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 An extension of analytical methods for building damage evaluation in 

subsidence regions to anisotropic beams  

Abstract 

Ore and mineral extraction by underground mining often causes ground subsidence 

phenomena, and may induce severe damage to buildings. Analytical methods based 

on the Timoshenko beam theory is widely used to assess building damage in 

subsidence regions. These methods are used to develop abacus that allow the damage 

assessment in relation to the ground curvature and the horizontal ground strain 

transmitted to the building. These abacuses are actually developed for building with 

equivalent length and height and they suppose that buildings can be modelled by a 

beam with isotropic properties while many authors suggest that anisotropic properties 

should be more representative. This paper gives an extension of analytical methods to 

transversely anisotropic beams. Results are first validated with finite elements 

methods models. Then 72 abacuses are developed for a large set of geometries and 

mechanical properties.  
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Introduction  

Ore and mineral extraction via underground mining may induce ground subsidence 

phenomena. These phenomena lead to horizontal and vertical ground movements, which 

consequently lead to deformations and damage in buildings of undermined urban regions 

(Figure 1). The maximum vertical displacement occurs in the centre of the subsidence area 

and may reach several meters. This displacement is accompanied by horizontal ground 

strains, ground curvature, and slope, the three types of movements that load structures and 



cause structural damage (Saeidi, Deck and Verdel, 2013). According to the mining 

extraction method: longwall mining, rooms and pillars with or without caving… subsidence 

is planned or may be accidental a long time after the extraction. In all cases, prediction of 

building damage is necessary when subsidence is expected in an urbanized area.  

Dimensions of mining subsidence are basically greater than the buildings ones and the 

grounds movements may be assumed constant over the building length. Figure 1 described 

the main dimensions and characteristics of a mining subsidence for a longwall mine. But, at 

the scale of one building compared to the extension of a mine, these ground movements are 

quite similar in the case of a subsidence over a rooms and pillars mine with or without 

caving. Depending to the subsidence kinetic, location of buildings in a subsidence is time 

dependent. A building may be in the traction and hogging area when the subsidence starts 

and be in the compression and sagging area when the subsidence stops. When mining 

subsidence is accidental, the kinetic is generally uncertain and the final location of the 

building is considered to assess the lower bound of the ground movements in the building 

vicinity. Two parameters are used to quantify the subsidence intensity in relation to the 

building damage: the horizontal ground strain that is associated with the horizontal load of 

the buildings, and the ground curvature that is associated with the deflection of the 

buildings. 



 

Figure 1. Description of the main characteristics involved in mining subsidence and 

associated consequences (Saeidi, Deck and Verdel, 2009). a) typical profiles of the ground 

displacements and localisations of the compression/sagging and the traction/hogging areas. 

b) Typical values of the subsidence dimension and grounds movements. c) typical damage 

due to mining subsidence in the city of Auboué, France.  

The assessment of building damage in mining subsidence hazard areas can be performed 

using three types of methods: empirical, analytical and numerical methods. Empirical 

methods are based on the analysis of a large number of observations of damage to 

buildings. The simplest method is threshold values of the ground displacements (Skempton 

and MacDonald, 1956). The National Coal Board method (NCB, 1975) is one of the most 

famous, and it addresses the damage assessment with the building length and the horizontal 

ground strain. Analytical methods are based on the use of beam theory (Timoshenko, 1957) 

to assess the global behaviour of a building in relation to its geometry and mechanical 

properties. The first method was developed by Burland and Wroth (1974), and many 

extensions are now available (Boone, 1996; Finno, Voss, Rossow and Blackburn, 2005). 

Numerical methods are mostly used for the prediction of ground movements (Melis, 

Medina and Rodríguez, 2002 and  Coulthard and Dutton 1998), the study of soil structure 



interaction and the assessment of the transmitted ground movements (Selby, 1999, 

Franzius, Potts and Burland 2006, Son and Cording 2005 and Burd, 2000). But very few 

studies address the question of the damage assessment with numerical methods. 

The analytical methods initially developed by Burland and Wroth (1974) is widely used. 

This method was used to develop an abacus to assess the building damage, in relation to the 

horizontal ground strain and the ground curvature transmitted to the building, for a specific 

configuration: a building with a length L by height H ratio equal to 1 (L/H=1) and isotropic 

mechanical parameters with E/G = 2.4, with E and G the Young and shear modulus. 

However, the use of the beam theory for L/H ratio less than two is mostly questionable and 

such analytical methods should be restricted to greater L/H ratio. Moreover, Son and 

Cording (2007) show that masonry buildings with openings, required to be modelled with 

E/G greater than 3, i.e. with a Poisson ratio ν greater than 0.5 is isotropic behaviour is 

considered. This requires considering anisotropic behaviour. 

