
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

32

Scenario-Based Software Architecture for Designing Connectors
Framework in Distributed System

Hamid Mcheick1, Yan Qi2 and Hafedh Mili3

 1 Computer Science Department, University Of Quebec At Chicoutimi,
Chicoutimi, Quebec G7H2B1, Canada

2 Computer Science Department, University Of Quebec At Chicoutimi,
Chicoutimi, Quebec G7H2B1, Canada

3

Abstract
Software connectors is one of key word in enterprise information
system. In recent years, software developers have facing more
challenges of connectors which are used to connect distributed
components. Design of connectors in an existing system
encounters many issues such as choosing the connectors based on
scenario quality, matching these connectors with design pattern,
and implementing them. Especially, we concentrate on
identifying the attributes that interest an observer, identifying the
functions where these connectors could be applied, and keeping
all applications clean after adding new connectors. Each problem
is described by a scenario to design architecture, especially to
design a connector based on architecture attributes. In this paper,
we develop a software framework to design connectors between
components and solution of these issues. A case study is done to
maintain high level of independency between components and to
illustrate this independency. This case study uses Aspect-
Oriented Programming (AOP) and AspectJ, Design Pattern to
and Program Slicing to solve main problems of design of
connectors. A conclusion is given at the end of this paper.
Keywords: Design Connector, Attribute Driven Design,
Software architecture, Scenario based system.

1. Introduction

1.1 General

In enterprise information system, each connector has a
protocol specification that defines its properties [1].
Connectors can be also understood as some software
elements which provide a conduit from one or many
components to one or many components. The connector
may also adapt the protocol and format of the message
from one component to another [2].
Our design connectors process could be described as
follows:

 Computer Science Department, University Of Quebec At Montreal,
Montreal, Quebec H3C3P8, Canada

• choosing connectors based on scenario quality
and stimulus described in software architecture
[16],

• matching these connectors with design pattern
and finally,

• implementing them using a programming
language using aspect-oriented programming.

In software developing history, there are some classic
connectors which are often used in desktop software
system. These connectors are function call (method call),
association class, class inheritance and share memory etc.
These basic connectors work very well among components
which are situated in a same application. Software
developers always neglect them, because they do not need
more code to implement them (even no code).
However, in the recent years distributed system is a
growing trend. The distributed programs are making the
software architecture and their connectors become more
and more complicated. A distributed system is a system
composed of several computers which communicate
through network, hosting processes that use a common set
of distributed protocols to assist the coherent execution of
distributed activities [4]. The connectors situated in
distributed system play a significant role in whole software
architecture. Software engineers must face more
challenges of connectors which are used to connect
distributed components.
In this paper we mainly concentrate on the design of
connectors in distributed system. Especially, we concern
ourselves about the software maintenance in which new
connectors are designed and added among existing
components. Indeed, the idea is choosing the connectors,
identifying the attributes that interest the observers,
identifying the functions where these connectors could be

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Constellation

https://core.ac.uk/display/77517707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

33

applied, and keeping all applications clean after adding
new connectors.
We propose a set of methods to design and add the
connectors. Among the methods, Aspect-Oriented
Programming (AOP), Design Pattern and Program Slicing
are three important technologies and they are described in
detail.

1.2 Statement of the Problems

Software engineers must face more and more challenges of
connectors which are used to connect distributed
components, when they analyze, design, implement and
maintain connectors. Naturally, this general problem raises
many question: What is the reason to make connector
design, implementation and maintenance become more
difficult? How can we make this connector easy to reuse,
replace and maintain? The answer described below to
these questions leads to framing the problem area for our
research:
The area of connector design and maintenance is seldom
researched, especially, the maintenance of connector.
Connector maintenance focuses on how to update or add
connectors in an existing software system and how to keep
the existing components clean instead of messing it after
bringing new connector out. And this problem is quite
different to design a connector for a new system.

1.3 Research Questions

The problems of our research can introduce the specific
questions of research. In the following sections, we focus
on two questions which software developers often meet.

