
- 1 -

Effects of a Distributed Computing Architecture on the
Emerald Nanosatellite Development Process

Julie Townsend, Bryan Palmintier, and Eric Allison

Space Systems Development Laboratory
Stanford University

Advisors: Prof. Robert Twiggs, Christopher Kitts

Abstract

Building satellites with greater capabilities on shorter
timelines requires changes in development approach.
Relative to previous satellite projects in Stanford’s
Space Systems Development Laboratory (SSDL), the
Emerald Nanosatellite system is highly complex. Its
mission requires numerous experiments and relatively
sophisticated subsystem capabilities. To develop this
system on a short two-year timeline required a new
development approach to simplify system integration.

As a result, the Emerald development team adopted a
modular distributed computing architecture. While this
decision imposed many changes on Emerald’s design
process, the benefits of the distributed architecture for
system integration and testing justified its selection.
This approach has already affected the early stages of
engineering model integration, and is expected to
provide flexibility throughout construction and
integration of the flight hardware. In addition the
distributed architecture developed for the Emerald
project will provide a useful tool for future
development efforts in the SSDL and the small satellite
development community.

Table of Contents

1. Introduction
2. Distributed Computing Overview
3. Emerald Architecture
4. Designing for a Distributed Architecture
5. Implementation
6. Orbital Operations
7. Future Applications
8. Conclusions
9. Acknowledgements

1. Introduction

Emerald is a two-year, two-satellite mission being
pursued jointly by the Space Systems Development
Lab (SSDL) at Stanford University and the Intelligent
Robotics Program at Santa Clara University.
Emerald’s mission is to explore “Robust Distributed
Space Systems”, a phrase that encompasses many
philosophies of distributed satellite system
implementation. In particular, Emerald is a testbed for
distributed science, scientific autonomy, distributed
health monitoring, and emerging formation-flying
technologies.

In keeping with the mission philosophy, the Emerald
team has chosen to experiment with a distributed
computing architecture for internal satellite processing,
commanding, and data handling. This paper provides a
description of the distributed computing architecture
being implemented on the Emerald satellites. In
addition, the paper discusses the effects of this design
on the development and implementation of the Emerald
satellite system and implications for future satellite
development.

2. Distributed Computing
Overview
Examples of distributed computing systems are
everywhere in the modern world: the Internet, PC bus
architectures (ISA, PCI, etc.), even the engine control
systems of many cars. Such systems make it possible
for many different design teams to easily come
together with a cohesive product, and in many
configurations provide significant performances
advantages (such as parallel computing). Applying
such an architecture to a satellite system also offers
some unique advantages, that are briefly presented
here.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/77517854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 2 -

Current applications
Many of the highest profile examples of distributed
computing systems involve connecting general purpose
computers (PCs, mainframes, etc.) together. However,
the recent surge in distributed computing for specific
small specific microntrollers provide a better analogy
for such systems on satellites. Such Embedded systems
are behind everything from automotive engine and
accessory control and coordination, to industrial
automation and control, to home entertainment
systems, and more.

For space applications some aerospace corporations
have historically used standard physical and data buses,
but typically such systems still require significant
reconfiguration of software and hardware in order to
adapt to each mission, or are specifically designed with
a single mission in mind. The recent push toward
“Faster, Cheaper, Better” systems, has prompted
further development of standardized architectures, but
few have actually been implemented. For example JPL
is developing the distributed X2000 architecture for
deep space missions.

Advantages for Spacecraft
Adopting a modular, distributed bus architecture offers
potential advantages throughout the entire lifecycle of a
satellite (or satellite).

At the design stage, a distributed system can simplify
the command and data flow within the satellite by
clarifying which specific component is responsible for
each task and what information exchange is required to
make cause it to happen. Often a functional block from
a signal flow diagram will map directly to a physical
box on the satellite.

During development integration, a distributed
architecture allows subsystems and experiments to
tested individually and then incrementally integrated
with other subsystems. This can happen even if crucial
parts, such as the CPU, are delayed, provided the bus
can be commanded by another system, such as a PC. It
would also be possible to use the internet for “virtual
integration” between remote locations. This would
involve replacing the physical bus wiring with an
internet connection.

On-orbit, a distributed architecture makes it possible
for subsystems to share resources such as
computational power and memory with-in a satellite
and among multiple satellites. Also, a distributed
architecture makes it possible to adapt to subsystem
failures, even CPU failures (assuming a direct Comm
to bus connection) while still continuing the mission.

