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An extension of analytical methods for building damage evaluation in

subsidence regions to anisotropic beams

Abstract

Ore and mineral extraction by underground miningelofcauses ground subsidence
phenomena, and may induce severe damage to buldimglytical methods based
on the Timoshenko beam theory is widely used teessduilding damage in
subsidence regions. These methods are used tmgdeatahcus that allow the damage
assessment in relation to the ground curvature tardhorizontal ground strain
transmitted to the building. These abacuses atalyctdeveloped for building with
equivalent length and height and they supposethiédings can be modelled by a
beam with isotropic properties while many autharggest that anisotropic properties
should be more representative. This paper givescamsion of analytical methods to
transversely anisotropic beams. Results are fisdidated with finite elements
methods models. Then 72 abacuses are developedléoge set of geometries and
mechanical properties.
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I ntroduction

Ore and mineral extraction via underground miningynmnduce ground subsidence
phenomena. These phenomena lead to horizontal emidal ground movements, which
consequently lead to deformations and damage ildibgs of undermined urban regions
(Figure 1). The maximum vertical displacement osdarthe centre of the subsidence area
and may reach several meters. This displacemeatdempanied by horizontal ground

strains, ground curvature, and slope, the threestyff movements that load structures and



cause structural damage (Saeidi, Deck and Verd&l3)2 According to the mining
extraction method: longwall mining, rooms and pglavith or without caving... subsidence
is planned or may be accidental a long time aftereixtraction. In all cases, prediction of

building damage is necessary when subsidence ecteghbin an urbanized area.

Dimensions of mining subsidence are basically gretitan the buildings ones and the
grounds movements may be assumed constant ovbuildéeng length. Figure 1 described
the main dimensions and characteristics of a misutgsidence for a longwall mine. But, at
the scale of one building compared to the extensfanmine, these ground movements are
quite similar in the case of a subsidence overamsoand pillars mine with or without
caving. Depending to the subsidence kinetic, locatf buildings in a subsidence is time
dependent. A building may be in the traction anddiweg area when the subsidence starts
and be in the compression and sagging area whesulbgidence stops. When mining
subsidence is accidental, the kinetic is genenafigertain and the final location of the
building is considered to assess the lower bounth@iground movements in the building
vicinity. Two parameters are used to quantify thbssdence intensity in relation to the
building damage: the horizontal ground strain ikassociated with the horizontal load of
the buildings, and the ground curvature that iso@ased with the deflection of the

buildings.
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Figure 1. Description of the main characteristingolved in mining subsidence and
associated consequences (Saeidi, Deck and Vef9).2a) typical profiles of the ground
displacements and localisations of the compressagging and the traction/hogging areas.
b) Typical values of the subsidence dimension admgds movements. c¢) typical damage

due to mining subsidence in the city of Auboué neea

The assessment of building damage in mining subsal&azard areas can be performed
using three types of methods: empirical, analyt@atl numerical methods. Empirical
methods are based on the analysis of a large nuwibebservations of damage to
buildings. The simplest method is threshold valiethe ground displacements (Skempton
and MacDonald, 1956). The National Coal Board metfdCB, 1975) is one of the most
famous, and it addresses the damage assessmetieviihilding length and the horizontal
ground strain. Analytical methods are based onusiaeof beam theory (Timoshenko, 1957)
to assess the global behaviour of a building iatieh to its geometry and mechanical
properties. The first method was developed by Bwrland Wroth (1974), and many
extensions are now available (Boone, 1996; Finnmgsy Rossow and Blackburn, 2005).
Numerical methods are mostly used for the predictod ground movements (Melis,

Medina and Rodriguez, 2002 and Coulthard and DUt&98), the study of soil structure



interaction and the assessment of the transmitt@ding movements (Selby, 1999,
Franzius, Potts and Burland 2006, Son and Cordd@db Zand Burd, 2000). But very few

studies address the question of the damage ass#ssittenumerical methods.

