

A Distributed Computing Architecture for Small Satellite
and Multi-Spacecraft Missions

Bryan Palmintier∗ , Christopher Kitts∗ , Pascal Stang∗ and Michael Swartwout∗∗

∗ Robotic Systems Laboratory, Santa Clara University, Santa Clara CA 95053

 (408) 554-4382, ckitts@me.scu.edu, bpalmintier@me.scu.edu, pstang@scudc.scu.edu

∗∗Department of Mechanical Engineering, Washington University in St. Louis, St. Louis MO 63130
(314) 935-6077, mas@me.wustl.edu

Abstract. Distributed computing architectures offer numerous advantages in the development of complex devices
and systems. This paper describes the design, implementation and testing of a distributed computing architecture for
low-cost small satellite and multi-spacecraft missions. This system is composed of a network of PICmicro®
microcontrollers linked together by an I2C serial data communication bus. The system also supports sensor and
component integration via Dallas 1-wire and RS232 standards. A configuration control processor serves as the
external gateway for communication to the ground and other satellites in the network; this processor runs a
multitasking real-time operating system and an advanced production rule system for on-board autonomy. The data
handling system allows for direct command and data routing between distinct hardware components and software
tasks. This capability naturally extends to distributed control between spacecraft subsystems, between constellation
satellites, and between the space and ground segments. This paper describes the technical design of the
aforementioned features. It also reviews the use of this system as part of the two-satellite Emerald and QUEST
university small satellite missions.

Table of Contents

1. Introduction
2. Advantages of a Linear Bus Architecture
3. System Design
4. Application to Small Satellite Missions
5. The Architecture as an Experiment
6. Future Work
7. Conclusions
8. Acknowledgements

1. Introduction

Distributed computing architectures offer numerous
advantages in the development of complex devices and
systems. These advantages include well-defined
interfaces, flexible composition, streamlined
integration, straightforward function-structure
mappings, standardized components, incremental
testing, and other benefits.

In the context of this paper, distributed computing
refers to computational decentralization across a
number of processors which may be physically located
in different components, subsystems, systems, or
facilities. These processors may be general-purpose
computers with data/application sharing capabilities
(e.g. a typical personal computing network), they may

have an architecture that enables collaborative
processing focused on a specific task (e.g. parallel
computation), and/or each may be optimized to
efficiently execute particular tasks or control specific
subsystems (e.g. smart peripherals).

The architecture of a computing system (whether
centralized or distributed) refers to the physical and
logical framework used to interconnect components. It
determines the pathways for inter-subsystem data
transfer and may have a large bearing on both wiring
harness size and modularity. As depicted in Figure 1,
typical architecture definitions include the following (in
some cases, they are not mutually exclusive):
• A star (centralized or distributed) architecture

consists of a central processing unit that is directly
connected via dedicated links to every other
computational unit; this approach often leads to
large wiring harnesses and a dependency of the
central computer’s hardware/software on the
design of the peripheral units. From a
computational point of view, a star configuration is
the prototypical example of a centralized
architecture when the connected components don’t
have processors. A star configuration, however,
can be used in a distributed framework if these
components have processors.

• In a ring (distributed) computing architecture,
processors are linked in a closed chain with

SSC02-IV-6

 Palmintier 1 16th Annual AIAA/USU Conference on Small Satellites

communication typically facilitated by a “token”
which is passed from one processor to another;
rings typically lead to small wiring harnesses,
cause minor design dependencies among
subsystem implementations, and may suffer from
interrupted communication if/when subsystems are
disconnected or fail.

• Linear bus distributed computing architectures
typically consist of a standardized, shared, linear
data bus to which all subsystems are connected;
while this often leads to small wiring harnesses and
non-problematic (dis)connections to/from the bus,
it requires a well-designed communication protocol
governing when processors can transmit data over
the bus.

• Hybrid architectures occur when one or more
instances of the aforementioned architectures are
used to link different processors within a single
system. This is often done given that different
inter-processor communication requirements often
are best addressed by different architectures.

• Layered architectures arise when more than one of
the aforementioned architectures is used to link to
the same processors within a single system. For
example, the same processor may have a low data
rate bus architecture for command and control
information but a direct, dedicated, high data rate
connection for science data. This is often done
given that different processor functions often are
best addressed by different architectures.