And when extended to a multi-satellite mission, a
distributed architecture allows multiple satellites to be
inter-connected and used as a single “virtual bus.”
Resources, such as communication (and indirectly
power), computation can be reallocated and shared
among a fleet of satellites Experiments involving
multiple satellites can be coordinated and controlled
autonomously from a single satellite, as though the
experiment involves only a single satellite. [i]

3. Emerald Architecture

Figure 1. Artist’s Conception of Emerald on Orbit (by
W. Henning)

The Emerald Nanosatellite project is an entirely student
managed, designed, built, and operated project building
two satellites for launch in 2001. Emerald is a joint
effort of the Space Systems Development Lab (SSDL)
at Stanford University and the Intelligent Robotics
Program at Santa Clara University.

Emerald is part of the University Nanosatellite
Program funded by the Air Force Office of Scientific
Research (AFOSR) and the Defense Advanced
Research Project Agency (DARPA). For this program,
ten applicant universities were each selected receive
funding on the order of $100,000 to design and
construct a 10-15 kg satellite on a two-year timeline. In
addition to funding, a launch opportunity was provided
for each satellite aboard the Space Shuttle in 2001. The
goal of this program is perform creative low-cost
experiments as a technology testbed for future
developments in emerging fields such as distributed
satellite systems.

Emerald’s mission is to explore Robust Distributed
Space Systems. To this end, experiments and
demonstrations will be performed in autonomous
operations, distributed science, and distributed health
monitoring. A variety of new technologies for
formation flying will be demonstrated, including

- 3 -

spaceborne GPS receivers, inter-satellite
communication, drag-based position control, and a
colloid microthruster, and ultimately, these components
will be integrated for a demonstration of closed-loop
formation flying. In addition, each Emerald satellite
will integrate a new space mission architecture in
which computing, control, and data management are
distributed throughout a single satellite, and across a
formation of closely flying satellites.

Sponsors for these experiments include NASA
Goddard Space Flight Center, NASA Ames Research
Center, Jet Propulsion Laboratory, Department of
Defense, Boeing, Lockheed-Martin, Honeywell, and
Stanford University laboratories such as the Space and
Radioscience Laboratory (STAR lab), the Plasma
Dynamics Laboratory, and the Aerospace Robotics
Laboratory.

The bus design for the Emerald spacecraft is based on
Stanford`s Satellite Quick Research Testbed (SQUIRT)
microsatellite design.[ii] This satellite bus consists of:

− a 15 kilogram structure in a modular 18 inch
diameter hexagonal configuration

− full-duplex ground-to-orbit communication in
the amateur UHF and VHF bands

− half-duplex intersatellite communication in the
amateur UHF band

− body mounted high efficiency GaAs solar panels
with NiCd cells for power storage

− 5-volt and 12-volt regulated power distribution
− passive insulating and conducting elements for

thermal control.
− light sensors and a magnetometer for attitude

sensing

The Emerald team is currently building and integrating
engineering model hardware. Flight hardware
construction is planned for the summer to allow
integration and testing to begin in fall 2000.
Additional project information is available on the
Emerald website at http://ssdl.stanford.edu/Emerald/.
[iii][iv][v]

Distributed Data Handling

Overview
The Emerald distributed computing architecture was
designed to explore the advantages of distributed
systems. Limited development time and mass, volume,
and budget constraints dictated a simple and easily
implementable approach. Adaptability for future
projects and missions was also an important
consideration. This section provides a detailed

description of the distributed data handling architecture
being implemented on Emerald.

Architecture
To maximize integration ease and flexibility, the
Emerald distributed architecture is built around a
standard serial data bus with strictly defined interfaces.
However, certain subsystems (Comm and GPS)
required direct, non-standard connection to the CPU.
The resulting hybrid configuration combines a bus
topology for most subsystems with a centralized
topology for Comm and GPS. This arrangement is
illustrated in Figure 2.

Comm GPS

CPUBus
Monitor

MERIT/
uThrusterPower

AD&C

VLF

I2C Data Bus

Custom RS232

Dallas Telemetry

Figure 2. Emerald Data Bus Topology

The rationale behind this topology is as follows: The
Emerald CPU and Modem are both manufactured by
SpaceQuest and designed to work together through a
custom interface. Inserting bus interfaces between
these two components is unnecessary and would be
inefficient. The GPS module merits a direct CPU
connection due to its continuous data production and
inter-satellite communication during relative position
measurements. To prevent traffic on the data bus
during relative position operations, GPS data is passed
directly to the CPU. Finally there is a direct link from
the Comm system to the Bus Monitor to allow signals
to be sent directly to the I2C bus, bypassing the main
CPU. For all other subsystems, this configuration
offers a high level of modularity.

