor 3 Software (Biorad). The comparative Ct method was used to quantify 

gene expression. ∆Ct was obtained by normalizing to actin, beta. ∆∆Ct was determined by 

the arithmetic formula described by López-Parra et al. (21). Symmetrical raw fold change 

was obtained by comparing ∆∆Ct values of two groups compared. 

 

Liver fat analysis by histology 

      Cryostat sections of 6 µm thickness were made from liver samples taken out of -

80 °C freezer. The tissue sections were brought to room temperature on glass slides. The 

slides were dipped a few times in 60% triethyl phosphate and then stained in 0.5% Oil 
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Red O (in 60% triethyl phosphate) for 15 minutes. After being rinsed in water for 2 

minutes, the slides were counterstained in Harris modified method hematoxylin stain 

(Thermo Fisher, Waltham, MA) for 2 minutes. The slides were placed in saturated 

lithium carbonate solution for 10 seconds, rinsed in water for 5 minutes, and held in 

water. The slides were mounted with warm glycerin jelly and observed with light 

microscopy. Color images were captured with a digital camera attached to the 

microscope. Oil Red O stained areas in randomly sampled regions from each slide were 

quantified by ImageJ (22). The fat content of each sample was expressed by 

quantification of Oil Red O–stained areas as a percentage of whole area. 

 

Liver diglyceride acyltransferase (DGAT) enzyme assay  

      The microsomal fraction of the liver was obtained by the methods of Ko et al. (23) 

and Coleman (24). Rat liver (approximately 1.5 g) was minced and then homogenized in 

15 ml of STE buffer (0.25 M sucrose, 10 mM Tris-HCl, pH 7.4, 1.0 mM EDTA) with a 

Teflon-glass homogenizer at medium speed. The homogenate was centrifuged at 14,000 

× g for 20 minutes at 4 °C. The supernatant was centrifuged at 100,000 × g for 1 h at 4 °C 

to obtain a microsomal pellet. The pellet was suspended in STE buffer without EDTA 

and centrifuged at 100,000 × g for 1 h at 4 °C. The final pellet was resuspended in STE 

buffer without EDTA. Total protein in final solution was quantified by the Bradford 

Assay. The microsomal fractions were stored in aliquots at -80 °C.     

 

      A fluorescent DGAT assay was carried out as described by McFie and Stone (25). 

Briefly, a master mix was prepared in a test tube containing: 20 µl of 1 M Tris-HCl (pH 

7.6), 4 µl of 1 M MgCl2, 10 µl of 4 mM dioleoyl-sn-glycerol, 10 µl of 12.5 mg/ml bovine 



41 
 

serum albumin, 10 µl of 500 µM NBD-palmitoyl CoA and 96 µl of water per reaction.  

Tubes were pre-incubated in a 37 °C water bath for 2 minutes and 50 µl of protein sample 

was added to start the reaction, which was held at 37 °C for 10 minutes with occasional 

shaking. The reaction was terminated by addition of 4 ml CHCl3/MeOH (2:1, v/v). 

Samples were added 800 µl of water and allowed to sit at room temperature for 1 h. 

Tubes were centrifuged at 3000 × g  for 5 minutes to separate aqueous and organic phases. 

The organic phase was removed via pipette and dried under stream of nitrogen. Lipids 

were resuspended in 50 µL CHCl3/MeOH (2:1) and spotted on a 20 x 20 cm TLC plate. 

TLC plates were developed in the solvent system, hexane/diethyl ether/acetic acid 

(80:20:1, v/v/v). The plates were air dried for 1 h and scanned by Typhoon Trio+ Laser 

Imager 7 (GE Healthcare, Waukesha, WI). The following settings were used: Excitation - 

Blue (488 nm) LED laser light source; Emission – 520 nm BP emission filter.  

Fluorescence was quantified by ImageJ (22). The newly synthesized NBD-TG was 

quantified as units (fluorescence intensity) of NBD-TG formed per minute per mg protein. 

 

Statistical analysis 

      A one-way ANOVA was performed using SAS software version 9.2 (SAS Institute 

Inc.) to perform comparisons among groups or using FlexArray 1.6 for gene expression 

among groups and tissues.  Group means were compared using Cyber-T algorithm for 

gene expression data and Ryan-Einot-Gabriel-Welsch Multiple Range Test for other data. 

Data are reported as Mean ± Standard Error of the Mean (SEM). 
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Results 

Fatty acid profile of diets 

      The most abundant fatty acids of the test diets are shown in Figure 2.1. Both the milk 

fat based diets have similar fatty acid profiles, and are very different from the CO diet. 

The milk fat diets both have significant contributions of saturated fatty acids (~65%) 

whereas in the CO diet the percentage is much lower (~17.5%). All diets have similar 

levels of monounsaturates, with oleic acid contributing approximately 25%. The other 

notable difference is in the polyunsaturated fatty acid content (PUFA) content (CO 54%, 

AMF 4.5% and AMF-MFGM 6%) and n6:n3 ratio (CO 54:1, AMF 6:1, AMF-MFGM 

7:1).  

 

Food intake, body weight, growth rate and body fat composition 

      There were no significant differences in terms of food intake, final body weight, 

growth rate or body fat composition (MRI analysis) among groups (Figure 2.2) (10).  

 

Fatty acids profile of RBCs 

      The RBC fatty acid profile was measured to compare the CO diet to the milk fat 

based diets, and to determine if the higher polar lipid content of the AMF-MFGM had an 

effect compared with the AMF diet.  RBC fatty acids that were significantly affected by 

the diets and present at least one percent of total fatty acids are shown in Figure 2.3. Not 

surprisingly, the CO cohort had a higher percentage of 18:2n-6, 20:4n-6 and 22:4n-6, all 

n6 fatty acids, presumably due to the high linoleic acid content of the diet. In addition, 

these animals had lower percentages of 16:1n-7, 18:1n-9, 18:1n-7, 20:3n-9, 20:5n-3, 

22:5n-3 and 22:6n-3 compared with the animals fed the milk fat diets. The RBCs from 
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animals fed the two milk fat based diets had remarkably similar fatty acid profiles with 

two statistically relevant differences. Namely, the AMF-MFGM fed animals had a higher 

percentage of 18:1n-7 and a lower percentage of 20:3n-9.  

 

Fatty acids profile of skeletal muscle tissue and visceral adipose tissue 

      As with the RBCs, there were large differences between the fatty acid profile in 

skeletal muscle and visceral adipose tissue of the rats fed the CO diet versus the milk fat 

diets, which were virtually identical (Figure 2.4 & 2.5). In skeletal muscle, the CO fed 

animals had significantly less 16:1n-7, 18:1n-9, and 20:3n9, and more 18:2n-6, 20:4n-6, 

and 22:4n-6 (Figure 2.4). Unlike skeletal muscle, the contribution of long chain fatty 

acids to the adipose lipids was low (Figure 2.5). However, among the major fatty acids    

(> 1% total), the CO animals had less 16:0, 16:1n-7, 18:0, 18:1n-9 and more 18:2n-6. The 

only fatty acid that differed among the animals fed the milk fat diets was 20:3n9, which 

in both tissues was slightly lower in the AMF-MFGM group.  

 

Fatty acids profile of liver tissue 

      Fatty acids in liver tissue which were significantly affected by the CO, AMF and 

AMF-MFGM diets and which contribute at least 1% of fatty acids in one tissue are 

presented in Figure 2.6. Animals from the CO group had less 16:1n-7, 18:1n-9, 20:3n-9, 

and 22:6n-3 and more 18:2n-6 and 20:4n-6. Unlike the RBCs, skeletal muscle, and 

adipose tissues, supplementation of the AMF diet with MFGM resulted in several 

differences in the fatty acid profile of the liver. For example, of the six fatty acids that are 

significantly affected across the diets and present at least 1%, five are significantly 

different in livers of the animals fed the AMF and AMF-MFGM diets. Thus, the 
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increased polar lipid concentration of the AMF-MFGM diet appears to have significant 

effects in liver lipid metabolism and partitioning. The largest differences are in 18:1n-9, 

which is higher in the AMF animals, and 20:4n-6 and 22:6n-3, which are higher in the 

AMF-MFGM cohort.  

 

Plasma, visceral adipose and liver lipid classes 

      To better understand the differences in lipid partitioning as affected by the CO, AMF 

and AMF-MFGM diets, plasma, adipose and liver lipid classes were analyzed. Lipid 

classes with significant differences are shown in Figure 2.7. Interestingly, the animals 

consuming AMF as the fat source had less total PL in plasma than animals fed the CO 

and AMF-MFGM diets. Additionally, there was less TG than the animals fed the     

AMF-MFGM diet. In the visceral adipose, there was more TG in the animals fed CO than 

those fed the AMF-MFGM.  In the liver, there was more FFA in the animals fed the CO 

diet than in those fed the AMF-MFGM diet, and a similar trend for the AMF animals, 

although this was not significant. On the other hand, the CO diet resulted in less 

accumulated TG than the AMF diet, with the AMF-MFGM diet in between. Lastly, both 

the CO and the AMF-MFGM diets resulted in lower hepatic CE than did the AMF diet. 

 

Tissue gene expression 

      In total, 293, 1,141, and 831 genes were differentially expressed, respectively, in 

skeletal muscle, adipose, and liver at p < 0.05. To identify metabolic pathways that were 

affected across the three diets all the genes that were differentially regulated according to 

the ANOVA analysis were analyzed with the program ArrayTrack, a free software tool 

developed by the National Center for Toxicological Research (NCTR) and the United 
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States Food and Drug Administration (FDA). All three diets were compared and the data 

generated from this analysis are summarized in Table 2.2. On a diet comparison basis, the 

fewest number of pathways affected across the three tissues were between the two milk 

fat fed animal groups (22 pathways) and the most pathways were affected between the 

CO and AMF-MFGM groups (40 pathways). In specific tissues, there were 18 pathways 

differentially affected in skeletal muscle, 31 in adipose and 40 in the liver. In specific 

diet/tissue comparisons, the fewest number of pathways were affected in skeletal muscle 

between the CO and the AMF diets (2). There were 16 pathways affected between the 

AMF and CO diets in the liver and 16 pathways between the AMF-MFGM and CO diets 

in adipose. In the lower half of Table 2.2 the pathways that were significantly affected 

across at least two diet combinations are shown. For example, in the muscle tissue, the 

circadian rhythm pathway (KEGG rno 04710) was significantly affected between all 

three diets, where as adipocytokine signaling (rno00020) was only affected in the diet 

combinations in which AMF was compared. Similar to the fatty acid data of the selected 

tissues, there were fewer pathways affected in the muscle and adipose tissue compared 

with the liver. A striking feature of the pathway analysis shown in the bottom half of 

Table 2.2 is that only 3 pathways were different in the liver between the two milk fat 

diets, whereas > 10 were affected when these diets were compared with the CO diet.     

 

      Although the two milk fat diets were nearly identical at the fatty acid level, there were 

several differences in the liver and plasma lipid profiles of the rats fed the AMF and 

AMF-MFGM diets.  Therefore, the expression of several genes of interest was 

determined using RT-PCR and the results are shown in Table 2.3. The three genes 
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selected were chosen from the KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathways differentially affected by the milk fat diets in Table 2.2. The results of the    

RT-PCR in Table 2.3 are expressed relative to actin, beta, and thus a smaller number 

indicates a higher expression level. Comparing the two milk fat groups, all three genes 

are more highly expressed in the livers of the AMF-MFGM rats compared with the AMF 

group.  

 

Liver fat analysis by histology and DGAT assay 

      In general, both the lipid analysis and the gene expression profiling indicated the diets 

had the greatest effect on the liver. Although there was not a quantitative difference in the 

total lipid content of the livers, there were significant differences in distributions across 

lipid classes (Figure 2.7). For example, there is more triglyceride in the livers of rats fed 

AMF compared with the CO, yet the total fatty acid was not different. Interestingly, 

expression of diglyceride O-acyltransferase 2 (DGAT2), was lower in the CO fed animals 

than in the other two groups. Consequently, the livers were stained with Oil Red O 

(Figure 2.8) and DGAT activity was measured via enzymatic assay of the microsomal 

fraction, and the results are shown in Figure 2.9. There was significantly less staining of 

the hepatic tissue of the CO fed mice (Figure 2.9a), and this corresponded with lower 

DGAT activity (Figure 2.9b). 

 

Discussion 

      The main focus of this work was to utilize tissue fatty acid profiling and 

transcriptomics to determine the effects of changing the lipid source of the AIN-76A diet 

on lipid metabolism. This work was conducted on key tissues involved in lipid 
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metabolism, storage and processing (skeletal muscle, visceral adipose and liver) as well 

as plasma. The fat sources used in formulating the diets (corn oil, anhydrous milk fat and 

anhydrous milk fat supplemented with milk fat globule membrane) were originally 

selected for an ACF study previously reported (10). In that study, as in most ACF studies, 

the CO diet was selected as a control, whereas the AMF-MFGM diet was included to 

determine potential cancer protective effects of specific lipids associated with this 

material, such as sphingomyelin and plasmalogens. The AMF diet was included to 

control for the potential that other lipids in milk fat might affect the development of ACF, 

such as butyrate and conjugated linoleic acid. While it was expected that fat sources like 

CO and AMF that vary widely in fatty acid composition would affect both lipid 

partitioning between tissues as well as gene expression, it was unclear what effect the 

inclusion of polar lipids would have between the two milk fat based diets as they are so 

similar at the fatty acid level.     

 

      The membrane composition of RBCs reflects dietary fat sources, and several groups 

have investigated the correlation of RBC fatty acid profiles with disease susceptibility in 

humans. For example, Harris and Von Schacky have shown that the omega-3 index, the 

combined percentage of EPA (20:5n-3) and DHA (22:6n-3) in RBCs, correlates in 

humans with risk of coronary heart disease (CHD) with values above 8% being 

associated with the most protection and values below 4% with the least (26). A similar 

metric, the percent contribution of omega-6 fatty acids to highly unsaturated fatty acids 

(HUFA, ≥ 20 carbons and ≥ 3 double bonds),%n6 HUFA, was shown by Lands to 

correlate with CHD mortality in several human populations with levels below 40% being 



48 
 

protective (27). The omega-3 indices were 0.9 for the CO diet, 2.5 for the AMF diet and 

2.0 for the AMF-MFGM diet, while the % n-6 HUFA levels were 96%, 79% and 83%, 

respectively. While these metrics may not be applicable in rodents, it is interesting 

nonetheless that all three diets result in very low levels of n-3 long chain PUFA in RBCs 

which likely affect many physiological processes.     

 

      One interesting fatty acid which is present at significant levels in the RBCs, muscle, 

adipose and liver of the milk fat fed animals, but not those consuming CO is 20:3n-9. 

This fatty acid is an elongation product of oleic acid and has been shown to be a sensitive 

marker of PUFA intake. According to Lands, 20:3n-9 correlates with low PUFA intakes 

and a value of approximately 10% in the HUFA indicates PUFA insufficiency (27). To 

our knowledge, no studies have provided data on the % contribution of 20:3n-9 to tissue 

HUFA for RBCs, muscle, adipose and liver which are shown in Table 2.4. Animals fed 

the AMF diet have the highest levels of this fatty acid across all tissues measured, while 

those consuming the AMF-MFGM diets also had high levels. Interestingly, the HUFA 

percentage of 20:3n-9 in adipose was high for the CO fed animals, albeit not as high as 

the other groups. This may be a result of the very low concentration of HUFA in adipose, 

as the lipids in this tissue are primarily less than 18 carbons in length.     

 

      The lipid profiles of the RBCs, muscle, adipose and liver reflect the fat sources of the 

three diets, and there were few differences between those fed the AMF and AMF-MFGM. 

However, there were quantitative differences across lipid classes in both plasma and the 

liver. Pathway analysis of the gene expression data indicated that a fewer number of 
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pathways was affected in skeletal muscle than in liver. There were no differences in total 

liver fatty acids between treatments, but there was in the distribution of fatty acid across 

lipid classes (Figure 2.7). One striking feature is the high FFA and low TG in the livers of 

the CO fed rats compared with those fed the AMF-MFGM diet. To further investigate 

this finding we compared oil red O staining in livers across the three treatments, and the 

results are shown in Figure 2.9a. In the rats fed the CO diets there is less oil red O 

staining. According to O’Rourke et al., oil red O staining of tissues is well correlated with 

triglyceride content (28). The inverse relationship between the hepatic TG and FFA 

suggests the differences may be due to triglyceride synthesis activity. According to the 

gene expression profiling, DGAT2, the enzyme responsible for the final step in TG 

synthesis from diglycerides and FFA was 1.25 fold lower in the CO fed rats compared 

with those fed AMF and 1.46 fold lower compared with those fed AMF-MFGM. These 

differences are modest, and it was not clear if their expression would translate into 

physiological differences. Thus, the triglyceride synthetic activity in liver microsomal 

fractions was measured using a functional assay and the results are shown in Figure 2.9b. 

In agreement with the oil red O staining, the DG activity measure suggests the 

differences in FFA, DG and TG levels in the liver may be partially explained by the 

conversion of FFA and DG into TG.     

 

      While excess hepatic TG storage has typically been viewed as a negative 

physiological response, it may be protective under some metabolic situations. For 

example, in a mouse model of nonalcoholic steatohepatitis (NASH), Yamaguchi et al. 

evaluated the effects of hepatic DGAT2 expression on disease development using an 
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antisense nucleotide treatment (29). While reducing expression of DGAT2 did prevent 

hepatic steatosis, the increase in FFA was associated with markers of lipid 

peroxidation/oxidant stress and fibrosis. From this study the authors concluded that 

accumulation of hepatic TG is actually protective against progressive liver damage in 

NAFLD. It is unclear why the CO diet resulted in lower DGAT expression and activity in 

the CO fed rats. However, one distinguishing feature of this diet is the PUFA content 

primarily in the form of linoleic acid. Interestingly, reviewing the fatty acid composition 

of diets used to study NASH, Romestaing et al. drew the conclusion that dietary PUFA 

with a high omega-6 to omega-3 ratio may be a causative factor via effects on lipid 

peroxidation and proinflammatory cytokine production (30).     

 

      There are several differences in the plasma and hepatic lipid profiles of the animals 

fed the two milk fat diets, which is surprising considering the similarity of these diets at 

the fatty acid level. According to the KEGG pathway analysis conducted on the hepatic 

gene expression and shown in Table 2.2, the two milk fat diets affected PPAR signaling 

(rno03320), C21 steroid hormone metabolism (rno00140) and glycerophospholipid 

metabolism (rno00564). The affected PPAR signaling in both the liver and skeletal 

muscle were through PPARα receptor. The involved genes were associated with 

lipogenesis, cholesterol metabolism and fatty acid transport in the liver and with 

lipogenesis in skeletal muscle. Consequently, the expression of three genes from these 

pathways was validated using RT-PCR. The genes Cyp8b1, Agpat2 and Angptl4 were 

selected from the differentially expressed genes in the pathways determined by the gene 

expression profiling. They were chosen due to their physiological function and potential 
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to affect tissue lipid partitioning, and the results are shown in Table 2.3. The function of 

these genes is discussed below including their potential roles in affecting lipid 

metabolism across the two milk fat groups. Of course these findings are only correlations 

and positive confirmation of their roles will need to be tested explicitly for confirmation.    

 

      Cyp8b1 is a cytochrome P450 enzyme which is a component of the primary bile acid 

biosynthesis and PPARα signaling pathways in the liver. It is involved in the synthesis of 

cholic acid (31). Cyp8b1 controls the ratio of cholic acid to chenodeoxycholic acid in bile 

salts, and as cholic acid is less effective in solubilizing cholesterol it may affect its 

absorption (32). The AMF-MFGM diet was associated with a lower hepatic cholesteryl 

ester content (Figure 2.7). Milk polar lipids affect both the absorption and fecal excretion 

of cholesterol when fed both acutely and chronically. For example, Noh and Koo found 

that infusion of milk sphigomyelin via a duodenal catheter resulted in decreased 

cholesterol, fat and vitamin E absorption (33). In a chronic feeding study Kamili et al. fed 

mice high fat diets for 5 weeks which were supplemented with two different formulation 

of milk phospholipids at 1.2% by weight (34). Both milk polar lipid preparations resulted 

in significant decreases in liver cholesterol and triglyceride which was accompanied by 

an increase in fecal cholesterol excretion. Data from the present study indicates that the 

decreased cholesterol absorption and increased fecal excretion resulting from luminal 

milk polar lipids in those previous studies may be mediated, at least in part, by the ratio 

of bile acids.     
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      Agpat2 is an enzyme responsible for the conversion of lysophosphatidic acid to 

phosphatidic acid, a step in PL synthesis and is a component of KEGG pathway 

glycerophospholipid metabolism. The expression of Agpat2 was higher in the          

AMF-MFGM group than the AMF group (Table 2.3) but there was not a significant 

difference in hepatic PL. There was, on the other hand, a significant increase in plasma 

PL in the AMF-MFGM. The increased plasma PL may result from increased hepatic 

synthesis and secretion.  Previous studies with milk polar lipids have also shown the 

ability of these constituents to increase both plasma PL and TG. For example, Wat et al. 

(35) fed mice both a low fat, non purified diet and a high fat diet formulated with and 

without a 2.5% PL-rich milk fat extract. In the mice fed the low fat, non purified diet, the 

milk PL increased the plasma TG by 20% and the plasma PL by 5% over the control 

mice fed the low fat diet. However, in the mice fed the high fat diets, the PL-rich extract 

actually reduced both the plasma TG and PL to levels similar to the low fat control.  The 

increased plasma lipid concentration in the rats fed the AMF-MFGM diet, compared with 

those fed the AMF diet may be a result of either more lipid exported from the liver, or 

from reduced clearance via peripheral tissues.    

 

      Expression of Angptl4 was also verified by RT-PCR. Angptl4 is a component of the 

PPARα signaling pathway. It is an angiopoietin-like protein which increases plasma TG 

via suppression of lipoprotein lipase (36). Interestingly, there were significant differences 

in plasma TG between the two milk fat fed groups (Figure 2.7). Also known as fasting 

induced adipocyte factor (Fiaf), Angptl4 is highly expressed in the gut epithelium in 

germ-free mice and prevents accumulation of fat into adipocytes, whereas 



53 
 

conventionalization with a microflora suppresses this effect (37). Although it is not clear 

if hepatic expression of Angptl4 in the AMF-MFGM fed rats contributed to the increase 

in plasma TG, this finding indicates a potential mechanism via which this effect was 

mediated.     

 

      Despite the fact that it is still commonly used in ACF studies with rodents (7), the 

high sucrose content of the AIN-76A diet has been long known to cause fatty liver in 

animals fed the diet for long periods of time (9). Therefore, when reviewing the different 

effects of the fat sources on tissue lipid composition and gene expression it is necessary 

to keep in mind these changes are in the context of an overall metabolically stressful diet. 

From the data presented here, a few hypotheses may be drawn that can be tested in 

studies designed specifically for their evaluation. For example, compared with the milk 

fat diets, the CO diet caused a significant increase in hepatic free fatty acids, a potential 

trigger for the development of NASH from NAFLD. It may be hypothesized that high 

dietary n6 PUFA facilitates the development of NASH from NAFLD by increasing 

hepatic free fatty acids. Conversely, compared with the CO and AMF-MFGM diets, the 

AMF diet resulted in more hepatic TG storage which in itself may be undesirable. It may 

be hypothesized that dietary saturated fatty acids increases hepatic TG and facilitate the 

development of hepatic steatosis. Supplementing the AMF diet with polar lipids from 

milk appears to reduce the accumulation of hepatic TG yet appears to achieve this effect 

via promotion of lipid export into plasma. The long term physiological significance of 

this is unknown. It may be hypothesized that dietary polar lipids increase hepatic TG 

export into the circulation to be stored in adipose tissue and to be utilized by the muscle. 
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In conclusion, the fat source of the AIN-76A diet affects the tissue profile of key tissues 

involved in lipid trafficking and storage as well as gene expression networks within these 

tissues.  
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Table 2.1 Composition of dietary treatments. 
 

 
 

a
Diets were prepared by Dyets.com. 

b
Four grams of lactose was added to the control and AMF 

diets to balance lactose in MFGM isolate. 
c
MFGM isolate is 68% protein, 20% fat, 4% ash, and 

4% lactose. The casein to whey ratio is 80:20. The triglyceride to polar lipid ratio is 3:1. 
d
Mineral 

composition of MFGM isolate was determined by ICP-AAS. Minerals were adjusted in        

AMF-MFGM diet accordingly. 
e
Amount derived from MFGM portion of the diet in parentheses 

(mg/kg diet). 
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Table 2.2 Metabolic pathways significantly affected across all three diet combinations 

(CO = corn oil; AMF = anhydrous milk fat; AMF-MFGM = anhydrous milk fat-milk fat 

globule membrane; KEGG = Kyoto Encyclopedia of Genes and Genomes). 
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Table 2.3 Differentially expressed genes by ANOVA in liver from rats fed with diet 

containing corn oil (control), anhydrous milk fat (AMF) and milk fat globule membrane 

(AMF-MFGM) (unit: ∆∆Ct). 

 

Genes CO AMF MFGM 

Cyp8b1 -0.94±0.26
b 

-0.10±0.16
a 

-2.49±0.41
c 

Agpat2 1.93±1.03
ab 

2.82±0.42
a 

1.14±0.48
b 

Angptl4 2.90±0.93
b 

4.19±0.26
a 

2.34±0.67
b 

 

a, b, c 
Means in a row with different superscripts are significantly different (p < 0.05). The 

data represent mean ± SEM (n = 4, 3, 4 for CO, AMF, AMF-MFGM). 
 

 

Table 2.4 %20:3n-9 in highly unsaturated fatty acids (HUFA) in RBCs, skeletal muscle, 

adipose, and liver as a function of diet. 

 

%20:3n-9 in HUFA CO AMF AMF-MFGM 

RBCs ND
b 

11.05±0.15
a 

8.60±1.39
a 

Muscle  0.51±0.05
c 

20.01±0.26
a 

12.44±0.16
b 

Adipose  7.92±0.24
c 

43.08±1.37
a 

31.40±0.21
b 

Liver  0.53±0.02
c 

15.65±0.84
a 

8.64±0.49
b 

 

a,b,c 
Means in a row with different superscripts are significantly different (p < 0.05), ND 

= not detected. The data represent mean ± SEM (n = 3). 
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Figure 2.1 Fatty acid profile of experimental diets. Only fatty acids present at > 1% of 

total fatty acids are shown. The data represent mean ± SEM (n = 2). Means in a row with 

different superscripts are significantly different (p < 0.05).  
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Figure 2.2 Effect of experimental diets on food intake (a), total weight gain (b) and body 

fat composition (c). Values are mean ± SEM (n = 17, 16, 16 for CO, AMF,               

AMF-MFGM). Experimental diets did not significantly affect consumption, weight gain 

or body fat percentage.  
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Figure 2.3 Red blood cell (RBC) fatty acids from rats fed CO (corn oil), AMF 

(anhydrous milk fat) and AMF-MFGM (anhydrous milk fat-milk fat globule membrane). 

The data represent mean ± SEM (n = 3). Only fatty acids present at greater than 1% of 

total fatty acids are shown. Means in a row with different superscripts are significantly 

different (p < 0.05).  
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Figure 2.4 Fatty acid profile of skeletal muscle from rats fed CO (corn oil), AMF 

(anhydrous milk fat) and AMF-MFGM (anhydrous milk fat-milk fat globule membrane). 