2. Advantages of a Linear Bus Architecture

The use of a linear bus distributed computing
architecture leads to a simple and relatively small data
bus that promotes standardized methodologies for
interfacing at a range of levels. At the signal level,
standardization of physical interconnections is a natural
objective. At higher levels, standardization of data

communication protocols for arbitration, error handling
and other functions is a straightforward strategy.
Ultimately, even the command and data handling
interface can be standardized. For the current
development effort, the ultimate goal of this
standardization was to achieve component-level
modularity such that components could be easily
connected, disconnected, replaced, swapped and/or
upgraded in a rapid and transparent manner.

While distributed computing systems and their
advantages are common in modern personal computer,
consumer product, industrial automation, automotive,
and other industries, they have been slowly adopted in
the satellite industry. Recent initiatives such as the
NASA/JPL X2000 development program have
recognized the advantages of distributed computing
strategies and are beginning to develop such systems
for space flight.

The authors (all of whom have served as systems
engineers and/or managers of one or more university
small satellite projects with centralized computing
architectures) are pursuing the development and use of
a linear bus command and data handling architecture
for use in small and mu lti-spacecraft systems. The
adoption of this strategy is in and of itself an
experiment that explores the true benefits and costs of
such an approach. The team currently believes that the
following benefits will be realized:1
• In the design stage, the dis tributed system will

simplify the command and data flow within the
satellite by clarifying which specific component is
responsible for each task and what information
exchange is required to initiate the task; ideally,
each functional block in the system’s signal flow
diagram will map directly to a physical box on the
satellite. Furthermore, this characteristic will allow
easy hierarchical scaling of the functional and data
flow designs for multi-satellite missions and
comprehensive space/ground segment systems.

PowerCPU CommTelem. Science

Data Bus

 (a) Centralized Architecture. (b) Ring Architecture (c) Linear Bus Architecture.

Figure 1 – Comparison of Typical Computing Architectures.

 Palmintier 2 16th Annual AIAA/USU Conference on Small Satellites

• During development and integration, the
distributed architecture will promote the rigorous
and independent test/verification and the
controlled, incrementally integration of each
subsystem/component. Such an achievement will
assist in de-coupling the reliance of one
subsystem’s development on the operation of
another (e.g. such as the central processing unit in
most centralized architectures). Furthermore, with
network bus “gateways”, components can be easily
integrated remotely using TCP/IP or other
protocols to bridge and test subsystems being
developed at different locations.

• On-orbit, the distributed architecture will simplify
resource sharing (e.g. computational power,
memory, etc.) among components, subsystems, and
even satellites. It also promotes fault tolerance
since computational functions can be supplied by
other units (possibly even located in other
spacecraft or on the ground) in the event of
component outages.

• When exploited in a multi-satellite mission, the
distributed architecture will allow components
deployed across multiple satellites to interact in
much the same manner as those within a single
satellite. This has significant implications in the
simplification of collaborative processing schemes
both at the conceptual and implementation levels.

3. System Design

Given the aforementioned advantages of a distributed
computing approach, the research team is focusing its
efforts on the development of a robust and widely
applicable linear bus design. Given this approach, the
team sought to develop a system with a balance of
simplicity and cost while also a) providing performance
capable of supporting research-quality microsatellite
instrumentation, and b) being feasible for use by
student design teams.

The current design consists of a network of PICmicro®
PIC-based processors linked by a hybrid bus consisting
of a high-bandwidth Phillips I2C (Inter-Integrated
Circuit) data bus and a low-bandwidth Dallas
Semiconductor “1-wire” microLAN for standard
vehicle telemetry.

Subsystem Motherboard2

For the distributed architecture to work effectively, it is
not necessary for all subsystems to use the same
processor. As long as the standard bus interface is
observed, processor differences are transparent to all
other subsystems on the bus. But to simplify baseline

subsystem development and to leverage economies of
scale, a standard subsystem motherboard based around
the PIC16F877 microcontroller was developed. This
standard motherboard, shown in Figure 2, includes
power/data connectors, power control circuitry, latch-
up protection, and full access to the PIC’s ports.

PIC16F877 Micro Controller

The PIC16F877 is a single chip computer, requiring
only an external clock source. It resides in a 40-pin
package with 8 kwords of ROM and 384 bytes of
RAM. This particular PICmicro® has many built-in
peripherals, including I2C capabilities and an 8 channel
A/D converter. Another attractive feature is its low
power consumption: less than 100 mW at max speed
(20Mz) and less than100µW in its low-power sleep
mode. The PICmicro® also has a simple “RISC”
instruction set, which allows fast and efficient
execution.