In the following the analytical method of Burland and Wroth (1974) is first described and 

extend to transversely anisotropic materials. Results of the improved method are compared 

with those of finite element methods analysis (CESAR-LCPC, 2010). Then the method is 

used to plot a set of abacuses in order to cover a large set of dimensions (L/H ratio) and 

mechanical properties. 

Analytical methods for building damage evaluation  

Overview 

The first analytical method of building damage assessment was developed by Burland and 



Wroth (1974), and several extensions are now available (Boscardin and Cording, 1989, 

Boone, 1996 Burland, 1995, Boone, 2001, Finno, Voss, Rossow and Blackburn, 2005). In 

these methods, masonry buildings are modelled with an isotropic and elastic beam with two 

supports, loaded by a central or uniformly distributed load. A deflection ∆ is imposed on 

the beam to model the ground curvature that corresponds to the bending effect of the 

subsidence on the building (Figure 2). The maximum tensile strains due to bending 

deformation and shear deformation are then calculated and compared with the values of the 

critical tensile strains for the determination of the damage class. All of the current 

analytical methods use five damage classes, and Table 1 gives the five damage classes 

defined by Burland (1995) and Boscardin and Cording (1989). 

 

Figure 2. Beam model for building in subsidence zone (after Burland, Mair and Standing 

2004). 

Differences between these methods concern the modelling of the subsidence effect, the 

loading distribution (building weight), the location of the neutral axis, the building type and 



the imposed relationships between the mechanical parameters: 

(i) Most of the methods consider the deflection ∆ to model the effect of the subsidence. 

Boscardin and Cording (1989) extended the approach of Burland and Wroth (1974) by 

superimposing the horizontal strain εh induced by the horizontal ground strain onto those 

generated by the bending of the beam. These methods assume that the deflected beam is 

then also subjected to a uniform extension over its full depth. 

(ii) Analytical methods consider different types of buildings. Burland and Wroth (1974), as 

well as Boscardin and Cording (1989), consider masonry buildings modelled with isotropic 

beams, and they suggest adjusting the ratio E/G of the Young’s modulus E to the shear 

modulus G of the beam to be between 2.4 and 12.5, in order to take into account the 

influence of the openings (doors and windows) that would cause an increase in the shear 

deformation. Son and Cording (2007) investigated the possible range of the E/G ratio in 

relation to the number of windows, and they show that this ratio may be close to 60. These 

values denote an anisotropic behaviour of buildings that is incompatible with the first 

assumption of an isotropic beam that imposes a E/G ratio between 2 and 3 in order to keep 

the Poisson ration between 0 and 0.5. Boone (1996, 2001) considers three types of 

buildings: load bearing wall masonry buildings, in-fill walls and beam-in-frame structures. 

Finno, Voss, Rossow and Blackburn, (2005) suggest a model to take into account the 

positive influence of the concrete floors of buildings under study.  

(iii) Burland (1995) considered both a uniformly distributed and a central point load to 

model the building weight. Boscardin and Cording (1989) and Finno, Voss, Rossow and 

Blackburn, (2005) also considered the central load assumption, while Boone (1996, 2001) 



considered the uniformly distributed load assumption. In the present paper, we have 

selected a uniformly distributed load because it appears to be more realistic than the central 

point load assumption. 

(iv) The localisation of the neutral axis is also a debatable question. In the hogging area, 

Burland and Wroth (1974) and Boscardin and Cording (1989) consider that the neutral axis 

is probably located at the bottom of the beam because of the small tensile resistance of the 

upper levels of the masonry building and the greater tensile resistance of the foundation 

level. Boone (1996) considers this to be debatable because of the influence of the floors and 

the roof that may increase the tensile resistance. In our case, we have assumed that the 

neutral axis is located in the middle, i.e., superimposed on the central axis. 

Burland method  

As it was explained in the previous section Burland’s method consider the building as an 

isotropic beam with dimension L for the length, H for the height and with a unit thickness. 

The beam can be affected both by the horizontal ground strain and the ground curvature. A 

vertical transmitted deflection ∆ is imposed at the centre of the beam to model the effect of 

the ground curvature, and a uniform horizontal transmitted strain εh is imposed to model the 

effect of the horizontal ground strain.  

Based on the theory of Timoshenko (1957), Burland and Wroth (1974) identified two 

critical sections in the beam where maximal tensile strains occur; the half span section and 

the edge section. In these two sections, the maximal tensile strain must be calculated in 

order to allow a comparison to threshold values associated with different damage classes. 