The data represent mean ± SEM (n = 3). Only fatty acids present at greater than 1% of 

total fatty acids are shown. Means in a row with different superscripts are significantly 

different (p < 0.05).  
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Figure 2.5 Fatty acid profile of visceral adipose tissue from rats fed CO (corn oil), AMF 

(anhydrous milk fat) and AMF-MFGM (anhydrous milk fat-milk fat globule membrane). 

The data represent mean ± SEM (n = 3). Only fatty acids present at greater than 1% of 

total fatty acids are shown. Means in a row with different superscripts are significantly 

different (p < 0.05).  
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Figure 2.6 Fatty acid profile of liver tissue from rats fed CO (corn oil), AMF (anhydrous 

milk fat) and AMF-MFGM (anhydrous milk fat-milk fat globule membrane). The data 

represent mean ± SEM (n = 4). Only fatty acids present at greater than 1% of total fatty 

acids are shown. Means in a row with different superscripts are significantly different (p 

< 0.05).  
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Figure 2.7 Quantitation of lipid classes from plasma, visceral adipose and liver. PL = 

phospholipids, TG = triglycerides, FFA = free fatty acids, CE = Cholesteryl esters. The 

data represent mean ± SEM (n = 3 for plasma and adipose, n = 4 for liver). Means in a 

row with different superscripts are significantly different (p < 0.05). 
 

 

 
 

Figure 2.8 Liver histological slides (light microscope, 18x) by Oil Red O Staining from 

rats fed CO (corn oil), AMF (anhydrous milk fat) and AMF-MFGM (anhydrous milk   

fat-milk fat globule membrane). 
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Figure 2.9 Hepatic Oil Red O Staining (A) and hepatic DGAT activity (B) in liver tissue 

from rats fed CO (corn oil), AMF (anhydrous milk fat) and AMF-MFGM (anhydrous 

milk fat-milk fat globule membrane). The data represent mean ± SEM (n = 4, 3, 4 for CO, 

AMF, AMF-MFGM). Means with different superscripts are significantly different (p < 

0.05).  
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CHAPTER 3 

DIETARY MILK POLAR LIPIDS AFFECT LIPID METABOLISM, GUT 

PERMEABILITY AND SYSTEMIC INFLAMMATION IN C57BL/6J OB/OB 

MICE 

 

Abstract  

      Dynamic interactions between lipid metabolism, gut permeability and systemic 

inflammation remain unclear in the context of obesity. One objective of this study was to 

explore the dynamic changes of gut permeability, inflammation and lipid metabolism in 

genetic obesity. Another objective was to test the hypotheses that milk polar lipids will 

reduce gut permeability, systemic inflammation and liver lipid levels, and affect the 

expression of genes associated with fatty acid synthesis and cholesterol regulation in the 

liver in preexisting obesity. Three groups of C57BL/6J ob/ob mice were fed moderately 

high fat diets for 2 weeks: 1) modified AIN-93G diet (CO) with 34% fat by energy; 2) 

CO with milk gangliosides (GG); 3) CO with milk phospholipids (PL). The GG and the 

PL did not affect the total food intake, weight gain or fasting glucose. The PL led to 

smaller livers and mesenteric fat depots compared with the CO. No difference was found 

in the gut permeability. Dietary polar lipids did not enrich the polar lipids content in the 

intestinal mucosa. The GG increased the expression of the tight junction protein occludin 

in the colon mucosa compared with the CO. The GG and the PL decreased the expression 

of the tight junction protein ZO-1 in the jejunum mucosa compared with the CO. The 

moderately high fat diet feeding increased the plasma endotoxin level, which was not 

affected by the dietary polar lipids. The PL increased the IL-6 level in the plasma and the 

sphingomyelin levels in the plasma and the liver compared with the CO and the GG. The 
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increase of the plasma IL-6 level was positively correlated with the sphingomyelin 

increase in the plasma and the liver. The PL and the GG decreased the PI level in the 

liver and the skeletal muscle. Hepatic expression of 13 genes involved in lipid 

metabolism was assessed by RT-qPCR. The GG and the PL differentially regulated the 

genes associated with fatty acid and cholesterol metabolism. In conclusion, dietary 

supplementation of milk polar lipids may affect lipid metabolism and have unfavorable 

effects on systemic inflammation in genetic obesity.   

 

Introduction 

      Obesity is usually defined as a condition with excessive body fat that has an adverse 

effect on health (1). The pathological states associated with obesity include many 

comorbidities, such as type 2 diabetes, cardiovascular disease, leaky gut, dyslipidemia, 

non-alcoholic fatty liver disease (NAFLD) and systemic inflammation (2-4). The 

increased intestinal permeability has been observed in obese animals (5) and humans (2). 

Leptin-deficient C57BL/6J ob/ob (ob/ob) mice have more surface area and mass of their 

intestinal mucosa for nutrient absorption in proportion to the metabolic mass (6). This 

increased surface area is caused by the intestinal hyperplasia (7) and the associated 

inappropriate increase and distribution of the tight junction (TJ) proteins leads to the 

decrease in the barrier integrity (6). Ob/ob mice also have portal (8) and plasma 

endotoxemia, the presence of lipopolysaccharide (LPS) in the blood (9). LPS can activate 

the toll-like receptor 4 (TLR4) and initiate inflammation in various tissues (10). The 

systemic inflammatory state in obesity is associated with endotoxemia resulting from 

increased gut barrier permeability in obese animals (5) and humans (2).  
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      In obese subjects, the high levels of inflammatory cytokines may alter structure and 

localization of the TJ to cause malfunction of the intestinal barrier (11). The adipose 

tissue contains adipocytes, fibroblasts, leukocytes, and macrophages. These cells may 

jointly produce proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and 

interleukin-6 (IL-6) (12).  Adipocytes are also targets of the proinflammatory signals 

such as TNF-α and IL-6 (13). Obesity, systemic inflammation and increased intestinal 

permeability may generate a self-perpetuating vicious cycle (Figure 1.1) (14). Lipid 

metabolism is involved with this complex cycle. The plasma long-chain saturated fatty 

acids (LCSFA, e.g., myristic, palmitic acids) activate the TLR4 in adipocytes and 

macrophages and initiate the secretion of proinflammatory cytokines such as IL-6 (10). 

The LCSFA may have synergistic effect with LPS on the activation of the TLR4 (10). 

Therefore, increased gut barrier permeability, endotoxemia, systemic inflammation, and 

lipid metabolism are complexly interrelated events during obesity (Figure 1.1). 

 

      The current estimates by the Centers for Disease Control is that about 1/3 Americans 

are obese (body mass index, BMI ≥ 30) and 1/3 Americans are overweight (25 ≤ BMI < 

30). The burden of the obesity epidemic is well recognized but there are not yet very 

effective preventive solutions. The main effective therapy is surgery. Dietary intervention 

might have promising potential in fighting against obesity since the excessive food 

energy intake (the easily accessible and palatable diet) is one of the main causes of 

obesity (15, 16). Rich in nutrients, milk provides protection for the gut and enhances the 

immune system of the newborn (17). One fraction of milk, the polar lipids, may play 

important roles in biological functions such as maintaining gastrointestinal barrier 
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integrity and affecting systemic inflammation, and lipid metabolism. The milk polar 

lipids mainly come from the milk fat globule membrane (MFGM) and include 

phospholipids (PL) and gangliosides (GG). The most abundant milk polar lipids are 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), 

phosphatidylinositol (PI) and phosphatidylserine (PS) (36%, 27%, 22%, 11% and 4% 

respectively of total polar lipids) (18).  

 

      A milk isolate, rich in polar lipids, protects against the increase in gut permeability of 

fluorescein isothiocyanate-dextran (FITC-dextran) in mice stressed by the LPS (19). 

Dairy GG inhibits the degradation of the gut TJ protein occludin during the LPS-induced 

acute inflammation (20).  Dietary PL reduce liver triglycerides (TG) and cholesterol in 

rats (21). The PL-rich MFGM extract supplemented diet reduces hepatomegaly, hepatic 

steatosis and hyperlipidemia and positively regulates genes associated with fatty acid 

synthesis and cholesterol regulation in mice fed a high-fat diet (22). The effects of the PL 

on liver lipid metabolism could be partially due to the choline contributed by the PC 

when the diets were high in sucrose, which promote the development of fatty liver 

disease (23).  The milk sphingolipids, including SM and GG, have been shown to reduce 

the uptake of cholesterol (24) and the inflammatory response (25, 26). The 

supplementation of milk polar lipids in a high fat diet in the context of preexisting obesity 

may facilitate the understanding of the interrelationships among the intestinal barrier 

integrity, endotoxemia, systemic inflammation, lipid metabolism and obesity. 
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      Ob/ob mice fed a standard chow diet have increased intestinal permeability (8). High 

fat diets decrease the gut barrier integrity and increase endotoxin absorption, which leads 

to the systemic inflammation independent of obesity (27). The ob/ob mice can be used as 

an obesity model in exploring the interrelationships among the intestinal barrier integrity, 

endotoxemia, systemic inflammation, lipid metabolism and obesity. This study was 

designed to test the hypotheses that the dietary milk polar lipids will reduce gut 

permeability and liver lipid levels, affect the expression of genes associated with fatty 

acid synthesis and cholesterol regulation in the liver, and alleviate the systemic 

inflammation that resulted from the preexisting obesity and may be sustained and/or 

exacerbated by the high fat intake.  

 

Materials and Methods 

Diets formulation 

      Diets based on the AIN-93G rodent diet were used in this study. The fat provided 34% 

energy (16.8% by weight). This amount of fat is considered high compared with the 16% 

(energy) fat in the regular mouse chow diet (LabDiet 5K52, Table 3.1). The high fat diets 

with 30% or more fat as energy have successfully induced obesity in the C57BL/6J mice 

(28). Data from the National Health and Nutrition Examination Survey (NHANES   

2007-2008) indicates that the mean amount of fat consumed per individual American was 

34% by energy. Thus, using diets with 34% (energy) fat emulates the real dietary 

practices in America. The current estimates by the Centers for Disease Control is that 

about 1/3 Americans are obese (BMI ≥ 30) and 1/3 Americans are overweight (25 ≤ BMI 
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< 30). So it could be common practice to have diets with 34% (energy) fat in the 

background of obesity.  

 

      Three diets based on the AIN-93G rodent diet were formulated (Table 3.1) so that 

they were identical in the macro and micro nutrient except for the fat source, which were 

provided by soybean oil + lard (CO diet), soybean oil + lard + milk GG (GG diet), 

soybean oil + lard + milk PL (PL diet), respectively. The milk polar lipids were provided 

as a semi-purified milk PL concentrate or a semi-purified milk GG concentrate prepared 

from the dried milk cream by ethanol extraction (Fonterra (USA), Inc., Rosemont, IL). 

The GG was supplemented at 0.2 g/kg diet, including 0.17 g of ganglioside GD3 and 0.03 

g of ganglioside GM3. The GG diet also contained small amount of PC, PS, PE and SM 

(0.55, 0.48, 0.21 and 0.2 g/kg diet). The PL was supplemented at 10 g/kg diet, including 

2.9 g of SM, 5 g of PC, 1.6 g of PE and 0.6 g of PS. The mineral contents of the diets 

were verified by the Utah Veterinary Diagnostic Laboratory. The fatty acid composition 

of the diets was analyzed by Gas Chromatography (GC) as described previously (29). 

 

Animals  

      Five-week-old male C57BL/6J ob/ob mice (n = 18; Jackson Laboratory) were housed 

singly in cages at a constant temperature of 22 ± 1 °C with a 12-h light/dark cycle. They 

were allowed ad libitum access to diet and water. After 2 weeks feeding on chow (for the 

acclimatization and the baseline data collection), mice were randomly assigned to one of 

the following treatments: 1) CO diet (n = 6); 2) GG diet (n = 6); 3) PL diet (n = 6). The 

mice were fed the experimental diets for 2 weeks. The diet intake and body weight were 

measured every other day. The body composition was assessed at the baseline, day 4 and 
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day 13 by using the magnetic resonance imaging (MRI) with an EchoMRI-900 Body 

Composition Analyzer (EchoMRI, Houston, TX). The experiments were conducted 

in conformity with the Public Health Service Policy on Humane Care and Use of 

Laboratory Animals and were approved by the Utah State University Institutional Animal 

Care and Use Committee. 

Assessments of intestinal barrier integrity 

      To assess the intestinal permeability, 4000 Da FITC-dextran (Sigma-Aldrich Co. LLC, 

St. Louis, MO) suspended in phosphate buffered saline was gavaged and the blood 

samples were collected through cheek bleeding 5 h after the gavage. The plasma 

concentrations of FITC-dextran were determined by measuring fluorescence at 530 nm 

(30).  

 

      The gut permeability was also assessed by using the differential sugar absorption test 

(DST). Three classes of sugar probes are usually used for the DST (31).  The Class 1 

probes, such as sucrose (molecular weight (MW): 342.3 Da), are metabolized in the 

stomach and the proximal small intestine. The class 2 probes, such as lactulose (MW: 

342.3 Da) and mannitol (MW: 182.2 Da), can stay in the gut before they are degraded by 

bacteria in the colon. The class 3 probes, such as sucralose (MW: 397.64 Da), remain 

intact throughout the gut. Sucrose, lactulose and sucralose have similar size and are 

absorbed exclusively through the paracellular route (31). As a non-metabolizable small 

molecule, mannitol is absorbed from the gut by passive diffusion and solvent drag and 

the absorption reflects the background gut permeability (32). By using the 

aforementioned four sugars together, information regarding site-specific gut permeability 
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may be obtained. The absorption of sucrose reflects the permeability of the stomach and 

the proximal intestine. The absorption of lactulose reflects the permeability of the small 

intestine. The absorption of sucralose reflects the permeability of both the small intestine 

and the colon. When there is no small intestinal damage as revealed by the lactulose 

absorption, the sucralose absorption may detect the colonic damage (31). The 

Sucrose/Lactulose ratio can be used to decide if the intestinal damage is more 

severe proximally or distally. For example, the Sucrose/Lactulose ratio increases during 

active celiac disease and severe malaria (33, 34).  

 

      The DST was carried out according to the method of Arrieta et al. (35). After a 4 h 

fast of food and water, the mice were gavaged with 0.2 ml of a sugar probe solution 

containing 100 mg of sucrose, 12 mg of lactulose, 8 mg of mannitol and 6 mg of 

sucralose. Immediately after the gavage the mice were housed in the metabolic cages to 

collect the 24-h urine. During the collection period, the urine sample was preserved by 

the addition to the collection vessels of 5 mg sodium fluoride. The urinary sugars were 

quantified by the method of Farhadi using GC (36).   

 

Tissue sample collection 

      The mice were sacrificed by CO2 asphyxiation after a 4h fast. After the blood 

collection, the liver, the quadriceps muscle, the intestinal and colonic mucosa, the feces 

and the adipose tissue samples were collected. The adipose depots included the gonadal, 

retroperitoneal, mesenteric, and subcutaneous depots.  Each category of tissue was saved 

separately and the tissue mass was recorded. The tissue samples were flash frozen and 

stored at -80 °C until further analysis. 
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Biochemical analyses of plasma 

      The blood was obtained by cheek bleeding and collected in heparin containing tubes 

(BD, Franklin Lakes, NJ). The plasma samples were obtained after centrifugation at      

12, 000 x g for 10 minutes and stored at -80 °C. The plasma levels of insulin, leptin, 

resistin, monocyte chemotactic protein-1 (MCP-1), IL-6, TNF-α and plasminogen 

activator inhibitor-1 (PAI-1) were determined by using the MILLIPLEX mouse 

adipokine kit (Millipore, Billerica, MA). The plasma glucose level was measured by 

using the Cholestech L.D.X system (Cholestech Corp, Hayward, CA). The homeostasis 

model assessment-estimated insulin resistance (HOMA-IR) index was calculated from 

the fasting glucose and insulin levels (fasting glucose*fasting insulin/22.5) (37, 38). The 

plasma endotoxin levels were measured by the fluorescence endotoxin assays kit (Lonza 

Inc., Allendale, NJ). 

  

Western Immunoblotting for zonula occludens (ZO)-1 and occludin proteins 

      The small intestine (without the duodenum) and the colon were excised after the 

mouse was sacrificed. The proximal 1/3 segment of the small intestine (jejunum), the 

distal 2/3 segment of the small intestine (ileum) and the entire length of the colon were 

collected and opened longitudinally. The intestine was washed with ice-cold 0.9% saline 

solution to remove the visible mucus and dietary debris.  Then the moisture was 

carefully removed with tissue paper. The intestine segments were gently scraped twice 

with a glass microscope slide to obtain the mucosa, which were flash frozen and stored at 

-80 °C until further analysis. Mucosal samples were homogenized in 500 µL ice-cold 

tissue protein extraction reagent (contains a proprietary detergent in 25 mM bicine, 150 

mM sodium chloride; pH 7.6) with 1% protease inhibitor and 1% phosphatase inhibitor 
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(Pierce Biotechnology, Rockford, IL). The homogenates were centrifuged at 10,000 x g 

for 5 minutes to collect the supernatants. The protein samples were suspended in the 

sodium dodecyl sulfate (SDS) sample buffer (Invitrogen, Grand Island, NY) and were 

boiled at 100 °C for 5 minutes. The proteins were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis using 6% (ZO-1) or 8% to 16% (occludin, β actin) 

Tris-glycine polyacrylamide gradient gels and subsequently transferred to nitrocellulose 

membranes (Invitrogen, Grand Island, NY). The membranes were blocked with 5% 

bovine serum albumin (BSA) in Tris-buffered saline (TBS, 0.0242% Tris base, 0.08% 

NaCl; pH 7.6)/0.1% Tween 20 for 1 h. The primary antibodies specific for ZO-1 

(1:500; Zymed, Grand Island, NY), occludin (1:500; Santa Cruz Biotechnology, Santa 

Cruz, CA), or β actin (1:500; Cell Signaling, Danvers, MA) were incubated with the 

membranes overnight at 4 °C in 5% BSA with Tris-buffered saline/ Tween 20. The 

membranes were washed and incubated for 1 h at the room temperature with the 

secondary antibody horseradish peroxidase-linked antirabbit IgG (1:2000; Cell Signaling, 

Danvers, MA) prepared in the blocking solution. After thorough washing, the Pierce 

Supersignal West Pico Chemiluminescent Kit was applied for antibody detection with 

Kodak 2000R Image Station (Raytest USA Inc., Wilmington, NC). The mean pixel 

density was estimated using ImageJ (NIH, Bethesda, MD). The data were expressed as 

the relative band density from the Western blots. The relative band density was calculated 

by dividing the pixel density of the target protein by the mean pixel density of beta actin.  

 

Liver gene expression analysis 

      The expression of genes associated with lipid metabolism in the liver was analyzed 

by the real-time quantitative polymerase chain reaction (RT qPCR) assays. The total 
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RNA was extracted from the liver tissue by using the TRI reagent (Sigma-Aldrich Co. 

LLC, St. Louis, MO) and the SurePrep RNA Purification Kit (Thermo Fisher Scientific 

Inc., Waltham, MA) according to the manufacturer’s instructions. The genomic DNA in 

the RNA samples were eliminated with the RNase-free DNase I solution (Thermo Fisher 

Scientific Inc., Waltham, MA). The RNA (1 µg) was reverse transcribed into the cDNA 

using the QuantiTect® Reverse Transcription Kit (Qiagen, Valencia, CA) and  MJ 

Mini™ Thermal Cycler (Bio-Rad, Hercules, CA). RT qPCR was then performed with the 

EvaGreen® method using the Biomark™ 48.48 Dynamic Arrays (Fluidigm, South San 

Francisco, CA). Primer sequences were as in Table 3.2. These mouse primers were 

selected from the Primer Bank developed by the Massachusetts General Hospital and 

Harvard Medical School (39). The primers were verified with the corresponding mRNA 

sequences from the GenBank maintained by the National Center for Biotechnology 

Information. The cycle threshold (Ct) values for the genes of interest were normalized 

with the Ct values for peptidylprolyl isomerase A. The relative gene expression was 

calculated by using the 2
−ΔΔCt 

method.  

 

Tissue lipid profiling 

      The tissue samples were removed from the freezer, an unbiased sample of the tissue 

was cut into small pieces with a razor and placed in a mortar with liquid nitrogen and 

ground to obtain a fine homogenous powder. About 50 mg (20 mg for the intestinal 

mucosa) of the tissue powder from each sample were weighed and put into a glass test 

tube with a screw cap. The lipids were extracted by the method of Folch et al. (40) with 

slight modifications. The samples were mixed with 1.5 ml Folch solution 

(chloroform/methanol, 2:1, v/v). The whole mixture was sonicated and then agitated for 
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15-20 minutes in an orbital shaker at room temperature. The agitated mixture was 

vortexed for 30 seconds and washed with 0.2 volumes (0.3 ml for 1.5 ml solvent mixture) 

0.9% NaCl solution. The washed mixture was vortexed for 20 seconds and centrifuged at 

1,500× g for 10 minutes to separate the two phases. The lower chloroform phase 

containing lipids was collected and evaporated under a nitrogen stream. The lipids were 

reconstituted in a small volume of Folch solution in a 2 ml amber vial, topped with 

nitrogen and stored at -80 ºC until further analysis. 

      The individual lipid classes of the extracted lipid were separated using high 

performance thin layer chromatography (HPTLC). The extracted lipid from each tissue 

was diluted by the Folch solution such that 5 µl of the solution contained 2.5 mg of the 

lipid. The HPTLC plate (10 × 20 cm silica gel, 3µm particle, 100 µm layer) (Scientific 

Adsorbents Inc., Atlanta, GA) was pre-washed with 100 ml of chloroform/methanol (1:1 

v/v) and activated in the 100 °C oven for 10 minutes. The lipid class standards were 

spotted for detecting the target bands. The aliquots of 5 µl lipid sample or plasma sample 

were spotted 1 cm from the bottom of the plate and the plate was air dried. The plate 

development was carried out by the method of Kupke (41). The plate was first developed 

in a solvent system containing chloroform-methanol-water (60:30:5 v/v/v) until the 

solvents reached the middle of the plate. The plate was dried for 30 minutes before a 

second development in the same solvent system. Then the plate was dried and developed 

in another solvent system containing hexane-diethyl ether-acetic acid (80:20:1.5 v/v/v) 

until the solvents reached 0.5 cm from the top of the plate. After being dried, the plate 

was sprayed until translucent with a 10 % (w/v) cupric sulfate solution in 8% (w/v) 

orthophosphoric acid (42). The plate was heated in an oven at 145 °C for 10 minutes (43). 
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The plate was scanned with a document scanner EPSON Stylus NX400 (Epson America 

Inc., Long Beach, CA) and the lipid bands were quantified with ImageJ (NIH, Bethesda, 

MD). The detected lipid classes from the HPTLC plate were: PE, PC, PS, and PI, SM, 

diglycerides (DG), free fatty acids (FFA), TG, and cholesteryl ester (CE).  

 

GG analysis of intestinal mucosa 

      The total GG content in the intestinal mucosa was determined by measuring the 

gangliosides bound sialic acid with Gas Chromatography–Mass Spectrometry (GC-MS). 

The gangliosides were extracted and purified by using the Sep-Pak C18 reverse-phase 

cartridges (Waters, Milford, MA) according to the method of Schnabl et al. (44). The 

gangliosides were derivatized by trimethylsilylation. One hundred microliter ganglioside 

samples with 5 µg phenyl N-acetyl-alpha-D-glucosaminide as internal standard were 

dried and treated with 700 µl of 0.05 N fresh methanolic HCl by heating for 1 hr at 80 °C. 

The mixture was cooled and extracted with 0.5 ml of hexane to remove the liberated fatty 

acid esters. The methanolic layer was dried under a nitrogen stream. The 

trimethylsilylation derivatization reagent was formed according to the method of Carter 

and Gaver (45). Hexamethyldisilazane (2.6 ml) and dry pyridine (2 ml) were mixed. 

Trimethylchlorosilane (1.6 ml) was then added. The mixture was shaken and the opaque 

solution was centrifuged to give a clear colorless supernatant solution, which was stored 

in the dark. The silylation reagent (50 µl) was added to the samples in the small ample 

vials. The samples were agitated well with a Vortex vibrator and allowed to stand for 15 

minutes. The derivatized samples were transferred into the GC inserts and 1 µl was 

injected per assay into a DB-5 GC Column installed on a Shimadzu GC-2010 coupled 

with a Mass Spectrometer. The quantification was achieved from the standard curve 
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generated by concurrent analysis of a series of ganglioside GD3 standards in different 

concentrations. 

 

Statistical analyses 

      One-way or mixed models analysis of variance (ANOVA) was performed by SAS 9.2. 

The group means were compared by the Ryan-Einot-Gabriel-Welsch Multiple Range 

Test or the Least Squares Means Contrast in SAS. The data were reported as Mean ± 

Standard Error of the Mean (SEM). 

Results 

      Dietary polar lipids supplementation did not affect the daily food intake and weight 

gain (Figure 3.1a). There were no significant differences in the tissue masses of total, 

subcutaneous, and visceral adipose depots. The PL and GG groups had less mesenteric 

adipose depot as percentage of body weight compared with the CO group (GG vs CO: p 

= 0.05, PL vs CO: p = 0.06, Figure 3.1b). The PL group accumulated more body fat as 

revealed by the MRI scan (Figure 3.2a) compared with the GG and CO groups. Body 

weight gain was mainly contributed by fat accumulation (Figure 3.2b). The PL and GG 

groups had higher rate of body fat increase compared with the CO group (Figure 3.2b).  

 

      One mouse in the GG group died during the second MRI scan. After staying in the 

metabolic cage for 24h for the final DST, two mice in the CO group, one mouse in the 

GG group and one mouse in the PL group died. They consumed less food compared with 

those that survived (0.34 ± 0.12 g vs 1.83 ± 0.62 g) in the metabolic cage and they had a 

similar symptom, diarrhea of not fully digested food. One mouse in the PL group 

developed an anal ulcer after the final DST and was sacrificed and not included in the 
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following analyses. The remaining mice were sacrificed 3 days after the final DST. 

Postmortem pathological examination of the dead mice was done by the Utah Veterinary 

Diagnostic Laboratory. The pathological examination revealed that there was no evidence 

of infectious disease in any tissues or organs. The hepatic lipidosis was severe and 

considered the primary cause of mortality. There was also renal lipidosis. For the final 

tissue analyses, the mice sacrificed at the end were used (CO (n = 3); GG (n = 4); PL (n = 

4)).  

 

Tissue lipid profiles and gene expression 

      Dietary polar lipids, especially the PL, lowered liver mass and liver weight 

percentage (normalized by body weight) (diet effect p = 0.02, Figure 3.3a). PL decreased 

liver weight percentage by 2.6% compared with CO (p = 0.006). Dietary polar lipids, 

especially the PL, decreased CE and PI in the liver and decreased PI in the skeletal 

muscle (p < 0.05, Figure 3.3b). Compared with the CO, the GG and the PL down 

regulated the hepatic expression of the fatty acid oxidation gene Acaa2 and the fatty acid 

synthesis gene Acacb. The PL up regulated the hepatic expression of the cholesterol 

esterifying gene Acat2 (p < 0.05, Figure 3.4) compared with the CO and the GG. The 

polar lipids did not affect the following genes associated with lipid metabolism in the 

liver: the fatty acid synthesis genes: Elovl5, Slc27a5, Me1 and Scd1; the fatty acid 

oxidation genes: Acox3 and Cpt2; the cholesterol regulation genes: Hmgcr, Ldlr, Scarb1 

and Cyp7a1. 
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      The PL group had higher plasma levels of FFA (Figure 3.5a) and DG (Figure 3.5b) 

compared with the GG and CO groups. The PL group had higher plasma SM (Figure 3.5c) 

and total phospholipids (Figure 3.5d) levels compared with the GG and CO groups.  