One of the major shortcomings of the PICmicro® is its
lack of support for external memory. The development
team has worked around this deficiency by interfacing a
simple custom SRAM capable of storing up to
2.5Mbytes of data for subsystems that require
additional storage. Less memory intensive subsystems
will store data in an external serial EEPROM.

Software

A common library of low-level hardware routines, as
well as standardized I2C bus interfacing has been
developed to simplify subsystem programming. The
library includes support for:
• I2C, including high level protocol
• RS232, for debugging
• A/D conversion at up to 18kHz
• Timer control to synchronizing fast events
• Real Time clock base for slower events, time-

stamping, and scheduling.
• External memory support (1.5 MB SRAM or 64KB

EEPROM)
• Simplified interface for translating I2C commands

into subsystem function calls
• Standardized, run-time configurable “super-loop”

structure with flags to allow simple multi-tasking.

Configuration Control Computer

A separate Configuration Control Computer uses a
16MHz PIC17C56 (16Kx16bit ROM, 904Byte RAM,
with built-in I2C and 2 asynchronous serial ports)
running the Pumpkin Salvo Real Time Operating
System (RTOS).

 Palmintier 3 16th Annual AIAA/USU Conference on Small Satellites

 (a) Standard PIC16F877-based Subsystem Board. (b) PIC17C56-based Configuration Control Board.

Figure 2 – Functional Motherboard Prototypes:

Originally envisioned to simply characterize data bus
performance and to provide a redundant path between
the communication system and the I2C bus, the scope of
this subsystem has grown due to difficulties with the
originally selected commercial processor, the ability to
leverage the capabilities of the Salvo RTOS, and the
advantages of reusing software developed for the
subsystem motherboards. A 17-series PIC was chosen
as the heart of this system due to its expanded memory
resources and RTOS compatibility.

On top of the RTOS, several software tasks execute in
order to process I2C and Dallas data packets, to service
communication subsystem data flow, to efficiently
enable software uploads, and to interface expert system
execution with satellite commands and telemetry.

Data Bus

The data bus specification required careful
consideration since it forms the data backbone of the
entire satellite. There are numerous existing standards
that span the high and low level aspects of distributed
computing systems, especially in distributed industrial
control applications.3,4,5 However, these standards
typically assume computational and power resources
not available in small satellites. Therefore, the team
researched simpler communication protocols, those
typically used at the chip and board scale (instead of the
room or facility scale). This allowed a design that met
power, voltage, and computational constraints but
required the custom development of the high level
protocols.

Protocol Selection2

The team decided to only consider synchronous serial
protocols given the desired balance of simplicity,

reduced wiring, and speed. Additionally, protocol
support for multiple nodes sharing control of the bus
(multi-master) was desired, though not strictly required,
for some experiments. Given these parameters, detailed
consideration was given to three simple protocols
commonly used in embedded systems:
• Controller Area Network (CAN): CAN is used

extensively in automotive and industrial control
applications. However, CAN is most suited to
industrial-scale users, and is therefore overly
complex for the current effort. The increasing
commercial availability of stand-alone CAN chips
and microcontrollers with integrated CAN support
may make CAN more attractive in the future.

• Serial Peripheral Interface (SPI): SPI is simple
and widely used, but the interface doesn’t scale
well to arbitrarily sized networks since it requires
additional wires for address lines. In addition,
multi-master support requires extending the
baseline specification.

• Inter-Integrated Circuit (I2C): I2C is used in
audio/visual equipment, on PC motherboards, and
in “smart” batteries. This protocol easily scales to
networks of arbitrary size and includes built-in
support for multiple masters. However, it doesn’t
provide existing, suitable high-level
communication protocols.

Given these options, the development team chose to use
the I2C bus. Conveniently, there are many simple, off
the shelf devices available for I2C, (digital I/O, A/D
converters, EEPROM, microprocessors, etc.)