Each subsystem that interfaces to the I2C bus is more
than just a passive input/output device. The subsystems
are “smart”. Each utilizes a PICmicro® microcontroller
to perform application-specific data collection and
processing tasks. Smart subsystems allow the CPU to
interact with the system via high-level commanding.
For example, instead micro-managing data collection
in any given subsystem, the CPU can send a command
such as “c(1)”, collect data every second until I say
stop, or “c(1,34),” collect 34 sets of data at a rate of 1
Hz. Abstracting out these functions to such a high level
relieves the CPU of responsibility for low-level

- 4 -

subsystem functionality, reserving its processing power
for other tasks. Such abstraction also allows hardware
modifications in the subsystems to be more transparent
to the CPU.

Data Bus (I2C)
The data bus protocol selected for the Emerald
distributed data handling system is the Inter-
Integrated Circuit (I2C). This protocol is used in
Audio/Visual equipment, on PC motherboards, and
in “smart” batteries.

Low level: I2C

I2C is a synchronous serial protocol that uses only 2
wires, one for data (SDA) and one for clock (SCL). It
also requires a common ground. It operates at 100 kbps
(kilo bits per second) in standard mode.

Both lines utilize wired-AND connections, which allow
for arbitrary numbers† of devices and support “hot
swapping”, adding/removing devices without
interrupting the bus.

Communication is always initiated by a master, which
also drives the clock. Each I2C message consists of an
arbitrary number of 9 bit “words.” These words are 8
bits of information (supplied by the current
“transmitter”) plus one acknowledge bit (from the
“receiver). The first word of the message sets the
address (7bits) and the communication direction (Read
or Write). In read mode, after the first acknowledge,
the slave begins transmitting and the master becomes
the “receiver.”

For more information and details, see the I2C
specification [vi] or The I2C Bus from Theory to
Practice [vii].

High Level Messaging

I2C standardizes many layers of the communication
protocol. Specifications exist for a wide range of tasks,
from basic reading and writing to complex multi-
master support and arbitration. However, because it
does not specify any data integrity checks, the Emerald
team has developed a simple, error checking message
format.

In the Emerald format, commands packets coming
from the CPU (or any other master) are fixed to 5 bytes
in length, plus a field for a return address and
checksum (rolling 8bit sum). Reply packets include a

† The number of devices is actually limited by the electronic
signalling requirements of the I2C bus, such as maximum
capacitance and resistance, but this is not a problem for even the
maximum number of nodes ever considered for Emerald (~20)

field for length plus a variably sized data portion and
finally a checksum byte for error detection.

A simple acknowledgement system was also
developed. From the master’s perspective, a complete
communication includes sending a command packet,
waiting for an acknowledgement byte, and then, if
indicated, requesting a data packet in reply, and finally
acknowledging that the data packet was successfully
received. The complete message formats is shown in
Figure 3.

Command (5 bytes) CheckFrom

Command Packet

Data Packet
Data (<126 bytes) CheckSize

Command DataReply ACK

Command ACK
Simple Command

Command with Reply

Packet Definition

Figure 3: Emerald Message Format

Certain standard commands are defined for
commanding of all subsystems on the bus. These
include functions for checking subsystem status,
synchronizing time, and querying the subsystems for a
list of defined commands. This last feature is very
attractive because it allows subsystems to change and
expand their functionality without requiring
reprogramming in the main, coordinating CPU. [i]

Telemetry Bus (Dallas 1-wire)
In addition to the higher bandwidth command/data bus
described above, Emerald will have a low bandwidth
telemetry bus that uses the Dallas 1-wire protocol.

This multi-layer configuration is similar to the
configuration chosen by JPL for the X2000 data bus.
X2000 uses IEEE 1394 (Firewire) instead of I2C for
data transfer and I2C instead of Dallas 1-wire for
telemetry and control. [viii]

Dallas 1-wire supports an arbitrary number of
temperature sensors connected directly to the two
shared wires of the bus, providing simple temperature
telemetry collection over the entire satellite. Standalone
analog to digital converters (DS2450) are also
available, allowing other types of telemetry (such as

- 5 -

bus voltages and currents) to seamlessly connect to the
1-wire bus in the same fashion.

In addition to telemetry, the Dallas system will be used
to provide subsystem on/off signals using serially
addressable switches (DS2405, DS2406, and/or
DS2406). When commanded by the CPU, each switch
will be used to drive a P-channel power MOSFET,
which sources power to a subsystem.