• How to add the code related to new connector
without modifying existing source code very
much as far as possible? In other words, we
should try our best to keep the existing
components clean instead of messing it after
bringing new connector out. And the component
messed will become incompatible with the rest of
your system [3].

• Where automatically to find the interesting points
(or statements), which the other components want
to know through connectors, in the existing
source code? That means that we should
determine the place of status or values in legacy
component which should be provided to a new
component. It is often difficult for the developer
to grasp the basic architecture and relationships
between code units, and this is made more
difficult by the fact that the code may be poorly
documented and poorly written [11].

In other words, the connectors should be added in
distributed system without modifying more existing source
code. And the point of source code which will be inserted
a connector should be accurately found. For example, to
maintain some large source code, if the software
developers want to add a new connector between
components, they must carefully analyze those codes and
avoid messing the existing design and implementation. To
implement these issues, we choose Aspect-Oriented
Programming and Slicing tool techniques. A case study is
done to proof the concept of maintaining the independency
of components and then reduce the cost of the maintenance

1.4 Structure of Papers

The rest of the paper is organized as follows. We firstly
present the overview of AOP, design pattern and
programming slicing technique (section 2). Secondly, a
mode for design of connectors is proposed in distributed
system (section 3). Thirdly, an implementation based on
AOP, design pattern and programming slicing are shown
(section 4). Finally, a case study is given to illustrate that
mode and those technologies (section 5) and a conclusion
is given in section 6.

2. Background

Software maintenance in software engineering is the
modification of a software product after delivery to correct
faults, to improve performance or other attributes [5].
Designing a new connector for an existing distributed
system belongs to software maintenance. And it will be a
big job. Particularly, when the developers are not familiar
with the system and they don’t have enough documents
about the project, they must spend much time analyzing
and handling the existing source code. Software
developers sometimes may put themselves in bad situation:
they cannot find the right point (or statement) in large and
complex source code files to provide the information for
other components through connector. Or after adding a
new connector, the source code becomes more and more
difficult to read and understand. In this section we describe
three important technologies: Aspect-Oriented
Programming, Design Pattern and Program Slicing. They
can be used to avoid the problems mentioned above

2.1 The classification of Connectors

In this section, we discuss the connector type, the
interaction service between components and the usage of
the existing connector.
There are eight types of software connectors [6]:

1. Procedure Call,
2. Event,

http://en.wikipedia.org/wiki/Software_engineering�

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

34

3. Data Access,
4. Linkage,
5. Stream,
6. Arbitrator,
7. Adaptor, and
8. Distributor.

The service categories provided by connector are
described as below [6]:

• Communication: Communication connectors
support transmission of data among components.

• Coordination: Coordination connectors support
transfer of control among components.

• Conversion: These connectors convert the
interaction required by one component to that
provided by another.

• Facilitation: Facilitation connectors mediate and
streamline component interaction.

Those four services provided by connector are
requirements of component interactions. Different
connector types can satisfy the requirements of the
interactions between components. From Mehta et al.’s
research [20], we can find that different connector types
can and only can support specific service. In other words,
one kind of type can only be used in some particular
circumstances. For example, one connector which belongs
to type Procedure Call is suitable to use for a situation in
which two components need communication service. On
the contrary, using a Procedure Call connector to provide a
conversion service must be a bad idea.
However in Balek et al.’ research work [20], Balek et al.,
discuss that Mehta et al.’s taxonomy does not talk about
the how to design connector types, and that those
connector types are at different software levels. For
example procedure calls are the assembly language of
software interconnection [1]. It is not suitable to be put it
together with event or data access.

2.2 Aspect-Oriented Programming (AOP)

Aspect-oriented programming is a paradigm that supports
two fundamental goals: [7]

• Allow for the separation of concerns as
appropriate for a host language.

• Provide a mechanism for the description of
concerns that crosscut other components.