The analytical methods initially developed by Badaand Wroth (1974) is widely used.
This method was used to develop an abacus to absebailding damage, in relation to the
horizontal ground strain and the ground curvattaedmitted to the building, for a specific
configuration: a building with a length L by heigHtratio equal to 1 (L/H=1) and isotropic
mechanical parameters with E/G = 2.4, with E andh& Young and shear modulus.
However, the use of the beam theory for L/H ragsslthan two is mostly questionable and
such analytical methods should be restricted tatgreL/H ratio. Moreover, Son and
Cording (2007) show that masonry buildings with mpgs, required to be modelled with
E/G greater than 3, i.e. with a Poisson ratigreater than 0.5 is isotropic behaviour is

considered. This requires considering anisotropltaliour.

In the following the analytical method of BurlanddaWroth (1974) is first described and
extend to transversely anisotropic materials. Resaflthe improved method are compared
with those of finite element methods analysis (CRSACPC, 2010). Then the method is
used to plot a set of abacuses in order to covarge set of dimensions (L/H ratio) and

mechanical properties.

Analytical methods for building damage evaluation

Overview

The first analytical method of building damage assgent was developed by Burland and



Wroth (1974), and several extensions are now adailéBoscardin and Cording, 1989,
Boone, 1996 Burland, 1995, Boone, 2001, Finno, VBsssow and Blackburn, 2005). In
these methods, masonry buildings are modelled avitlsotropic and elastic beam with two
supports, loaded by a central or uniformly distrdsliload. A deflectiom is imposed on

the beam to model the ground curvature that cooredp to the bending effect of the
subsidence on the building (Figure 2). The maximigmsile strains due to bending
deformation and shear deformation are then cakedilahd compared with the values of the
critical tensile strains for the determination d¢fetdamage class. All of the current
analytical methods use five damage classes, antk Tlalgives the five damage classes

defined by Burland (1995) and Boscardin and Cordirg39).
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Figure 2. Beam model for building in subsidenceez(aiter Burland, Mair and Standing
2004).

Differences between these methods concern the fragfelf the subsidence effect, the

loading distribution (building weight), the locati@f the neutral axis, the building type and



the imposed relationships between the mechanicahpzters:

(i) Most of the methods consider the deflectibrio model the effect of the subsidence.
Boscardin and Cording (1989) extended the appradcBurland and Wroth (1974) by

superimposing the horizontal straéh induced by the horizontal ground strain onto ¢hos
generated by the bending of the beam. These metsxisne that the deflected beam is

then also subjected to a uniform extension ovdultslepth.

(i) Analytical methods consider different typeshafildings. Burland and Wroth (1974), as
well as Boscardin and Cording (1989), consider masbuildings modelled with isotropic
beams, and they suggest adjusting the ratio E/@GefYyoung’s modulus E to the shear
modulus G of the beam to be between 2.4 and 18.%rder to take into account the
influence of the openings (doors and windows) thatild cause an increase in the shear
deformation. Son and Cording (2007) investigatezl ghssible range of the E/G ratio in
relation to the number of windows, and they shoat this ratio may be close to 60. These
values denote an anisotropic behaviour of builditlggt is incompatible with the first
assumption of an isotropic beam that imposes ar&ti@ between 2 and 3 in order to keep
the Poisson ration between 0 and 0.5. Boone (12961) considers three types of
buildings: load bearing wall masonry buildings filhwalls and beam-in-frame structures.
Finno, Voss, Rossow and Blackburn, (2005) suggestodel to take into account the

positive influence of the concrete floors of builgs under study.

(i) Burland (1995) considered both a uniformlystiibuted and a central point load to
model the building weight. Boscardin and Cordin§89) and Finno, Voss, Rossow and

Blackburn, (2005) also considered the central lassumption, while Boone (1996, 2001)



considered the uniformly distributed load assummptin the present paper, we have
selected a uniformly distributed load because pieaps to be more realistic than the central

point load assumption.