Baseline Subsystem Processor
(PICmicro®)
The Microchip PIC16C77 was chosen as a baseline
subsystem microcontroller for interfacing each
subsystem to the data and telemetry buses. For the
distributed architecture to work effectively, it is not
necessary for all subsystems to use the same processor.
As long as the standard bus interface is observed,
processor differences are transparent to all other
subsystems on the bus. The PICmicro® standard was
selected to simplify baseline subsystem development,
and subsystems is free to deviate from it as they see fit.

PIC16C77 Micro Controller

The PIC16C77 is a single chip computer, requiring
only an external clock source. It resides in a 40-pin
package with 8 kwords of ROM and 384 bytes of
RAM. This particular PICmicro® has many built-in
peripherals, including I2C capabilities and an 8 channel
A/D converter, both of which are very convenient for
Emerald’s application. Another attractive feature is its
low power consumption: less than 100 mW at max
speed (20Mz) and less than100µW in its low-power
sleep mode. The PICmicro® also has a simple “RISC”
instruction set, which allows fast and efficient
execution. In addition, the PIC16C77 is a close
relative to the PIC16C73, which has been used in
research for fault-tolerant computing on small
satellites. [ix]

One of the major shortcomings of the PICmicro® is its
lack of support for external memory. The Emerald
team has worked around this deficiency by interfacing
a simple custom SRAM capable of storing up to
2.5Mbytes of data for subsystems that require
additional storage. Less memory intensive subsystems
will store data in an external serial EEPROM.

Software

A common library of low-level hardware routines, as
well as standardized I2C bus interfacing has been
developed to simplify subsystem programming. The
library includes support for:

- I2C, including high level protocol
- RS232, for debugging
- A/D conversion at up to 18kHz
- Timer control for synchronizing fast events
- Real Time clock base for slower events,

timestamping, and scheduling.
- External memory support (SRAM, EEPROM)
- Simplified interface for translating I2C

commands into subsystem function calls
- Standardized help command to query for valid

function names.
- Standardized, run-time configurable “loop”

structure.

4. Designing for a Distributed
Architecture
In addition to the design of the distributed computing
architecture itself, this architecture required new design
approaches in other aspects of the design. Specifically,
the distributed computing architecture was a central
consideration in the design of all subsystems and
experiments interfacing with the data bus, the satellite
test port interface, and the equipment panel layouts.

Motivation
Traditionally, missions in SSDL have centered around
a small number of experiments (2-3) requiring specific
hardware, of which a single experiment took top
priority. They have also been developed under largely
open-ended schedule without the pressures of a
proposed launch. (Sapphire [x] and Opal [xi]).
Emerald, however, was different: the mission included
a relatively large collection of experiment specific
hardware and experimental subsystems (at least 7), all
with comparable importance. Plus, the team faced an
aggressive two-year time schedule. As with many
university projects, Emerald involved a wide diversity
of students (from undergraduate to PhD), with different
levels of commitment (volunteer, part of a class,
research assistants) and lengths of involvement ranging
from one quarter to the entire project. To complicate
matters further, the Emerald team is based at two
universities, who work cooperatively to develop the
two satellites, rather than contributing one entire
satellite each.

To successfully navigate these challenges required a
modular approach to development and integration.
Ideally, this approach would also allow subsystems to
be de-scoped or removed if they fell behind schedule
with minimal impact on the rest of the system. In
addition, the team desired a system that would allow
thorough subsystem testing and validation at remote

- 6 -

locations. A distributed computing architecture offered
all of these features.

Protocol Selection
The prime objectives in selecting the bus protocol were
to maximize the freedom to add and remove
subsystems from the bus and minimize wiring harness
mass and volume. Only synchronous serial protocols
were considered because they provided the desired
balance of simplicity, reduced wiring, and speed.
Additionally, protocol support for multiple nodes
sharing control of the bus (multi-master) was desired,
though not strictly required, for some experiments. We
looked in more detail at three simple protocols
commonly used in embedded systems:
− Controller Area Network (CAN): Used in

automotive industry and industrial control.
− Serial Peripheral Interface (SPI): Widely used

general purpose
− Inter Integrated Circuit (I2C): Used in

Audio/Visual equipment, motherboards and
“smart” batteries

For Emerald’s needs, the CAN protocol was overly
complex, and the SPI protocol did not offer enough
expandability. I2C offered a simple system with all the
features that Emerald required, and commercial
components supporting the I2C protocol were easily
available. For these reasons, Emerald chose to use an
I2C bus.

To reserve the bandwidth of the I2C bus for
commanding and data handling, the Dallas 1-wire bus
was added to handle telemetry and power-switching
tasks. The 1-wire protocol was selected for the
following reasons:

- It is simple, requiring only 1 power/data line
plus a common ground and using a simple
asynchronous serial signaling style (like RS232).

