

SSC07-X-10

A Simple Time Synchronization Scheme for Satellite Clusters in Formation Flying

Dao Thi Hong Diep

N. Nagarajan

Nanyang Technological University, Singapore

Objective

- To formulate a time synchronization strategy for satellites in formation.
- Analyze and establish the feasibility by simulation.

Need

- For navigation among satellites in formation.
- For precise electronic steering of the beams of the satellites to synthesize very large antenna structures.

Contents

- Synchronization in Fireflies
- Proposed 'Transmit & Listen' method
- Calculation and correction of the clock offsets
- Simulation results by Matlab
- Conclusion

Synchronization in Fireflies

- Synchronization in Fireflies is a selforganized process.
- Fireflies influence each other.
- Emit flashes periodically and receptive to flashes from others

 Synchronization accuracy is governed by the propagation delay in the line-of-sight

- Whenever A wants to synchronize with respect to B, it transmits a pulse which is reflected back by B.
- B also periodically transmits pulses

Aug-07

SSC07-X-10

7

Next transmission of A is delayed (or advanced) by τ or a fraction of it ($k\tau$)

Single step and progressive correction offsets

$$t_{A,2} = t_A + NT + \tau$$

= $t_A + NT + \left(n_{BA} - \frac{n_{AA}}{2}\right)T$
$$t_{B,2} = t_B + NT$$

= $t_A + NT + \tau$
= $t_A + NT + \left(n_{BA} - \frac{n_{AA}}{2}\right)T$

$$t_{A,2} = t_A + NT + k\tau$$
$$t_{B,2} = t_B + NT$$
$$= t_A + NT + \tau$$

Offset in 2^{nd} cycle is, $(1-k)\tau$

Offset in p^{th} cycle is, $(1-k)^{p-1}\tau$

Assumption: Clock Frequencies of A and B are same

Synchronization with Unequal Clock Frequencies

$$Clock Periods: T for B and T+\delta for A$$

$$t_{A,2} = t_A + N(T+\delta) + k\tau \qquad t_{B,2} = t_B + NT$$

$$= t_A + NT + k\tau + N\delta \qquad = t_A + NT + \tau$$

$$Offset in the nth cycle,$$

$$\tau_n = (1-k)^{n-1}\tau_1 - \{ (1-k)^{n-2} + (1-k)^{n-3} + \dots + (1-k) + 1 \} N\delta$$

$$This leads to, \quad \tau_n = (1-k)^{n-1}\tau_1 - \frac{1}{k}N\delta$$

Result: Unequal frequencies lead to a fixed offset at the start of each cycle

10

Synchronization with Unequal Clock Frequencies

- 1. Initiate synchronization.
- Calculate the offset (τ) and apply progressive correction by factor k
- 3. Repeat step 2 in each cycle and monitor τ
- 4. If τ is constant after say 50 cycles, add an **additional correction (i.e. Look-ahead correction)** of $k\tau_n$ (which is equal to N\delta) in timing the subsequent pulses of A.
- 5. This brings the offset to $\tau_n = (1-k)^{n-1} \tau$, for n > 50.

Simulation results by Matlab

Typical Formation of 4 nano-satellites around a mother satellite (B)

		Parameter	Nodes					
	A2		1	2	3	4	5	
B 0m	_ A4	Clock Period (nSec)	0.1	0.1 0.75e-4	0.1+ 1.1e-4	0.1 0.85e-4	0.1 0.65e-4	
		Clock freq (GHz)	10	10.0075	9.989	10.0085	10.0065	
		Initial Offset (Counts)	0	5504	3496	5504	7004	
		Node Status	М	С	С	С	С	
		Legend: M–Mother, C-Child						

d = 30

A3

Simulation results

Identical Clocks, with only an initial offset

Progressive Correction

k	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Offset	0	1	1	1	1	1	2	3	4	9

Simulation results

Unequal Clock Frequencies, AND with an initial offset

Conclusion and future work

- 'transmit and listen' method formulation is effective to time-synchronize in a formation.
- Feasible to remove the offsets due to initial mismatch and also the clock frequency differences.
- To set up an indoor UWB network with a distance of 10-20 m and conduct the experiments with 10GHz clock.

Thank You