Low level I2C

I2C is a synchronous serial protocol that uses only 2
wires, one for data (SDA) and one for clock (SCL). It
also requires a common ground. It operates at 100 kbps

 Palmintier 4 16th Annual AIAA/USU Conference on Small Satellites

in standard mode. Faster modes (400kbps and 3.4
Mbps) are also specified, but fewer devices support
these modes. The protocol is specified to a fairly high
level from reading and writing to multi-master support
and arbitration.

Both lines are connected wired-AND, which allows for
arbitrary numbers† of devices and which facilitates “hot
swap” addition and removel of devices without
interrupting the bus.

Communication is always initiated by a master, which
also drives the clock. Each I2C message consists of an
arbitrary number of 9 bit “words.” These words are 8
bits of information (supplied by the current
“transmitter”) plus an acknowledge (from the
“receiver). The first word of the message sets the
address (7bits) and the communication direction (Read
or Write). In read mode, after the first acknowledge, the
slave begins transmitting and the master becomes the
“receiver.”6,7

High Level Messaging

I2C standardizes many layers of the communication
protocol. However, because it does not specify any data
integrity checks, the development team has developed a
simple, error checking message format. Command
packets coming from the Configuration Control
processor (or any other master) are fixed to 5 bytes in
length, plus a field for a return address and checksum
(rolling 8bit sum). Reply packets include a field for
length plus a variably sized data portion and finally a
checksum byte for error detection.

A simple acknowledgement system was also developed.
From the master’s perspective, a complete
communication includes sending a command packet,
waiting for an acknowledgement byte, and then, if
indicated, requesting a data packet in reply, and finally
acknowledging that the data packet was successfully
received. The complete message formats is shown in
Figure 3.

This approach permits subsystem designers to choose
the exact format for commands and data relevant to
subsystem tasks. In addition, a variety of standard
commands are defined for controlling common tasks
for all subsystems on the bus. These include functions
for checking subsystem status, synchronizing time, and
querying the subsystems for a list of defined commands
(help function). This last feature is very attractive

† The number of devices is actually limited by the electronic
signalling requirements of the I2C bus, such as maximum capacitance
and resistance, but this is not a problem for even the maximum
number of nodes ever considered, which is approximately 20.

because it allows subsystems to change and expand
their functionality without requiring extensive system
knowledge by operations personnel. Due to time
limitations, these standard commands will only be
incorporated into some of the nodes on the system.

Command (5 bytes) CheckFrom
Command Packet

Data Packet
Data (<126 bytes) CheckSize

Command DataReply ACK

Command ACK
Simple Command

Command with Reply

Packet Definition

Figure 3: I2C Message Format

Telemetry Bus

In addition to the higher bandwidth I2C command/data
bus described above, the current architecture also has a
low bandwidth telemetry bus built on the Dallas 1-wire
protocol. This multi-layer configuration is similar to the
configuration chosen by JPL for the X2000 data bus.
X2000 uses IEEE 1394 (Firewire) instead of I2C for
data transfer and I2C instead of Dallas 1-wire for
telemetry and control.8

Dallas microLAN supports an arbitrary number of
devices connected with a single bi-directional data line.
It is an asynchronous protocol that operates at 14.4kbps.
Like many standardized serial protocols, a wide range
of off-the-shelf components is available. Of particular
interest for satellite telemetry are the temperature
sensors (DS18B20) and analog-to-digital converters
(DS2450, quad channel 8-bit accurate).

One particularly appealing characteristic of the Dallas
technology is that each individual device has a
completely unique 64-bit ID number for addressing.
This eliminates the need for external address
configuration pins, or chip select lines when connecting
multiple devices to the bus. Adding another temperature
node, or A2D node truly is as easy as just connecting 3
wires: power, ground, and the data line.

There are some 25 temperature sensors and nearly twice
that many A2D converters on each Emerald satellite.
Many of the A2D converters are actually not used for

 Palmintier 5 16th Annual AIAA/USU Conference on Small Satellites

analog input, but as 4 channel open-drain digital
outputs for various control and switching applications
on the satellite. In fact an A2D converter turned digital
output, is used with a P-channel MOSFET as part of the
standard power control circuitry in all of the
subsystems.

Design-level Fault Tolerance

Since the nodes of the I2C bus are connected as open-
collector, it is possible for an errant subsystem to hang
the entire data bus. In other aerospace systems
(airplanes, larger satellites, etc.), a common solution is
to incorporate the additional complexity of multiple
redundant back-up data buses.