- A standalone temperature sensor (DS1820) is
available. The sensor comes in a tiny three-pin
package and each unit, like all Dallas 1-wire
devices, comes preprogrammed with a unique
hardware ID.

- The shared power/data line causes device power
to be cycled frequently, minimizing the potential
damage of Single Event Effects in the radiation
environment of space. [xii]

Subsystem Design
Design of ‘smart’ subsystems was, for SSDL, an
adventure into uncharted territory. Implementing
subsystems as standalone units that could operate based

on high-level commands required an entirely new
approach.

For smart subsystems, each design team is required to
design microcontroller software in addition to
electronic and mechanical hardware. This issue
immediately surfaced as a potential stumbling block for
distributed computing implementation. Because
satellite design teams in SSDL generally suffer a
shortage of experienced programmers, it seemed
unlikely that each subsystem design team could be
provided with a capable software designer. To address
this issue, a standard software set was designed to
provide basic interfacing functionality. This standard
software set removed most of the complexity of the
subsystem-level software design, leaving the
subsystem design team responsible only for
implementing hardware and application specific
functionality.

Additionally, the use of a standardized data bus
interface allowed the design team to define a common
set of interfacing hardware. This was a change from
past projects in which commonality between individual
subsystems was rare. The Emerald design team took
advantage of this commonality by designing a standard
interface board for use with all subsystems and
experiments. Included in this standard circuit are the
PICmicro® microcontroller and supporting hardware,
power switching circuitry, and latch-up protection
circuitry. These standard boards will be produced in
large numbers (about 50) to supply interfaces for both
the engineering model and flight hardware. This further
freed the individual subsystems to work exclusively on
application specific hardware, and allowed some fairly
sophisticated functionality -- such as multi-channel
latch-up protection circuitry to protect against
radiation-induced Single Event Effects -- to be
designed once and incorporated into all subsystems.

Main CPU Design
By design, the distributed architecture simplified the
requirements on the satellite’s main CPU. In its
simplest form, the CPU is only required to be a
message router among the ground, other satellites, and
the distributed subsystems and experiments. As a
result, the CPU team has been able to look into
implementing more sophisticated user interfaces and
autonomy experiments. Most importantly, this has
allowed the team to survive some unexpected delays
and complications with the CPU hardware.

Test Interface Design
The distributed architecture also complicated the test
interface design on Emerald. In previous SSDL
satellites, with one centralized processor, a single serial

- 7 -

connection to the CPU was sufficient to provide a full
view of system functionality. For Emerald’s distributed
architecture, however, CPU observation tells only part
of the story. Full system understanding requires access
to the distributed portions of the satellite as well.

As a result, in addition to the CPU debug port, Emerald
includes an additional test interface that allows full
access to both the I2C data bus and Dallas 1-wire
telemetry bus. Full characterization of the system also
requires access to each subsystem’s PICmicro®
microcontroller. To allow for this access, the standard
interface board used by each subsystem includes its
own debugging and re-programming port. These
individual debugging ports will be accessible during
satellite integration and testing, but not when fully
assembled, due to wiring constraints.

Component Layout Considerations
Efficient component layout was also influenced by the
distributed computing architecture. Space was left
along opposite interior corners to run power buses
separately from the data bus. Subsystem and
experiment boxes were arranged such that data and
power connections cluster toward the center of the tray,
making sure that enough space was left for connections
and flight connector protectors. In addition, care was
taken to ensure that all PICmicro® debugging and
reprogramming ports are accessible when the satellite
side panels are removed, without removing any boxes
from the equipment trays.

5. Implementation

Modular Development
For the design, construction, and testing of Emerald
subsystems, the distributed architecture provides a nice
division among subsystems and between the
subsystems and the main CPU. This modularity has
allowed each subsystem and experiment development
effort to progress independently, significantly easing
coordination among the large diverse team as a whole.

The modular configuration also allows one device to be
replaced transparently by another, similar device as
long as both conform to the same interface. This
makes upgrading a given subsystem with an increase in
performance, a bug fix, or an extension of capability
easy, as long as the upgraded system conforms to the
standard.

Impact of Distributed Computing on
Integration
One of the areas in which the distributed architecture
stands to make the greatest impact is that of integration
and test. The serial data bus architecture allows easy,
“plug and play” addition of subsystems and
experiments to the system as they become available.
Additionally, under I2C subsystems can even be “hot-
swapped,” that is added or removed from the system
without affecting the rest of the bus in anyway. This
eases the task of integrating the electronics of each of
the subsystems.