(iv) The localisation of the neutral axis is als@ebatable question. In the hogging area,
Burland and Wroth (1974) and Boscardin and Cordir@89) consider that the neutral axis
is probably located at the bottom of the beam bezax the small tensile resistance of the
upper levels of the masonry building and the gretgesile resistance of the foundation
level. Boone (1996) considers this to be debathbtause of the influence of the floors and
the roof that may increase the tensile resistalmce@ur case, we have assumed that the

neutral axis is located in the middle, i.e., sup@osed on the central axis.

Burland method

As it was explained in the previous section Burlandethod consider the building as an
isotropic beam with dimension L for the length, ¢t the height and with a unit thickness.
The beam can be affected both by the horizontalrgiestrain and the ground curvature. A
vertical transmitted deflectioft is imposed at the centre of the beam to modeétteet of
the ground curvature, and a uniform horizontalgnaitted strairen is imposed to model the

effect of the horizontal ground strain.

Based on the theory of Timoshenko (1957), Burland ®roth (1974) identified two
critical sections in the beam where maximal tenstitains occur; the half span section and
the edge section. In these two sections, the maxiemaile strain must be calculated in

order to allow a comparison to threshold values@aged with different damage classes.



The relationships betweeh and the maximum tensile stragg in the half-span critical
section, or the maximal diagonal tensile strainn the edge section, are calculated by

Burland (1995) according to Equation (1) and EaquafR), where y is the distance between

the neutral axis and the lower fibre of the beam.
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The effect of the uniform horizontal transmittedast en, may then be added in order to

calculate the maximal value of the principal temsirain in the two critical sections.

In the half span critical section, bathanden induce principal horizontal tensile strains.
The maximal tensile straigbmaxis then estimated as the sum of these two prihtgpesile
strains (Equation (3)):

gbmax = gb + gh (3)

In the edge critical sectiod) induces vertical shear stresses and ultimatelyagodal
principal tensile strain, whilen induces a horizontal principal tensile strain. Thaximal
tensile strairesmax is then evaluated using Mohr’s circle of straimggtion (4), Burland,

Mair and Standing, 2004).

Doy, e (4)
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For an isotropic beam, can be replaced by E/2G — 1 with the E/G ratioveeh 0.5 and 3.



By substituting the values ef in Equation (1) into Equation (3) asein Equation (2) into
Equation (4), the relationship between the relatdeflection parameterA(L), the
transmitted horizontal straired) and other building parameters is calculated far two

critical sections (Equation (5)).

A_s, 8O }(gbmax—eh) Mid-span critical section
L |48 2yL[H G

_ , .
A1, 5HE G} gdmax—gh(l—i)} —,SZ(E)2 Edge critical section
L [2 144 [E 4G " 4G

(5)

Burland, Broms and De Mello (1977) defined the @miof limiting tensile straigim that
must be compared to the maximal tensile strassx and €amax to define the threshold
value of the maximal tensile strain before damageurs. Like Boscardin and Cording
(1989), Burland(1995) defined different threshold values for diffiet damage levels
according to Table 1, and they considered theseesalor a large quantity of buildings.
Most of the analytical methods use these threshadtises to assess the building damage,

and we have also used the same values.

Table 1. Threshold values of the limiting tensiieis £im associated with the five damage
classes (Boscardin and Cording 1989, Burland, lsiadr Standing 2004).

Damage class Limiting tensile stain (€im)%
Do Negligible 0-0.05
D1 Very slight 0.05-0.075
D2 Slight 0.075-0.15
Ds Moderate 0.15-0.3