The relationships between ∆ and the maximum tensile strain εb in the half-span critical 

section, or the maximal diagonal tensile strain εd in the edge section, are calculated by 

Burland (1995) according to Equation (1) and Equation (2), where y is the distance between 

the neutral axis and the lower fibre of the beam.  
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The effect of the uniform horizontal transmitted strain εh, may then be added in order to 

calculate the maximal value of the principal tensile strain in the two critical sections. 

In the half span critical section, both ∆ and εh induce principal horizontal tensile strains. 

The maximal tensile strain εbmax is then estimated as the sum of these two principal tensile 

strains (Equation (3)): 

  εbmax
= εb + εh

    (3) 

In the edge critical section, ∆ induces vertical shear stresses and ultimately a diagonal 

principal tensile strain, while εh induces a horizontal principal tensile strain. The maximal 

tensile strain εdmax is then evaluated using Mohr’s circle of strain (Equation (4), Burland, 

Mair and Standing, 2004). 
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For an isotropic beam, ν can be replaced by E/2G – 1 with the E/G ratio between 0.5 and 3. 



By substituting the values of εb in Equation (1) into Equation (3) and εd in Equation (2) into 

Equation (4), the relationship between the relative deflection parameter (∆/L), the 

transmitted horizontal strain (εh) and other building parameters is calculated for the two 

critical sections (Equation (5)). 
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Burland, Broms and De Mello (1977) defined the concept of limiting tensile strain εlim that 

must be compared to the maximal tensile strains εbmax and εdmax to define the threshold 

value of the maximal tensile strain before damage occurs. Like Boscardin and Cording 

(1989), Burland (1995) defined different threshold values for different damage levels 

according to Table 1, and they considered these values for a large quantity of buildings. 

Most of the analytical methods use these thresholds values to assess the building damage, 

and we have also used the same values. 

Table 1. Threshold values of the limiting tensile strain εlim associated with the five damage 

classes (Boscardin and Cording 1989, Burland, Mair and Standing 2004). 

Damage class Limiting tensile stain (εlim)% 

D0 Negligible 0-0.05 

D1 Very slight 0.05-0.075 

D2 Slight 0.075-0.15 

D3 Moderate 0.15-0.3 



D4 and D5 Severe to Very Severe >0.3 

The two relations from Equation (5) are usually used to plot the ∆/(L.εlim) ratio versus the 

L/H ratio for given values of the building mechanical properties and the uniform horizontal 

transmitted strain εh. Figure 3 shows a result for the case where εh is set equal to 0, the E/G 

ratio is 2.6 (case of an isotropic beam with ν = 0.3) and the neutral axis is in the middle. 

This figure shows two curves: one is associated with the tensile strain due to shear near the 

edges of the beam (Figure 2-d), and the other is associated with the tensile strain due to 

bending in the middle span of the building (Figure 2-e). The minimum value of ∆/L/εlim 

between these two curves is a critical value, and it can be used to assess the maximal 

admissible relative deflection ∆/L. For a given value of the limiting tensile strain (εlim), the 

smallest value of ∆/L/εlim between the two curves indicates whether the failure will occur 

near the edge section (shear) or near the middle section (bending). It appears that for small 

values of the ratio L/H, failure will occur near the edge of the building where the maximal 

tensile strain due to shear first reaches the limiting value εlim. For greater values of the ratio 

L/H, failure will occur in the middle section (Figure 3). 



Figure 3. Limiting relationships between (∆/L)/εlim and L/H.  

Comparison of Figure 3 and Table 1 is required to plot abacuses of damage in relation to 

the deflection ratio and the horizontal strain. Burland developed such abacus for a specific 

situation: a central point load beam model, with L/H=1 and isotropic properties with E/G = 

2.6 (ν = 0.3) (Figure 4). The first criticism is that this abacus is developed for a building 

dimension which doesn’t allow the use of the beam theory. The second is that there is a risk 

this abacus be used for other shape and mechanical properties, when results may 

significantly differ.  



Figure 4. Burland curve for damage assessment in subsidence zone. 

Development of abacuses for isotropic transversally beams. 

Burland’s method is based on the Timoshenko beam theory that suppose isotropic materials 

i.e E/G is between 0.5 and 3 for a Poisson ratio between 0 and 0.5. However several authors 

suggest to consider greater values of E/G, up to 60 (Boscardin and Cording 1989, Son and 

Cording 2005, 2007) These values are contradictory with the isotopic assumption and the 

use of Timoshenko beam theory. Therefore to justify the use of such values in the Burland 

analytical method, the building is modelled as an elastic and transversely isotropic beam 

with two supports. 