The PICmicros® in each subsystem can be queried by
the CPU for a list of valid commands. This allows the
CPU to be ignorant of the details of the individual
subsystems. On startup, the CPU compiles a table of
subsystem commands and their parameters by asking
each subsystem for a brief command help listing. This
table can then be a) passed to the ground for operations
planning, b) used to check ground commands for
validity, and/or c) be autonomously used by the CPU to
implement high level planning objectives by relating
the physical commands with desired effects, using
keyword matching and artificial intelligence.

This modular, standardized interface further enhances
and eases integration by allowing other devices, such
as a desktop PC, to connect to the data bus to simulate
non-existent nodes. For example, such a PC node
could be used to fully test and debug a subsystem,
before it is connected to the common data bus. The PC
node can also stand-in for the CPU system to continue
to exercise the other subsystems while the CPU is
adjusted off-line.

Experiences to Date
The modularity of the design has benefited the Emerald
project in several ways. With the interface defined,
and the requirements clearly laid out, the development
of individual subsystems can proceed in isolation. This
has been especially beneficial, because of the
collaboration between Stanford University and Santa
Clara University. The problems of tight integration of
different teams of people over long distances are partly
mitigated by the modularity inherent in the design of
all the subsystems.

The development of the PICmicro®-enhanced
subsystems has proceeded more quickly than the
development of the main CPU. So, even though the
main CPU has been unavailible, a PC has been used for
stand-alone testing and debugging of several of the
subsystems.

- 8 -

Basic integration using the distributed system has also
been demonstrated in the lab. The same PC interface
was connected to multiple subsystems simultaneously,
and used to communicate with a prototype of the
attitude control system (developed at Stanford) and
mechanisms control block (developed at Santa Clara).
Additionally, a prototype of the bus monitor
experimental hardware was used to verify that the PC
interface communicated according to the Emerald I2C
protocol. (See Figure 4)

AD&C Bus
Monitor

I2C Data Bus

PC Interface

Struch/
Mech

Figure 4: Integration Test Setup

Thus, the modularity provided by the distributed
architecture allowed an efficient division of labor
across geographical distances and the potential of the
distributed architecture to aid integration has also been
demonstrated.

Future Impact of Distributed
Computing on Emerald Integration
The potential of Emerald’s distributed architecture to
ease integration has yet to be fully exploited. The
continuing development of the CPU is expected to lag
behind that of the other subsystems. For this reason,
the PC node will be used extensively, not only to debug
and test the individual subsystems, but also to stand in
for the CPU and command all of the other subsystems
at once. This capability allows the development of the
subsystems to proceed at a desirable pace, while still
providing assurances that the integration is indeed
valid. The validity of the PC-based integration is
assured by strictly adhering to the interface standard,
providing the modularity described above.

6. Orbital Operations

Routine Operations
During normal spacecraft operations, the distributed
computing system frees the CPU from responsibility
for low-level hardware control. Because the
subsystems have the intelligence to operate their own
hardware, the main CPU can control them using
simple, high-level directive commands. Thus, while
data collection or some other activity is being carried
out within a subsystem, the CPU processing
capabilities are free to attend to scheduling and other
system-level tasks.

Virtual Data Bus

Ground

Comm

Bus M.D
at

a
B

us

Emerald

Emerald

Figure 5: Virtual Data Bus Concept

Just as the internet is used to bridge two local area
networks (LANs) on the ground, the inter-spacecraft
communication link can be used between the two
satellites to form an inter-satellite RF (radio frequency)
bridge, or Virtual Data Bus, on orbit.

On Emerald the Communication system is connected to
the Data Buss both through the main CPU and the Bus
Monitor experiment (which otherwise is a passive
monitor). Such a configuration opens up a whole
collection of operations possibilities, such as:

Fault Tolerance.
Should one satellite’s CPU fail, the entire satellite may
not be lost. Smart subsystems on the data bus may be
directly commanded from the ground. This concept is
illustrated in Figure 5. Since the subsystems recognize
high level commands, a few command bytes passed
from the ground is enough to run a potentially
complicated procedure.

In a multiple satellite system, like Emerald, there is no
reason that direct communication system to bus
commands have to come from the ground. Instead, as
seen in Figure 6, the subsystems can be controlled by
another satellite. In this example Satellite B’s CPU has
died, yet the inter-satellite missions are not lost, since
Satellite A’s CPU can still control all of satellite B’s
subsystems. This inter-satellite control allows complex
operations sequences for the injured satellite (B) even,
if the satellite is out of range of a ground station.