Dsand ¥y | Severe to Very Severé >0.3

\174

The two relations from Equation (5) are usuallyduse plot theA/(L.€im) ratio versus the
L/H ratio for given values of the building mechaaliproperties and the uniform horizontal
transmitted straign. Figure 3 shows a result for the case wigglis set equal to 0, the E/G
ratio is 2.6 (case of an isotropic beam witlr 0.3) and the neutral axis is in the middle.
This figure shows two curves: one is associatedl e tensile strain due to shear near the
edges of the beam (Figure 2-d), and the othergeceésted with the tensile strain due to
bending in the middle span of the building (Fig@re). The minimum value of/L/gjim
between these two curves is a critical value, dnchin be used to assess the maximal
admissible relative deflectiof/L. For a given value of the limiting tensile strggim), the
smallest value of\/L/&im between the two curves indicates whether the rianull occur
near the edge section (shear) or near the middteosgbending). It appears that for small
values of the ratio L/H, failure will occur neartledge of the building where the maximal
tensile strain due to shear first reaches theiligpivaluesim. For greater values of the ratio

L/H, failure will occur in the middle section (Figu3).
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Figure 3. Limiting relationships betweetW)/eim and L/H.

Comparison of Figure 3 and Table 1 is requiredltd gbacuses of damage in relation to
the deflection ratio and the horizontal strain. |Bad developed such abacus for a specific
situation: a central point load beam model, witkl£1 and isotropic properties with E/G =
2.6 v = 0.3) (Figure 4). The first criticism is that sh@bacus is developed for a building
dimension which doesn't allow the use of the beheoty. The second is that there is a risk
this abacus be used for other shape and mechaprcplerties, when results may

significantly differ.
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Figure 4. Burland curve for damage assessmentisidence zone.

Development of abacuses for isotropic transver sally beams.

Burland’s method is based on the Timoshenko beaaryrthat suppose isotropic materials
I.e E/G is between 0.5 and 3 for a Poisson rativden 0 and 0.5. However several authors
suggest to consider greater values of E/G, up tB68cardin and Cording 1989, Son and
Cording 2005, 2007) These values are contradiatotly the isotopic assumption and the
use of Timoshenko beam theory. Therefore to justi/use of such values in the Burland
analytical method, the building is modelled as &stee and transversely isotropic beam

with two supports.

The transversely isotropic behaviour is definedhws independents parameters. Two
Young's modulus Eand E, two Poisson’s ratizxyy andvy, and one shear modulus,G
(Figure 5). Assumptions are made to reduce to Jitimeber of independent parameters: E

= Ey =E and/xy = Vxz = V.
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Figure 5. Transversely isotropic beam model foranag building.

Results of the transversely isotropic beams ardasito Equation (5) before replacingby

the value E/2G-1 (Equation (6)). Detailed formulase shown in appendix.

L

A ol + sa GE (Eomax— &) Mid-span critical section
48ly 2ylLH G, (6)
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Thus, no difference exists between the isotropid dre transversely isotropic models.
Introduction of non-isotropic values ofand E/G in Burland’s expressions can appear as an
heuristic approach to take into account the reaotopic behaviour of masonry walls.
However, Equation (1) and Equation (2) remain samior isotropic and transversely
isotropic models if it is assumed that, the normeatentroidal axis remains normal and

straight after bending.



However, it is not at all obvious that this assuomts correct. To validate it, numerical

simulations (FEM) are performed.

Validation of the assumption that normal to centroidal axisremainsnormal and
straight after bending

We consider a FEM to model an transversely isotrd@ESAR-LCPC software 2010).
Geometry of the model is shown in Figureafd the characteristics of the beam are

presented in Table. 2

Table 2. Characteristics of the beam for finitaredat analysis.

Length| Height | Modules of elasticity Poisson’s Shear modulus

Exand i ratios

25m | 5m 20 Gpa 0.2 Variable between 400 KPa (E/G

= 20) and 10 GPa (E/G = 0,5)

Figure 6. FEM model of beam

Several values of E/G are considered in the argalysb, 2.6, 5, 10, 15, 20, 50). Figure 7

and Figure 8 show results ofx stresses ang strains in a vertical section at the mid span



of the beam. Results show a linear variation ofzomtal stresses for value of E/G less than
50. This confirms the assumption that the normatdntroidal axis remains normal and

straight after bending for anisotropic beam (Hadl967).
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Moreover, comparison of the maximum deflection glted with the Timoshenko
formulas and transversely anisotropic behavioumuéggn (1) and Equation (4)) and with
the FEM shows a good agreement for values E/Gthess50. Consequently, Equation (6)

is validated to model transversely isotropic beams.
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Figure 9. Comparison of the maximum deflection glated with Equation (6) and the

FEM for transversely isotropic beams.