AOP isn’t meant to replace OOP or other object-based
methodologies. Instead, it supports the separation of
components, typically using classes, and provides a way to
separate aspects from the components [7].
We can use AOP to crosscut classes (components) to setup
relationships between them without modifying functions in
the code of original components. In other words, the code
can be kept clean and independent by using Aspect-
Oriented Programming.

2.3 Design Patterns

Design patterns are always used to describe relationships
and interactions between components (classes or objects).
The design patterns in Gamma et al.’s book [10] are
descriptions of communication of objects and classes that
are customized to deal with general design problems. And
the communication of object and class should be loose
coupling without becoming entangled in each other's data
models and methods [8]. Gamma et al.’s design patterns
particularly deal with problems at the level of software
design, especially object-oriented software design. They
can be classified by criterion scope which is used to
specify whether the pattern is mainly used to classes or
objects. So the design patterns have two kinds: class
design pattern and object design pattern [10]. Object
patterns are applied to object relationships, which can be
modified at run-time and are more dynamic, such as Proxy
Pattern, Observer Pattern etc.
In our research we primarily focus on the object design
patterns and extend the area of the design patterns which
are applied to distributed architecture (especially the
messaging-oriented system). For example, the Observer
pattern can be reinterpreted and redesigned in distributed
architecture, which is sometimes called publish-subscribe
style. In order to describe the relationship of components,
we use Aspect-oriented programming (AOP).

2.4 Spring Framework

The Spring framework is a wide-ranging framework to
develop enterprise Java applications. It provides a
lightweight solution and a potential one-stop-shop for
building enterprise-ready applications [18]. The Spring
Framework is organized as modular. These modules are
grouped into 6 types [18]: i) Core Container, ii) Data
Access/Integration, iii) Web, iv) AOP (Aspect Oriented
Programming) Instrumentation, and v) Test.
Core container is one of most important modules.
Especially, in core container, Inversion of Control (IoC, it
is also known as dependency injection) is key feature of
Spring framework. Dependency Injection is based on Java
language constructs, rather than the use of framework-
specific interfaces. Instead of application code using
framework APIs to resolve dependencies such as
configuration parameters and collaborating objects,
application classes expose their dependencies through
methods or constructors that the framework can call with
the appropriate values at runtime, based on configuration
[19].
A connector situated in a distributed system must be based
on certain transport mechanism (such as TCP/UDP socket,
messaging system…) to connect components in network.
According to some situation, the distributed connector
needs to change the transport mechanism during the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

35

runtime. For example, when the quality of network
becomes more stable, the system has the intention of
dynamically changing the TCP socket to UDP socket. For
reuse of design (and code) and flexible loading mode of
java class (or bean), we apply IoC of Spring framework to
achieving this objective.

2.5 Program Slicing

Program slicing is a well-known program analysis and
transformation technique that uses program statement
dependence information to identify parts of a program that
influence or are influenced by an initial set of program
points of interest (called the slice criteria) [11]. A program
slice constructed by identifying program points that affect
a given program point is called a backward slice. A
program slice composed of program points affected by a
program point is called a forward slice [13].
Engineers apply program slicing technique in lots of
programming area:

• Program Debugging;
• Program Comprehension;
• Program Testing.

When starting to design a connector, we firstly want to
find a point (or statement) in one source code of
component. The information included in that point will be
notified to another component through connector.
Fortunately, the finding process can be automatically done
by using backwards program slicing starting with a
variable as the slicing criteria.

2.6 Attribute Driven Design

The Attribute-Driven Design (ADD) method is an
approach to defining a software architecture in which the
design process is based on the quality attribute
requirements the software must fulfill [16]. ADD is
situated after requirements analysis and before high level
design. So the input to ADD is a set of requirements which
are regarded as a set of quality attribute scenarios; and the
output is the input of high level design. There are 8 steps
performed when designing an architecture using the ADD
method [21]. These steps are described in Figure1.
The quality attribute scenarios mainly include availability,
modifiability, performance, security, testability and
usability. Among the steps of ADD, analyzing those
quality attribute scenarios is the most important step of the
design method.