 

Gut permeability 

      The plasma FITC-dextran level decreased significantly during the feeding period 

(Figure 3.6a). The polar lipids did not affect the plasma FITC-dextran or the LPS level. 

There was no change in the urinary ratios of Lactulose/Mannitol, Sucrose/Lactulose and 

Lactulose/Sucralose but the urinary Sucralose/Mannitol ratio increased (Figure 3.6b). 

There was no significant dietary treatment effect on the urinary sugar ratios. The plasma 

LPS level was increased by 3-4 fold during the study (Figure 3.6c). 

 

      The PL and the GG decreased ZO-1 in jejunum mucosa compared with the CO 

(Figure 3.6d). The expression of the TJ protein ZO-1 was not affected in the mucosa of 

the ileum and the colon (Figure 3.6d). The GG slightly increased the occludin expression 

in the colon mucosa compared with the PL and the CO (Figure 3.6d). The polar lipids did 

not affect the expression of occludin in the mucosa of the small intestine (Figure 3.6d).  

 

Plasma biochemistry  

      The PL increased plasma IL-6 level from 41 to 745 pg/ml (p = 0.001). The plasma  

IL-6 level did not change in the CO group (18 vs 16 pg/ml). The GG increased plasma 

IL-6 level from 44 to 133 pg/ml. The plasma IL-6 level in the PL group was significantly 

higher than that in the GG and CO groups (Figure 3.7a, p = 0.02, 0.01, respectively).  The 

correlation between the plasma IL-6 level and the plasma SM level was strong (r = 0.978, 
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p < 0.0001) while the correlation between the plasma FFA and IL-6 levels was not 

significant (r = 0.338, p = 0.34). The correlation between the plasma LPS and IL-6 levels 

was negative and not significant (r = -0.459, p = 0.16). 

 

      Compared with baseline value, there was an increase of the plasma levels of PAI-1, 

resistin and leptin. The plasma PAI-1 level increased 2-5 fold (time effect p = 0.0007, 

Figure 3.7b). The plasma resistin level increased 1-2 fold (time effect p < 0.0001, Figure 

3.7c). The plasma leptin level increased slightly (time effect p = 0.049, Figure 3.7d). No 

statistically significant dietary treatment effect was observed in the plasma levels of   

PAI-1 and leptin. The GG increased the plasma resistin level compared with the CO and 

the PL (diet x time effect p = 0.03, Figure 3.7c).  

 

      The plasma levels of insulin, MCP-1 and TNF-α did not change significantly over 

time and were not significantly affected by dietary polar lipids supplementation (Table 

3.3).  There was no treatment effect on the fasting glucose and HOMA-IR at the end of 

the study (Table 3.3). 

 

Symptoms related to diabetes 

      One mouse in the GG group (GO3) and one mouse in the PL group (PO4) developed 

obvious diabetic symptoms during the study. Compared with the rest of the mice, these 

two mice had wetter beddings, consumed more food, had much higher volume of urine, 

and had higher fasting glucose, insulin and HOMR-IR (Table 3.4). Compared with the 

other mice, the level of obesity was lower in the diabetic mice (GO3 and PO4) as 

indicated by the plots of body fat against fat-free mass (Figure 3.8a-f). When all 
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measurements at 6 time points (at day -15, -11, -7, -3, 4, 13) are included, there is 

obvious separation of the diabetic mice (GO3 and PO4) from the rest of the mice (Figure 

3.8a). The slope for the obese mice was 0.94. From day -15 to day 4, GO3 and PO4 were 

gradually separated from the rest of the group (Figure 3.8b-e). The slope decreased to 

0.71 at day -3 and returned to 1.17 at day 4. When the slope decreased to 0.57 at day 13, 

GO3 and PO4 were not separated from the rest of the group (Figure 3.8f).  

 

Discussion 

      This study was designed to test the hypotheses that milk polar lipids reduce liver lipid 

levels and affect gene expression associated with liver lipid metabolism, prevent the 

increase of gut permeability, and reduce plasma inflammatory cytokines in ob/ob mice. 

The milk phospholipids reduced the liver lipids level and slightly affected gene 

expression associated with lipid metabolism in the liver. The milk phospholipids 

increased the colon permeability and the plasma IL-6 level. The milk gangliosides 

decreased ZO-1 and increased occludin in the colon mucosa; did not affect gut 

permeability, systemic inflammation, and lipid metabolism.  

 

      The MRI scan indicated that the PL group had higher total body fat percentage than 

the other two groups (diet effect p = 0.29 at day 13, Figure 3.2a). The adipose depot 

measurements revealed that the PL group did not have more subcutaneous fat and had 

less visceral fat depots and liver mass compared with the CO group. The PL group had 

higher lipid levels in the plasma. There was no significant difference in the level of 

muscle lipids among groups. Taken together, the PL may have caused fat redistribution 
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from the liver and visceral fat depots into the blood stream. Or the PL could have 

prevented fat accumulation in the liver and visceral fat depots from the circulation.  

 

      The milk polar lipids, especially the PL, lowered the liver mass, liver CE & PI, 

muscle PI and plasma CE.  The decrease of the hepatic CE may have resulted from the 

reduction of the intestinal cholesterol uptake by the PL (46). The milk PL increased the 

SM level in the liver and plasma compared with the CO and the GG. The PL group had 

higher amount of SM in the diet and the SM may accumulate in the plasma and the liver.  

 

      The plasma TG, DG and FFA levels decreased over time in the CO and GG groups 

but not in the PL group. Free fatty acids, especially saturated fatty acids, induce the 

expression of proinflammatory cytokines in cultured macrophages and adipocytes 

through the activation of the TLR4 (47). Saturated fatty acids may bind to the TLR4 in 

the adipose tissue and induce inflammation in the adipose tissue of the C57BL6/J mice 

(10). Large amounts of saturated fatty acids are released during the macrophage-induced 

lipolysis in the hypertrophied adipocytes cocultured with macrophages. The released 

saturated fatty acids bind the TLR4 and thereby induce inflammation in both adipocytes 

and macrophages by activating the TLR4/NF-kappaB pathway (48). The higher level of 

FFA in the plasma may explain the increase of plasma IL-6 level.  

 

      Dietary milk polar lipids decrease the hepatic expression of genes associated with 

fatty acid synthesis in the C57BL/6 mice on a high fat diet as demonstrated by Wat et al. 

(22). In the present study, the milk polar lipids had complex effects on gene expression 
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related to lipid metabolism in the liver. The PL upregulated the cholesterol esterifying 

gene Acat2 compared with the CO and the GG. The PL and the GG downregulated the 

fatty acid oxidation gene Acaa2 and the fatty acid synthesis gene Acacb compared with 

the CO. The beneficial effect of milk polar lipids on hepatosteatosis and lipidemia 

reported by Wat et al. (22) may result from, at least partially, the PI, which has 

antiobesity effect through regulating gene expression associated with hepatic lipid 

metabolism in a mouse model of diet-induced obesity (49). Those beneficial effects of 

polar lipids could also be partially due to the choline contributed by the PC when the 

mice were fed high sucrose-hepatosteatosis promoting diets (23).The milk polar lipids 

concentrates used in the present study did not contain significant amount of PI and the 

amount of choline was balanced among diets (Table 3.1). The difference in the 

composition of phospholipids may explain the disparity in the findings. The soybean 

lecithin and PC downregulate the expression of the cholesterol esterifying gene Acat2 in 

the liver (50). In the present study the milk PL upreguated the hepatic Acat2. Different 

sources of phospholipids may have different effects on the Acat2 expression in the liver. 

 

      When the ob/ob mice were fed moderately high fat diets (34% energy), gut 

permeability to FITC-dextran (4000 Da) decreased. The decrease of gut permeability to 

large molecules may be due to the gut maturation during development when the mice 

were 7-9 weeks old. Although the C57BL/6J mice reach sexual maturation by day 35, 

fast maturational growth continues for most biologic processes and structures from week 

5 until week 13 (51). The colon permeability to sucralose (Figure 3.6b) and the gut 

permeability to the LPS (Figure 3.6c) increased. The rise of urinary Sucralose/Mannitol 
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ratio without the Lactulose/Mannitol ratio being affected indicated that the permeability 

of the colon increased (31). This may explain the increase of the plasma LPS through 

enhanced LPS absorption from the colon. A diet with 34% energy by fat would represent 

the average American fat intake (34% by energy, NHANES 2007-2008) and be 

considered high fat diet compared with regular rodent chow diet. The high fat diet may 

have also contributed to the increase of gut permeability during the digestion (27).  

 

      The GG decreased TJ protein ZO-1 in the jejunum mucosa and increased occludin in 

the colon mucosa compared with the CO. But the GG did not affect the permeability of 

the small intestine or the colon. The change of TJ protein content in the intestinal mucosa 

may not necessarily result in the change of gut permeability since the distribution of the 

TJ proteins also plays an important role in affecting gut permeability (6). 

 

      The phospholipids fed group had a higher IL-6 level in the plasma compared with the 

other two groups at the end of the experiment. During the experimental feeding, the 

plasma fatty acid levels stayed constant in the PL group. The change of fatty acid profile 

is yet to be verified. The increased plasma IL-6 level could be due to the activation of the 

TLR4 (10) by the increased plasma saturated fatty acids level, which may be contributed 

by the dietary intake since 60% of the fatty acids in the dairy PL are saturated (22). The 

increased plasma SM level could also cause the increase of IL-6 level through stimulating 

the adipocytes (52). The correlation between the plasma IL-6 level and the plasma SM 

level was strong (r = 0.978, p < 0.0001) while the correlation between the plasma FFA 

level and the IL-6 level was not significant (r = 0.338, p = 0.34). Although the plasma 



91 
 

LPS level increased and the LPS has the potential to activate the TLR4 and initiate 

inflammation, the plasma IL-6 level did not increase in the CO and GG groups in which 

the LPS level increased similarly as in PL group. The correlation between the plasma 

LPS level and the IL-6 level was negative and not significant (r = -0.459, p = 0.16). 

These results indicate that the plasma SM may have a bigger influence on the systemic 

inflammation than the plasma FFA and LPS in the ob/ob mouse model. One of the main 

concerns of the increased gut permeability is the resultant increase of the LPS absorption. 

The findings of this study support the suggestion that the plasma lipids levels may play 

more important roles in the inflammatory response than the gut permeability in the ob/ob 

mouse model. Dietary supplementation of the milk PL may pose negative effects by 

raising the plasma SM level in the ob/ob mice.  

 

      The dietary GG did not significantly affect the GG contents in the intestinal mucosa. 

The GG fed group had higher tight junction protein occludin level in the colon mucosa. 

The increase of occludin level was not accompanied by an increase of the colon barrier 

integrity. The PL and GG groups had less PC per gram tissue in the mucosa of the small 

intestine although the diets had higher amounts of PC compared with the CO group. 

There were no differences in other phospholipid classes in the intestinal mucosa among 

the groups. These data do not support the hypothesis that the dietary GG and PL may 

increase the intestinal barrier integrity through enriching the GG and PL in the intestinal 

mucosa.  
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      The dietary addition of GG (0.02% w/w) was determined according to a previous 

study where the dietary GG were observed to protect the tight junction protein occludin 

in the intestinal mucosa from degradation during the LPS-induced acute inflammation 

(20). In the present study, the GG supplemented group also had a higher level of occludin 

in the colon mucosa compared with the CO group. For practicability in general dietary 

supplement, the GG was provided as a concentrate that also contains the milk 

phospholipids. The amount of phospholipids in the GG diet was about one ninth of that in 

the PL diet. Most of the effects of the GG that were similar to the PL may be due to the 

phospholipids content in the GG diet. The only unique effect of the GG compared with 

the PL in the present study was that the GG group had a higher occludin expression in the 

colon mucosa compared with the CO group. Therefore, the GG at the dose used may not 

have any significant effect on lipid metabolism, gut permeability and systemic 

inflammation in the ob/ob mice when they are fed a moderately high fat diet.  

 

      Some mice died after staying in the metabolic cage for 24h during the second DST. 

Before the mice were put on the experimental diets, they were fed the chow diet and a 

baseline DST was carried out. None of the mice had any abnormal symptoms after the 

baseline DST. At that time, they were small enough to easily access the food in the 

metabolic cage. After two weeks, their increased size made it difficult to access the food 

in the metabolic cages and the dietary intake was reduced significantly (5.9 ± 0.5 vs     

1.4 ± 0.5 g, p < 0.0001). Starving has been shown to induce hepatic steatosis (53) in 

ob/ob mice sacrificed 24h after the food was withheld. The food restriction in the 

metabolic cages in the present study did not kill the mice immediately.  
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      Mice that died thereafter consumed less food in the metabolic cages and did not 

resume normal food consumption after they were returned to the regular cages. It is 

unlikely that the animal deaths were mainly due to the high fat diet feeding. Diets with 

much higher fat contents, such as 80% (54), 66% (55), and 48% (56) by energy, have 

been used, respectively, in 3-6, 3.5-6.5, and 6-8 week old ob/ob mice and no animal death 

was reported. The ob/ob mice develop spontaneous liver steatosis and a “second 

metabolic hit”, such as a high fat diet, is needed to induce a more severe injury (57).  

Non-alcoholic steatohepatitis (NASH) develops in the ob/ob mice on a moderately high 

fat diet (35.7% by energy) for 4 weeks (58). The food restriction in the present study was 

unintentional and it should have worsened the hepatic lipidosis. Extreme steatosis and 

stress in the metabolic cages may have resulted in the animal mortality. Although the 

number of animal per group became small after animal mortality, the data on gut 

permeability were collected before the animal death.  

 

      Two mice developed obvious diabetic symptoms in this study. One of the mice died 

after the last DST and the other one developed an anal ulceration. Both mice were not 

included in the final analyses. The ob/ob mouse is widely used as an animal model of 

type 2 diabetes mellitus (59). Diabetes mellitus is usually defined by the fasting 

hyperglycemia. The fasting glucose above 250 mg/dl (13.87 mM) is out of the normal 

range for the mouse and may be used as the threshold for a diagnosis of diabetes mellitus 

in mice (59). The average fasting glucose level was 16.58 ± 2.61 mM in this study and it 

is similar to the 20.2 ± 1.6 mM reported in another study by Prasain et al. using the ob/ob 

mice at a similar age of 10 weeks (60). The diet composition in the Prasain’s study was 
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not described for the ob/ob mice but was likely the regular rodent chow. The ob/ob mice 

in Prasain’s study had plasma insulin level of 541.1 ± 69.6 μIU/ml, which is much higher 

than the 89.87 ± 13.87 μIU/ml observed in the present study. The HOMA-IR index is 

also much smaller in the present study (499.4 ± 81.5 vs 68.99 ± 11.38). The main 

difference between these two studies is the diet. Further studies are needed to clarify the 

reasons for the different levels of plasma insulin observed between the Prasain’s study 

and the current study.  

 

      Most of the mice in this study had a fasting glucose level exceeding 250 mg/dl (or 

13.87 mM) yet only two mice developed clinical symptoms of overt diabetes. Currently 

there are no standardized criteria defining type 2 diabetes for the mouse. In future studies, 

a better diagnosing standard may be developed and the diabetic mice may be excluded for 

the preexisting obesity model to reduce confounding factors contributed by the diabetes.  

 

      Fenton’s method for defining obesity (61) was supported by the data from the current 

study. The level of obesity in the diabetic mice decreased when the diabetic symptoms 

became more severe (Figure 3.8a-f). Stresses, such as staying in the metabolic cage, 

decreased the level of obesity. After the first two DSTs, the obesity level decreased at day 

-3 (Figure 3.8d) and at day 13 (Figure 3.8f).   

 

 

Summary 

      The high fat feeding compromised the gut barrier integrity, decreased the plasma 

lipids level but had little effect on the level of systemic inflammatory cytokines. The GG 
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increased the expression of the tight junction protein occludin in the colon mucosa and 

had little effect on lipid metabolism and systemic inflammation. The PL supplementation 

increased the total body fat percentage and redistributed lipids from the liver and the 

visceral fat depots into the plasma. The PL increased the plasma SM and the 

inflammatory cytokine IL-6. The PL increased the gut permeability of the colon. In 

summary (Figure 3.9), dietary supplementation of the milk phospholipids resulted in 

unfavorable effects on the intestinal barrier integrity and systemic inflammation in the 

ob/ob mice. The milk phospholipids reduced the liver mass and lipids in the liver but 

increased the lipid levels in the plasma. The milk gangliosides at the current dose affected 

the tight junction proteins expression in the intestinal mucosa but did not have significant 

effect on the intestinal barrier integrity, lipid metabolism and systemic inflammation in 

the ob/ob mice. Future studies may explore which components of the milk phospholipids 

are responsible for the observed effects.  

 

      The PL supplementation affected lipid metabolism but had little effect on gut 

permeability and systemic inflammation. Often times, a few organ systems are assessed 

during the dietary intervention. The limitation of these kinds of studies is that the dietary 

treatment may benefit one or a few organ systems but could negatively affect other organ 

systems. During this study, although as many systems were assessed as conditions permit, 

there are still many systems that were not assessed, such as the nervous system, 

cardiovascular system, skeletal system, respiratory system, excretory system, endocrine 

system, reproductive system and immune system. As a result, only four out of the eleven 

organ systems were assessed in some detail. Although the milk polar lipids did not show 
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beneficial effects on gut permeability and systemic inflammation in the ob/ob mice, they 

may benefit other organ systems that were not tested. The overall effects cannot be 

concluded until all systems are taken into consideration. Therefore, the effects of dietary 

milk polar lipids on the whole body in the ob/ob mice needs to be further assessed in a 

systematic manner. 
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Table 3.1 Diets composition (unit: g/kg; Chow: LabDiet 5K52; CHO = carbohydrates). 

 

Ingredient CO GG PL Chow  

Casein, Vitamin-Free Test 188 188 188 193 (crude protein) 

L-Cystine 3 3 3 0 

Corn Starch 348 348 348 397.9 (crude CHO) 

Maltodextrin 100 100 100 0 

Sucrose 100 100 100 6.2 

Soybean Oil 73 73 73 72 (crude fat) 

Lard 95.30 91.93 83.20 0 

Lactose 6.87 0 5.88 0 

Cellulose 34.90 34.90 34.90 43 (crude fiber) 

Nitrogen-free non-carbohydrate 0 0 0 138.1 

Mineral Mix, AIN-93G 35 35 35 65 (crude ash) 

Vitamin Mix, AIN-93 10 10 10 Crude vitamin  

TBHQ, antioxidant 0.04 0.04 0.04 0 

GG concentrate 0 11.24 0 0 

PL concentrate 0 0 14.24 0 

Water 0.03 0.06 1.45 0 

Food Color 0.15 0.15 0.15 0 

 Choline adjustment (g/kg) 

Choline Bitartrate 3.95 3.76 2.50 0 

 Minerals adjustment (mg/kg) 

Sodium Meta-Silicate, nonahydrate 7.7 0 1.5 0 

Sodium Chloride 196.8 20.5 0 0 

Potassium Phosphate, monobasic 1259.7 897.3 0 0 

Potassium Sulfate 281.4 0 644.7 0 

Calcium Carbonate 8 4.8 0 0 

Magnesium Oxide 1.1 0 0.1 0 

 Energy contribution (Kcal%) 

Protein  16.78 16.78 16.78 22.24 

Carbohydrate 49.02 49.02 49.02 61.73 

Fat  34.20 34.20 34.20 16.03 

Energy density (Kcal/g) 4.3 4.3 4.3 3.5 
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Table 3.2 Mouse primers sequences for real-time quantitative polymerase chain reaction 

(qPCR) assays.  

 

Gene symbol Gene name Primers (5'→3': forward; reverse) 

Fatty acid synthesis 

  Acacb Acetyl-Coenzyme A 

carboxylase beta 
TTCTGAATGTGGCTATCAAGACTGA; 

TGCTGGGTGAACTCTCTGAACA 

Elovl5 ELOVL family member 5, 

elongation of long chain fatty 

acids 

GAACATTTCGATGCGTCACTCA; 

GGAGGAACCATCCTTTGACTCTT  

Slc27a5 Solute carrier family 27 

(fatty acid transporter), 

member 5 

GGAGGTGGTGATAGCCGGTAT; 

TGGGTAATCCATAGAGCCCAG  

Me1 Malic enzyme 1, NADP(+)-

dependent, cytosolic 
TCTGACTTCGACAGGTATCTCC; 

CGGAATGCCAAACTGTACTGC  

Scd1 Stearoyl-Coenzyme A 

desaturase 1 
GATAGAGCAAGTCCCCGCTG; 

CCTGCATTAACCCCCTTCAC  

Fatty acid oxidation 

  Acaa2 Acetyl-Coenzyme A 

acyltransferase 2 

(mitochondrial 3-oxoacyl-

Coenzyme A thiolase) 

CTGCTACGAGGTGTGTTCATC; 

TCCAAAGGGTGTTCGCTTCG    

Acox3 Acyl-Coenzyme A oxidase 3, 

pristanoyl 
CAGAATGGTGTGCTAGAGCGT; 

AGCCTGTCGGCTACAGATTTG  

Cpt2 Carnitine 

palmitoyltransferase 2 
CCTGCTCGCTCAGGATAAACA; 

GTGTCTTCAGAAACCGCACTG  

Cholesterol regulation 

Acat2 Acetyl-Coenzyme A 

acetyltransferase 2 
CCCGTGGTCATCGTCTCAG; 

GGACAGGGCACCATTGAAGG  

Hmgcr 3-hydroxy-3-methylglutaryl-

Coenzyme A reductase 
TGTTCACCGGCAACAACAAGA; 

CCGCGTTATCGTCAGGATGA  

Ldlr Low density lipoprotein 

receptor 
TGACTCAGACGAACAAGGCTG; 

ATCTAGGCAATCTCGGTCTCC  

Scarb1 Scavenger receptor class B, 

member 1 
TTTGGAGTGGTAGTAAAAAGGGC; 

TGACATCAGGGACTCAGAGTAG 

Cyp7a1 Cytochrome P450, family 7, 

subfamily a, polypeptide 1 
CAGGGAGATGCTCTGTGTTCA; 

AGGCATACATCCCTTCCGTGA  

Housekeeping  

Gapdh Glyceraldehyde-3-phosphate 

dehydrogenase 
AGGTCGGTGTGAACGGATTTG; 

TGTAGACCATGTAGTTGAGGTCA  

Actb Actin, beta GGCTGTATTCCCCTCCATCG; 

CCAGTTGGTAACAATGCCATGT 

Ppia Peptidylprolyl isomerase A GGACCAAACACAAACGGTTCC; 

CCAGCCATTCAGTCTTGGCA  
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Table 3.3 Effects of milk polar lipids on plasma levels of MCP-1, TNF-α, insulin, 

glucose, and homeostasis model assessment of insulin resistance (HOMA-IR) in ob/ob 

mice (Mean ± SEM; unit: Log10(pg/ml) for cytokines; mM for glucose; arbitrary for 

HOMA-IR). 

 

Lipids CO GG PL 

Baseline    

MCP-1 1.86±0.09 1.66±0.14 1.66±0.05 

TNF-α 1.43±0.03 1.45±0.02 1.33±0.06 

Insulin 3.62±0.09 3.34±0.18 3.57±0.08 

Day 16    

MCP-1 1.88±0.31 2.09±0.22 2.09±0.23 

TNF-α 1.40±0.04 1.47±0.12 1.53±0.21 

Insulin 3.50±0.03 3.48±0.03 3.57±0.07 

Glucose 15.04±1.01 18.94±4.80 14.97±7.01 

HOMA-IR 60.09±1.39 76.54±23.37 67.82±48.02 

 

 

Table 3.4 Diabetes associated parameters measured in mice GO3 and PO4 (The data 

represent mean ± SEM). 

 

Lipids Average GO3 (GG) PO4 (PL) 

Daily food intake (g) 4.93±0.29 5.50 7.24 

Body weight at day 16 (g) 37.22±1.10 29.00 34.00 

24h urine at day 13 (ml) 3.06±1.50 17.50 17.00 

Insulin at day 16 (µIU/ml) 89.87±13.87 96.94 117.99 

Glucose at day 16 (mM) 16.58±2.61 27.75 27.75 

HOMA-IR at day 16 68.99±11.38 115.60 103.64 
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Figure 3.1 Effects of polar lipids on food intake, weight gain and fat depots. The data 

represent mean ± SEM (n = 3, 4, 4 for CO, GG, PL). (a) GG and PL did not affect food 

intake and weight gain compared with CO. (b) GG and PL decreased mesenteric fat 

percentage (by body weight) compared with CO. Means in a row with different 

superscripts are significantly different (p < 0.05). 
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Figure 3.2 Effects of milk polar lipids on body fat and body weight. The data represent 

mean ± SEM (n = 5, 5, 6 for CO, GG, PL). Initial body weight for CO, GG and PL 

groups: 34.2 ± 0.8, 31.8 ± 2.8, 35.5 ± 2.4 (g). (a) PL facilitated body fat accumulation. (b) 

Body fat increased at faster rate compared with body weight. 
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Figure 3.3 Effects of milk polar lipids on liver mass and tissue lipid profile. The data 

represent mean ± SEM. (a) GG and esp. PL decreased liver mass. (b) GG and esp. PL 

decreased CE & PI in the liver and decreased PI in skeletal muscle. Means in a row with 

different superscripts are significantly different (p < 0.05).  
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Figure 3.4 Effects of milk polar lipids on gene expression associated with lipid 

metabolism in the liver. The data represent mean ± SEM. PL and GG down regulated the 

expression of Acaa2 and Acacb compared with CO. PL up regulated the expression of 

Acat2 compared with CO and GG. Means in a row with different superscripts are 

significantly different (p < 0.05).  
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Figure 3.5 Effects of milk polar lipids on plasma lipid profile. The data represent mean ± 

SEM (n = 6/group at day 0, n = 3, 4, 4 for CO, GG, PL at day 16). (a) PL group had 

higher plasma FFA level. (b)Plasma DG level decreased. (c) Plasma SM increased. (d) 

PL group had higher plasma PL level.  
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Figure 3.6 Effects of milk polar lipids on gut permeability. The data represent mean ± 

SEM (n = 6/group at baseline). (a) Plasma FITC-dextran decreased (n = 3, 4, 4 for CO, 

GG, PL). (b) Urinary Sucralose/Mannitol (S/M) ratio increased (n = 5, 4, 4 for CO, GG, 

PL). (c) Plasma LPS level increased (n = 3, 4, 4 for CO, GG, PL). (d) PL and GG 

decreased ZO-1 expression in jejunum mucosa (n = 3, 4, 4 for CO, GG, PL). Means in a 

row with different superscripts are significantly different (p < 0.05).  
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Figure 3.7 Effects of milk polar lipids on plasma cytokines. The data represent mean ± 

SEM. (a) PL increased plasma IL-6 level. (b) Plasma PAI-1 level increased. (c) Plasma 

resistin level increased. (d) Plasma MCP-1 level increased.  
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Figure 3.8a-c Body fat plotted against fat-free mass for individual animals during (a) day 

-15 through 13 and at (b) day -15 and (c) day -11. 
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Figure 3.8d-f Body fat plotted against fat-free mass for individual animals at (e) day -3, 

(f) day 4 and (g) day 13. 
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Figure 3.9 Summary of major findings in Chapter 3. Horizontal white arrows indicate the 

effects of the control diet. Horizontal T-shaped purple arrows indicate undesirable effects. 