Application of thetransver sely isotropic model to develop abacuses

Objective of this section is to develop differebtauses to investigate others cases than the
one of Burland (1995). The uniformly distributecatb assumption is chosen because it
appears more realistic to model the building weightl the neutral axe is taken in the
middle of the beam. Different geometries are ingaseéd with L/H ratio between 1 and 4.
Opinion of authors is that results for L/H equalutdt are probably not realistic. However
these results are useful to be compared with thlimbacus of Burland who used the
same geometry. The transversely isotropic modelsed so that different values can be
investigated both fov and E/G. The Poisson’s ratio is taken betweend®b. The E/G

ratio is taken between 0.5 and 12.5.



Abacuses are developed with an algorithm presentde Figure 10.

The first step of the algorithm is to choose aghadd value of critical straiper for ebmax

andedmax according to Table 1. Then for each value offtbezontal strain transmitted by
the ground to the building,, we can calculate the value of the ratith. that satisfies the
equilibrium relationships of the beam (Equation).(8)vo values ofA/L are obtained when

considering the influence of shear or bending mdn@nly the minimum value is taken.

By repeating the procedure for all values of theizomtal strainen, we can draw the
boundary curve of this type of damage. The changelue (Table 1.) is then used to draw

the curves that characterize other damage levels.

Mechanical and geometrical properties of the
building : L/H, E/G.v .y

l

Select a threshold strain value horizontal ground strain
transmitted to building (£,) related to damage type D,
53

b 4

Select a zero value of horizontal ground transmitted to
building(e,=0)

Compute of critical deflection ratio (A/L)_,

|

Plot this point on the curve £_ vs (A/L),

Modity horizontal strain
value (0<e<e_)

b

Select another threshold value (¢ ) based on
damage type D, ,,

y




Figure 10. Algorithm of determination of damageveudevelopment

Results are all plotted in Figure 11 for L/H =1gie 12 for L/H = 2, Figure 13 for L/IH=3
and Figure 14 for L/H = 4. In each figures, 24 als&s are drawn for each combination of
L and E/G. Several abacuses show broken lines Taansthat failure may occur both
because of bending (right part of the lines) orash{ieft part). When abacuses only show
straight lines, these correspond to a bendingrillihus long buildings and buildings with

small E/G ratio are most affected by bending, nathan shear.

Abacus in Figure 11, plotted for= 0.3 and E/G = 2.6 can be compared with the ptevi
one developed by Burland (Figure 4). Results shioat Burland’s assumption: central
point load and neutral axis at the bottom of thanbeare not conservative since damage is

underestimated with Figure 4 compared with Figure 1

Results also show a significant influence of th& ahd L/H ratio, whiley is less influent.
On the whole, greatest values of E/G and L/H gsmesller damages. However, detailed
results show that complex interactions must beidensd. This can also be explained with
Equation (6), where it is obvious that L/H and EHave an opposite effect when
considering the second equation (shear), while khdth and H/L appear in the first

equation (bending).

All these comparisons demonstrate that none ofetlidesnage curves are suitable for all
buildings, and that it is important to calculatelarse the correct damage curve associated

with the most realistic building parameters.
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Figure 12. Damage identification curves for buiggirfor building with L/H ratio equal 2

and different mechanical parameters
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Figure 14. Damage identification curves for buifgirfor building with L/H ratio equal 4

and different mechanical parameters

Conclusion

Analytical methods based on the Timoshenko beamryh&re widely developed to assess
building damage in subsidence regions. These mstlavd developed for isotropic
materials and are developed only for a specificgdpmetry of building especially in the
case of building with equivalent length and heightthis paper, a transversely isotropic

beam model is investigated and an algorithm is lo@eel to adapt results to a various



dimension and mechanical properties.