For this design, the team has taken a less robust but
appropriate approach given that tight
power/mass/volume budgets and a desire for simplicity
precluded such redundancy. This is done by controlling
subsystem power over the Dallas microLAN, thereby
allowing a component to be reset or completely shut
down in the event of a component failure that results in
an I2C bus lock-up. An analog switch at each I2C
connection ensures that the subsystem circuitry is
isolated from the I2C bus. Therefore, if a controller
detects that the I2C bus is hung, it can selectively turn
off power (using Dallas) to successive subsystems until
the fault is eliminated.

While Dallas devices are not individually isolated, these
devices receive power from a separately switched
supply. This allows power to the Dallas bus to be
cycled, hopefully clearing up any problems that have

arisen. Latching circuitry in the standard subsystem
power control module prevents subsystem power loss
during this power cycling.

To date, this approach to bus-level fault tolerance has
proved sufficient. This level of capability will be more
fully tested in the future.

Comparison with Other Standards

The performance of the architecture’s data bus
compares favorably to other standards commonly used
in aerospace avionics.9 It is interesting to note that this
was achieved without any initial knowledge of these
other standards. In particular, the control architecture is
nearly identical to that used in military aircraft (MIL-
STD 1553), while the data rate is as high as found in
most commercial airplanes (ARINC-429). Most
importantly, the selected design uses 2 orders of
magnitude less power per node than these standards.
This reduction in power was crucial to the applicability
of this system to small spacecraft mission. Table 1
provides a comparison of these and other relevant
performance metrics.

4. Application to Small Satellite Missions

The development team intends to use the distributed
computing architecture described in this paper in a
variety of robotic systems ranging from undersea robots
to land rovers to airships to spacecraft. With respect to
the latter, the architecture is currently being
incorporated into two multi-satellite small spacecraft
missions: Emerald and QUEST.

 I2C as being used I2C spec9 ARINC 42910 ARINC 62911 MIL-STD 155312
Topography Linear Bus Linear Bus Linear Bus Linear Bus Linear Bus

Control Selectable master Any master Single transmit. Any transmit. BC + BM

Data Rate 100kbps 100k/400k/3.4Mbps 12.5/100kbps 2 Mbps 1Mbps
Max Num Nodes ~100 >>20 20 - 31

Coupling Direct / Open Collector Open Collector Direct Drct./Induct./Fbr. Inductive

Redundancy None - Varies Varies varies

Max Msg. Length 5/127 Bytes - 2Bytes/34KB - 64 Bytes

Data Integrity 8bit checksum None

Voltage 0/5V 0/5V -10/0/+10V -10/0/+10V

Fault Tolerance BM/D1W Pwr. Cntrl - Varies Varies BM/redundancy

Power
Consumption

3.5mW <50mW Watts?? Watts?? 1-2W13

Table 1: Comparison of Implemented I2C Data Bus to other bus standards comonly used in aerospace systems

 Palmintier 6 16th Annual AIAA/USU Conference on Small Satellites

Figure 4 – An Emerald Spacecraft with
Extended Drag Panels [Henning]

The Emerald Nanosatellites

Emerald is a two-spacecraft small satellite mission
being jointly developed by Santa Clara University and
Stanford University.14 As a mission to explore the
sensing, actuation, and control issues relating to
distributed space systems, Emerald will attempt to
characterize the performance of space-based GPS
receivers, low-cost drag panel actuators, and a
distributed formation control strategy. In addition,
technology development is being driven by the needs of
a simple but legitimate multi-satellite science
experiment involving the distributed monitoring of
lightning-induced VLF radio waves.

Depicted in Figure 4, each Emerald satellite consists of
a 15 kilogram, 14-inch tall, 16-inch diameter hexagonal
structures employing modular, stackable trays made of
aluminum honeycomb. Custom, space-quality linear
actuators articulate two drag panels mounted on the
sides of the spacecraft.

Sun sensors and a magnetometer provide attitude
information, and three torque coils provide control
torques. The power system consists of 24% efficient,
triple junction Gallium-Arsenide solar cells, a multi-cell
NiCad battery, and high quality voltage regulators.
Amateur radio communications provide 9600 baud
communications in the 145 and 435 MHz bands; both
satellite-to-ground and intersatellite communications
are supported. Passive thermal control techniques are
being emp loyed.