Horizontal solid purple and blue arrows indicate desirable or neutral effects.  
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CHAPTER 4 

DIETARY MILK POLAR LIPIDS AFFECT GUT BARRIER INTEGRITY AND 

LIPID METABOLISM IN C57BL/6J MICE DURING SYSTEMIC 

INFLAMMATION INDUCED BY ESCHERICHIA COLI 

LIPOPOLYSACCHARIDE 

 

Abstract  

      Adiposity is linked to the complications of obesity by metabolic inflammation. High 

fat diets can increase gut permeability and lead to endotoxemia and metabolic 

inflammation. Milk polar lipids protect the gut barrier integrity. One objective of this 

study was to test the hypotheses that dietary polar lipids may prevent the increase of gut 

permeability and plasma inflammatory cytokines, reduce liver lipid levels and affect the 

expression of genes associated with fatty acid synthesis and cholesterol regulation in the 

liver during the acute and chronic inflammation induced by the subcutaneously injected 

lipopolysaccharide (LPS).  Another objective was to explore the dynamic changes in gut 

permeability, plasma inflammatory cytokines and lipid metabolism during systemic 

inflammation. Three groups of C57BL/6J mice were fed for 8 weeks: 1) modified AIN-

93G diet (CO); 2) CO with milk gangliosides (GG); 3) CO with milk phospholipids (PL). 

After 2 weeks’ experimental feeding, the mice were injected subcutaneously with LPS to 

induce acute and chronic inflammation. The animals were fed the experimental diets for 

another 6 weeks. The gut permeability was assessed by the differential sugar tests at 

baseline and 24 h, 2 weeks, and 4 weeks after stress. The tight junction protein expression 

in the intestinal mucosa was evaluated by Western blot at day 57. The plasma cytokines 

and lipids were measured at the baseline, day 34 and 57. The tissue lipid profiles in the 
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liver, skeletal muscle, adipose and intestinal mucosa were assessed by high performance 

thin layer chromatography at day 57. The GG or the PL did not affect the total food 

intake, weight gain or fasting glucose, plasma cholesteryl ester and plasma triglycerides. 

The milk polar lipids did not protect the gut barrier integrity at 24 h post LPS injection. 

There was no dietary treatment effect on systemic inflammation. The experimental 

feeding increased the plasma levels of leptin and resistin and decreased the plasma 

insulin level. The increased LPS absorption from the gut was not accompanied by the 

increase of plasma proinflammatory cytokines while systemic inflammation increased 

after the LPS injection. In conclusion, the milk GG did not affect the gut permeability 

and the systemic inflammation, and increased the hepatic gene expression of Acaa2. The 

milk PL had complex effects on the gut permeability, did not affect systemic 

inflammation, decreased the liver mass, and suppressed the hepatic gene expression of 

Acacb and Hmgcr.     

 

Introduction 

      Obesity is a big health concern in America. In 2009–2010, 16.9% of children and 

adolescents, and 35.7% of adults in the United States were obese (1). Metabolic 

inflammation is a link between adiposity and the complications of obesity (2). High fat 

diets increase intestinal permeability (3). Chronic feeding of high fat diets result in the 

increased endotoxin absorption and the low-grade metabolic inflammation (4). Gut 

permeability plays an important role in the metabolic inflammation.  

 

      The gastrointestinal surface hydrophobicity decreases under the pathological 

conditions. Maintenance of the phosphotidylcholine (PC) in the hydrophobic surface may 
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play an important role in the promotion of health and the prevention of disease (5). The 

phospholipid (PL) concentration and species composition of the intestinal mucus barrier 

are significantly altered in the patients with ulcerative colitis (6). The alterations in PL 

may be important for the pathogenesis of diseases associated with the disruption of 

intestinal barrier integrity. It may be hypothesized that dietary PL supplementation may 

help maintain the intestinal barrier integrity and therefore reduce the endotoxin 

absorption and the metabolic inflammation.  

 

      The mouse model of gut leakiness and systemic inflammation induced by 

lipopolysaccharide (LPS) is well established. LPS at 2 mg/kg (7) and 10 mg/kg (8) body 

weight injected subcutaneously induces endotoxemia and the intestinal stress in mice. 

The LPS elevates the serum concentrations of various cytokines in mice, including 

interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis 

factor-α (TNF-α) (9). Approximately 30% of the subcutaneously LPS injection leaves the 

injection site within an hour and the injected LPS is retained at the injection site for more 

than a month (10). The LPS retention decreases to 30% of the injected bolus by the post 

injection day 4 and then decreases at a slower rate to 6% by the post injection day 32 (10).  

Both acute and chronic inflammation may be achieved by injecting LPS subcutaneously.  

 

      A chronic high fat diet could increase endotoxemia during the digestion of dietary 

lipids and contributes to low-grade metabolic inflammation (4). Endotoxemia caused by 

periodontal gram-negative pathogens in patients with severe periodontitis facilitate the 

development of obesity in these people (11). The effects of the nutrient uptake on 
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metabolism could be used to break the link between  the metabolic inflammation and 

obesity (2). A milk extract, rich in polar lipids, prevents the increase in intestinal 

permeability of fluorescein isothiocyanate-dextran (FITC-dextran) in mice stressed by 

intraperitoneal LPS (12). One type of milk polar lipids, sphingolipids, protect against the 

bacterial infections in the gut (13-15) and reduce the inflammatory response (16-19). 

Sphingomyelin (SM), one subfraction of the sphingolipids, plays an important role in 

neonatal gut maturation during the suckling period in rats (20). Another subfraction of the 

milk sphingolipids, gangliosides (GG), inhibits the degradation of gut occludin tight 

junction (TJ) protein during the LPS-induced acute inflammation (21).  The GG affect the 

intestinal immune system maturation in mice during weaning (22). Taken together, 

dietary milk polar lipids may directly reduce systemic inflammation and may decrease 

inflammation by preventing the increase of gut permeability.  

 

      Cellular lipid loading may initiate inflammation through  lipid mediators, which are 

precursors to inflammatory signaling molecules (23). High fat diets could result in 

nonalcoholic fatty liver disease (NAFLD) (24). According to the “two-hit” hypothesis by 

Day et al. (25), saturated fatty acids could be a first hit and LPS could be a second hit 

(26). The second hit leads to hepatic inflammation and non-alcoholic steatohepatitis 

(NASH) (27). LPS stress in combination with high fat diets may result in NAFLD/NASH 

(26). NAFLD is associated with low-grade systemic inflammation (28). NAFLD, gut 

leakiness and systemic inflammation could form a self-perpetuating cycle (Figure 1.1). 

The milk polar lipids reduce hepatic steatosis in mice fed a high fat diet (29). It would be 



121 
 

interesting to explore how milk polar lipids may affect liver lipid metabolism in mice fed 

a high fat diet and stressed by LPS.  

 

      This study was designed to test the hypotheses that dietary polar lipids may prevent 

the increase of gut permeability and plasma inflammatory cytokines, reduce liver lipid 

levels, and affect the expression of genes associated with fatty acid synthesis and 

cholesterol regulation in the liver during the acute and chronic inflammation induced by 

the subcutaneously injected lipopolysaccharide (LPS). 

 

Materials and Methods 

Diets formulation 

      Three diets were the same as described in Chapter 3 (Table 3.1): CO diet, GG diet 

and PL diet. 

 

Animals and stresses 

      Five-week-old male C57BL/6J mice (n = 18; Jackson Laboratory) were housed in 

single cages at a constant temperature of 22 ± 1 °C with a 12-h light/dark cycle. They 

were allowed ad libitum access to diet and water. After one week’s feeding on chow (for 

the acclimatization and the baseline data collection), mice were randomly assigned to one 

of the following treatments (Table 3.1): 1) CO diet (n = 6); 2) GG diet (n = 6); 3) PL diet 

(n = 6). The diet intake was monitored daily and the body weight was measured every 

other day. The body composition was assessed every week by using the magnetic 

resonance imaging (MRI) with an EchoMRI-900 Body Composition Analyzer (EchoMRI, 

Houston, TX).  
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      The mice were fed the experimental diets for 2 weeks before they were challenged 

with the LPS injected subcutaneously (5 mg/kg body weight). The LPS injected 

intraperitoneally is absorbed at a faster rate compared with the LPS injected 

subcutaneously (10). To prevent lethal inflammatory response, the LPS was injected 

subcutaneously. The LPS injected subcutaneously at 2 mg/kg (7) and 10 mg/kg (8) body 

weight has induced intestinal stress and endotoxemia. Those mice were sacrificed within 

24h and no animal death was reported. So a dose of 5 mg/kg body weight was chosen for 

this study to guarantee intestinal stress and prevent lethal effect. After the LPS injection 

and the oral gavage of sugar probes, 0.5 ml PBS was injected subcutaneously to facilitate 

the urine production. The animals were observed periodically during the following week 

to monitor the gross pathological changes, including the eye discharge. After the LPS 

challenge, all animals were fed the experimental diets for another 6 weeks. The 

experiments were conducted in conformity with the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals and were approved by the Utah State 

University Institutional Animal Care and Use Committee. 

 

Assessments of intestinal barrier integrity 

      The intestinal permeability was assessed by using the FITC-dextran absorption test 

and the DST as described in Chapter 3. The FITC-dextran absorption test was done at the 

baseline, week 5 and 8. The DST was carried out at the baseline, week 3, 4, and 7.   

 

Tissue sample collection 

      The mice were sacrificed by CO2 asphyxiation after a 4h fast. After the blood 

collection, the liver, the quadriceps muscle, the intestinal and colonic mucosa, the feces 
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and the adipose tissue samples were collected. The adipose depots included the gonadal, 

retroperitoneal, mesenteric, and subcutaneous depots.  Each category of tissue was saved 

separately and the tissue mass was recorded. The tissue samples were flash frozen and 

stored at -80 °C until further analysis. 

Biochemical analyses of plasma 

      The blood samples were collected and the plasma were analyzed as described in 

Chapter 3 to measure the levels of glucose, insulin, leptin, resistin, MCP-1, IL-6, TNF-α, 

plasminogen activator inhibitor-1 (PAI-1) and endotoxin. The homeostasis model 

assessment of insulin resistance (HOMA-IR) index was calculated from the fasting 

glucose and insulin levels (fasting glucose*fasting insulin/22.5) (30, 31).  

 

Western Immunoblotting for zonula occludens (ZO)-1 and occludin proteins 

      The mucosal samples of the small intestine and the colon were collected and the 

Western immunoblotting for the ZO-1 and occludin proteins were carried out as 

described in Chapter 3.  

 

Liver gene expression analysis 

      The expression of 13 genes associated with lipid metabolism in the liver was 

analyzed as described in Chapter 3.  

 

Tissue lipid profiling 

      The tissue lipid profiles of the liver, the skeletal muscle and the gonadal adipose were 

analyzed as described in Chapter 3. The lipid classes included phosphatidylethanolamine 

(PE), PC, phosphatidylserine (PS), and phosphatidylinositol (PI), SM, diglycerides (DG), 

free fatty acids (FFA), triglycerides (TG), and cholesteryl ester (CE). 
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GG analysis of intestinal mucosa 

      The GG content in the intestinal mucosa was determined as describe in Chapter 3. 

 

Statistical analyses 

      One-way or mixed models analysis of variance (ANOVA) was performed by SAS 9.2. 

The group means were compared by Ryan-Einot-Gabriel-Welsch Multiple Range Test or 

Least Squares Means Contrast in SAS. The data were reported as Mean ± Standard Error 

of the Mean (SEM). 

 

Results 

      There were no significant differences among the groups regarding the daily diet 

intake (Figure 4.1) and the total weight gain. The PL group had higher body weight at 

day 2 compared with the CO group (Figure 4.2a). The GG and PL groups had higher 

body fat percentage 3 days after the dietary treatments compared with the CO group and 

the difference was maintained during the rest of the study (diet effect: p = 0.03, Figure 

4.2b). 

 

      Two mice from the GG group and two mice from the PL group died after the LPS 

stress (64-112 h after the LPS injection). For the data analysis after the LPS challenge, 

the following number of mice was used: CO, n = 6; GG, n = 4; PL, n = 4. 

 

Tissue and plasma lipid profiles 

      The PL group had lower liver mass (p = 0.01) and lower liver/body weight percentage 

(p = 0.024) compared with the CO group while the GG group was in the middle (Figure 
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4.3a). The GG group had less PE and PC in the visceral adipose tissue compared with the 

CO group. The GG group had less SM in the visceral adipose tissue than the PL group. 

The PL group had less TG and more PI in the skeletal muscle compared with the CO and 

GG groups. The GG and PL groups had more FFA and PI in the liver compared with the 

CO group (p < 0.05, Figure 4.3b). The GG increased hepatic expression of the beta-

oxidation gene Acaa2 (vs the CO & the PL). The PL suppressed hepatic expressions of 

the fatty acid synthesis gene Acacb and the cholesterol synthesis gene Hmgcr (vs the CO 

& the GG) (p < 0.05, Figure 4.3c). The PL group had less PE, PC and PL in the jejunum 

mucosa, less PE and PL in the colon mucosa, and less PE, PC and PL in the mucosa of 

the small intestine and the whole gut on a per organ basis compared with the other two 

groups (p < 0.05, Figure 4.4a). The PL group had lower level of gangliosides in the colon 

mucosa compared with the other two groups (p < 0.05, Figure 4.4b).     

 

      The plasma CE level was lower in the GG and PL groups at day 34 compared with 

the CO group (p < 0.05, Figure 4.5a). The plasma CE level decreased during day 34 and 

57 (p < 0.05, Figure 4.5a). The plasma TG level decreased over time and there was no 

significant treatment effect (time effect p < 0.0001, Figure 4.5b). The plasma free fatty 

acids level decreased over time (p < 0.0001) and the PL group had higher level at day 34 

compared with the CO and GG groups (p =0.04, Figure 4.5c). The plasma DG level 

increased slightly toward day 34 and decreased significantly from day 34 to 57 (p < 

0.0001, Figure 4.5d). There was no diet effect for the plasma DG level.     
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Gut permeability 

      The PL increased the expression of the TJ proteins ZO-1 and occludin in the colon 

mucosa compared with the CO and the GG (Figure 4.6a). The GG and the PL decreased 

the occludin expression in the jejunum mucsoa compared with the CO (Figure 4.6a). The 

plasma FITC level decreased in the PL and GG groups during the study (Figure 4.6b). At 

day 34, the PL group had lower plasma FITC level compared with the CO and GG 

groups (p < 0.05). Five weeks of feeding plus the LPS challenge two weeks after dietary 

treatment did not increase the plasma LPS level significantly in the CO and GG groups 

but increased the plasma LPS level in the PL group (Figure 4.6c). The plasma LPS level 

is strongly correlated with body fat mass in the PL group (r = - 0.93, p = 0.07) but not in 

the CO (r = 0.55, p = 0.26) group and GG (r = - 0.48, p = 0.52) group. The difference 

disappeared after the LPS levels were normalized by the body fat mass (Figure 4.6d). 

After 3 more weeks of experimental feeding post the LPS stress, the plasma LPS level 

increased significantly (Figure 4.6c).     

 

      The urinary Lactulose/Mannitol ratio increased significantly after the LPS challenge 

at day 18 and returned to the baseline level by day 44. There was no treatment effect 

(Figure 4.7a). The urinary Sucrose/Lactulose ratio decreased after the LPS challenge and 

increased during the rest of the study. The PL increased the urinary Sucrose/Lactulose 

ratio compared with the CO at day 29 and especially at day 44 (Figure 4.7b). The urinary 

Lactulose/Sucralose ratio increased after the LPS challenge and then returned to the 

baseline level. There was a trend of PL and GG increasing the urinary 

Lactulose/Sucralose ratio after the LPS stress and decreasing the ratio during the recovery 
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compared with CO (Figure 4.7c). The urinary Sucralose/Mannitol ratio did not change 

right after the LPS challenge and the Sucralose/Mannitol ratio increased significantly 

during the recovery. There was no treatment effect (Figure 4.7d).  

 

Systemic inflammation and plasma cytokines 

      All mice developed severe conjunctivitis 16h after the LPS stress as indicated by the 

bilateral purulent discharges (32). The plasma insulin level decreased toward day 34 and 

then stayed stable (Figure 4.8a). The plasma IL-6 level increased (measured at day 34) 

and then decreased (measured at day 57) but did not return to the baseline level. There 

was no treatment effect (Figure 4.8b). The plasma PAI-1 level increased slightly during 

the first 34 days and then increased at a higher rate toward the end of the study (Figure 

4.8c). The plasma resistin level stayed stable during the first 34 days and then increased 

(Figure 4.8d).  

 

      Neither high fat feeding nor LPS challenge increased the plasma TNF-α level (Table 

4.1). There was neither statistically significant time effect nor diet effect for the plasma 

levels of leptin and MCP-1 (Table 4.1). 

 

Body fat changes 

      The plots of body fat against fat-free mass indicated dynamic changes in the body fat 

mass during the course of the study (Figure 4.9a-j). When all measurements at 9 time 

points (at day -7, -1, 3, 5, 11, 23, 32, 39, 54) were included, there was no obvious 

segregation of the mice and the slope was 0.1 (Figure 4.9a). The slope was around 0 

during the first MRI scan at day -7 (7 days before dietary intervention, Figure 4.9b). The 
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slope decreased to -0.5 at day -1 (Figure 4.9c) and then increased to 0.3 at day 3 and 0.4 

at day 5 (Figure 4.9d & e). The slope dropped to 0 at day 11 and stayed around 0 at day 

23 (Figure 4.9f & g). From day 23 to day 32, the slope increased to 0.08 (Figure 4.9h). 

The slope kept increasing to 0.62 at day 39 (Figure 4.9i) and 0.65 at day 54 (Figure 4.9j).  

 

Discussion 

      This study was designed to test the hypotheses that 1) the milk polar lipids prevent 

the increase of gut permeability, 2) reduce the plasma inflammatory cytokines, and 3) 

reduce the liver lipid level and affect the gene expression associated with the liver lipid 

metabolism in the C57BL/6J mice stressed with the subcutaneous LPS. The first and the 

second hypotheses were not supported by the data. The milk phospholipids decreased the 

occludin protein expression in the jejunum mucosa and increased the ZO-1 & occludin 

protein levels in the colon mucosa. The milk phospholipids increased the permeability of 

small intestine and the plasma LPS, and did not affect the plasma inflammatory cytokines. 

The milk gangliosides did not affect gut permeability and systemic inflammation. The 

data supported the third hypothesis. The milk phospholipids decreased the liver mass but 

did not affect liver TG. The milk phospholipids decreased hepatic expression of Acacb & 

Hmgcr and the plasma CE. Surprisingly the milk phospholipids decreased the PC & PE 

in the ileum mucosa and the PE & GG in the colon mucosa. The milk gangliosides 

decreased the adipose PE, PC & SM and the liver FFA & PI. The milk gangliosides 

increased hepatic expression of Acaa2. 

 

      The mouse model of LPS-induced inflammation and increased gut permeability was 

established in the context of moderately high fat diets. The LPS stress in combination 
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with the high fat diets increased gut permeability and plasma proinflammatory cytokine 

levels. The LPS stress reduced the plasma insulin level, blocked the accumulation of 

body fat, and increased the plasma IL-6 level. The experimental feeding increased the 

plasma LPS but did not raise the plasma cytokine levels.  

 

      The mice in the PL group gained more weight compared with the other groups by day 

2 (Figure 4.2a). During the first 32 days, the PL and GG groups tended to have higher 

body weight (Figure 4.2a). The body fat percentage increase was blocked by the LPS 

challenge except in the PL group where the body fat percentage increased at day 23 

(Figure 4.2b). Eventually the body fat percentage dropped in all groups and then started 

to increase back after day 39. The mean retention of the LPS injected subcutaneously is 

73.4% after 6h, 49.1% after 3 days, 23.1% after 14 days, and less than 6% after 32 days 

in the injection site (10).The retained LPS can continuously stimulate B cells and 

macrophage lineage cells at the draining lymph node (10). The decrease of body fat 

percentage might be due to the persistent existence of the LPS and the resultant chronic 

inflammation.  

 

      The LPS stress decreased the plasma insulin level. While the C57BL/6J mice are 

prone to high fat diet-induced obesity (33) and the mice were fed a high fat diet in the 

present study, the mice did not gain body fat during the 6 weeks after the LPS stress. The 

mice gained considerable amount of the body weight during that period of time. Insulin 

plays an important role in increasing body fat storage (34). It is possible that the plasma 

insulin level after the LPS stress was sufficient in promoting animal growth but was not 
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high enough to stimulate body fat accumulation. It might be hypothesized that the 

decreased plasma insulin level may be responsible for the lack of the body fat 

accumulation. 

 

      The plasma insulin level decreased during the first 34 days and then increased toward 

the end of the study. The decrease of the plasma insulin may be caused by the injected 

LPS. The intraperitoneal injection of LPS at 10 µg per mouse induces pancreatic cell 

damage in 10-week-old BALB/c male mice (35). The LPS injection caused low or a lack 

of insulin expression in the pancreatic islets as revealed by immunohistochemistry and 

RT-PCR. The expression of the insulin mRNA in the pancreatic tissues decreased to less 

than half of the original level during 3h and 6h after the LPS injection (35). The amount 

of the injected LPS was about 9% of the dose used in this study. Although the LPS was 

injected subcutaneously in this study, it may induce similar pancreatic damages due to the 

higher dose used. The intravenous injection of LPS decreased plasma insulin from 0.5 

ng/ml at baseline to 0.2 ng/ml at day 11 in C57BL/6 mice fed the chow diet at 4 months 

of age (36). The proinflammatory cytokine, TNF-α, decreases serum insulin in mice. In 

C57BL/6 mice at 10–11 weeks of age, serum insulin level decreased from 1.3 ng/ml at 6 

hrs to 0.6 ng/ml at 24 hrs after the intraperitoneal injection of TNF-α at a dose of 0.166 

mg/kg (37). High fat feeding decreases plasma insulin level in rats. Plasma insulin level 

peaks at 6 nmol/L (34.8 ng/ml) on day 8 and decreases to 3.5 nmol/L (20.3 ng/ml) in 

female obese ZDF rats fed a high fat (48% energy) diet while the plasma insulin level 

stays at around 6 nmol/L (34.8 ng/ml) in the control group fed the rodent chow diet (38). 

The main cause for the decreased plasma insulin level in this study should have been the 
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LPS injection. Further studies are needed to clarify if the high-fat feeding itself may 

decrease the plasma insulin level in mice. 

 

      The plasma resistin level increased steadily throughout the course of the study in the 

GG group. The plasma resistin level decreased during the first 34 days and then increased 

toward the end of the study in the CO and PL groups. That could mean the resistin level 

was more influenced by the high fat diet than by the LPS stress and the GG tended to 

increase the plasma resistin level regardless of the background condition. As an 

adipocytokine secreted in proportion to obesity level, resistin counteracts the effects of 

insulin in mice (39). The GG may have negative effect on insulin action by increasing 

resistin. 

 

      Although the GG increased the expression of the beta-oxidation gene Acaa2 in the 

liver (vs the CO & the PL, Figure 4.3c), the GG group had similar FFA level in the liver 

as the PL group and higher FFA level than the CO group. The PL suppressed hepatic 

expression of the fatty acid synthesis gene Acacb and the suppression did not decrease the 

FFA level in the liver.  

 

      The fact that the GG and PL groups had lower level of PE, PC and SM in the visceral 

adipose tissue than the CO group is surprising since the polar lipids groups had higher 

dietary content of PE, PC and SM. It was quite surprising that the PL group had lower PE, 

PC and PL in intestinal mucosa given the fact that the PL diet had much higher level of 

these polar lipid classes. This may indicate that dietary phospholipids suppress the 
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incorporation of luminal phospholipids into the mucosa. It is not clear through which 

mechanism did the dietary polar lipids affect the tissue polar lipids levels.  

 

      The plasma lipids stayed stable or increased slightly during the first 34 days and 

decreased significantly from day 34 to 57. The decrease of plasma lipids level may be 

associated with the increasing storage of body fat into adipose tissue after the 

inflammation was relieved.  

 

      The PL increased the expression of the TJ proteins ZO-1 and occludin in the colon 

mucosa compared with the CO and the GG and decreased the occludin expression in the 

jejunum mucosa compared with the CO. The increased amount of the TJ proteins in the 

PL group could decrease the permeability of colon but the PL group did not have lower 

plasma LPS level (Figure 4.6c) or different permeability to the sugar probes (Figure 4.7 

a-d). The decrease of the jejunal occludin in the PL group was not associated with the 

increased gut permeability as indicated by the plasma LPS and FITC levels and the 

urinary sugar levels. Not only the amount of the TJ proteins but more importantly the 

distribution of the TJ proteins affects the intestinal permeability (40). The plasma LPS 

level was negatively correlated with the occludin level in the jejunum mucosa (r = -0.84, 

p = 0.038) in the CO group but not in the polar lipid groups. The decreased jejunal 

occludin level in the PL group may be compensated by other mechanisms provided by 

the PL that may increase the gut integrity.  
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      The general trend of the decreased gut permeability to FITC in all groups may be 

explained by the maturing of the gut barrier during development since the mice barely 

entered adulthood (3 months old) by the end of study (41). The gut permeability to larger 

molecules was lower in the PL group compared with the other groups as indicated by the 

lower plasma FITC level. Although the difference was not statistically different, it is 

consistent with the result from a previous mouse study by Snow et al. where milk polar 

lipids concentrate prevented the increase in gut permeability to FITC during LPS stress 

(12). The plasma FITC level at day 35 was lower than the level at baseline. In the study 

by Snow et al., the gut permeability of FITC was assessed at 24 h and 48 h after the LPS 

stress. The plasma FITC level in the current study may have increased within 48 h after 

the LPS stress. To reduce stress level, the plasma FITC was not measured during that 

time when the mice were kept in the metabolic cages for 24h immediately after the LPS 

injection. Additional factors may contribute to the difference between the Snow’s result 

and the current result. Firstly, the LPS was administered intraperitoneally and 

subcutaneously, respectively. Secondly, the milk polar lipids-rich material used in the 

Snow’s study contained milk proteins and nonpolar lipids. That material was more 

complex than the milk polar lipids concentrate used in the current study. It is not clear 

how the PL may have decreased gut permeability to FITC. Given the fact that 

phospholipids are important building blocks of the gut epithelium, it may be 

hypothesized that the PL facilitate the maturing of the intestinal barrier. 