Fig. 1 Software architecture design process.

3. Model for Design of Connectors in
Distributed System

In this section, we present a mode for design of connectors
in distributed system. In distributed system, components
are situated in separate node, which may be computer,
PDA or server etc. Figure 1 shows distributed components
(A, B, C and D) which are situated in different node (1, 2
and 3) in network.
In Figure 1, the lines are actually software connectors
which are used for communication among components. In
other words, connectors can be applied to describing the
relationship between components (or distributed
components).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

36

Fig. 2 Distributed components in different nodes.

We introduce a new model for design connectors based on
the distributed architecture (Figure 2). According to some
design pattern, component D wants to get some value or
status of component A. So we must add a new connector
to describe the relationship between components A and D.

Fig. 3 New added connector between components.

In the figure 3, a new connector is described by two lines
(a green and a red one) between component A and D. In
other words, the new connector consists of two sub-
connectors. The following diagram (figure 4) gives a
description of the new connector. We add a new
component which runs in Node 1 as an Adaptor. Aspect-
oriented programming technique is applied to the sub-
connector between component A and Adaptor according to
design patterns. We can get the benefit from the AOP
technique to deal with communication between A and
Adaptor without any modification.

Fig. 4 The new connector.

The only thing we need to do about component A is to
analyze the source code. That’s mean we should find the
interesting statements which are used to crosscut the
component. Programming slicing technology is applied to
analyze the source code. As for this kind of slicing, we can
use backward slice to get data dependence among the
source code. Another sub-connector between Adaptor and
component D is usually implemented by using common
network protocol or a messaging system, such as TCP
(/UDP)/IP, JMS, etc. In order to support the switch
dynamically from one transport mechanism to another, we
use Spring framework to configure these java beans at run
time.
At last we draw a conclusion about the mode – how to
design a message-based connector in distributed system.

i) Analyze the relationship between two components;
ii) Choose a design pattern to describe the

relationship;
iii) Slice source code of component to find the place

of the statement which another component is
interested in;

iv) Crosscut the component by using AOP;
v) Add an adaptor to connect two different protocols;
vi) Configure the different transport bean by using

Spring.
This model can be not only applied to distributed system,
but desktop application as well.

4. Implementation of Connector Model

The implementation of design of connector consists
mainly of developing tools used by the mode. Details of
implementation are given in case study (section 5.2). Note
that the appendix shows the implementation of the
protocol (connector) between two components.

4.1 AspectJ and Gang-of-Four Design Patterns

AspectJ is an implementation of AOP for the Java
language built as an extension to the language. A compiler
and a set of JAR files take common Java code and AspectJ

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

37

aspects and compile them into standard Java byte-code,
which can be executed on any Java-compliant machine [7].
The Gang-of-Four (GoF) design patterns [10] offer
flexible solutions to common software development
problems. Each pattern is comprised of a number of parts,
including purpose/intent, applicability, solution structure,
and sample implementations [12]. GOF provides 23 well-
known design patterns. Software developers can use one of
them or combine some of them to describe the relationship
between components. Design of connectors depends on it.
Some results show that using AspectJ improves the
implementation of many GoF patterns [12].

4.2 Indus Java Program Slicer and Kaveri

Indus Java program slicer is a part project of Indus [14].
The Indus slicer is the first and only publicly available
Java slicing framework, and can handle almost all features
of Java [11].
Kaveri is an eclipse plug-in front-end for the Indus Java
slicer. It utilizes the Indus program slicer to calculate
slices of Java programs and then displays the results
visually in the editor. Kaveri is an effective tool for
simplifying program understanding, program analysis,
program debugging and testing [15] [17].
Using Kaveri plug-in can automatically slices the Java
source code and provides the data and control dependence.
According to the results of data and control dependency,
developers can easily find the crosscutting points for
design connectors.