The distributed control system meets all requirements
of the Emerald mission with the exception of the GPS
relative position sensing system. The needs of this
particular system include access to a high data rate
communication link. While the I2C bus could actually
handle this data capacity, the team decided to use an
existing, direct serial port connection to the flight
processor so that the GPS unit could direct access the
communication link without taxking the resources of
the data bus; this was done in order to lower congestion
on the I2C bus given that the serial port was available
for use at no additional developmenet cost. Figure 5
shows how the I2C bus and Dallas bus are used to
connect components within the Emerald system.

Rx1 Rx2Tx

Modem

Bus
Monitor

CPU

TNC GPS

I2C

PIC

ADCS

PIC(ADCS)

Power

PIC

Thruster

PIC

Mech.

PIC

VLF

8 IR
sensors

Solar Cells
15 strings

2 5-cell
batteries Torquer

Coil

Magnetometer

Lightband
sep. sys

2 Drag Panel
actuators

VLF
antenna
release

Dallas

RS232

Figure 5 – The Emerald System Block Diagram Showing Connectivity of the I2C and Dallas data buses.

 Palmintier 7 16th Annual AIAA/USU Conference on Small Satellites

Figure 6 – The Distributed Control Network

Use of the distributed computing system is being
orchestrated as a flight experiment within the Emerald
operations plan. First, performance statistics regarding
data packet transmissions, collisions, rates, and errors
will be collected. Second, the system will host an on-
board expert system capable of directly accessing the
bus in order to issue subsystem commands in response
to autonomy modes and realtime telemetry; this system
will support a variety of functions ranging from task
planning and execution to anomaly management.
Third, the architecture will be used in a similar manner
but with a scope that spans the multi-satellite formation.
This will allow the development team to showcase
processor resource sharing, fleet-level commanding
with on-orbit task planning and execution, and
coordinated opportunistic science.15

Finally, the system will be used within a comprehensive
ground control network consisting of a centralized
mission control center and several geographically
distributed communication stations.16 Depicted in
Figure 6, this network currently includes operational
stations in California and Hawaii with additional
stations being planned for Missouri, Oklahoma, Texas
and Alaska prior to Emerald’s launch. The network’s
mission control center will use professional-grade
command and telemetry software along with a variety
of research-oriented analysis packages dedicated to
resource allocation, anomaly managemenet, science
data processing, and other functions.

The Quest Tethered Microsatellite

As an active program being conducted under the
auspices of the Japan – U.S. Science, Technology, and
Space Applications Program (JUSTSAP), QUEST is a
joint spacecraft mission among four universities, two in
Japan: Kyushu University (KU) & the University of
Tokyo (UT), and two in the U.S.: Santa Clara
University (SCU) & Washington University in St.
Louis (WU). The primary QUEST mission is to
demonstrate deployment and survivability of a 2 km
space tether, marking the first use of a tether by a
Japanese university and the first controlled tether on a
very small spacecraft.17 Additional missions include
the provision of amateur radio store-and-forward
services, demonstration of autonomous operations
capabilities ranging from model-based anomaly
management to collaborative multi-node mission
operations, and several student-centered experiments.

The mission architecture consists of two similarly-sized
spacecraft, one on each end of the deployed tether. The
total launch mass of the mission is 50 kg and the
combined QUEST vehicles will be less than 50 cm on a
side. This mission intends to fly into low-Earth orbit as
a secondary payload on the Japanese HII-A rocket in
2004 or 2005. KU will provide the tether & the launch
interface, UT the communications subsystem, SCU the
“daughter” spacecraft bus and the distributed ground
station control network, and WU the “mother”

 Palmintier 8 16th Annual AIAA/USU Conference on Small Satellites

spacecraft, thermal control and pointing control
subsystems. Figure 7 shows the prototype tether
release mechanism, which has undergone extensive
testing. Figure 8 depicts the tether deployment timeline.

Figure 7 – Prototype of the QUEST Tether
 Release Mechanism

Figure 8 – QUEST Tether Deployment Timeline

The distributed computing system described in this
paper is well suited to provide the computational
infrastructure for the QUEST mission. It meets the
majority of communication bandwidth and performance
requirements, and the PIC-based motherboards are
capable of controlling the majority of subsystem
elements. In addition, it will naturally address the
intricacies of multi-satellite control issues in a manner
similar to the Emerald mission.