 

      The presence of bilateral purulent discharges in all mice was a good indicator of 

successful systemic inflammation induced by the bacterial LPS (42). The PL group had 
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higher level of the plasma LPS at day 34 and the difference disappeared after 

normalization by the body fat content. This indicates that the plasma LPS may be directly 

associated with the body fat mass. The plasma LPS level did not increase to a high level 3 

weeks after the LPS challenge by day 34. There could be 6% of the injected LPS still 

retained at the injection site at day 34 (10). The low level of plasma LPS may indicate 

that the injected LPS did not contribute to the plasma LPS level at this time point. By the 

end of the study, the plasma LPS level reached a very high level and the injected LPS 

should have been gone by this time. The increased plasma LPS level at day 57 may not 

be contributed significantly by the injected LPS. The increase of the gut permeability to 

LPS was accompanied by the accumulation of body fat from day 40 to day 57.  

 

      The increase of the urinary Lactulose/Mannitol ratio is associated with increased 

small intestinal permeability (43). The LPS challenge increased the urinary 

Lactulose/Mannitol ratio significantly and the Lactulose/Mannitol ratio returned to the 

baseline level during the recovery. The urinary Sucrose/Lactulose ratio decreased right 

after the LPS stress and then increased gradually during the recovery. The decrease of the 

Sucrose/Lactulose ratio indicated distal damage of the small intestine. The damage 

became proximal when the Sucrose/Lactulose ratio increased to a high level (43).  The 

LPS stress caused the permeability increase of distal small intestine and the experimental 

feeding increased the permeability of the proximal small intestine. The increased 

permeability of the proximal small intestine was coupled with the decreased expression 

of the TJ protein occludin in the jejunum mucosa. The urinary Lactulose/Sucralose ratio 

selectively increases upon intestinal damage and decreases upon colonic damage (43).  
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The Lactulose/Sucralose ratio increased significantly after the LPS stress, indicating the 

permeability increase for the small intestine. The Lactulose/Sucralose ratio dropped back 

below the baseline during the recovery for the GG and PL groups, which means the 

experimental feeding did not affect the small intestine permeability but caused the 

colonic damage. Combined with the indication of the Sucrose/Lactulose ratio, the 

permeability of the proximal small intestine may not affect the Lactulose/Sucralose ratio 

significantly. The colonic damage is coupled with the increase of the urinary 

Lactulose/Mannitol ratio (43). The LPS stress barely affected the Lactulose/Mannitol 

ratio and the feeding during the recovery increased the Lactulose/Mannitol ratio 

significantly. Taken together, the high-fat feeding in the context of systemic 

inflammation mainly resulted in the colonic damage while the LPS-induced systemic 

inflammation caused the permeability increase in the small intestine.  

 

      The rise of the urinary Sucralose/Mannitol ratio without the Lactulose/Mannitol ratio 

being affected indicated that the permeability of the colon increased (43). The increased 

colon permeability may result in an increase of the plasma LPS through the enhanced 

LPS absorption from the colon. The Sucralose/Mannitol ratio returned to the baseline 

level while the plasma LPS level increased significantly toward the end of the study. The 

high level of plasma LPS should have been contributed mainly by the LPS absorbed 

through the gut.  

 

      The PAI-1 level in plasma increased slightly during the first five weeks and increased 

at a faster rate during the last three weeks of the study. The plasma PAI-1 level became 
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much higher in the PL group by the end of the study compared with the CO and GG 

groups. Lysophosphatidylcholine (LPC) in oxidized low-density lipoprotein (OxLDL) 

enhances the PAI-1 expression in mouse 3T3-L1 adipocytes (44). The extra increase of 

the plasma PAI-1 level in the PL group may be caused by the metabolites of the dietary 

PC.   

 

      The plasma IL-6 level increased significantly after the LPS stress and receded to the 

baseline level by the end of the experiment. The increased plasma IL-6 level could be due 

to the activation of the TLR4 (45) by the increased plasma saturated fatty acids level. But 

the plasma fatty acids level decreased in all groups during the experimental feeding. 

Although the change of the fatty acid profile is yet to be determined, the increased IL-6 

level at week 3 (day 34) after the LPS stress may be due to the LPS challenge. The 

plasma IL-6 level was not in parallel with the high plasma LPS level at the end. This 

could mean that the LPS absorbed from the gut is not as proinflammatory as the injected 

LPS.  The intestinal LPS may have been deactivated. The intestinal alkaline phosphatase 

(IAP) secreted by the enterocytes detoxifies the intestinal LPS by dephosphorylation of 

the lipid A moiety (46, 47). The IAPs reduce the serum LPS content in Wistar male rats 

(48). The IAPs affect both the toxicity and the concentration of the LPS in the plasma. It 

is not clear whether the IAPs reduced plasma LPS in this study. The LPS is absorbed 

gradually from the gut into the circulation. The tolerance to the LPS could also help 

explain the lack of proinflammatory response by the LPS absorbed from the gut. The 

tolerance to LPS-induced increase of serum colony-stimulating factor develops in 

C57BL/6J mice after either intravenous or intraperitoneal injection of LPS and the 
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tolerance occurs after one to two preinjections (49). The inhaled low-dose LPS can 

induce adaptation to subsequent higher doses for cellular and inflammatory parameters in 

bronchoalveolar lavage from young and old C57BL/6J mice (50). A third explanation is 

that the plasma LPS may be deactivated by anti-LPS antibodies (51). It is not clear if the 

anti-LPS antibodies involved in the process of deactivating the plasma LPS that were 

absorbed from the gut. 

 

      The plots of body fat against fat-free mass suggested that stresses may have 

considerable effect on body fat content in the C57BL/6J mice. The second MRI scan (at 

day -1) was carried out right after the first DST (at day -2). The housing in the metabolic 

cage reduced the adipocity as indicated by the decreased slope (Figure 4.9b & c). Once 

the stress was removed, the body fat increased back within a week (Figure 4.9d & e). The 

LPS stress decreased the body fat content as indicated by the decreased slope (Figure 

4.9g). The third DST also decreased the body fat content (Figure 4.9h). During the 

following recovery the body fat content kept increasing (Figure 4.9i & j). Based on these 

observations, it is important to prevent unnecessary stresses and make sure the animals 

are handled in the same manner to reduce variances caused by the potential variability in 

the stresses.  

 

      The LPS induced inflammation model in this study had two phases, the acute and 

chronic stages. Dietary milk polar lipids did not protect the gut integrity during the acute 

phase, 24 h after LPS injection. The LPS was injected subcutaneously and the LPS can be 

retained in the body until a month later (10). In the context of chronic inflammatory stress 
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induced by the LPS in young C57BL/6J mice, gut permeability to large molecules 

decreased and to small molecules increased. High fat feeding increased the plasma level 

of resistin and plasma resistin level could also increase over time in C57BL/6J mice (52). 

The milk GG decreased gut permeability and increased the hepatic gene expression of 

Acaa2. The milk PL had complex effect on gut permeability, decreased the liver mass, 

and suppressed the hepatic gene expression of Acacb and Hmgcr. The milk polar lipids 

were provided as semi-purified concentrates containing multiple compounds. Further 

studies are needed to explore which components of the polar lipids are responsible for the 

observed effects. The LPS dosage may be slightly decreased (e.g., at 2.5-3 mg/kg body 

weight) to prevent animal death for chronic studies.  

 

 

Summary 

      The major effects of the dietary polar lipids during the LPS-induced inflammation are 

summarized in Figure 4.10. The dietary PL increased the plasma LPS level and the 

permeability of the small intestine. The PL decreased the liver mass and affected hepatic 

expression of genes associated with fatty acid and cholesterol synthesis. The PL did not 

affect the plasma inflammatory cytokines. The GG slightly affected lipid metabolism and 

did not affect the gut permeability and the systemic inflammation. 

 

      Although the results support the hypotheses that the polar lipids may have positive 

effects on lipid metabolism and negative or no effects on gut permeability and systemic 

inflammation in the ob/ob mice, the effects of the polar lipids on other biological 

functions are still unclear. Before systematic investigations of all major biological 
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endpoints are done on the main organ systems in the ob/ob mice, comprehensive and 

conclusive statements cannot be generated regarding the effects of dietary polar lipids. 

 

      The experimental feeding and the LPS stress together resulted in increased gut 

permeability to small molecules, increased body weight and decreased body fat content, 

and increased the plasma LPS and inflammatory cytokines (Figure 4.10). The data from 

the current study indicated that the acute and chronic inflammation induced by the 

subcutaneously injected LPS is a great animal model for studying systemic inflammation 

and gut permeability. The increased LPS absorption from the gut into the plasma was not 

accompanied by the increase of the plasma proinflammatory cytokines but the injected 

LPS increased the systemic inflammation. The LPS stress decreased the plasma insulin 

level. The decrease of the plasma insulin level may have increased the body weight 

without increasing the body fat content. It may be hypothesized that the insulin level may 

be intervened for controlling the body fat content.  
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Table 4.1 Effects of milk polar lipids on plasma levels of leptin, MCP-1 and TNF-α in 

mice challenged with LPS (Mean ± SEM; unit: Log10(pg/ml)). 

 

Lipids CO GG PL 

Baseline    

Leptin 3.13±0.05 3.11±0.11 3.03±0.14 

MCP-1 1.61±0.03 1.50±0.08 1.52±0.05 

TNF-α 1.49±0.02 1.45±0.03 1.46±0.03 

Day 34    

Leptin 3.44±0.14 3.34±0.06 3.09±0.10 

MCP-1 1.55±0.08 1.54±0.13 1.53±0.13 

TNF-α 1.39±0.02 1.42±0.02 1.45±0.05 

Day 57    

Leptin 3.76±0.19 3.50±0.14 3.46±0.11 

MCP-1 1.60±0.03 1.55±0.06 1.54±0.05 

TNF-α 1.46±0.03 1.38±0.05 1.49±0.03 

 

 

 
 

Figure 4.1 Dietary milk polar lipids did not significantly affect food intake during the 

first two days, daily food intake during the study, and weight gain. The data represent 

mean ± SEM. 
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Figure 4.2 Effects of the polar lipids on body weight and body fat content. Initial body 

weight for CO, GG and PL groups: 22.0 ± 0.2, 21.9 ± 1.0, 21.1 ± 0.2 (g). Initial body fat 

for CO, GG and PL groups: 2.14 ± 0.31, 2.28 ± 0.14, 2.14 ± 0.18 (g). (a) Body weight 

changes as percentage of baseline. (b) Body fat changes as percentages of baseline. The 

data represent mean ± SEM. 
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Figure 4.3 
Effects of milk 

polar lipids on 

liver mass, 

tissue lipid 

profile, and 

gene 

expression 

associated with 

lipid 

metabolism in 

the liver. The 

data represent 

mean ± SEM. 

(a) GG and esp. 

PL decreased 

liver mass. (b) 

GG decreased 

PE, PC & SM 

in adipose, PL 

decreased TG 

and increased 

PI in muscle, 

GG and PL 

increased FFA 

and PI in the 

liver. (c) GG 

up regulated 

Acaa2, Acacb 

and Hmgcr 

compared with 

PL. Means in a 

row with 

different 

superscripts are 

significantly 

different (p < 

0.05). 
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Figure 4.4 Effects of milk polar lipids on PL and GG content in intestinal mucosa. The 

data represent mean ± SEM. (a) PL decreased PE, PC & PL in ileum mucosa and PE & 

PL in colon mucosa compared with CO and GG. (b) PL decreased GG level in colon 

mucosa compared with CO and GG. Means in a row with different superscripts are 

significantly different (p < 0.05). 



151 
 

 
 

Figure 4.5 Effects of milk polar lipids on plasma lipid profile. The data represent mean ± 

SEM. (a) GG and PL groups had lower plasma CE level at day 34 compared with CO. (b) 

Plasma TG level decreased over time. (c) Plasma FFA level decreased over time and PL 

group had higher plasma FFA at day 34. (d) Plasma DG level increased at day 34 and 

decreased significantly at day 57.  
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Figure 4.6 Effects of milk polar lipids on gut permeability. The data represent mean ± 

SEM. (a) PL increased ZO-1 and occludin expression in colon mucosa, PL and GG 

decreased occludin expression in jejunum mucosa. (b) Plasma FITC decreased over time. 

(c) PL increased plasma LPS level at day 34 and LPS level increased significantly by the 

end of the study. (d) The effect of PL on LPS at day 34 disappeared after normalization 

by body fat mass. Means in a row with different superscripts are significantly different (p 

< 0.05).   
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Figure 4.7 Effects of milk polar lipids on gut permeability as revealed by differential 

sugar probes test. The data represent mean ± SEM. (a) Urinary Lactulose/Mannitol ratio 

increased after LPS stress and returned to baseline level during recovery. (b) Urinary 

Sucrose/Lactulose ratio decreased after LPS stress and increased gradually during 

recovery. (c) Urinary Lactulose/Sucralose ratio increased after LPS stress and returned to 

baseline level during recovery. (d) Urinary Sucralose/Mannitol ratio did not increase after 

LPS stress, increased during recovery and returned to baseline level by the end of the 

study.  
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Figure 4.8 Effects of milk polar lipids on plasma cytokines. The data represent mean ± 

SEM. (a) Plasma insulin level decreased. (b) Plasma IL-6 level increased after LPS stress 

and returned to baseline level by the end of the study. (c) Plasma PAI-1 level increased. 

(d) Plasma resistin level increased.  
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Figure 4.9a Body fat plotted against fat-free mass for individual animals during day -7 

through day 54. 
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Figure 4.9b-d Body fat plotted against fat-free mass for individual animals at (e) day -7, 

(f) day -1 and (g) day 3. 
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Figure 4.9e-g Body fat plotted against fat-free mass for individual animals at (e) day 5, (f) 

day 11 and (g) day 23. 
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Figure 4.9h-j Body fat plotted against fat-free mass for individual animals at (e) day 32, 

(f) day 39 and (g) day 54. 
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Figure 4.10 Summary of major findings in Chapter 4. Horizontal white arrows indicate 

the effects of the control diet. Horizontal T-shaped purple arrows indicate undesirable 

effects. Horizontal solid purple and blue arrows indicate desirable or neutral effects. SQ: 

subcutaneous, L/M: Lactulose/Mannitol, S/L: Sucrose/Lactulose, L/S: 

Lactulose/Sucralose, S/M: Sucralose/Mannitol. 
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CHAPTER 5 

DIETARY MILK POLAR LIPIDS PROMOTE FAT ACCUMULATION AND 

AFFECT GUT PERMEABILITY, SYSTEMIC INFLAMMATION, AND LIPID 

METABOLISM IN C57BL/6J MICE FED A MODERATELY HIGH-FAT DIET 

 

Abstract  

      Metabolic inflammation is associated with increased gut permeability, endotoxemia 

and obesity. High fat diets increase endotoxin absorption from the gut and result in 

endotoxemia. It is not clear which one occurs first, a compromised gut barrier, 

endotoxemia, metabolic inflammation or obesity. Studying the effects of different lipid 

classes on the aforementioned endpoints may facilitate the clarification of their complex 

interrelationships. This study was designed to test the hypotheses that dietary milk polar 

lipids will (1) prevent the gut permeability increase, (2) reduce systemic inflammation 

during the development of DIO and (3) reduce the lipid level in the liver and affect the 

expression of genes associated with fatty acid synthesis and cholesterol regulation in the 

liver. An additional objective was to explore the dynamic changes in gut permeability, 

systemic inflammation, and lipid metabolism during the development of DIO. Three 

groups of C57BL/6J mice (n = 6) were fed diets with 34% fat as energy for 15 weeks: (1) 

modified AIN-93G diet (CO); (2) control diet supplemented with a milk gangliosides 

concentrate (GG); (3) control diet supplemented with a milk phospholipids concentrate 

(PL). The milk PL increased food consumption, weight gain and body fat accumulation 

compared with the CO and the GG. Neither the GG nor the PL had a significant effect on 

the fasting plasma glucose, cholesteryl ester or triglyceride. The PL significantly down 

regulated hepatic expression of the fatty acid synthesis gene acetyl-Coenzyme A 
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carboxylase beta compared with the GG and up regulated hepatic expression of the 

scavenger receptor class B member 1 gene compared with the CO and the GG. As 

revealed by the differential sugar test, gut permeability showed a significant time effect 

and diet x time interaction over the course of the study. The small intestinal permeability 

increased slightly at the beginning and then decreased significantly over the feeding 

period. There was a gradual increase in colonic damage as indicated by the declining of 

the urinary Lactulose/Sucralose ratio and the colonic recovery as indicated by the urinary 

Sucralose/Mannitol ratio. During the early phase, the PL and especially the GG had some 

protective effect against the increase of small intestinal permeability. As indicated by 

Western blot, the PL decreased the tight junction protein occludin level in the jejunum 

but did not affect the occludin level in the ileum and the colon compared with the CO. 

The tight junction protein zonula occludens-1 level was not affected in the small intestine 

and the colon. The GG and PL did not affect the plasma endotoxin level, which increased 

significantly after 14 weeks. The GG and PL did not significantly affect the plasma levels 

of interleukin-6, insulin, monocyte chemotactic protein-1, leptin, tumor necrosis factor-α, 

plasminogen activator inhibitor-1, and resistin. The plasma levels of leptin and resistin 

increased significantly after 14 weeks. In conclusion, the milk polar lipids had little effect 

on the gut permeability and systemic inflammatory cytokines during the development of 

DIO. The milk PL increased the polar lipids level in the liver and facilitated the body fat 

accumulation in the context of DIO. 

 

Introduction 

      Excess energy can result in body fat accumulation (1, 2) and eventually lead to 

obesity (3). Excessive fat accumulation in the adipocytes may initiate inflammation since 
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lipid mediators are precursors to inflammatory signaling molecules (4).  The inflamed 

adipose tissue can produce proinflammatory cytokines, such as tumor necrosis factor-α 

(TNF-α), and interleukin-6 (IL-6) (4).  These cytokines can initiate local intestinal 

inflammation, which increase mucosal permeability and bacterial translocation. In obese 

subjects, the high level of inflammatory cytokines disrupt intestinal barrier (5, 6). 

Therefore, obesity, adipose inflammation and compromised gut integrity can self-

perpetuate (see Figure 1.1) (7). 

 

      One of the mechanisms for leaky gut (8, 9) in obese animals is the adaptation for 

nutrient absorption by intestinal hyperplasia (10), which causes the TJ proteins to 

malfunction (11). Mice with diet-induced obesity (DIO) develop endotoxemia compared 

with the lean mice (12). Increased gut barrier permeability can result in endotoxemia and 

metabolic inflammation (13). High fat diets can independently increase gut permeability 

and result in metabolic endotoxemia that leads to metabolic inflammation (14). Metabolic 

inflammation can also promote obesity. Patients with periodontitis develop endotoxemia 

and tend to become obese (15).    

 

      According to current evidence, gut barrier permeability, endotoxemia, systemic 

inflammation and obesity may be a series of continuous events during the development of 

DIO. These events could also occur in the order of DIO, adipose/systemic inflammation, 

leaky gut, and aggravation of obesity. In general, compromised gut barrier integrity, 

endotoxemia, systemic inflammation and DIO are complexly interrelated (see Figure 1.1). 
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The interrelatedness of the aforementioned events may be elucidated by investigating 

them along with lipid metabolism, which is involved in all events.  

 

      Various studies have explored the physiological effects of milk polar lipids. Milk 

sphingolipids reduce the uptake of cholesterol (16, 17), protect against bacterial 

infections in the gut (18-20), and reduce inflammatory response (21-24). Sphingomyelin 

(SM) affects neonatal gut maturation in rats (25) and regulates intestinal cholesterol 

absorption (26). Dairy gangliosides (GG) inhibit degradation of gut occludin tight 

junction (TJ) protein during lipopolysaccharide (LPS) - induced acute inflammation (27). 

PL reduce hepatic TG and cholesterol (28) in rats. A PL-rich MFGM extract reduces 

hepatomegaly, hepatic steatosis and hyperlipidemia in mice (29). A buttermilk MFGM 

isolate promotes intestinal barrier integrity against LPS stress in mice (30). Based on 

these findings, it is possible that the milk polar lipids may influence endotoxemia and 

systemic inflammation through affecting the intestinal barrier integrity. The milk polar 

lipids could also influence lipid metabolism and the development of DIO. The dietary 

supplementation of milk polar lipids during the development of DIO may facilitate the 

understanding of the interrelationships among intestinal barrier integrity, endotoxemia, 

systemic inflammation and obesity. 

 

      This study was designed to test the hypotheses that dietary milk polar lipids will 

prevent the gut permeability increase and reduce systemic inflammation during the 

development of DIO in C57BL/6J mice fed a diet with 34% fat by energy. A tertiary 

hypothesis was that dietary milk polar lipids will reduce liver lipid levels and affect the 
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expression of genes associated with fatty acid synthesis and cholesterol regulation in the 

liver.    

 

Materials and Methods 

Diets formulation 

      The three diets were the same as described in Chapter 3 (Table 3.1): CO diet, GG diet 

and PL diet. 

 

Animals  

      Five-week-old male C57BL/6J mice (n = 18; Jackson Laboratory) were housed in 

single cages at a constant temperature of 22 ± 1 °C with a 12-h light/dark cycle. They 

were allowed ad libitum access to diet and water. After being put on normal chow diet for 

2 weeks (for acclimatization and baseline data collection), the mice were randomly 

assigned to one of the following treatments: 1) CO diet (n = 6); 2) GG diet (n = 6); 3) PL 

diet (n = 6). The mice were fed the experimental diets for 14 weeks. The diet intake was 

monitored daily and the body weight was measured every other day. The body 

compositions were assessed every week by magnetic resonance imaging (MRI) using an 

EchoMRI-900 Body Composition Analyzer (EchoMRI, Houston, TX). The experiments 

were conducted in conformity with the Public Health Service Policy on Humane Care 

and Use of Laboratory Animals and were approved by the Utah State University 

Institutional Animal Care and Use Committee. 
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Assessments of intestinal barrier integrity 

      The intestinal permeability was assessed by the FITC-dextran absorption test and the 

DST as described in Chapter 3. The FITC-dextran absorption test was done at the 

baseline, day 35 and 101. The DST was carried out at the baseline, day 15, 30, 45, 73 and 

87.    

Tissue sample collection 

      The mice were sacrificed by CO2 asphyxiation after a 4h fast. After the blood 

collection, the liver, the quadriceps muscle, the intestinal and colonic mucosa, the feces 

and the adipose tissue samples were collected. The adipose depots included the gonadal, 

retroperitoneal, mesenteric, and subcutaneous depots.  Each category of tissue was saved 

separately and the tissue mass was recorded. The tissue samples were flash frozen and 

stored at -80 °C until further analysis. 

 

Biochemical analyses of plasma 

      The blood samples were collected and the plasma was analyzed as described in 

Chapter 3 to measure glucose, insulin, leptin, resistin, monocyte chemotactic protein-1 

(MCP-1), IL-6, TNF-α , plasminogen activator inhibitor-1 (PAI-1) and endotoxin. The 

homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated 

from fasting glucose and insulin levels (fasting glucose*fasting insulin/22.5) (31, 32).   

 

Western Immunoblotting for zonula occludens (ZO)-1 and occludin proteins 

      Mucosal samples of the small intestine and the colon were collected and Western 

immunoblotting for the zonula occludens (ZO-1) and occludin proteins were carried out 

as described in Chapter 3.   
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Liver gene expression analysis 

      The expression of 13 genes associated with lipid metabolism in the liver was 

analyzed as described in Chapter 3.  

 

Tissue lipid profiling 

      Tissue lipid profiles of the liver, the skeletal muscle and the gonadal adipose were 

analyzed as described in Chapter 3. The lipid classes included phosphatidylethanolamine 

(PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI), 

SM, diglycerides (DG), free fatty acids (FFA), triglycerides (TG), and cholesteryl ester 

(CE). 

 

GG analysis of intestinal mucosa 

      The GG content in the intestinal mucosa was determined as described in Chapter 3. 

 

Statistical analyses 

      One-way or mixed models analysis of variance (ANOVA) was performed by SAS 9.2. 

The group means were compared by Ryan-Einot-Gabriel-Welsch Multiple Range Test or 

Least Squares Means Contrast in SAS. The data were reported as Mean ± Standard Error 

of the Mean (SEM).    

 

Results 

      The PL group consumed more diet than the other two groups during the first 3 days 

and the difference persisted until day 10 (Table 5.1). The PL group consumed 1.3 g more 

experimental diet during the first day than the CO group and 0.97 g more diet than the 

GG group. The daily diet intakes for the first 3 days were larger than daily food 
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consumption during the whole study. That difference in food intake disappeared by day 

10. There were no differences among groups regarding diet intake during the rest of the 

study. There was a significant diet effect for body weight gain (p = 0.02) during the first 

3-10 days of dietary treatment (Figure 5.1a). The PL group consumed more energy, 

gained more body fat and converted a higher percentage of consumed energy into body 

fat from day -3 to day 4 (3 days before to 4 days after dietary intervention, Table 5.2).  

 

      The body fat composition data (by MRI) indicated that the body fat percentage 

plateaued at around 70 days of the experimental feeding (Figure 5.1b). The PL facilitated 

fat accumulation after day 70 compared with the CO and GG (Figure 5.1b). The body fat 

percentage of the PL group increased at a faster rate compared with that of the other 

groups (Figure 5.1c). The accumulating body weight gain of the PL group also increased 

at a higher rate compared with the other groups but the slope was much smaller (Figure 

5.1d) than that of the body fat increase.  

 

Tissue and plasma lipid profiles  

      Dietary treatment did not affect the final liver mass and the liver weight percentage 

(Table 5.3). There were no differences in tissue masses for skeletal muscle and adipose 

depots (Table 5.3). The PL decreased the adipose PC and SM compared with the CO. The 

PL increased the liver PE, PC and SM (Figure 5.2a) compared with the CO. Dietary 

treatment did not affect lipid profile in the skeletal muscle. 

 

      As shown in Figure 5.2b, the PL suppressed hepatic expression of the fatty acid 

synthesis gene Acacb (vs the GG) and up regulated cholesterol reverse transport gene 
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Scarb1 (vs the CO & the GG). Dietary GG did not affect the mucosal gangliosides 

content. Dietary PL increased the mucosal PC in the small intestine and decreased the 

mucosal PC, PE and SM in the colon compared with the CO and the GG (Figure 5.2c). 

 

      The plasma TG level increased over time and the PL group had higher plasma TG 

level (Figure 5.3a) compared with the CO and GG groups at the end of the study. The 

plasma CE level increased over time during the study and there was no treatment effect 

(Figure 5.3b). The plasma FFA (Figure 5.3c) and PC (Figure 5.3d) levels were lower in 

the PL and GG groups compared with that in the CO group at day 35. Those differences 

disappeared toward the end of the study.   