PowerCPU CommTelem. Science

Data Bus Satellite B

PowerCPU CommTelem. Science

Satellite A

Ground

Figure 6: On-Orbit Fault Tolerance Concept

- 9 -

Inter-satellite resource sharing.
The virtual data bus also allows sharing common
resources. This can be used for fault avoidance or as
part of standard operations. For example, if one
Emerald spacecraft has anomalous power levels, it
could transfer data to the other satellite using the low
power inter-satellite link, letting the other, healthy
satellite supply the high power required for
downloading to the ground. Similarly, memory or even
computation resources could be shared using the virtual
data bus.

Experiment Coordination
The virtual bus will also be used to coordinate
experiments between the two Emerald spacecraft. For
example the CPU on one Emerald can request the GPS
position of the other to determine the effectiveness of
the drag panel. Also, the VLF experiment from one
Emerald will coordinate directly with the VLF
experiment on the other to synchronize operations.

Design Considerations
To support virtual bus experiments, Emerald is using
the same communication system (437.5 MHz, 9600
baud, half-duplex) for both ground to satellite and
inter-satellite communication. This allows one satellite
to “log-on” to the other and initiate commands just as
the ground station does. Data addressing is handled by
the amateur radio AX.25 protocol, which incorporates
both a sending and receiving call-sign into each packet.
An additional receiver (145.8 MHz) on each satellite
allows the ground to send commands to the satellites
even if the inter-satellite communication is tying up the
main communication channels.

The Bus Monitor connection from the Communication
system to the data bus will be isolated from the main
communication on the same frequency by a fire code
and a different communication protocol. When a
certain sequence of bits is uploaded, the CPU will
ignore the next data and instead allow the Bus Monitor
to interpret the received signal (at 1200 baud) and drive
the I2C bus. A similar procedure will allow the bus-
monitor to also drive the transmitter to verify that the
command was completed successfully, download data,
or to initiate communication with the other satellite.

One of the major challenges for implementing a virtual
data bus is time. The inter-satellite communication link
is much slower than the on-board data bus, so
messages must be packetized, cached, or the data bus
must be temporarily slowed down to the speed of the
inter-satellite link. Slowing down the data bus has the
advantage of being simple, but it does tie up the data

bus, potentially delaying other messages from getting
through (latency). When the data is cached, this latency
only applies to the command being sent inter-satellite.
However, handshaking, such as the I2C acknowledge
bit, becomes tricky.

As a baseline, Emerald will slow down the data bus
when operating as a virtual data bus. This slowing
down of the data bus is readily supported by the I2C
protocol, since it allows slave devices to hold down the
clock line until ready to proceed. When the virtual bus
is active, the data bus will be slowed down on both
satellites, but during normal operations (intra-satellite)
it will still run at full speed

7. Future Applications

In SSDL
Future satellite projects in SSDL will benefit from
Emerald’s distributed system development. For
projects similar in size and scope to Emerald,
development time will be greatly reduced. Beginning
with existing Emerald hardware, future student teams
can quickly prototype a baseline system by removing
Emerald’s experiments from the bus and replacing
them with their own. Once the baseline has been
achieved, the modular nature of the bus components
themselves will simplify performance upgrades.
Revised and augmented subsystem models can replace
existing hardware as they are completed without
compromising the functionality of the rest of the
system. The distributed computing architecture
provides enough flexibility that the existing satellite
design can be upgraded to meet future mission
requirements rather than reinventing the design from
scratch.

Emerald’s distributed computing architecture will also
be applicable to projects on a smaller and less complex
scale than Emerald itself. For example, the SSDL
would like to provide master’s degree students with the
opportunity to develop and build very simple satellites
from conception to operation in a single year. The
distributed computing architecture developed for
Emerald could be instrumental in shortening the
development process enough to make this vision a
reality. Each student could begin development with a
small version of Emerald’s distributed architecture,
mastered by a microcontroller and combined with a
generic set of bus components (power, comm, etc).
Beginning with this sort of baseline would allow the
students to concentrate on payload development and
integration, fabrication, testing, and operations; a more
feasible set of tasks for a year’s work.

- 10 -

For projects on a larger scale or with significantly
higher complexity, the distributed computing
architecture developed for Emerald would still provide
a good starting point. However, use of I2C for the
main data bus may need to be reconsidered if a higher
bandwidth of data transfer is desired or required.

In general
Unlike the data bus systems used by some major
manufactures to simplify satellite development which
are aimed at larger scale missions, the simple sort of
system being developed for the Emerald project could
help make space more accessible to small businesses
and individuals. Simple and easily available distributed
architectures could significantly reduce research and
development costs for small businesses interested in
one-time satellite design. These developers could
benefit from the baseline bus design in much the same
way as the university students.

