Fine Steering Mirror for Smallsat Pointing and Stabilization

Dr. Steve Wassom, PI Morgan Davidson, Presenter Trent Newswander James Cook Zach Casper Adam Shelley

AIAA/USU Small Satellite Conference 2006 Paper No. SSC06-VIII-7

Outline

- Introduction
- Justification and SDL experience
- Requirements and trades
- Design description
- Structural/thermal analysis
- Control system development
- Test results and model validation
- Performance summary
- Future work

Introduction

- Fine Steering Mirror (FSM) Prototype built by SDL
- Enabling technology for small-sats
- Low-cost **two-axis** mechanism
- Financed by internal funds
- Unique feedback sensor
- Large angular deflection
- High bandwidth

Justification

- Move the boresight not the bus!
- Payloads can achieve better coverage
- Space-rated FSMs too pricey for some smallsat programs
- Low-cost space FSM an enabling technology for smallsats

Prior FSM Experience at SDL

SDL-Built Steering Mirrors

- SABER Single axis scan mirror, over 4 years on-orbit
- CAJIS Single axis fast steering mirror, 300 Hz

response, magnetostrictive actuator

SDL Programs Incorporating Others' Steering Mirrors

- SOFIE
- GIFTS
- WISE
- SPIRIT III

FSM Requirements

Generic requirements based on management consensus

- Two-axis scan mirror
- Space operation
- Low cost
- Azimuth deflection:
- Elevation deflection:
- Position accuracy:
- Clear aperture:
- Bandwidth:
- Operating temp:
- Mirror RMS WFE (flatness): <1/10 wave HeNe
- Mirror RMS surf. roughness:

±60 degrees mechanical ±15 degrees mechanical 1-2 arcsec 75 mm 70-100 Hz down to 210 K <1/10 wave HeNe < 20 angstroms

Mechanism Trade-offs

	Bearings	Actuators	Feedback Sensors
Azimuth	<u>Ball Bearings</u> Gas Bearings	<u>Brushless DC</u> Stepper	<u>Optical Encoder</u> Resolver Inductosyn
Elevation	Ball Bearings <u>Flex Pivots</u> Flexures	Piezo Magnetostrictive <u>Voice Coil</u> Brushless DC Stepper	Optical Encoder <u>Inductive</u> Capacitive Strain Gage Resolver Inductosyn

Mirror Design

- Flat **aluminum** mirror
- Clear aperture: 75 mm x 150 mm Ellipse shape
- Open back form for lightweight and thermal
- Triangular cells considered optimum geometry
- Mounting on four flexure isolated pads
- Single point diamond turned face
- VQ Post-polishing
- Operating temperature: 210 K
- Mirror mass: 0.16 kg

Azimuth Axis Design

- Brushless DC motor
- Ball bearings
- Optical encoder
- 4.5 arcsec per encoder count
- Similar to SABER design

Elevation Axis Design

- Yoke supported by Az shaft
- Flex pivots
- Pivot life virtually infinite
- Pivots sized for assumed launch loads
- Rotary voice coil motor
- Unique feedback sensor

Wedge Sensor

- Tapered wedge moves between
 opposed inductive transducers
- Minimizes effects of wobble, vibration
- Good resolution, repeatability
- Some drift with temperature
- Can be temperature-mapped
- Provisional patent secured

Electronics Design

Azimuth axis

- COTS Linear brushless servo amplifier
- Sinusoidal commutation done in real-time software
- COTS optical encoder interfaced to real-time environment

Elevation axis

- Wedge sensor interfaced to real-time environment
- COTS power op-amp driver circuit
- Built by SDL

Thermal Design

Two main challenges

- Maintain mirror at minimum temperature
- Minimize thermal gradients across mirror

Solutions

- Thermal coatings
- Thermal isolation
- Cool baffle with azimuth shaft passing through
- Mirror thermally isolated on elevation flex pivots

Mirror Analysis

- Mirror modal 1st mode at 270 Hz
- Mirror mounting distortion 1/20th wave HeNe (RMS)
- Mirror thermal elastic 1/30th wave HeNe (PV)
- Mirror face thermal gradient (LEO) 0.11 K

Mirror Test Results

- Bell jar test chamber
- Zygo Fizeau interferometer
- Mounting distortion 1/40th wave HeNe (RMS)
- WFE (flatness) at 210 K 1/12th wave HeNe (RMS)
- Rib print-through not detectable down to 92 K
- Vendor is confident SPDT marks seen in the interferogram will not be in future mirrors

Figure 21. Interferometric Measurements at 186K

Control System Development

Rapid Prototyping Methodology

- Based on COTS software tools
- Customized for optical pointing
- End-to-end modeling of dynamics, controls, optics
- Automatic code generation
- Real-time HIL testing
- Customized GUI for "on-the-fly" tweaking
- Substantial time-money savings

Multi-body dynamics model

- Rigid body representations
- Flexible body representations
- Co-simulated with controls model

Control System Test Results

- Small and large angle step response tests
- Used control systems analyzer for frequency response
- Sine sweep (100 arcsec) from 1 Hz to 1000 Hz
- System components characterized individually
- Model results match well with test data

Figure 23. Azimuth Axis Large-Angle Step Response

FSM Performance

Specification	Value	Comments
Aperture (mm)	75	At 60 incident degree angle
Mirror RMS WFE (waves HeNe)	1/12	Measured at 210K
Mirror Surface RMS roughness (angstroms)	20	
Mass (kg)	1.0	Electronics not included
Avg. Power (W)	0.4	Continuous GMC scans
Peak Power (W)	30	Simultaneous large-angle steps
Azimuth Rot. (mechanical deg)	±60	
Elevation Rot. (mechanical deg)	±15	
Azimuth Error Mean (arcsec)	<1	Last 10 s of step-and-hold
Azimuth Error Std. Dev. (arcsec)	<3	One encoder count = 4.5 arcsec
Elevation Error Mean (arcsec)	<0.05	Due to transducer repeatability
Elevation Error Std. Dev. (arcsec)	<6.5	Mainly due to A/D card
Azimuth Slew Rate (0-100%) (deg/sec)	160	
Elevation Slew Rate (0-100%) (deg/sec)	75	
Bandwidth (Hz, 100 arcsec amplitude)	70	-3 dB point
Gain Margin (dB)	6	Could actually be higher

Future Work

Future Work

- Optimize control algorithms
- Improve wedge sensor implementation
- Upgrade and package electronics
- Move to all space-rated components
- Develop command protocols
- Implement launch lock
- Funding secured for this year's effort

Summary

- Introduction
- Justification and SDL experience
- Requirements and trades
- Design description
- Structural/thermal analysis
- Control system development
- Test results and model validation
- Performance summary
- Future work

Questions