5. Case Study

In this section, we present one case study to design
connectors in distributed system. Firstly we do a design
process by using ADD approach; then the actual design
and implementation of the case are discussed by using the
model described above and related tools.

5.1 ADD Design Process

In this section we adopt Attribute-Driven Design (ADD)
approach to define a distributed software architecture in
which the design process of the new connector is based on
the quality attribute requirements the software must fulfill.
The approach can follow a recursive process that
decomposes a system or system elements by applying
architectural tactics and patterns that satisfy its driving
quality attribute requirements.

In the case study, we only focus on an important system
quality attribute: modifiability scenarios. By following the
ADD method, we discuss the steps of design in more
detail.

Step1, choose the module to decompose. The existing
system which runs on desktop is targeted, since it is the
system’s primary element.
Step2, choose the architectural drivers. As the input of
ADD, one quality scenarios are chosen as the quality
requirement: How to add the code related to new
connector without modifying existing source code very
much as far as possible? In other words, we should try our
best to keep the existing components clean instead of
messing it after bringing new connector out. And the
component messed will become incompatible with the rest
of your system. We present the possible value for each
portion of modifiability scenario.

Table 1: Quality Attribute Scenario

Step 3, choose an architectural pattern. We choose
Publish-Subscribe architectural pattern.

Input/
Output

Existing
Code 1

Existing
Code 2

Input/
Output

connector

Fig. 5 Connector between components.

Step 4, instantiate modules and allocate functionality with
module decomposition view.

Input/
Output

Machine Manager

Input/
Output

Relationship

Transport

Proxy

Fig. 6 Proxy between components.

Step 5, define interfaces of the child modules.

Response
Response Measure

Developer and system administrator.
Hope to add a connector to setup the relationship
between the two existing modules.
Software structure and system environment.
Design time
Makes modification without messing the existing
source code
How much source code is modified

Modifiability Quality Attribute Scenario
Portion of Scenario Possible Value
Source

Stimulus
Artifact
Environment

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

38

• Module Relationship provides the service to
setup Observer design pattern;

• Module Proxy is the agent of Machine and it
can produce the information;

• Module Transport carries the information
produced by Proxy.

• Module Manager receives and consumes the
information.

Step 6, Verify quality scenarios as constraint for the child
modules. The modifiability quality attribute scenario can
be satisfied by the multiple child modules. The
Relationship module is designed to setup the interaction
without modifying module Machine; Transport module is
responsible for linking Manager and Proxy together.

5.2 Actual Design and Implementation

In this sub-section, following the design result of ADD,
we present an example to design connectors by using the
model and developing tools described above in order to
reduce the cost of maintenance to compose software based
on legacy components. In the example, we use Java and
AspectJ as main developing language; use Observer design
pattern [12] and UDP/IP network protocol to describe the
relationship of components to implement a new connector;
use Kaveri in Eclipse to slice a source code to get the
“pointcut” for connector. Some key parts source code of
the existing system is described as below:

Class AppSystem
public class AppSystem {
 public static void main(String[]

args) {
 Machine OneMachine = new

Machine();
 byte i = 0;
 double speed = 0.0;
 OneMachine.method4();
 OneMachine.methodF();
 OneMachine.method2();
 OneMachine.methodG();
 speed =

OneMachine.getSpeed();

 }

}
In the simple application, there are two classes: Machine
and AppSystem. Now we decide to upgrade simple
application to a distributed system based on some
requirements. Because another component named
“Manager” which runs in another computer in network
wants to be notified when the speed of the Machine has

been changed. Apparently, a new connector should be
added in the system.
After analyzing the relationship between Machine and
Manager, we decide to choose Observer design pattern to
describe the relationship. In order to use Observer design
pattern and AspectJ, we should firstly find the point
around which the speed is changed. The point is also
called pointcut in AOP.