 

Gut permeability 

      Dietary PL decreased the gut permeability to the FITC-dextran before the DIO and 

increased it after the DIO was achieved (Figure 5.4a). The differential sugar tests 

revealed significant time effect and diet x time interactions on the gut permeability. The 

urinary Lactulose/Mannitol ratio increased slightly and then decreased in the CO group 

(Figure 5.4b). The PL increased the urinary Lactulose/Mannitol ratio significantly at day 

73 and then decreased it toward the end of the study (Figure 5.4b). The urinary 

Sucrose/Lactulose ratio increased in the CO group and decreased in the GG and PL 

groups during the first 15 days (Figure 5.4c). Then the urinary Sucrose/Lactulose ratio 

increased gradually in all groups toward day 30 and dropped down by day 45 before 

rising again (Figure 5.4c). The PL group had high level of the urinary Sucrose/Lactulose 

ratio at day 73 compared with the CO and GG groups and the ratio decreased toward the 

end of the study (Figure 5.4c). The urinary Lactulose/Sucralose ratio decreased 
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significantly during the first 45 days (Figure 5.4d). The urinary Lactulose/Sucralose ratio 

stayed stable from day 45 to the end except in the PL group where the ratio increased 

significantly at day 73 (Figure 5.4d). The urinary Sucralose/Mannitol ratio in the CO 

group increased slightly during the first 15 days, decreased toward day 30, increased 

significantly toward day 45, dropped significantly toward day 73 and then increased 

toward day 87 (Figure 5.4e). The PL group had higher urinary Sucralose/Mannitol ratio 

at day 45 compared with the other groups (Figure 5.4e). The GG group had lower urinary 

Sucralose/Mannitol ratio at day 87 compared with the CO group (Figure 5.4e).    

 

      As indicated by Western blot (Figure 5.4f), the PL decreased the tight junction 

protein occludin level in jejunum mucosa but did not affect occludin level in the mucosa 

of ileum and colon compared with the CO. The GG increased the tight junction protein 

ZO-1 level in the colon mucosa compared with the CO and the ZO-1 level was not 

affected in the mucosa of jejunum and ileum.  

 

Plasma endotoxin and cytokines  

      The plasma LPS level increased slightly in the GG and PL groups compared with the 

CO group during the first 35 days (Figure 5.5a). The plasma LPS level increased 

significantly after 101 days (Figure 5.5a). The PL group had higher plasma LPS level 

compared with the CO group at day 101 (Figure 5.5a).     

 

      The GG and PL did not significantly affect the plasma levels of MCP-1, TNF-α, IL-6, 

leptin, resistin, PAI-1 and insulin (Table 5.4 and Figure 5.5 b-f). The plasma IL-6 level 

increased during the first 35 days and then returned toward baseline level (Figure 5.5b). 



170 
 

The plasma levels of leptin and resistin increased significantly after 101 days (Figure 

5.5c&d).      

 

      The PL increased the plasma PAI-1 level during the study compared with the other 

two groups (Figure 5.5e). The plasma insulin level increased over time (Figure 5.5f).  

 

Plasma glucose and HOMA-IR 

      Hyperglycemia was observed at day 101 (Figure 5.6a). The HOMA-IR index 

increased over time (Figure 5.6b). By the end of the study, insulin resistance was 

developed as indicated by HOMA-IR (33). 

 

Body fat changes 

      The plots of body fat against fat-free mass revealed the gradual increase and the 

dynamic changes in the body fat mass during the study (Figure 5.7a-g). When all 

measurements at 12 time points (at day -15, -11, -7, -3, 4, 20, 27, 34, 55, 68, 83, 96) were 

included, the data points fell into two groups with different slopes (0.98 and 0.39) (Figure 

5.7a). The slope was around 0 during the first MRI scan at day -15 (Figure 5.7b). The 

slope increased to 0.14 at day -7, 0.2 at day -3 (Figure 5.7c), and 0.33 at day 4 (Figure 

5.7d). The slope decreased from 0.35 at day 20 to 0.30 at day 34. The slope then 

increased back to 0.36 at day 55 (Figure 5.7e). At day 68, the data points started to 

segregate into two groups with different slopes (1.02 and 0.27) (Figure 5.7f). From day 

68 to day 96, the slopes for the two groups increased further to 1.18 and 0.34 at day 96 

(Figure 5.7g).  
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Comparison between lean and obese mice 

      The lean and obese mice (Figure 5.7g) had differences in many parameters at the end 

of the study (Figure 5.8) regardless of dietary interventions. The obese mice had higher 

plasma insulin and leptin compared with the lean mice (Figure 5.8a). The obese mice had 

higher HOMA-IR compared with the lean mice (Figure 5.8b). The obese mice had higher 

plasma CE, DG, TG, PC and higher liver TG compared with the lean mice (Figure 5.8C). 

The obese mice had lower occludin protein expression in jejunum mucosa compared with 

the lean mice (Figure 5.8d). The obese mice had higher amount of brown adipose tissue, 

inguinal, gonadal, mesenteric and retroperitoneal fat depots compared with the lean mice 

(Figure 5.8e). Obese mice had lower amount of cecum content, jejunum, ileum, colon, 

jejunum mucosa and ileum mucosa compared with lean mice (Figure 5.8e).  

 

Discussion 

      This study was designed to test the hypotheses that the milk polar lipids (1) reduce 

liver lipid level and affect the expression of genes associated with fatty acid synthesis and 

cholesterol regulation in the liver, (2) prevent the increase of gut permeability, and (3) 

reduce plasma inflammatory cytokines in the C57BL/6J mice during the development of 

DIO. The first hypothesis was not supported by the data. The milk phospholipids 

promoted body fat accumulation and increased obesity. The milk phospholipids increased 

the liver PE, PC, SM & the plasma TG and decreased the plasma FFA & PC. The milk 

phospholipids decreased the PC & SM in the colon mucosa. The milk gangliosides 

decreased the adipose SM, the plasma FFA & PC and increased the liver PE & SM.  
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      The data did not support the second and the third hypotheses. The milk phospholipids 

increased the gut permeability and decreased the occludin in the jejunum mucosa. The 

milk phospholipids increased the plasma LPS and did not affect the plasma inflammatory 

cytokines level. The milk gangliosides decreased the ZO-1 in the colon mucosa and did 

not affect the gut permeability. The milk gangliosides did not affect the plasma level of 

the inflammatory cytokines.  

 

      The mouse model of DIO, increased gut permeability and increased systemic 

inflammation was established. The high fat feeding increased body fat and the plasma 

level of CE, leptin, resistin, insulin, and glucose. The high fat feeding decreased the 

insulin sensitivity as indicated by the increased HOMA-IR index. The high fat feeding 

decreased the permeability of the small intestine, increased the colon permeability and 

the plasma levels of LPS, and increased the plasma IL-6 level before the establishment of 

DIO. 

 

      The PL group consumed more diet and gained more weight and body fat compared 

with the CO group while the GG group was in the middle. The difference was already 

significant by the first 3 days and should have been contributed mainly by the first 10 

days (Table 5.1). The average chow diet intake was 3.69 g/mouse/day. The mice in the 

PL group consumed 4.15 g high fat diet on average on the first day. The 

overconsumption of the high fat diet in the PL group during first 3 days may play an 

important role in the resulting higher body weight and body fat percentage. It was not 

clear which factor caused the overconsumption. The PL diet was slightly softer and the 
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GG diet was slightly harder than the CO diet. No measurement of the hardness was done 

for the diets. If the texture of the diet caused the difference in the diet intake during the 

first 3 days, the PL group should have consumed similar amount of diet later on. The diet 

intake decreased in all groups from the beginning and reached the average level by 10 

days.  

 

      It might be argued that a run-in diet similar to the experimental diets may help 

optimize the experimental conditions. Although a run-in diet may reduce the variabilities 

in food intake during the transition from baseline diet to experimental diet, it was obvious 

that the PL group consumed more food during the first 3-10 days. By the end of the study, 

the PL group had consumed 20.54 g (8.0%) more diet than the CO group and 27.26 g 

(10.9%) more diet than the GG group. The PL group gained more weight and body fat 

than the other two groups. The GG group did not gain more weight and body fat than the 

CO group although the GG group consumed more diet. The body weight gain was mainly 

contributed by the body fat accumulation. 

 

      The plasma LPS did not increase much during the first 35 days. The main increase 

occurred from day 35 to 101. For the LPS challenged mice (reported in chapter 4), the 

plasma LPS did not increase during the first 34 days. It happened during day 35 to 57. It 

is apparent that gut permeability may change significantly from day 35 to 57. An 

additional 6 weeks of feeding did not significantly increase the plasma LPS. One week of 

feeding increased the plasma LPS to similar level observed in the ob mice (reported in 



174 
 

chapter 3). The plasma LPS level increased significantly in all groups once the DIO was 

established.  

 

      There were no significant dietary treatment effects on major plasma inflammatory 

cytokines and adipokines, including IL-6, TNF-α, PAI-1, MCP-1, resistin and leptin. The 

plasma resistin and leptin increased over time. Dietary phospholipids increased the 

plasma insulin level after the DIO (Figure 5.5f).The mechanism for this increase of 

insulin is not clear. Dietary phospholipids rich in n-3 polyunsaturated fatty acids reduced 

plasma insulin level under obesogenic conditions and the mechanism may be through 

modulating the endocannabinoid system activity in the white adipose tissue (34). It could 

be possible that the opposite effect of dietary phospholipids on the plasma insulin level in 

this study was due to the saturated fatty acids in the milk phospholipids.  

 

      Dietary phospholipids decreased phospholipids in the visceral adipose tissue and the 

colon mucosa but increased phospholipids in the liver (Figure 5.2a & c). The higher 

dietary phospholipids level was not always accompanied by higher phospholipids level in 

the tissue. The dietary phospholipids decreased the SM level in the colon mucosa. Little 

or no radioactively labeled SM was absorbed intact into the chyle (35). Luminal SM is 

hydrolyzed to ceramide, and then to sphingosine and free fatty acids (36). The free 

sphingosine is well absorbed and most of the absorbed sphingosine is rapidly converted 

to palmitic acid and incorporated into chylomicrons (37, 38). A smaller portion of the 

sphingosine is incorporated into the mucosa as ceramide and SM (35, 39). It may be 

hypothesized that the dietary SM may have suppressed the tissue SM level in the 
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intestinal mucosa through down regulation of the receptors for sphingosine. Similar 

mechanisms of receptor regulation may account for the effects of dietary phospholipids 

on tissue phospholipids level in the visceral adipose tissue and the liver.   

 

      During the maturation of the gut, gut permeability to FITC decreased (Figure 5.4a). 

Compared with the CO and the GG, the PL facilitated the decrease of permeability to 

FITC when the mice were lean and increased the permeability to FITC when the animals 

were obese. Although the difference between the PL and the other two was not 

statistically significant at any of the time points, the opposite effect of the PL before DIO 

and after DIO was quite interesting. It is not clear what the mechanism was for the 

opposite effect in the PL group. Further studies are needed to explore how the PL may 

have different effect on gut permeability when the mouse is lean and after DIO. 

 

      The permeability of the small intestine decreased during the first 45 days (Figure 5.4b) 

in all groups as revealed by the urinary Lactulose/Mannitol ratio (40). Taken together, the 

intestinal integrity was enhanced during the first 45 days. The mice were still developing 

during that period of time and the gut may be maturing. After the DIO was established, 

the small intestinal permeability increased significantly in the PL group compared with 

that in the CO and GG groups. There was a peaking of the body fat percentage around 

that time point (Figure 5.1b). The decrease of the urinary Sucrose/Lactulose ratio 

indicated the distal damage of small intestine. The damage became proximal when the 

urinary Sucrose/Lactulose ratio increased to a high level (40).   
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      The high-fat feeding increased the permeability of the proximal small intestine and 

the GG and PL supplementations caused a permeability increase of the distal small 

intestine during the first 15 days (Figure 5.4c). Then the damage became proximal also in 

the GG and PL groups by day 30. The damage then moved to the distal small intestine 

and back to the proximal by the end of the study. This is consistent with the Western blot 

result that the dietary polar lipids (especially phospholipids) suppressed the TJ protein 

occludin expression in the jejunum mucosa. The urinary Lactulose/Sucralose ratio 

selectively increases upon the intestinal damage and decreases upon the colonic damage 

(40).  The high fat feeding increased the permeability of the colon (Figure 5.4e). The 

colon permeability stayed stable from day 45 to the end except in the PL group where 

small intestine permeability increased during the early phase of the DIO. There was an 

increase of the colon permeability during the first 15 days and the permeability receded 

by day 30. Then the colon permeability increased significantly at day 45. The significant 

increase of the colon permeability at day 45 (Figure 5.4e) may be due to the increased 

inflammation as indicated by the increase of the plasma IL-6 level (Figure 5.5b) around 

this time. Taken together, the high-fat feeding increased the permeability of proximal 

small intestine and the colon at the beginning and there was a recovery after the initial 

permeability increase. Then the permeability of the distal small intestine and the colon 

increased when the systemic inflammation increased during the early phase of the DIO.   

 

      The dietary fat level was 34% fat as energy, which was lower than most of the fat 

levels used for the DIO model. The colon permeability increased significantly at the onset 

of the DIO (Figure 5.4c) and then decreased significantly. The initial increase of the 



177 
 

colon permeability may be caused by the high fat diet, which increases intestinal 

permeability through the dietary fat and increased luminal bile juice levels (41). The high 

fat feeding before the DIO increased the colon permeability but did not increase the 

plasma LPS level significantly. The colon permeability decreased (Figure 5.4e) and the 

plasma LPS increased (Figure 5.5a) after the establishment of DIO. The increase of the 

plasma LPS level after the DIO may not be contributed significantly by the decreased 

colon permeability but may be mediated through the chylomicrons as the postprandial 

carriers for the LPS (42). The chylomicron secretion process is different in DIO from 

when the mice are lean (43). The mechanisms remain unclear for the altered intestinal TG 

metabolism in mouse models of obesity (43). Compared with lean controls, men with 

visceral obesity may have normal fasting plasma lipids but an abnormal postprandial 

accumulation of TG-rich remnant lipoproteins due to the greatly decreased clearance of 

chylomicron remnants (44). Taken together, it may be hypothesized that the absorption of 

gut LPS in DIO is mainly mediated through the transcellular pathway instead of the 

paracellular route. If the absorbed gut LPS in the plasma during DIO is mainly carried by 

chylomicron remnants, this may help explain the lack of a considerable inflammatory 

response corresponding to the increased plasma LPS since the lipoproteins may inactivate 

LPS (45).  

 

      The plasma LPS level did not increase (Figure 5.5a) at day 35 but the IL-6 level 

increased manyfold (Figure 5.5b). The plasma IL-6 then decreased toward the end of the 

study while the LPS level increased dramatically. These results indicate that a diet with 

34% fat as energy may not pose a strong inflammatory stress for the C57BL/6J mice. The 
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PL and GG supplementations enhanced the inflammatory response. On the other hand the 

DIO was complicated with the high level of plasma LPS but not a strong inflammatory 

response.  

 

      The plasma resistin level increased steadily throughout the course of the study in the 

CO and GG groups. That could mean the resistin level is influenced more by the high fat 

diet than by the DIO. As an adipocytokine secreted in proportion to the obesity level, 

resistin counteracts the effects of insulin in mice (46). The PL did not increase the resistin 

level during the first 35 days and the resistin level was lower in the PL group compared 

with the CO and GG groups after the DIO. The PL prevented the increase of the resistin 

during the high fat feeding and the DIO. It is not clear which component of the milk 

phospholipids had this effect. 

 

      The PL increased the plasma PAI-1 level during the first 35 days and the plasma PAI-

1 level flattened in the PL group when the mice became obese (Figure 5.5e). The CO and 

the GG decreased the plasma PAI-1 level before the DIO and the level regressed after the 

DIO. PAI-1 is an adipocytokine and the increased PAI-1 level in obesity has been 

associated with the mediation of obesity, insulin resistance and metabolic syndrome (47, 

48). Lysophosphatidylcholine (LPC) in oxidized low-density lipoprotein (OxLDL) 

enhances the PAI-1 expression in mouse 3T3-L1 adipocytes (49). The increase of the 

plasma PAI-1 level in the PL group may be caused by the metabolites of dietary PC and 

may have contributed to the development of the DIO. Suppression of de novo ceramide 

synthesis significantly reduces the PAI-1 expression in the adipose tissue of obese mouse 
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(50). It is not clear why the CO and the GG decreased the plasma PAI-1 level before the 

DIO. Taken together, dietary supplementations of PL may pose risk factors for obesity 

and metabolic syndrome by increasing the plasma PAI-1.  

 

      The plasma leptin level did not increase by the high fat feeding itself and the leptin 

level was proportional to the body fat content for the PL group (Figure 5.5c). For the 

plasma leptin level, variances exist in the literature. Levi et al. reported that the plasma 

leptin of 11-week old C57BL/6J was at 1.5 ng/ml (51) measured by an enzyme-linked 

immunosorbent assay (Crystal Chem, Downers Grove, IL, USA). Burgueño reported that 

the plasma leptin of 12-week-old C57BL/6J was at 0.2 ng/ml measured by an enzyme-

linked immunoassay kit (Assay Designs, Ann Arbor, MI) (52). In this study, the plasma 

leptin level (measured by fluorescent immunoassay) increased over time, from 2.3 - 3.4 

ng/ml for the 12-week-old to 17 - 28 ng/ml for the 21-week-old. The range is similar to 

Murphy et al.’s report that the plasma leptin level (measured by radioimmunoassay) was 

3.8 ng/ml for the 12-week old, peaked at 4.2 ng/ml for the 14-week-old, and declined to 

2.3 ng/ml at week 16 (53). The increase of leptin level may be explained by the increase 

of body fat accumulation.   

 

      The plots of body fat against fat-free mass showed that the slope increased gradually 

until the data points segregated at day 68 (Figure 5.7f), which indicated the establishment 

of the DIO. This coincided with the plateauing of the body fat percentage at day 68 

(Figure 5.1b). These data support that the plot of body fat against fat-free mass is an 

effective way for defining obesity (54). By the end of the study, 10 out of the 17 mice 
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were obese according to the aforementioned definition. The obese and lean mice had 

significant differences in many parameters (Figure 5.8) regardless of the dietary 

treatments. Significant body weight increase is usually used to define obesity (55). The 

use of body weight gain to define obesity is more arbitrary than using the plot of body fat 

against fat-free mass. The data in the current study and the data from the ob/ob mouse 

model (Chapter 3) and the LPS-stressed mouse model (Chapter 4) all support that the 

Fenton’s method is an effective and relatively objective way for defining obesity.  

 

      The data from the present study also showed that stresses may have considerable 

effect on body fat content in the C57BL/6J mice. The MRI scan at day 34 was carried out 

soon after the third DST (at day 30). Residing in the metabolic cage may be responsible 

for the reduced body fat content as indicated by the decreased slope (0.35 at day 20 to 

0.30 at day 34). Once the stress was removed, the body fat increased back (Figure 5.7e). 

The other 5 DST did not affect the MRI data when those DST were at least 5 days apart 

from the MRI scans. It may be emphasized that unnecessary stresses should be avoided 

and the animals should be handled in the same manner to reduce variances from the 

potential variability in the stresses.  

 

 

Summary 

      The major effects of the dietary polar lipids on gut permeability, systemic 

inflammation, and lipid metabolism during the development of the DIO are summarized 

in Figure 5.9. During the development of the DIO in the C57BL/6J mice fed high fat diets, 

gut permeability to sugar probes increased before the DIO and decreased after the DIO.  
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The plasma LPS level increased after the DIO. Hyperglycemia and insulin resistance 

developed by the end of the study. Compared with the CO, the PL decreased the TJ 

protein occludin in the jejunum mucosa and increased the permeability of the small 

intestine and the colon after the DIO. The PL increased the body fat content and the 

plasma LPS level compared with the CO. Compared with the CO, the PL increased the 

polar lipids content in the liver and decreased the polar lipids content in the colon mucosa. 

Compared with the CO, the PL increased the plasma TG, decreased the plasma FFA and 

PC, and decreased the adipose PC. The dietary milk GG increased the TJ protein ZO-1 in 

the colon mucosa and did not affect the gut permeability compared with the CO and the 

PL. Compared with the CO, the GG decreased the adipose SM, increased the liver PE and 

SM, and decreased the plasma FFA and PC. The GG did not affect the plasma 

inflammatory cytokines.  

 

      In conclusion, the plasma inflammatory cytokines were not significantly affected by 

the high fat feeding or the dietary treatments. The dietary phospholipids increased obesity, 

gut permeability and the plasma LPS. This study revealed important dynamic changes in 

gut permeability and the body fat content during the development of DIO. The milk 

phospholipids may have unfavorable effects on obesity and gut permeability in the 

context of high fat diet induced obesity. Further studies are needed to identify which 

components of the milk polar lipids concentrates are responsible for the observed effects.  

 

      The data from the current study did not support the hypotheses that during the 

development of DIO dietary milk polar lipids will 1) prevent the gut permeability 
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increase and subsequent systemic inflammation and 2) reduce liver lipid levels and affect 

the expression of genes associated with fatty acid synthesis and cholesterol regulation in 

the liver. The polar lipids are important building blocks for all the organ systems. The 

dietary polar lipids may affect all of the organ systems in the body. It is still not clear 

how the polar lipids may affect those organ systems that were not assessed in the present 

study. The overall effects of the dietary polar lipids cannot be concluded until the effects 

of the polar lipids are systematically evaluated in all of the major organ systems. 
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Table 5.1 Food intake (Mean ± SEM; unit: g). 

 

 CO GG PL 

1 3.18±0.27 2.85±0.65 4.15±0.17 

2 3.03±0.23 2.83±0.25 3.40±0.25 

3 2.30±0.14 2.80±0.30 2.97±0.17 

4 2.25±0.11 2.35±0.21 2.68±0.30 

5 2.85±0.27 2.38±0.24 2.60±0.27 

6 2.45±0.12 2.22±0.26 2.72±0.16 

7 2.32±0.18 2.73±0.20 2.47±0.16 

8 2.28±0.12
ab 

1.92±0.26
b 

2.80±0.14
a 

9 2.85±0.18 2.33±0.17 2.38±0.19 

10 2.25±0.11
b 2.47±0.18

b 
3.05±0.22

a 

days 1-3 sum 8.52±0.18
b 

8.48±0.69
b 

10.52±0.52
a 

days 1-3 mean 2.84±0.06
b 

2.83±0.23
b 

3.51±0.17
a 

days 1-10 sum 25.77±0.52
b 

24.88±1.08
b 

29.22±1.16
a 

days 1-10 mean 2.58±0.05
ab 

2.49±0.11
b 

2.92±0.12
a 

General sum 257.72±8.34 251.00±8.57 278.26±11.53 

General mean  2.58±0.08 2.51±0.09 2.78±0.12 

 

a,b 
Means in a row with different superscripts are significantly different (p < 0.05). 

 

 

 

Table 5.2 Food intake and energy stored as body fat from day -3 to day 4 (Mean ± SEM). 

 

 CO GG PL 

Food intake as energy (Kcal)  84.74±2.05
b 

86.60±4.21
b 

98.35±3.61
a 

Body fat gain as energy (Kcal) 0.64±1.58
b 

7.82±3.50
ab 

12.79±2.16
a 

%Energy of fat gain/food intake (%) 0.62±1.87
b 8.26±3.49

ab 
12.89±2.08

a 

 

a,b 
Means in a row with different superscripts are significantly different (p < 0.05). 
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Table 5.3 Effects of milk polar lipids on liver and adipose tissue mass (Mean ± SEM). 
 

Tissue mass/body weight (%) CO GG PL 

Liver% 3.32±0.25 3.50±0.13 3.26±0.05 

Brown adipose tissue depot% 0.42±0.04 0.52±0.08 0.52±0.06 

Inguinal fat depot% 2.82±0.49 3.34±0.52 3.69±0.38 

Gonadal fat depot% 3.34±0.58 4.37±0.63 4.81±0.36 

Mesenteric fat depot% 1.39±0.26 1.75±0.22 2.19±0.25 

Retroperitoneal fat depot% 1.19±0.28 1.47±0.26 1.72±0.18 

Visceral fat depots% 5.92±1.10 7.59±1.09 8.72±0.71 

Subcutaneous fat depot% 5.30±1.08 5.90±0.98 6.56±0.52 

Total fat depots% 11.64±2.20 14.01±2.11 15.80±1.27 

 

a,b 
Means in a row with different superscripts are significantly different (p < 0.05). 

 

 

Table 5.4 Effects of milk polar lipids on plasma levels of MCP-1 and TNF-α in 

C57BL/6J mice during the development of diet-induced obesity (Mean ± SEM; unit: 

Log10(pg/ml)). 

 

Lipids CO GG PL 

Baseline    

MCP-1 1.42±0.07 1.51±0.10 1.14±0.15 

TNF-α 1.38±0.06 1.36±0.06 1.16±0.14 

Day 35    

MCP-1 1.50±0.04
a 

1.46±0.03
a 

1.32±0.06
b 

TNF-α 1.37±0.05 1.25±0.11 1.33±0.15 

Day 101    

MCP-1 1.48±0.04 1.54±0.05 1.38±0.07 

TNF-α 1.35±0.08 1.39±0.08 1.28±0.11 
 

a,b 
Means in a row with different superscripts are significantly different (p < 0.05). 
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Figure 5.1 Effects of the polar lipids on body weight and body fat content. Initial body 

weight for CO, GG and PL groups: 20.9 ± 0.5, 21.2 ± 0.3, 21.7 ± 0.7 (g). Initial body fat 

for CO, GG and PL groups: 2.17 ± 0.09, 2.06 ± 0.08, 2.18 ± 0.14 (g). (a) PL group gained 

more body weight during the first 10 days. (b) PL group accumulated more body fat 

compared with CO and GG groups. (c) PL group gained more body weight compared 

with CO and GG groups. (d) PL increased body fat at a faster rate compared with CO and 

GG. The data represent mean ± SEM (n = 6). 
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Figure 5.2 Effects of milk polar lipids on tissue lipid profile. The data represent mean ± 

SEM (n = 6, 5, 6 for CO, GG, PL). (a) GG and PL decreased PC and SM in visceral 

adipose and increased PE, PC and SM in the liver compared with CO. (b) GG up 

regulated the expression of Acacb in liver compared with PL; PL up regulated expression 

of Scarb1 compared with CO and GG. (c) PL decreased PE, PC and SM in colon mucosa 

compared with CO and GG. Means in a row with different superscripts are significantly 

different (p < 0.05). 
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Figure 5.3 Effects of milk polar lipids on plasma lipid profile. The data represent mean ± 

SEM (n = 6, 5, 6 for CO, GG, PL). (a) Plasma TG increased over time in GG and PL 

groups; PL group had higher TG at the end compared with CO. (b) Plasma CE increased 

over time. (c) Plasma FFA increased in CO group and the level returned to baseline level 

by the end of the study. (d) Plasma PC level increased in CO group compared with that in 

GG and PL groups and the level decreased by the end of the study.  
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Figure 5.4 Effects of milk polar lipids on gut permeability. The data represent mean ± 

SEM (n = 6, 5, 6 for CO, GG, PL). (a) The polar lipids did not affect the plasma FITC. (b) 

The urinary Lactulose/Mannitol ratio decreased over time. (c) The urinary 

Sucrose/Lactulose ratio decreased over time. (d) The urinary Lactulose/Sucralose ratio 

decreased over time. (e) The urinary Sucralose/Mannitol ratio increased gradually until 

day 45 and then decreased. (f) GG and PL increased ZO-1 expression in colon mucosa; 

PL and GG decreased occludin expression in jejunum mucosa. Means in a row with 

different superscripts are significantly different (p < 0.05).    
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Figure 5.5 Effects of the polar lipids on plasma LPS and cytokines. The data represent 

mean ± SEM (n = 6, 5, 6 for CO, GG, PL). (a) Plasma LPS level increased over time and 

the PL increase the plasma LPS at day 101. (b) Plasma IL-6 level increased by day 35 

and then decreased. (c) Plasma leptin level increased over time. (d) Plasma resistin level 

increased over time. (e) Plasma PAI-1 level increased in PL group, decreased in CO and 

GG groups during the first 35 days and then increased back toward the end of the study. 