The transversely isotropic behaviour is defined with 5 independents parameters. Two 

Young’s modulus Ex and Ey, two Poisson’s ratio νxy and νxz and one shear modulus Gxy 

(Figure 5). Assumptions are made to reduce to 3 the number of independent parameters:  Ex 

= Ey = E and νxy = νxz = ν. 



 

Figure 5. Transversely isotropic beam model for masonry building.  

Results of the transversely isotropic beams are similar to Equation (5) before replacing ν by 

the value E/2G-1 (Equation (6)). Detailed formulas are shown in appendix.
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Thus, no difference exists between the isotropic and the transversely isotropic models. 

Introduction of non-isotropic values of ν and E/G in Burland’s expressions can appear as an 

heuristic approach to take into account the real anisotropic behaviour of masonry walls. 

However, Equation (1) and Equation (2) remain similar for isotropic and transversely 

isotropic models if it is assumed that, the normal to centroidal axis remains normal and 

straight after bending.  



However, it is not at all obvious that this assumption is correct. To validate it, numerical 

simulations (FEM) are performed.  

Validation of the assumption that normal to centroidal axis remains normal and 

straight after bending  

We consider a FEM to model an transversely isotropic (CESAR-LCPC software 2010). 

Geometry of the model is shown in Figure 6 and the characteristics of the beam are 

presented in Table 2.  

Table 2. Characteristics of the beam for finite element analysis.  

Length Height Modules of elasticity 

Ex and Ey 

Poisson’s 

ratios 

Shear modulus Gxy 

25 m 5 m 20 Gpa 0.2 Variable between 400 KPa (E/G 

= 20) and 10 GPa (E/G = 0,5) 

 

 

Figure 6. FEM model of beam  

Several values of E/G are considered in the analysis (0.5, 2.6, 5, 10, 15, 20, 50).  Figure 7 

and Figure 8 show results of σxx stresses and εxx strains in a vertical section at the mid span 



of the beam. Results show a linear variation of horizontal stresses for value of E/G less than 

50. This confirms the assumption that the normal to centroidal axis remains normal and 

straight after bending for anisotropic beam (Hashin 1967).  

 

Figure 7. Distribution of σxx on the mid-span cross section of the beam (in Mpa). 



 

Figure 8. Distribution of εxx on mid-span cross section of the beam (in mm/m). 

Moreover, comparison of the maximum deflection calculated with the Timoshenko 

formulas and transversely anisotropic behaviour (Equation (1) and Equation (4)) and with 

the FEM shows a good agreement for values E/G less than 50. Consequently, Equation (6) 

is validated to model transversely isotropic beams.  



 

Figure 9. Comparison of the maximum deflection calculated with Equation (6) and the 

FEM for transversely isotropic beams. 

Application of the transversely isotropic model to develop abacuses 

Objective of this section is to develop different abacuses to investigate others cases than the 

one of Burland (1995). The uniformly distributed load assumption is chosen because it 

appears more realistic to model the building weight and the neutral axe is taken in the 

middle of the beam. Different geometries are investigated with L/H ratio between 1 and 4. 

Opinion of authors is that results for L/H equal to unit are probably not realistic. However 

these results are useful to be compared with the initial abacus of Burland who used the 

same geometry. The transversely isotropic model is used so that different values can be 

investigated both for ν and E/G. The Poisson’s ratio is taken between 0 and 0.5. The E/G 

ratio is taken between 0.5 and 12.5.  



Abacuses are developed with an algorithm presented in the Figure 10. 

The first step of the algorithm is to choose a threshold value of critical strain εcr for εbmax 

and εdmax, according to Table 1. Then for each value of the horizontal strain transmitted by 

the ground to the building εh, we can calculate the value of the ratio ∆/L that satisfies the 

equilibrium relationships of the beam (Equation (6)). Two values of ∆/L are obtained when 

considering the influence of shear or bending moment. Only the minimum value is taken. 

By repeating the procedure for all values of the horizontal strain εh, we can draw the 

boundary curve of this type of damage. The change εcr value (Table 1.) is then used to draw 

the curves that characterize other damage levels. 

  



Figure 10. Algorithm of determination of damage curve development 

Results are all plotted in Figure 11 for L/H =1, Figure 12 for L/H = 2, Figure 13 for L/H = 3 

and Figure 14 for L/H = 4. In each figures, 24 abacuses are drawn for each combination of 

υ and E/G. Several abacuses show broken lines This means that failure may occur both 

because of bending (right part of the lines) or shear (left part). When abacuses only show 

straight lines, these correspond to a bending failure. Thus long buildings and buildings with 

small E/G ratio are most affected by bending, rather than shear.  