Class Machine:
public class Machine {
 private double speed = 0.0;
 private double temperature = 0.0;
 public double getSpeed(){
 double ret = 0;
 ret = speed;
 return ret;
 }
 … …
 public void methodF(){
 method1();
 methodH();
 method2();
 method1();
 }
 public void methodG(){
 method2();
 methodH();
 method2();
 }
 public void methodH(){
 speed = speed + 1;
 }

}

We assume that the code of Machine is very large and
complex. So if we manually scan the whole source code,
we may be get the wrong statement or miss some points.
So we do a program slicing for the system by using Kaveri.
We pick statement “speed = OneMachine.getSpeed();” as
a criteria. And I choose “value of the expression”. Then I
start the process by using backward program slicing. The
slice result is described as below:

Class Machine:
public class Machine {

 private double speed = 0.0;
 private double temperature = 0.0;
 public double getSpeed(){
 double ret = 0;
 ret = speed;
 return ret;
 }
 public void methodF(){

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

39

 method1();
 methodH();
 method2();
 method1();
 }
 public void methodG(){
 method2();
 methodH();
 method2();
 }
 public void methodH(){
 speed = speed + 1;
 }
}

Class AppSystem

public class AppSystem {
 public static void main(String[]
args) {
 Machine OneMachine = new
Machine();
 byte i = 0;
 double speed = 0.0;
 OneMachine.method4();
 OneMachine.methodF();
 OneMachine.method2();
 OneMachine.methodG();
 speed =
OneMachine.getSpeed();
 }
}

At last, we add a new class Adaptor in that simple
application. The Adaptor works as a role of Observer and
relays information about speed to component Manager.
The Machine works as a role of Subject. So a new
connector between Machine and Manager is designed and
added in that distributed system. After adding all code
about new connector, the existing component Machine is
not changed. It is kept very clean in this situation. We just
added some new files to the system which can be easily
removed or changed without affecting the logic of original
components.

6. Conclusion

This paper proposes a model and discusses the design
of connectors in distributed system. At first, we present
two problems when adding a new connector: 1) How to
keep all source code clean after adding new connectors?
and 2) Where automatically to find the place of status or
values in legacy component which should be provided to a
new component through connector? Then a connector

model is proposed to deal with the problems. In this model,
AOP, design pattern and programming slicing are
combined to resolve the problems of design of connector.
Although, a case study is done to show the independency
between components. It illustrates how to use the
combination of these technologies to support high level of
independency. For example, the example shows that it is
easy to find a point in a complex source code and that the
original code is not almost changed after being added a
new connector.
In our future work, we are planning to analyze all kinds of
connectors according to different design patterns. And we
will provide different and generalized solutions of design
connectors based on different results of analysis.

Appendix

This Appendix shows the implementation of the protocol
(connector) between two components given in section 5.
This protocol is implemented in two artifacts:
ObserverProtocol and ObserverProtocolImpl.

package connector;

/*
 * This file implements the Observer
Protocol.
*/
import java.util.WeakHashMap;
import java.util.List;
import java.util.LinkedList;
import java.util.Iterator;

public abstract aspect ObserverProtocol
{
 /*
To set which class can be subject. */
 protected interface Subject { }

 /*To set which class can be
observers. */
 protected interface Observer { }

 /* Stores the mapping between
Subjects
 * and Observers. For each
subject, a
 * LinkedList is of its observers
is stored.*/
 private WeakHashMap
perSubjectObservers;

 /*

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

40

 * Returns a Collection of the
observers of
 * a particular subject.
 * param s: the subject for which
to return the observers
 * return a: Collection of
observers of subject
 */
 protected List
getObservers(Subject s)
 {
 if (perSubjectObservers == null)
 {
 perSubjectObservers = new
WeakHashMap();
 }
 List observers =
(List)perSubjectObservers.get(s);

 if (observers == null)
 {
 observers=new LinkedList();
 perSubjectObservers.put(s,
observers);
 }
 return observers;
 }