(f) Plasma insulin level increased over time.  
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Figure 5.6 Effects of milk polar lipids on fasting glucose and HOMA-IR. The data 

represent mean ± SEM (n = 6, 5, 6 for CO, GG, PL). (a) The urinary Lactulose/Mannitol 

ratio increased after LPS stress and returned to baseline level during recovery. (b) The 

urinary Sucrose/Lactulose ratio decreased after the LPS stress and increased gradually 

during the recovery.  
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Figure 5.7a Body fat plotted against fat-free mass for individual animals during day 1 

through day 96.  
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Figure 5.7b-d Body fat plotted against fat-free mass for individual animals at (b) day -15, 

(c) day -3 and (d) day 4. 
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Figure 5.7e-g Body fat plotted against fat-free mass for individual animals at (e) day 55, 

(f) day 68 and (g) day 96. 
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Figure 5.8 Comparison between lean and obese mice. The data represent mean ± SEM (n 

= 7 and 10 for Lean and Obese). (a) Obese mice had higher plasma insulin and leptin 

compared with lean mice. (b) Obese mice had higher homeostasis model assessment of 

insulin resistance (HOMA-IR). (c) Obese mice had higher plasma cholesteryl ester (CE), 

triglycerides (TG), diglycerides (DG), phosphatidylcholine (PC) and higher liver TG 

compared with lean mice. (d) Obese mice had lower occludin protein expression in 

jejunum mucosa compared with lean mice. (e) Obese mice had higher amount of brown 

adipose tissue (BAT), inguinal, gonadal, mesenteric and retroperitoneal fat depots 

compared with lean mice. Obese mice had lower amount of cecum content, jejunum, 

ileum, colon, jejunum mucosa and ileum mucosa compared with lean mice. Means in a 

row with different superscripts are significantly different (p < 0.05).  
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Figure 5.9 Summary of major findings in Chapter 5. Horizontal white arrows indicate the 

effects of the control diet. Horizontal T-shaped purple arrows indicate undesirable effects. 

Horizontal solid purple and blue arrows indicate desirable or neutral effects. L/M: 

Lactulose/Mannitol, S/M: Sucralose/Mannitol. 
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CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

 

      In this dissertation, I explored the effects of the dietary milk polar lipids on gut 

permeability, systemic inflammation, and lipid metabolism in several rodent models. The 

major hypotheses were that the dietary polar lipids would increase the gut barrier 

integrity, reduce systemic inflammation, and reduce liver lipid levels and affect the 

expression of genes associated with fatty acid synthesis and cholesterol regulation in the 

liver. The hypotheses were tested in the context of stressful diets, systemic inflammation, 

and obesity. The results did not support the majority of the hypothesized effects (Figure 

6.1). The milk phospholipids as dietary supplements may increase gut permeability and 

systemic inflammation and promote body fat accumulation during obesity and 

inflammatory responses. The milk gangliosides as dietary supplements may have little 

effect on gut permeability, systemic inflammation, and lipid metabolism during obesity 

and inflammatory responses. Based on the data from this dissertation, the dietary 

supplementation of milk polar lipids should not be recommended in the context of 

obesity and systemic inflammation. Although the milk-derived concentrates used in this 

dissertation were semi-purified, there were several active compounds in each of the 

concentrates. The PL concentrate contained sphingomyelin (SM), phosphatidylcholine 

(PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). The GG concentrate 

contained gangliosides, PC and PS. The bioactivities of the individual compounds in the 

milk polar lipids concentrates need to be explored by systematic investigations. Here I 

will summarize the major findings in four models separately first and then look 
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comprehensively at the major endpoints, namely gut permeability, systemic inflammation, 

and lipid metabolism. 

 

Rat Model with High Sucrose Diet 

      The AIN-76A diet is still commonly used in the aberrant crypt foci (ACF) studies 

with rodents (1) and the high sucrose content of the AIN-76A diet causes fatty liver in 

animals fed the diet for long periods of time (2). Since the diets were quite stressful 

metabolically, the findings in this study may not be extrapolated to other circumstances.  

Compared with the milk fat diets, the corn oil diet caused a significant increase in hepatic 

free fatty acids, a potential trigger for the development of nonalcoholic steatohepatitis 

(NASH) from non-alcoholic fatty liver disease (NAFLD). The anhydrous milk fat diet 

resulted in more hepatic TG storage compared with corn oil and MFGM supplemented 

diets. Saturated fat may facilitate TG accumulated in the liver. Unsaturated fatty acids 

and polar lipids may alleviate the accumulation of TG in the liver. The mechanism of 

polar lipids on reducing the accumulation of hepatic TG may be through promoting lipid 

export into plasma. In conclusion, the fat source of the AIN-76A diet affects the lipid 

profile of key tissues involved in lipid trafficking and storage as well as gene expression 

networks within these tissues.  

 

      Since the AIN-76A diet has an unreasonably high amount of sucrose and is 

metabolically stressful, it may confound the findings in gut permeability, lipid 

metabolism and systemic inflammation. Future studies may use diets with lower sucrose 

(such as AIN-93G diet) to explore which components of the MFGM have the observed 

effect.  
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      Rats and mice have different metabolic responses to dietary intervention. For example, 

after a 48h fast, the hepatic TG increased significantly in 6-8 weeks old Swiss albino 

mice but declined in Sprague-Dawley derived rats at similar age (3). When 5 weeks old 

male Wistar CpbIWU rats and NMRI mice were fed a cholesterol-free diet containing 

corn oil for 20 days, serum TG were reduced and fecal excretion of neutral steroids were 

increased in the rats but not affected in the mice. The rats and mice had similar responses 

to corn oil when the diet was supplemented with 1 % (w/w) of cholesterol (4). There are 

significant differences in postprandial TG patterns between Wistar rats and C57BL/6J 

mice at the age of 8 weeks fed regular rodent chow diet. C57BL/6J mice have similar 

postprandial lipid profile in the serum as healthy men (5). So it is reasonable to expect the 

effects of MFGM to be different in mouse models from rat models. Given the fact that rat 

models still serve as important platforms for exploring metabolism and nutrition, it may 

still be worthwhile to test the effects of the individual components of MFGM in rat 

models.  

 

Genetic Obesity Model with High Fat Diet 

      In the ob/ob mouse model, the gut barrier integrity was compromised, the plasma 

lipids level was decreased, and most of the systemic inflammatory cytokine levels did not 

change from baseline. The food restriction aggravated the hepatic lipidosis and may have 

caused death in some of the animals. The dietary GG increased the tight junction (TJ) 

protein occludin expression in the colon mucosa and had little effect on lipid metabolism 

and systemic inflammation. The dietary PL supplementation increased the total body fat 

percentage and redistributed lipids from liver and visceral fat depots into the plasma. The 

dietary PL increased the plasma SM, which was strongly associated with the increase of 
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the plasma inflammatory cytokine IL-6. Taken together, the supplementation of high fat 

diets with phospholipids and sphingomyelin could result in unfavorable effects on lipid 

metabolism and systemic inflammation in the ob/ob mice. The dietary milk gangliosides 

at the current dietary level may not have significant effect on the intestinal barrier 

integrity, lipid metabolism and systemic inflammation in the ob/ob mice fed moderately 

high fat diets. Future studies may further explore which components of the milk 

phospholipids concentrate are responsible for the observed effects.  

 

      The PL supplementation reduced lipid levels in the liver but did not have any effect 

on the gut permeability to FITC-dextran and sugar probes. The dietary PL also increased 

systemic inflammation. Often times, a few organ systems are assessed during dietary 

interventions. The limitation of this kind of study is that the dietary treatment may benefit 

one or a few organ systems but could be detrimental to the other systems. During this 

study, only four out of the eleven major organ systems were assessed in some detail. 

There are still many systems that were not assessed, such as the nervous system, 

cardiovascular system, skeletal system, respiratory system, excretory system, 

reproductive system and immune system. The general effects cannot be concluded until 

all systems are taken into consideration. Therefore, the effects of dietary milk polar lipids 

on the whole body in the ob/ob mice needs to be further assessed in a systematic manner. 

 

      The obese mouse model with a moderately high fat diet is an excellent representation 

of the dietary practice in America, where over one third of the people are obese and 

consuming a diet with 34% of fat by energy on average. The evidence from human 
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studies suggests that leptin mainly affects the human energy balance through regulating 

appetite instead of energy expenditure (6). The ob/ob mouse model may not provide 

much information regarding the development of obesity but could offer important 

insights for the development of the comorbidities associated with obesity. The ob/ob 

mouse is a great model for studying preexisting obesity if the diabetic mice are excluded. 

Stresses should be kept at a very low level for this model. Caution should be taken since 

the ob/ob mouse is leptin deficient and the possibility cannot be excluded that the 

negative results may be leptin dependent. 

 

      The differential sugar test (DST) is an effective method to evaluate the site-specific 

gut permeability. But the currently available metabolic cages are not suitable for carrying 

out the DST in the ob/ob mice. A specific metabolic cage system designed for the ob/ob 

mice is needed to prevent the food restriction. The regular metabolic cage for the lean 

mice is too small and the ones for the rats are too big for the ob/ob mice.  

 

      Since the ob/ob mice have a higher feed efficiency and significantly different energy 

metabolism at the early age compared with the lean mice (7), adult ob/ob mice may be 

used in the high fat diet model to prevent extreme fat accumulation and to achieve a 

healthier development when the mice are young. By using the adult ob/ob mice, diets 

with 34% fat by energy may pose less stress on the animals comparing with using the 

younger ob/ob mice. Caution should always be kept in mind since the ob/ob mouse 

model is leptin deficient and findings from animal models may not be directly applicable 

in the humans.  
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      There is an association between the self-reported lifetime stress and an increased risk 

of obesity in adult Canadians (8). Psychological stress is negatively correlated with 

healthy dietary behaviors and positively correlated with body weight (9). Human and 

animal studies have shown that the chronic psychological stress tends to affect the dietary 

pattern and increase craving for the nutrient-dense “comfort foods.” The stress associated 

visceral obesity may be linked to the hyperactivity of the sympathetic branch of the 

autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis 

(10). The depression and anxiety commonly observed in obese people (11-14) can 

activate the HPA axis (15). The increase of depression and/or anxiety is associated with 

an increase of waist-to-hip circumference ratio (16, 17).  Repeated stresses increase 

visceral adiposity independent of changes in body weight and the stress-induced visceral 

obesity may be mediated by the stress-induced IL-1β in non-visceral white adipose tissue 

(Figure 6.2) (18). In healthy and non-obese rats, the acute stress increases IL-1β more in 

the subcutaneous white adipose tissue than in the visceral white adipose tissue (18). IL-1β 

may function through autocrine and/or paracrine signaling in the white adipose tissue 

(19). The acute rise of IL-1β can have beneficial functions such as increasing 

lipolysis, increasing leptin secretion and potentiating glucocorticoid signaling. But 

sustained IL-1β signaling through repeated stress can increase visceral adiposity, which 

may be achieved by adipose hypertrophy and/or adipocytes hyperplasia in 

the subcutaneous adipose tissue during energy overflow (18).  

 

      The data from this ob/ob mouse study indicate that acute stress during obesity may 

affect the comorbidities of obesity. The postmortem pathology revealed severe hepatic 
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lipidosis and renal lipidosis in the ob/ob mouse. One of the possible reasons for the 

animal death was the stress induced during the second 24-hour stay in the metabolic cage 

and the last MRI scan one day after the metabolic cage stay. Two days’ staying in the 

metabolic cage results in transient hypertension and sustained tachycardia in the 

C57BL/6J lean mice (20).  It takes 3–4 days for the plasma and urinary biochemistry to 

reach stable values when the C57BL/6J mice are housed in metabolic cages (21). The 

serotonin (5-HT)(2C) receptor knockout mice (C57BL/6J background) develop 

hyperphagia and midlife obesity and they are hyperresponsive to repeated stress (22).   

 

      It is possible that the stresses from the second 24-hour stay in the metabolic cage and 

the MRI scan caused acute hepatic failure on top of the chronic renal and hepatic 

lipidosis. With the fatty liver in place, the hepatocytes are more vulnerable to damages. 

There are more apoptotic events in the livers from patients with NAFLD (23). The 

injection of anti-Fas antibody results in animal death within 12 hrs in 90% of the obese 

ob/ob mice while all lean control animals survive (24). The animal death is due to the 

hemorrhagic liver failure mediated by the apoptotic cell death. The ob/ob mice represent 

a model of NAFLD complicated with type 2 diabetes mellitus and hypertriglyceridemia 

(24). The hepatic failure in this study could have resulted from the food restriction and 

the sustained activation and subsequent exhaustion of the ANS and the HPA axis. The 

ob/ob mice develop spontaneous liver steatosis and the high fat diet can induce a more 

severe liver injury (25). The activation of the HPA axis could release a large amount of 

corticoids, which worsens the condition of the acute hepatic failure (26). Further studies 

are needed to clarify the mechanisms behind the mortality occurred in those ob/ob mice. 
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The ob/ob mouse is widely used as an animal model of type 2 diabetes. Diabetes 

mellitus is sometimes defined by fasting hyperglycemia (27). Diabetes mellitus may be 

more appropriately defined as a group of metabolic disorders featuring hyperglycemia 

due to defects in insulin secretion and/or insulin action (28). Although most of the ob/ob 

mice had hyperglycemia toward the end of the study, only two mice developed obvious 

symptoms of diabetes. The ob/ob mice on a diet with 6% fat (by mass) or on a rodent 

chow only develops transient hyperglycemia, which partially remits between 10 and 14 

weeks of age (29). Therefore, the fasting hyperglycemia may not be an ideal criterion for 

defining diabetes in the ob/ob mice. Clinical symptoms in combination with 

hyperglycemia may be used for defining diabetes in these mice. When the ob/ob mouse is 

used as an animal model of obesity or type 2 diabetes, the mice should be screened to 

differentiate diabetic and nondiabetic animals. The nondiabetic mouse may be used as a 

model of obesity and the diabetic mouse may be used as a model of type 2 diabetes to 

reduce confounding factors.  

 

LPS-induced Systemic Inflammation Model  

      The LPS induced inflammation model used in this dissertation had two phases, the 

acute and chronic stages. Dietary milk polar lipids did not protect the gut barrier integrity 

during the acute phase, within 24 h after the LPS injection. The LPS was injected 

subcutaneously and the LPS can be retained in the body until a month later (30). In the 

context of the chronic inflammatory stress induced by the LPS in young C57BL/6J mice, 

the gut permeability to extra large molecules increased (Figure 4.6c, LPS: 100-1000 kD), 

to large molecules decreased (Figure 4.6b, FITC-dextran: 4000 Da) and to small 

molecules increased (Figure 4.7a-d, lactulose and sucrose: 342.3 Da, sucralose: 397.64 
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Da). The decreased permeability to the large molecules could be due to the maturation of 

the gut barrier during development in the weaning mice (31). The increased permeability 

to the smaller molecules could be due to the compromise of the gut barrier integrity by 

the high fat diet and the LPS-induced inflammation. The absorption of the intestinal LPS 

can be mediated both through the paracellular diffusion and during the chylomicron 

secretion (32). So the increase of the plasma LPS may not be explained by the increase of 

gut permeability to large molecules but should be mediated mainly through chylomicron 

secretion.  

 

      The plasma level of resistin increased overtime in the C57BL/6J mice challenged 

with the LPS. The increase of plasma levels of resistin may be explained by the high fat 

feeding and the time of the feeding period (32). The diet with 45% fat by energy 

increases plasma resistin level compared with the diet with 13% fat by energy (32). The 

plasma resistin level is higher in the 29-week-old C57BL/6J mice than in the                

15-week-old mice regardless of the dietary fat level (32).  

 

      The plasma insulin level decreased in the C57BL/6J mice stressed by the 

subcutaneous LPS injection. The decrease of plasma insulin may be caused by the 

injected LPS. The intraperitoneal injection of LPS (at 10 µg per mouse) results in a more 

than half decrease of the insulin mRNA expression in the pancreatic islets in the           

10-week-old BALB/c male mice by 6h after the LPS injection (33). About 85% of the 

LPS injected intraperitoneally and 26% of the LPS injected subcutaneously should have 

been absorbed by 6h after the injection (34). The amount of the absorbed LPS by 6h post 
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injection in this study would be higher than the absorbed LPS in the BALB/c mice study 

(32.5 µg vs 8.5 µg). Although there could be species difference, the damage to the 

pancreas should have been much more severe in this study compared with that in the 

BALB/c mice study. The intravenous injection of LPS and the intraperitoneal injection of 

TNF-α can also decrease the plasma level of insulin in the C57BL/6 mice (34, 35). The 

high fat feeding decreases the plasma insulin level in the rats (36). It is not clear if high 

fat feeding contributed to the decrease of plasma insulin or not in this study. The decrease 

of the plasma insulin level was accompanied by the lack of body fat increase and the lack 

of the plasma leptin increase. There were significant increases of the body fat and the 

plasma leptin in the C57BL/6J mice fed the identical diets but were not stressed by the 

LPS injection (Figure 5.1b and 5.5c, Chapter 5). The LPS challenge may have prevented 

the accumulation of body fat by suppressing the secretion of insulin during the high fat 

diet feeding. It may be hypothesized that the suppression of insulin expression in the 

pancreas may prevent the body fat accumulation.  

 

      Two mice died in each of the GG and PL groups. The cause of the animal death was 

the LPS challenge. The LPS dosage may be slightly decreased (e.g., at 2.5-3 mg/kg body 

weight) to prevent animal death for chronic studies. The interesting effect of the 

decreased insulin level on the body fat content can be further explored by using an ideal 

dose of the LPS. The amount of LPS may be optimized to induce enough pancreas 

damage but not result in considerable damages to the other organs.  
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      In this study, the injected LPS resulted in a strong inflammatory response while the 

high level of plasma LPS (absorbed through the gut) was not accompanied by increased 

proinflammatory cytokine levels in the plasma. There is strong evidence from animal and 

human studies indicating that high fat diets result in absorption of the intestinal LPS into 

the blood (endotoxemia). The majority of the aforementioned studies did not evaluate 

how the amount, the quality and the structure of the dietary fat may affect the 

endotoxemia (32). The factors other than the plasma LPS may be changed by the high fat 

diets, which could affect the systemic inflammation. The dietary fat may serve as 

detergent and affect the absorption of antigens other than the LPS. The dietary 

triglycerides increase the intestinal absorption of a protein antigen, ovalbumin, into 

adipose tissue in a chylomicron-dependent manner (37).  The dietary fat absorption 

increases the ovalbumin absorption into the adipose tissues and the absorbed ovalbumin 

promotes the T-lymphocyte responses and inflammation (38). Given the fact that the 

intestinal lumen contains such a mosaic of foreign materials, there could potentially be 

other antigenic substances that may be absorbed and therefore facilitate systemic 

inflammation. The possibility of other potential gut-derived antigens is important to keep 

in mind. Data from the DIO mouse model (chapter 5) shed some light on the potential 

mechanism for the lack of a considerable inflammatory response corresponding to the 

increased plasma LPS absorbed from the gut. Chylomicron secretion may play an 

important role in the mechanism. The exact mechanisms for how the gut-derived LPS 

may affect systemic inflammation need further study. 
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      The finding that the foreign LPS may play a bigger role in promoting inflammation 

compared with the LPS absorbed from the gut could have important implications in this 

metagenomic era. Currently big expectations are given to the study of microbiota. The 

composition of the gut microbiota is closely associated with adiposity in mice and 

humans (39). The body should also have flexibility in adapting to the changes in the 

microbiota composition. The organism may be able to adapt to the antigens released from 

the gut bacteria. Further studies are warranted to explore how the gut-derived LPS may 

not induce a strong systemic inflammation. 

 

Diet-induced Obesity Model 

      In the DIO model, the differences in diet intake during the first few days may have 

made a difference in the fat accumulation process. This may have important implications 

in the dietary practice for human beings. People would not be concerned about the 

overconsumption of food for a short period of time. The data from this study suggest that 

the short-term overfeeding may have long-term consequences. Compared with mice in 

the CO and GG groups, the mice in the PL group consumed more diet during the first 3 

days and the difference was still significant by 10 days (Table 5.1). The body fat 

percentage was higher in the PL group compared with that in the CO and GG groups 

(Figure 5.1b). The differences in the body fat percentage between three groups were 

maintained until about day 55 when the body fat percentage started to increase at a faster 

rate in the PL group compared with the other two groups (Figure 5.1b). Obesity was 

established in half of the mice by day 68 (Figure 5.7f). There was no corresponding 

increase of food intake in the PL group starting from day 55.  
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      Two hypotheses may be proposed to explain the faster increase of the body fat 

percentage in the PL group from day 55. One hypothesis is that phospholipids promote 

the preadipocyte differentiation and result in the adipocytes hyperplasia in the PL group. 

Another hypothesis is that the phospholipids increase lipid incorporation into the 

adipocytes and result in the adipocytes hypertrophy in the PL group. Lecithin promotes 

the preadipocyte differentiation, upregulates differentiation-specific gene expression, and 

increases lipid levels in the adipocytes (40). The L-α-lysophosphatidylinositol is 

positively associated with obesity in humans (41). During the early phase of obesity in 

humans, the adipose expansion is mainly due to adipocyte hypertrophy. In the later stage 

of obesity after the body weight exceeds 170 per cent of the ideal, the adipocytes 

hyperplasia starts to play a role and the degree of the hyperplasia is well correlated with 

the obesity severity (42). At the time when the fat accumulation started to occur at a 

faster rate in the PL group (day 55, Figure 5.7e), the mice were not obese yet. So the first 

hypothesis may be better supported. The body fat percentage of the CO group reached a 

plateau at day 65. At around day 85, the body fat percentage plateaued in the GG and PL 

groups. The further increase of the body fat after day 65 in the GG and PL groups could 

have been caused by the phospholipids in the diets. It is possible that the phospholipids 

induced the preadipocytes differentiation from the beginning of the dietary treatment. It 

may be further hypothesized that the phospholipids-induced adipocytes hyperplasia did 

not contribute significantly to the body fat content and the later hypertrophy of the newly 

differentiated adipocytes were responsible for the higher body fat content observed in the 

PL group. 
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      This study revealed important dynamic changes in gut permeability and interesting 

interactions between dietary lipids and gut permeability during the development of the 

DIO. During the development of the DIO in the C57BL/6J mice fed high fat diets, gut 

permeability to FITC-dextran decreased (Figure 5.4a) in the CO and GG groups and in 

the PL group during the first 5 weeks. The decreased permeability to large molecules 

(FITC-dextran: 4000 Da) could be due to the maturation of the gut barrier during 

development in weaning mice. The same pattern has been observed in the mice 

challenged by the LPS (Figure 4.6b). Gut permeability to lactulose decreased over time in 

all groups except at week 11 in the PL group where the permeability to lactulose 

increased (Figure 5.4b). Gut permeability to sucralose fluctuated over time, increased to 

the highest level at week 6 and then decreased toward the end (Figure 5.4e). In general, 

the gut permeability to sugar probes decreased over time. That means the gut 

permeability to small molecules decreased and the mechanism could be the maturing 

process during development in young mice. So gut permeability to both small and large 

molecules decreased. That could mean the gut permeability through the paracellular 

diffusion decreased since the aforementioned molecules are absorbed primarily through 

the paracellular route (43).  

 

      The gut permeability to the intestinal LPS increased (Figure 5.5a) in all groups. The 

absorption of the intestinal LPS can be mediated through paracellular diffusion and 

chylomicron secretion (32). Given the fact that gut permeability was decreased to both 

the small molecules (sugar probes) and the large molecules (FITC-dextran), it is unlikely 

that the LPS was mainly absorbed through the paracellular diffusion since the LPS’s 
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molecular weight is much bigger (100-1000 kD). The increased permeability to the LPS 

may be mediated mainly through the chylomicron secretion (44). The chylomicron 

secretion is altered in both obese mice compared with lean animals and obese humans 

compared with lean controls (45, 46). Data from the LPS-stressed mouse model (chapter 

4) indicated that the plasma LPS increased considerably once the mice started to gain 

body fat but there was no corresponding increase in systemic inflammation. Taken 

together, it may be hypothesized that the absorption of gut LPS is mainly mediated 

through the transcellular pathway instead of the paracellular route. More attention should 

be paid to the nonparacellular pathways for exploring the absorption of the intestinal LPS. 

If the absorption of bacterial LPS into the plasma is mainly carried by chylomicron 

remnants, the lack of a considerable inflammatory response corresponding to the 

increased plasma LPS may be explained by the LPS-neutralizing activity of the 

lipoproteins (47).  

 

      The milk PL increased the permeability of small intestine and colon and decreased 

the expression of TJ protein occludin in the jejunum mucosa compared with the CO after 

the DIO. The milk GG increased the expression of the intestinal TJ protein ZO-1 

compared with the CO after the DIO but did not affect the gut permeability as measured 

by the FITC-absorption test and the DST. The change of the TJ proteins level in the 

intestinal mucosa was not always accompanied by the corresponding change in the gut 

permeability. The functional endpoints such as the DST and the FITC-absorption test 

may provide better estimation of the gut permeability than the measurement of TJ 

proteins. The change of the TJ proteins may help reveal the relevant mechanisms. 



217 
 

      The plasma inflammatory cytokines were not significantly affected by the high fat 

feeding or the dietary treatments. There was significant increase of the plasma LPS by the 

end of the study. The PL increased the plasma LPS compared with the CO but the PL did 

not increase the plasma inflammatory cytokines. These data support the finding from the 

LPS-stressed mouse model that the intestinal LPS may not pose a strong inflammatory 

response. Further studies are needed to explore the mechanisms for how the intestinal 

LPS may not induce a potent inflammatory response.  

 

      The dietary phospholipids increased obesity. A few days of higher food intake 

resulted in a significant higher body weight gain in the mice fed the PL-supplemented 

diet during the first 10 days of the feeding period. A similar trend was observed in the 

LPS-stressed model. In this study, the mice in the PL group eventually accumulated 

significantly more body fat after the establishment of the DIO even when they did not 

consume significantly more food. These observations indicate that the acute nutrient 

overconsumption or energy overflow may result in an important long-term impact on 

metabolism. The mechanisms for how dietary milk polar lipids may promote the body fat 

accumulation may shed light on the etiology of the diet-induced obesity.  

 

      Although the C57BL/6J mice are known to be an obesity-prone strain (48), not all of 

the C57BL/6J mice developed the DIO in this study. For a model of the DIO, the ideal 

situation may be achieved by using only the obese mice. Once the majority of the mice 

develop the DIO, the Fenton’s method may be used to identify the obese mice. By using 

only the obese mice, the confounding factors can be reduced to the minimum.  
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      The high-fat diets are usually used to induce the DIO in the C57BL/6J mice while 

they are weaned on the rodent chow. A run-in diet will help optimize the model by 

smoothing the diet transition from the rodent chow to the high fat diet. The mice 

consumed more food in the PL group in this study compared with the other two groups. 