Depending on the evolution of the mission, one or two
of the payload systems may require processing and/or
communication capabilities beyond that baselined in the
proposed architecture. Advanced processors will be
accommodated by simply requiring them to adhere to
the standard I2C data protocol. A high-bandwidth
communication requirement, which may arise in order

to support a real-time video experiment, will be
addressed by adding a dedicated communication
transmitter directly connected to the camera payload.

5. The Architecture as an Experiment

The design team is treating the development of the
distributed computing architecture described in this
paper as an experiment to identify the true pros/cons of
this approach and to gain insight into how its use can be
effectively exploited by system design teams. Although
early observations are anecdotal, several qualitative
observations have been made to date.

First, the use of standard protocols and equipment has
saved a significant amount of cost and time that would
have otherwise been invested in a custom design
activity (as the authors had done in previous programs).

Second, the modularity inherent in this approach has
allowed entire subsystems to be completed, iteratively
tested, and seamlessly integrated with other subsystems
without being impeded by slow progress elsewhere
within the program.18 For example, the Emerald
program originally baselined a commercially available
flight computer; however, significant delays occurred
due to the delivery schedule and the learning curve
associated with this equipment. While such delay
would have crippled a central computing architecture,
the Emerald team was able to completely develop and
accept several subsystems prior to the delivery of the
final version of the commercial processor.

Third, the well-defined interface standard and the
ability to test compliance and functionality of
subsystems via a simple PC interface, as depicted in
Figure 9, has had an interesting affect on the student
design team. In previous projects, functional
integration and test was often a somewhat mysterious
exercise conducted by a core set of software developers
responsible for implementing data interfaces ranging
from debug signals all the way through to the final
command and telemetry interface. The well-defined PC
interface has made this process far more accessible to
the broad student design team, thereby providing a
significantly enhanced educational experience.

In addition, the PC interface provides a natural gateway
for an internet-based bridge between data buses at
geographically distributed locations as is depicted in
Figure 10. Such a connection, using a ring-buffered
network data server or a direct on-board ethernet, has
been used at Santa Clara University for remote
development and test of other robotic systems using
alternate distributed computing architectures; use of a
similar framework for the Emerald and Quest projects
is being considered for the future.

 Palmintier 9 16th Annual AIAA/USU Conference on Small Satellites

Figure 9 - The PC-based Integration and Test Setup

Figure 10 - An Architecture for Geographically
Dispersed Test and Integration

6. Future Work

Future work remains at many levels. In the current
phase of work, the development team must complete a
final version of the data handling protocols and libraries
suitable for flight. In addition, work remains on
services for software uploads, the production rule
system, and quantitative testing for data rate
performance and fault tolerance. Furthermore, the team
will continue integrating this system with the Emerald
and Quest spacecraft and will identify new
opportunities to incorporate this technology on other
small spacecraft and robotic systems; the “off-the-
shelf” nature of the system will hopefully make this a
cost-effective choice for future design teams .

On a broader level, the team wishes to continue with
research and development of distributed computing
systems. Future designs might also migrate to a faster
or more capable data bus standard such as CAN or
possibly even internet-based protocols (as is being done
on the distributed computing architecture for the team’s
current efforts in undersea robots). Another direction
for improvement would be to develop a truly redundant
bus based around a low power standard such as I2C.

In addition to improving the raw performance of such
systems, the team is also interested in developing and
extending suites of autonomous services that can
exploit such capability; this includes services such as

dynamic command and data routing, resource sharing,
and collaborative multi-robot operations.

7. Conclusions

The development team has made significant progress in
developing a linear bus distributed computing
architecture. This architecture balances simplicity and
cost with the performance required to support research-
quality, university-based microsatellite instrumentation
and missions. This system consists of a network of
PICmicro® PIC-based processors linked by a hybrid
bus consisting of a high-bandwidth I2C data bus and a
low-bandwidth Dallas “1-wire” microLAN for standard
vehicle telemetry. The current system is being
incorporated into both the Emerald and the Quest multi-
satellite small spacecraft missions.

To date, the system has been implemented and
functionally verified with a variety of small satellite
subsystems. Compared to previous experiences with
developing small spacecraft with a centralized
computing architecture, the team has observed
significant improvements in the development process.
These are largely attributed to the standardization and
modularity that has been enforced by the distributed
architecture. Observed improvements to date include
reduced costs, a framework for independent
development and seamless integration, a more open and
accessible iuntegration and verification process, and a
clear strategy for extending the distributed
architecture’s benefits to multi-satellite flight
operations as well as to geographically distributed
development operations.