Theoretical developments show that the initial folas of Burland (1995) may be use for
anisotropic beams. The use of a transversely igmtrmodel is adapted for studying

masonry buildings whose E/G ratio is shown to reagbortant values.
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Appendix 1 : Calculation of the deflection for transversely isotropic beam

In this section, we consider assumption that amg<isection, normal to centroidal axis,
remains normal and straight after bending, as $otropic beams. This assumption is
necessary to calculate the influence of the bendiogent on the deflection, but is not
necessary to calculate the influence of the shemaefon the deflection. Consequently, the

differential equation of the deflection is the sathan for an isotropic material (Equation

(7))

9° -1 3EO QV
—32' =—M+_— ) (7)
0X EO 2[A'TG 0x

Where M is the bending moment, V is the shear faed y is the beam deflection or
vertical displacement, A’ is the reduced sectioeaaroughly equal to the real area A, |

iniertia, E the Young’s modulus and G the shear uhesd By considering a uniformly

distributed load q and three boundary conditiori8) ¥ y(L) = 0 and?(x: L/2)=0, the
X

beam deflection is calculated (Equation (7)):

3
A_ 5q@° [, 72(ED @®)
L 384E0|  S5L2[HIG

Demonstration of Equations (1) and (2) requiresa@@pg q by a function of the maximum

strain due to bending or sheap &ndeg). In the case of isotropic material, the maximum
strain due to bending occurs in the mid-span seetidhe bottom or top of the beam (point
1) and the maximum strain due to shear occurseaédige of the beam in the centre of the
section (point 2). Equation 9 is used to calcuthe stress state for points 1 and 2. By

combining with the elastic constitutive equations Emuation (10) the strain state is



calculated for points 1 and 2 Equation (11) andfitied Equations (1) and (2) in the paper

are gotten.
2
M(L/Z)=£ and o = My o =0.=0 ;0. =0
8 | Yy zz Xy Xz yz
V(O)=% and 0. =0 =0_=0;0 3—V'0=0=0
2 vy z Xy 2A Xz yz
_g _ ) __J _
X" 1 -v -v 0 0 0 ""
€y v 1 -v 0 0 0 |%
&, 1 -v -v 1 0 0 0 g,
Y, _E 0O 0 0 2v) 0 0 a,
Y, 0O O O 0 2(Hv) 0 o,
0O O O 0 0 2kv)
_yzx_ B __UZX_
2
pointl ¢ = al.y e =¢ =0 ;e =¢ =¢ =0
XX 8|E vy 2z Xy Xz yz
point2 ¢ =¢ =¢_=0;¢ =Yﬂ=3q—'l';£ =¢ =0
XX vy zz Xy p) 4AG Xz yz

=0 _= 0in point 1

in point 2

9)

(10)

(11)

For an anisotropic behaviour, Equation (8) remainshanged, but the elastic constitutive

equations of Equation (10) must be replaced by tmuél1) where [, v1 are properties in

the plane of isotropy XZ and:Ev2, G, the properties in a plane containing the normal to

the plane of isotropy. Equation 13 is then obtaipedmbining Equation (11) and Equation

(12).

M=

o O O

-~ O

0

© o o o

2(%v) 1

(12)



2
aly . 0 -

pointl & = TE =g e =¢ =¢ =0
XX 8|E vy 2z Xy Xz yz
' (13)
point2 ¢ =¢ =¢_=0;¢ =Yﬂ= 3qL ;e =¢ =0
XX vy 2z Xy p) 4AG2 X2z yz

Finally, no assumption is required about the valfes;, E>, vi, v2 and G. xx andéexy only
depend on Eand G. However, values of £andv. must be considered when the effect of

the uniform horizontal transmitted strainis considered.