Abacus in Figure 11, plotted for ν = 0.3 and E/G = 2.6 can be compared with the previous 

one developed by Burland (Figure 4). Results show that Burland’s assumption: central 

point load and neutral axis at the bottom of the beam, are not conservative since damage is 

underestimated with Figure 4 compared with Figure 11. 

Results also show a significant influence of the E/G and L/H ratio, while ν is less influent. 

On the whole, greatest values of E/G and L/H gives smaller damages. However, detailed 

results show that complex interactions must be considered. This can also be explained with 

Equation (6), where it is obvious that L/H and E/G have an opposite effect when 

considering the second equation (shear), while both L/H and H/L appear in the first 

equation (bending). 

All these comparisons demonstrate that none of these damage curves are suitable for all 

buildings, and that it is important to calculate and use the correct damage curve associated 

with the most realistic building parameters. 

 



 

Figure 11. Damage identification curves for buildings for building with L/H ratio ratio 

equal 1 and different mechanical parameters 



 

Figure 12. Damage identification curves for buildings for building with L/H ratio equal 2 

and different mechanical parameters 



 

Figure 13. Damage identification curves for buildings for building with L/H ratio equal 3 

and different mechanical parameters 



 

Figure 14. Damage identification curves for buildings for building with L/H ratio equal 4 

and different mechanical parameters 

Conclusion  

Analytical methods based on the Timoshenko beam theory are widely developed to assess 

building damage in subsidence regions. These methods are developed for isotropic 

materials and are developed only for a specifically geometry of building especially in the 

case of building with equivalent length and height. In this paper, a transversely isotropic 

beam model is investigated and an algorithm is developed to adapt results to a various 



dimension and mechanical properties. 

Theoretical developments show that the initial formulas of Burland (1995) may be use for 

anisotropic beams. The use of a transversely isotropic model is adapted for studying 

masonry buildings whose E/G ratio is shown to reach important values. 
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Appendix 1 : Calculation of the deflection for transversely isotropic beam 

In this section, we consider assumption that any cross section, normal to centroidal axis, 

remains normal and straight after bending, as for isotropic beams. This assumption is 

necessary to calculate the influence of the bending moment on the deflection, but is not 

necessary to calculate the influence of the shear force on the deflection. Consequently, the 

differential equation of the deflection is the same than for an isotropic material (Equation 

(7)). 

∂2y
∂x2

= −1

E ⋅ I
(M + 3⋅ E ⋅ I

2⋅ A'⋅G
⋅ ∂V

∂x
)     (7)  

Where M is the bending moment, V is the shear force and y is the beam deflection or 

vertical displacement, A’ is the reduced section area roughly equal to the real area A, I 

iniertia, E the Young’s modulus and G the shear modulus. By considering a uniformly 

distributed load q and three boundary conditions: y(0) = y(L) = 0 and 
  

∂y
∂x

(x = L / 2) = 0, the 

beam deflection is calculated (Equation (7)): 

  

∆
L

=
5q ⋅ L3

384E ⋅ I
1+

72⋅ E ⋅ I

5L2 ⋅ H ⋅G








     (8) 

Demonstration of Equations (1) and (2) requires replacing q by a function of the maximum 

strain due to bending or shear (εb and εd). In the case of isotropic material, the maximum 

strain due to bending occurs in the mid-span section at the bottom or top of the beam (point 

1) and the maximum strain due to shear occurs at the edge of the beam in the centre of the 

section (point 2). Equation 9 is used to calculate the stress state for points 1 and 2. By 

combining with the elastic constitutive equations of Equation (10) the strain state is 



calculated for points 1 and 2 Equation (11) and the final Equations (1) and (2) in the paper 

are gotten. 

 (9) 
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   (10) 

   (11) 

For an anisotropic behaviour, Equation (8) remains unchanged, but the elastic constitutive 

equations of Equation (10) must be replaced by Equation (11) where E1, ν1 are properties in 

the plane of isotropy XZ and E2, ν2, G2 the properties in a plane containing the normal to 

the plane of isotropy. Equation 13 is then obtained y combining Equation (11) and Equation 

(12). 
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   (13) 

Finally, no assumption is required about the values of E1, E2, ν1, ν2 and G2. εxx and εxy only 

depend on E1 and G2. However, values of E2, and ν2 must be considered when the effect of 

the uniform horizontal transmitted strain εh is considered.  