8. Acknowledgements

Development of this distributed computing architecture
has been made possible through sponsorship by the
U.S. Air Force, NASA Goddard Space Flight Center,
the Universities Space Research Association, the
California Space Grant Consortium, and Santa Clara
University.

Integration of this system with the distributed ground-
based mission control architecture as well as work
involving the internet-based network bus is based upon
work supported by the National Science Foundation
under Grant No. EIA0079815. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

 Palmintier 10 16 th Annual AIAA/USU Conference on Small Satellites

The authors also wish to thank the student design teams
at Santa Clara University, Stanford University, and
Washington University in St. Louis for their feedback
in the development of this system and its incorporation
into several active flight projects.

References

1. Palmintier, B., “Emerald Nanosatellite Data
Architecture,” Stanford University AA254 Research
Report, May, 2001.

2. Palmintier, et. al., “Distributed Computing on

Emerald: A Modular Approach for Robust
Distributed Space Systems,” Proceedings of the
2000 IEEE Aerospace Conference, Snowmass MT,
March 2000.

3. Fieldbus Homepage, Dec 1998 [Available Online at

http://cran.esstin.u-nancy.fr/CRAN/Cran/ESSTIN/F
ieldbus/page_norm.html#Fieldbus]

4. Synergetic Microsystems, Inc., Online Fieldbus

Comparison Chart, December 1999 [Available
Online: http://www.synergetic.com/compare.htm]

5. Wade D. Patterson, VMEbus Frequently Asked

Questions, December 1999 [Available Online:
http://www.vita.com/vmefaq/index.html]

6. The I2C-Bus Specification, version 2.0, December

1998 [Available Online: http://www-us.
semiconductors.philips.com/acrobat/various/I2C_B
US_SPECIFICATION_2.pdf]

7. Paret, D., and Fenger, C., The I2C bus: from theory

to practice, Wiley, Chichester ; New York, 1997.

8. Paschalidis, N., “A Remote I/O (RIO) Smart Sensor

Analog-Digital Chip for Next Generation
Spacecraft” In Proceedings of the 12th AIAA/USU
Conference on Small Satellites, 1998.

9. The I2C-bus and how to use it (including

specifications), Phillips Semiconductor, June 2001
[Available on-line: http://www.semiconductors.
philips.com/acrobat/various/I2C_BUS_SPECIFICA
TION_1995.pdf]

10. ARINC Protocol Tutorial, Condor Engineering [cd-

rom]

11. Spitzer, C., Digital Avionics Systems: Principles
and Practice, second ed. The Blackburn Press,
Caldwell, NJ, 2000, pp. 37-43.

12. MIL-STD-1553 Tutorial, Condor Engineering [cd-

rom]

13. UT63M1XX: Power Consumption vs. Dissipation

[Availible on-line: http://www.utmc.com/products/
consumption.pdf, 6-7-2001]

14. Kitts, C., et. al., "Emerald: An Experimental

Mission in Robust Distributed Space Systems,"
Proceedings of the 13th Annual AIAA/USU
Conference on Small Satellites, Logan UT, August
1999.

15. Kitts, C., and Swartwout, M., "Autonomous

Operation Experiments for the Emerald
Nanosatellite Program," Proceedings of the 14th
Annual AIAA/USU Conference on Small Satellites,
Logan UT, August 2000.

16. Kitts, C., “The Distributed Robotic Control

Network,” Santa Clara Technical Document,
Robotic Systems Laboratory, 2001.

17. Carlson, J., and Nakamura, Y., “The Kyushu/US

Experimental Satellite Tether (QUEST) Mission, a
Small Satellite to Test and Validate Spacecraft
Tether Deployment and Operation,” Proceedings of
the 14th AIAA/USU Conference on Small Satellites,
Logan UT, August 2000.

18. Townsend, J., et. al., “Effects of a Distributed

Computing Architecture on the Emerald
Nanosatellite Development Process,” In
Proceedings of the 14th AIAA/USU Conference on
Small Satellites, Logan UT, August 2000.

 Palmintier 11 16th Annual AIAA/USU Conference on Small Satellites