As more and more technologies are proven to support
formations of closely flying satellites, the distributed
bus concept will be helpful in coordinating the
development of multi-satellite fleets. Standardized
data interfaces would ease satellite integration in a
situation where parts of each satellite in the fleet are
designed at distant locations or by several different
companies. In the case where each satellite in the fleet
is designed and constructed independently, a standard
data interface would simplify inter-satellite
interactions.

8. Conclusions
Adoption of a distributed computing architecture for
the Emerald project caused significant revision in
SSDL’s satellite development process. Defining the
architecture, creating standard interfaces, and designing
intelligent subsystems required extra effort in the
design and hardware/software prototyping phases of
development.

However, this extra design work has already begun to
pay off during the early stages of engineering model
integration. The distributed architecture has allowed
testing and integration of finished subsystems even
though development of the main CPU has been
uncontrollably delayed. The Emerald team expects to
benefit from the modularity of the distributed
architecture in this way throughout the remaining
integration and testing phases of development.

In addition, the effort spent in designing Emerald’s
distributed architecture is expected to shorten the
design process for future SSDL satellite missions. The
modular, expandable nature of the distributed system

will provide future design teams with both a baseline
design and a functional prototyping platform.

Distributed architectures have great potential to make
space more accessible to a wider variety of satellite
developers by reducing research and development
effort and simplifying system integration. Based on the
benefits observed through the Emerald’s development
process, the Emerald design team expects distributed
computing systems to become an enabling technology
for faster and cheaper satellite development.

9. Acknowledgements
The authors wish to thank AFOSR and DARPA for
their commitment to supporting university-based
spacecraft development projects. Thanks also to
Microchip Technology Inc. and IAR Systems Software
Inc. for their generous support in the form of
PICmicro® microcontrollers and development systems.
Finally, the students at Stanford and Santa Clara are
thanked for their tremendous effort and dedication in
developing the Emerald spacecraft.

References

[i] B. Palmintier, et. al., “Distributed Computing on
Emerald: A modular approach for Robust Distributed
Space Systems” In Proceedings of the 2000 IEEE
Aerospace Conference, Big Sky, MO, March 2000.

[ii] C. Kitts and R. Twiggs, "The Satellite Quick
Research Testbed (SQUIRT) Program", In Proceedings
of the 8th Annual AIAA/USU Conference on Small
Satellites, Logan, Utah, August 1994.

[iii] C. Kitts, et. al., "EMERALD: A Low Cost
Formation Flying Technology Validation Mission", In
Proceedings of the 1999 IEEE Aerospace Conference,
Snowmass, CO, March 6-13, 1999.

[iv] C. Kitts, et. al., "Emerald: An Experimental
Mission in Robust Distributed Space Systems," In
Proceedings of the 13th Annual AIAA/USU Conference
on Small Satellites, Logan, Utah, August 23-26, 1999.

[v] J. Townsend and E. Allison, “The Emerald
Nanosatellites:Two Student-Built Satellies as a Testbed
for Distributed Space System Technologies”, In
Proceedings of the 5th International Symposium on
Small Satellite Systems and Services, La Baule, France,
June 2000.

[vi] The I2C-Bus Specification, version 2.0, December
1998 [Available Online: http://www-

- 11 -

us.semiconductors.philips.com/acrobat/various/I2C_B
US_SPECIFICATION_2.pdf, Oct 30 1999]

[vii] D. Paret with C. Fenger, The I2C bus : from
theory to practice, Wiley, Chichester ; New York,
1997.

[viii] N. Paschalidis, “A Remote I/O (RIO) Smart
Sensor Analog-Digital Chip for Next Generation
Spacecraft” In Proceedings of the 12th AIAA/USU
Conference on Small Satellites, 1998.

[ix] D. W. Caldwell “A Minimalist Hardware
Architecture For Using Commercial Microcontrollers
In Space” In Proceedings of the 16th Digital Avionics
Conference, 1997.

[x] R.Twiggs, and M. Swartwout, "SAPPHIRE -
Stanford's First Amateur Satellite", In Proceedings of
the 1998 AMSAT-NA Symposium, Vicksberg, MI,
October 1998.

[xi] J. Cutler and G. Hutchins, “OPAL: Smaller,
Simpler, and Just Plain Luckier”, In Proceedings of the
14th Annual AIAA/USU Conference on Small
Satellites, Logan, Utah, August 2000.

[xii] D. W. Caldwell, “A Distributed Spacecraft
Thermal Control Architecture Using The Dallas
Semiconductor Microlan Products” In Proceedings of
the 16th Digital Avionics Conference, 1997.