There are a couple of possible reasons for the higher amount of the diet intake in the PL 

group. The PL diet was slightly softer than the other diets. Efforts may be taken to 

equalize the texture of the diets. The addition of the milk polar lipids into the PL and GG 

diets may have contributed the milk flavors, which could confound the results. At the 

beginning of the study, the mice had been weaned for 3 weeks and they may still have a 

strong preference for the milk flavors. If possible, the flavor of the diets should also be 

controlled. For example, a strong flavor may be added to all diets to mask other flavors. 

 

      The dynamic and static phases of obesity in the rats were reported in 1987 by 

Fukushima (49).  More recently, Smith described the two phases during the development 

of obesity, the dynamic phase and the static phase (50). The dynamic phase is the phase 

of rapid weight gain. The static phase is when weight gain slowed significantly or 

stopped and the meal size returned to normal. The dynamic phase is associated with the 

hyperphagia while the static phase is associated with the endocrine and metabolic 

abnormalities. Both the DIO obesity model and the hypothalamic obesity model show 

these two phases of body weight gain (51). Most of the information about human obesity 

was obtained by studying people in the static phase. The studies on childhood obesity 

also usually did not monitor the dynamic processes leading to the obesity. While there is 

a lot of information about the static state of obesity, the data on the dynamic state of 
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obesity is just beginning to emerge.  Little attention has been paid to the initial dynamic 

phase during the obesity development and the resurgence of the dynamic phase during 

the weight gain rebound after the weight loss. The dynamic phase is a better situation 

than the static phase for studying the relevant mechanisms when they are more active and 

available (50). A recent study revealed that the short-term overeating compromises the 

insulin sensitivity in the adipocytes (52). Four weeks of high energy diet results in a 10% 

body weight gain and a 19% body fat increase in the lean young adults.  Those volunteers 

did not become overweight (BMI = 24.3 kg/m2) and developed moderate systemic 

insulin resistance. Insulin signaling in adipocytes was impaired in those volunteers (52).  

The data from the current mouse study also indicated that the overeating during the 

dynamic phase may significantly affect the static phase.   

 

Effects of Dietary Polar Lipids across Different Rodent Models 

Effects of dietary polar lipids on gut permeability 

      The dietary gangliosides did not affect gut permeability and the dietary phospholipids 

increased the permeability of the colon when the ob/ob mice were fed a moderately high 

fat diet (Figure 6.1a). The ob/ob mouse model is a leptin-deficient model. The lack of the 

hypothesized effect of the dietary polar lipids on the gut permeability could be due to the 

absence of the active leptin. In the DIO model, the dietary gangliosides did not affect the 

gut permeability and the dietary phospholipids increased the permeability of the small 

intestine and the colon after the DIO. The lack of the expected effect of the polar lipids 

on the gut permeability in the lean C57BL/6J mice during the DIO indicated that the lack 

of the effect may not be leptin dependent. Taken together, the polar lipids did not reduce 
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gut permeability when the mice were obese no matter if they were leptin-deficient or not. 

The effects of dietary polar lipids on gut permeability may not be leptin-dependent in the 

context of obesity. In the LPS-stressed mouse model, the gangliosides did not affect the 

gut permeability and the phospholipids increased the permeability of the small intestine 

(Figure 4.7). The data from the three mouse models consistently revealed that the 

gangliosides may not have significant effect on the gut permeability while the 

phospholipids tend to increase the gut permeability.  

 

Effects of dietary polar lipids on systemic inflammation 

      When the ob/ob mice were severely obese and fed a stressful diet, the dietary 

phospholipids increased systemic inflammation as indicated by the increase of the plasma 

IL-6 level. The dietary gangliosides did not significantly affect systemic inflammation. In 

the DIO model, the dietary phospholipids increased the plasma LPS level by the end of 

the study (Figure 6.1a) and had little effect on the plasma inflammatory cytokines. The 

dietary phospholipids tended to increase the plasma IL-6 level after 5 weeks of dietary 

treatment. Since no cytokine data were available between 5 and 15 weeks, it is highly 

possible that the dietary phospholipids may significantly increase the plasma IL-6 level 

during that period of time. The dietary polar lipids did not affect systemic inflammation 

when the C57BL/6J lean mice were having acute inflammation after the subcutaneous 

injection of the LPS. Neither did the dietary polar lipids affect systemic inflammation in 

the chronic inflammatory process during recovery nor when the LPS-induced 

inflammation dissipated. The phospholipids increased the plasma LPS level (Figure 6.1b) 

without affecting the systemic inflammation. It is not clear if the increased endotoxemia 

was a direct effect of the phospholipids or was due to the increased gut permeability 
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(Figure 6.1). In conclusion, the dietary phospholipids may increase the plasma IL-6 level 

in the context of obesity in the C57BL/6J mice and the dietary gangliosides may not have 

significant effect on systemic inflammation in the C57BL/6J lean and obese mice.  

 

Effects of dietary polar lipids on lipid metabolism 

      The dietary phospholipids lowered the liver mass in the ob/ob mice and the          

LPS-stressed C57BL/6J mice (Figure 3.3a & 4.3a). The dietary polar lipids did not have 

any effect on the liver mass in the C57BL/6J mice with the DIO. The effect of the dietary 

polar lipids on liver mass may not be leptin-dependent. The dietary polar lipids may have 

a stronger effect on the liver mass in the context of inflammation as in the ob/ob mice and 

the LPS-stressed C57BL/6J mice.  

 

      The dietary phospholipids decreased the cholesteryl ester and the PI in the liver and 

decreased the PI in the skeletal muscle of the ob/ob mice. The dietary phospholipids 

decreased the PI in the skeletal muscle and the dietary phospholipids and gangliosides 

increased the PI in the liver of the C57BL/6J lean mice stressed with LPS. The PI in the 

skeletal muscle and the liver was not significantly affected by the dietary polar lipids in 

the C57BL/6J mice with the DIO. Taken together, the phospholipids decreased the PI in 

the skeletal muscle in both the ob/ob mice and the LPS-stress mice. It is possible that the 

effect of the phospholipids on the PI in the skeletal muscle may be affected by the 

systemic inflammation. The PI can be phosphorylated into phosphoinositides, which play 

important roles in lipid signaling, cell signaling and membrane trafficking. 

Phosphoinositides are essential components of the insulin secretory system (53). The 
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dietary polar lipids had a bigger effect on the tissue PI level when the organism was in 

less homeostatic conditions such as severe obesity and systemic inflammation.  

 

      The dietary PL down regulated the fatty acid synthesis gene Acacb in the liver of all 

three mouse models. For the fatty acid oxidation gene Acaa2, it was down regulated by 

the dietary PL and GG compared with the CO in the ob/ob mice. The Acaa2 was down 

regulated by the dietary PL compared with the GG in the C57BL/6J mice stressed with 

LPS and was not significantly affected in the C57BL/6J mice with the DIO. The dietary 

PL suppressed the cholesterol synthesis gene Hmgcr in the liver of the C57BL/6J mice 

stressed with LPS and up regulated the cholesterol reverse transport gene Scarb1 in the 

C57BL/6J mice with the DIO. The dietary polar lipids did not significantly affect the 

gene expression associated with the cholesterol regulation in the liver of the ob/ob mice. 

Taken together, the dietary polar lipids had different effects on lipid metabolism in the 

liver in three mouse models. The decrease of the liver lipids level by the phospholipids 

may be mediated through the down regulation of the fatty acid synthesis gene Acacb. The 

phospholipids tend to decrease the cholesterol level in the liver by either suppressing 

synthesis or increasing excretion in the C57BL/6J lean mice models.  

 

      The dietary polar lipids also had slightly different effects on the plasma lipid levels in 

the three models. The plasma lipid profile was not significantly affected by the dietary 

polar lipids in ob/ob mice. The dietary GG and PL reduced the plasma CE level after the 

LPS stress in the C57BL/6J mice and did not significantly affect the plasma CE level in 

the C57BL/6J mice with the DIO. The dietary GG and PL reduced the plasma FFA level 
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before DIO in the C57BL/6J mice and the dietary GG reduce the plasma FFA level in the 

C57BL/6J mice stressed with the LPS. The gangliosides tend to reduce the plasma FFA 

level in the C57BL/6J mice regardless of the inflammatory status. 

 

      The dietary polar lipids did not significantly affect the polar lipids levels in the 

intestinal mucosa of the ob/ob mice. Compared with the CO and the GG, the dietary PL 

decreased PE in the colon mucosa of the C57BL/6J mice stressed by the LPS and the 

C57BL/6J mice with the DIO. The dietary PL decreased PC in the small intestinal 

mucosa of the LPS stressed C57BL/6J mice but increased the PC in small intestinal 

mucosa of the C57BL/6J mice with the DIO. The effects of the dietary polar lipids on PC 

level in the intestinal mucosa were different during the LPS-induced systemic 

inflammation and the DIO.  The phospholipids tend to decrease the polar lipids in the 

intestinal mucosa and the skeletal muscle. It is not clear how the dietary phospholipids 

may reduce the polar lipids level in the tissues. It may be hypothesized that the high 

dietary phospholipids level may have down regulated the receptors for the absorption of 

the polar lipids.  

 

Future Directions 

      Although the milk polar lipids exist in almost all dairy products, the absolute amount 

of the polar lipids in the dairy products is quite low, ranging from 9 mg per 100 g skim 

milk to 1250 mg per 100 g butter serum (54). It is quite expensive to purify and collect 

the individual class of the milk polar lipids. The milk polar lipids may be enriched as a 

complex compound or a semi purified isolate. So in this dissertation the milk polar lipids 

were supplemented in the diets either as a complex isolate or a semi-purified isolate to 
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increase the applicability of the results. In order to pinpoint which specific component of 

the polar lipids resulted in the increase of gut permeability and plasma LPS, the dietary 

supplementation of the purified polar lipid classes one at a time is needed to explore the 

relevant mechanisms. Both the in vitro cell model and the animal models may be used to 

study the mechanisms. For gut permeability, the Caco-2 cell monolayer could be a great 

model. The well-established animal models of colitis could also be used. For systemic 

inflammation, the LPS induced acute and chronic animal models could be a good place to 

start. For lipid metabolism, the animal models of NAFLD and/or NASH can be used. The 

metabolomic and lipidomic approaches can also be adopted for studying the effects of the 

dietary polar lipids.  

 

      The undesirable effects of the dietary phospholipids on gut permeability and systemic 

inflammation in this dissertation may be due to the high dietary level of the phospholipids. 

The phospholipids were supplemented at the level of 1% (w/w) of the diet. Future studies 

may target a level less than 1% (w/w) of the diet. There may be a dose effect. Different 

dietary levels may be compared to find a level that may generate more desirable effects. 

 

      Large amounts of the milk polar lipids rich material may be produced as a byproduct 

from buttermilk or cheese whey during the butter or cheese making processes. While it is 

worthwhile to try a lower dietary level of purified milk polar lipids in the dietary 

supplementation studies, it is also interesting to look at the effects of the direct dietary 

incorporation of the polar lipids rich dairy byproducts such as the whey powder and 
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buttermilk powder. A systematic approach would be ideal to assess the effects of the milk 

polar lipids rich dairy products on the major organ systems in animal models.  
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Figure 6.1 Most of the hypothesized effects of the polar lipids were not supported by the 

data. The phospholipids did not reduce gut permeability but increased obesity and the 

plasma LPS in the ob/ob mouse model and the DIO model (a). The phospholipids did not 

reduce gut permeability but increase the plasma LPS in the LPS-stressed mouse model 

(b). Red X indicates that the data did not support the hypothesis. Red arrow indicates the 

undesirable effect.  
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Figure 6.2 Stress-induced dysfunction of the subcutaneous white adipose tissue 

contributes to the development of visceral adiposity (18). 
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CORRELATION COEFFICIENT NETWORK ANALYSIS  

 

      Dietary supplementation of bioactive compounds should affect the eleven organ 

systems in the body. Claims about the effects of bioactive compounds cannot be 

appropriately and responsibly made until the main organ systems are assessed. When 

multiple organ systems are assessed, it is common to observe contradictory effects on 

different endpoints. A method is needed to assess the overall effect of dietary 

supplements on multiple endpoints. The network analysis could be a potential method for 

evaluating the overall effect of dietary supplements. Limited literature indicates that 

correlation network analysis may help reveal the overall pattern of biological endpoints 

(1). A lot of parameters were evaluated in the mouse studies of this dissertation. Dietary 

polar lipids had mixed effects on different endpoints. It is helpful to explore the overall 

effect of dietary milk polar lipids on the parameters related to the major hypotheses 

through correlation network analysis. The correlation network analysis was carried out 

for the LPS-stressed mouse model and the diet-induced obesity model. The network 

analysis was not done for the ob/ob mouse model since the number of animals per group 

was low (smallest n = 3).  

 

      The Pearson correlation coefficients of all final parameters were generated by SAS 

9.2. Data from the same number of animals were used among groups. The correlation 

coefficient matrices were subjected to network analysis. The matrices were imported as 

Excel workbooks into network analysis software Cytoscape desktop application 2.8.3. 

Correlation coefficients and associated p values were used as edge attributes. Parameter 
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names were used as node names and they were categorized into types. Networks were 

generated and edges were filtered by setting cutoffs for p values, which was 0.05. Nodes 

connected by the filtered edges were included in the filtered child networks. The Girvan-

Newman fast greedy algorithm (by GLay Cytoscape plugin), operating exclusively on 

connectivity, was carried out to generate community clusters for correlation networks. 

Nodes for parameters related to the major hypotheses and their first neighbors were 

selected to generate child networks. The following parameters were selected to reflect the 

major hypotheses: colon permeability, small intestine permeability, plasma interleukin-6 

(IL-6) and tumor necrosis factor-α (TNF-α), and liver triglycerides (TG). Only edges 

connecting those selected parameters were retained and the other edges were discarded.    

Then force-directed network layouts were generated from the retained nodes and edges.  

 

Correlation Network Analysis for Chapter 4 

      The correlation network analysis assessed all of the parameters measured at the end 

of the study (day 57, n=4). The legends for the network analysis are shown in Figures 

A1a-c. The community cluster analyses indicated less connectivity in the PL group 

compared with the CO and GG groups (9 vs 7 communities). The PL group had less 

significant negative and positive correlations compared with the CO and GG groups 

(Table A1). Less correlations in the PL group is accompanied by less desirable biological 

functions (Figure 4.10). The deduction in positive correlations is associated with a 

metabolic disorder in the disease model animals (1). The undesirable effect of PL may be 

mainly associated with the decrease of positive correlations. Decrease of positive 

correlations may indicate the compromise of biological functions by dietary polar lipids 

in the context of systemic inflammation induced by lipopolysaccharide (LPS). 
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      For correlations involve parameters related to the major hypotheses, the force-

directed network layout is shown in Figure A2. In the CO group, small intestine 

permeability is negatively correlated with liver mass and cecum content mass. Small 

intestine permeability is positively correlated with plasma insulin, retroperitoneal fat 

mass and body weight. Colon permeability is positively correlated with 

phosphatidylcholine (PC) content in jejunum mucosa, liver sphingomyelin (SM), muscle 

free fatty acids (FFA), and jejunum mass. Colon permeability is negatively correlated 

with liver phosphatidylinositol (PI), plasma diglycerides (DG), TG and cholesteryl ester 

(CE). Plasma TNF-α is positively correlated with liver DG and muscle CE. Plasma IL-6 

is positively correlated with jejunum mucosa mass, colon mucosa mass, adipose PE, and 

gangliosides content in colon mucosa. Plasma IL-6 is negatively correlated with body fat 

mass and ileum mucosa mass. 

 

      In the GG group (Figure A2), small intestine permeability is positively correlated 

with plasma PC and is negatively correlated with muscle phosphatidylethanolamine (PE) 

and phosphatidylserine (PS), and GG content in colon mucosa. Plasma IL-6 is negatively 

correlated with plasma monocyte chemoattractant protein-1 (MCP-1) and is positively 

correlated with mesenteric fat mass and occludin protein expression in jejunum mucosa. 

Liver TG is positively correlated with PC in ileum mucosa and is negatively correlated 

with colon mucosa mass. 

 

      In the PL group (Figure A2), small intestine permeability is positively correlated with 

adipose TG. Colon permeability is positively correlated with liver PI and is negatively 
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correlated with subcutaneous fat in upper body. Plasma TNF-α is positively correlated 

with cecum mass and muscle FFA. Plasma IL-6 is negatively correlated with liver PS and 

is positively correlated with plasma leptin and LPS, PE in colon mucosa, and 

gangliosides in ileum mucosa. Liver TG is positively correlated with retroperitoneal fat 

mass. 

 

      It is unexpected that plasma IL-6 is negatively correlated with subcutaneous fat mass, 

visceral fat mass, brown adipose tissue mass and total fat depots in the CO group. This 

unexpected observation is not observed in the GG and PL groups. Plasma IL-6 is 

positively correlated with mesenteric fat mass in the GG group and is not correlated with 

fat mass in the PL group. There is no good explanation for those unexpected correlations 

in the CO group.  

 

      It is interesting to notice that the small intestine permeability is positively correlated 

with plasma insulin and body weight in the CO group. These correlations were not 

observed in the GG and PL groups. It might be speculated that the increase of small 

intestine permeability may increase plasma insulin. The increase of small intestine 

permeability may result in endotoxemia and systemic inflammation, which may decrease 

insulin sensitivity. The body may compensate the decreased insulin sensitivity by 

increasing plasma insulin. It is unexpected that there were no correlations between tight 

junction proteins in gut mucosa and gut permeability. This lack of correlation may 

indicate that the amount of tight junction proteins is not critical in determining gut 

permeability during inflammatory stress.  
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      The CO group had more correlations involving plasma IL-6 and colon permeability 

compared with GG and PL groups (Figure A2). The more correlations in the CO group 

may indicate more desirable biological functions. It might be hypothesized that GG and 

PL have undesirable effect on biological functions associated with plasma IL-6 and colon 

permeability. 

 

Correlation Network Analysis for Chapter 5 

      The correlation network analysis assessed all of the parameters measured at the end 

of the study (day 101, n=5). The CO group had more total correlations compared with the 

GG and PL groups (Table A2). The GG group had less negative correlations compared 

with the CO group (Table A2). The community cluster analyses indicated little difference 

in connectivity among three groups (Table A2).  

 

      The GG and PL groups had less positive correlations compared with the CO group 

(Table A2). The decrease of positive correlations is associated with a metabolic disorder 

in the disease model animals (1). If the reduction in positive correlations is an indicator of 

compromised biological functions, the overall effect of GG and PL may have been 

undesirable. The GG and PL decreased the negative correlations compared with the CO 

group (Table A2). Although there is little difference in connectivity of the network 

layouts among three groups, the GG and PL groups had less total correlations. The 

overall effect of CO on all endpoints was less desirable compared with that of GG 

(Figure 5.9). The overall effect of PL on all endpoints is mixed compared with that of CO 

(Figure 5.9). The decrease of positive correlations in the PL group may indicate the 

overall effect of PL is undesirable compared with CO. The decrease of negative 
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correlations in the GG group is accompanied by the lack of undesirable effect compared 

with the PL group. It may be hypothesized that the decrease of negative correlations is 

associated with reduction in negative effect.  

 

      For correlations involve parameters related to major hypotheses, the force-directed 

network layout is shown in Figure A3. In the CO group, small intestine permeability is 

positively correlated with muscle CE and is negatively correlated with plasma insulin. 

Colon permeability is negatively correlated with occludin protein expression in jejunum 

mucosa. Plasma IL-6 is positively correlated with plasma PC and is negatively correlated 

with liver SM and adipose TG. Plasma TNF-α is positively correlated with liver 

expression of beta-actin and body lean mass. Plasma TNF-α is negatively correlated with 

subcutaneously fat mass, visceral fat mass, body fat mass, liver TG, and colon mucosa 

mass. Liver TG is negatively correlated with plasma TNF-α and is positively correlated 

with plasma FITC and FFA. 

 

      In the GG group (Figure A3), small intestine permeability is positively correlated 

with homeostasis model assessment of insulin resistance (HOMA-IR) and is negatively 

correlated with muscle PS and liver mass. Colon permeability is positively correlated 

with PE in jejunum mucosa and PC in colon mucosa. Colon permeability is negatively 

correlated with colon mass and colon mucosa mass, liver PI and CE, and muscle PC and 

TG. Plasma IL-6 is negatively correlated with occludin protein expression in colon 

mucosa, homeostasis model assessment of insulin resistance (HOMA-IR), and liver PE. 

Plasma TNF-α is positively correlated with liver PE and muscle TG. Liver TG is 
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positively correlated with body fat mass, subcutaneous fat mass, and mesenteric fat mass. 

Liver TG is negatively correlated with plasma LPS, PC content in ileum mucosa and 

body lean mass. 

 

      In the PL group (Figure A3), colon permeability is negatively correlated with 

occludin protein expression in jejunum mucosa, plasma TNF-α, and liver expression of 

acetyl-Coenzyme A acyltransferase 2. Small intestine permeability is positively 

correlated with cecum mass, cecum content mass, PE in ileum mucosa, and beta actin 

expression in liver. Small intestine permeability is negatively correlated with adipose DG, 

liver expression of acetyl-Coenzyme A acyltransferase 2, retroperitoneal fat mass and 

inguinal fat mass. Plasma IL-6 is positively correlated with liver FFA and cecum mass. 

Plasma IL-6 is negatively correlated with body fat mass, plasma TG, muscle TG and liver 

TG. Plasma TNF-α is positively correlated with PI content in colon mucosa and occludin 

protein expression in jejunum mucosa. Plasma TNF-α is negatively correlated with colon 

permeability and ileum mucosa mass. Liver TG is positively correlated with plasma FFA, 

body fat mass, plasma TG, body weight, and liver expression of scavenger receptor class 

B, member 1. Liver TG is negatively correlated with body lean mass, liver FFA, plasma 

IL-6, and muscle mass. 

 

      It is unexpected that plasma TNF-α is negatively correlated with subcutaneous fat 

mass, visceral fat mass, brown adipose tissue mass and total fat depots in the CO group. 

These unexpected correlations were not observed in the GG and PL groups. Plasma TNF-

α is not correlated with fat mass in the GG and PL groups. This observation is consistent 
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with the unexpected negative correlation between plasma IL-6 and fat mass in the CO 

group of the LPS model (Figure A2 – CO, Chapter 4). Most of the mice in the CO group 

were not obese according to Fenton’s definition for obesity. It may be hypothesized that 

the increase of adipose tissue in lean mice decreases plasma proinflammatory cytokines 

such as IL-6 and TNF-α; GG and PL may compromise this negative correlation.  

 

      It is surprising that no correlations were observed between tight junction proteins in 

gut mucosa and gut permeability. This lack of correlation may indicate that the amount of 

tight junction proteins does not play an essential role in determining gut permeability 

during diet-induced obesity. The CO group had more correlations involving plasma TNF-

α compared with GG and PL groups. The small intestine permeability is negatively 

correlated with plasma insulin in the CO group and positively correlated with insulin 

sensitivity (HOMA-IR). Positive correlation was observed between small intestine 

permeability and plasma insulin in the CO group of the LPS model (Figure A2 – CO, 

Chapter 4). Taken together, the increase of small intestine permeability may decrease 

insulin sensitivity through increasing systemic inflammation and the body may 

compensate the decreased insulin sensitivity by increasing plasma insulin. 

 

      Liver TG is positively correlated with body fat and negatively correlated with body 

lean mass in GG and PL groups. Liver TG is not correlated with body fat in the CO group. 

It may be hypothesized that GG and PL potentiate the effect that body fat accumulation 

increases liver TG. The GG and PL groups had more correlations involving liver TG 

compared with the CO group. The GG group had more correlations involving colon 
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permeability compared with CO and PL groups. The PL group had more correlations 

involving plasma IL-6 and small intestine permeability. It may be hypothesized that GG 

and PL have a bigger influence on liver TG and a smaller influence on plasma TNF-α 

compared with CO; GG has a bigger influence on colon permeability compared with CO 

and PL; PL has a bigger influence on plasma IL-6 and small intestine permeability 

compared with CO and GG.   

 

 

Summary 

       The results of correlation network analyses in three mouse studies consistently 

support the hypotheses that decreased network connectivity is associated with less 

integrative and cohesive connections of biological functions; decrease in positive 

correlations is associated with compromised biological functions while decrease in 

negative correlations is associated with less undesirable effects; increased correlations of 

a parameter is associated with a bigger influence of the treatment on that parameter. 

Since very little literature is available regarding correlation network analysis of 

functional biological endpoints, correlation network analysis should be advocated to 

further test the hypotheses.  
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Table A1 Number of Pearson correlation coefficients (p < 0.05) among parameters 

measured at day 57 in the LPS-stress mouse model. 

 

Diet CO GG PL 

Negative correlations 105 97 72 

Positive correlations 109 106 82 

Total correlations 214 203 154 

Community clusters 7 7 9 

 

 

Table A2 Number of Pearson correlation coefficients (p < 0.05) among parameters 

measured at day 101 in the DIO mouse model. 

 

Diet CO GG PL 

Negative correlations 162 136 152 

Positive correlations 168 160 154 

Total correlations 330 296 306 

Community clusters 7 8 7 
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Figure A1a Visual legend – node color mapping. ALIG: adipose lipid per gram tissue; 

BC: body composition; CK: cytokine; DST: differential sugar-absorption test; FITC: 

fluorescein isothiocyanate; GE: gene expression; GGs: gangliosides; GIM: 

gastrointestinal mass; GLU: glucose; LLIG: liver lipid per gram tissue; MLIG: muscle 

lipid per gram tissue; MuLIG: mucosa lipid per gram tissue; PLI: plasma lipid; TJP: tight 

junction protein; TM: tissue mass. 
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Figure A1b Visual legend – node shape mapping. ALIG: adipose lipid per gram tissue; 

BC: body composition; CK: cytokine; DST: differential sugar-absorption test; FITC: 

fluorescein isothiocyanate; GE: gene expression; GGs: gangliosides; GIM: 

gastrointestinal mass; GLU: glucose; LLIG: liver lipid per gram tissue; MLIG: muscle 

lipid per gram tissue; MuLIG: mucosa lipid per gram tissue; PLI: plasma lipid; TJP: tight 

junction protein; TM: tissue mass. 
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Figure A1c Visual legend – color, line width and line style of edge mapping. Edge is 

colored by p value. Edge line width and style are coded by correlation coefficient (CR).   
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Figure A2 Correlations (p < 

0.05) involve the following 

parameters measured at the end 

of the LPS study: liver 

triglycerides level, small 

intestine permeability, colon 

permeability, and plasma IL-6 

and TNF-α. %: percentage of 

body weight. Adipose: gonadal 

adipose tissue. BAT: brown 

adipose tissue. LPS: 

lipopolysaccharide. SI: small 

intestine.   
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Figure A3 Correlations 

(p < 0.05) involve the 

following parameters 

measured at the end of 

the DIO study: liver 

triglycerides level, small 

intestine permeability, 

colon permeability, and 

plasma IL-6 and TNF-

α. %: percentage of body 

weight. Acaa2: acetyl-

Coenzyme A 

acyltransferase 2. Actb: 

beta-actin. Scarb1: 

scavenger receptor class 

B, member 1. Adipose: 

gonadal adipose tissue.  

FITC: fluorescein 

isothiocyanate. HOMA-

IR: homeostasis model 

assessment of insulin 

resistance. LPS: 

lipopolysaccharide. SI: 

small intestine.   
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