 /*
 * Adds an observer to a subject.
 * param s: the particular subject
to attach a new observer
 * param o: the new observer to
attach
 */
 public void addObserver(Subject
s, Observer o)
 {getObservers(s).add(o);}
 /*
 * Removes an observer from a
subject list.
 * param s: the particular subject
 * param o: the observer to remove
 */
 public void
removeObserver(Subject s, Observer o)
 { getObservers(s).remove(o);}
 /*
 * The join points after which to
do the update.
 */
 protected abstract pointcut
subjectChange(Subject s);

 /*

 * Call updateObserver after a
change of interest to
 * update each observer.
 * param s: the subject on which
the change occured
 */
 after(Subject s):
subjectChange(s)
 {
 Iterator iter =
getObservers(s).iterator();
 while (iter.hasNext())
 {
 updateObserver(s,
((Observer)iter.next()));
 }
 }

 /*
 *Defines how each Observer is to
be updated
 * when a change to a Subject
occurs.
 * param s: the subject on which a
change of interest occured
 * param o: the observer to be
notifed of the change
 */
 protected abstract void
updateObserver(Subject s, Observer o);
}

package connector;

import main.*;

public aspect ObserverProtocolImpl
extends ObserverProtocol
{
 /*
 * Declare the Subjects and the
Observers
 */

 declare parents: Machine
implements Subject;

 declare parents: Adaptor
implements Observer;

 /*
 * Set the pointcut. Advise the
method methofH().
 */

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2010
ISSN (Online): 1694-0814
www.IJCSI.org

41

 protected pointcut
subjectChange(Subject subject):
 call(void
Machine.methodH()) && target(subject);

 /*
 * Updating the observer, when
monitoring the change of the subject.
 */
 protected void
updateObserver(Subject subject,
Observer observer)
 {
 double speed = 0.0;
 Machine machine =
(Machine)subject;
 Adaptor adaptor =
(Adaptor)observer;
 speed = machine.getSpeed();
 adaptor.upDate(speed);
 }
}

Acknowledgments

This work was sponsored by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, and
by the University of Quebec at Chicoutimi (Canada).

References

[1] Shown and Garlan, Software Architecture, Prentice-Hall 1996.
[2] James McGovern, Scott W. Ambler, A practical guide to

enterprise architecture, 2004.
[3] Jeffrey Voas, Reliable Software Technologies, Maintaining

Component-Based Systems, "IEEE Computer Society Press",
USA, 1998.

[4] Paulo Veríssimo, Luís Rodrigues, Distributed systems for
system architects, Kluwer Academic Publishers, USA, 2001.

[5] ISO/IEC 14764: Software Engineering — Software Life
Cycle Processes — Maintenance, 2006.

[6] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke.
"Towards a taxonomy of software connectors". In
Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), pages 178-187, Limerick,
Ireland, June 4-11, 2000.

[7] Joseph D. Gradecki and Nicholas Lesiecki, Mastering
AspectJ: Aspect-Oriented Programming in Java, Wiley, 2003.

[8] James W. Cooper, Java design patterns: a tutorial, Addison-
Wesley Professional, 2000.

[9] Jan Hannemann, "Design Pattern Implementations using
Aspect-Oriented Programming", available at
http://hannemann.pbworks.com/Design+Patterns, 2008.

[10] Erich Gamma, Ralph Johnson, John Vlissides, Richard
Helm. Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[11] Venkatesh Prasad Ranganath, John Hatcliff, Slicing
Concurrent Java Programs using Indus and Kaveri,
International "Journal on Software Tools for Technology"
Transfer (STTT), Vol.9, Numbers 5-6, pp. 489-504, 2006.

[12] Jan Hannemann and Gregor Kiczales, Design Pattern
Implementation in Java and AspectJ, "ACM", USA, 2002.

[13] Venkatesh Prasad Ranganath, Indus - Java Program Slicer,
2008.

[14] Indus project, Available at http://indus.projects.cis.ksu.edu/
[15] Ganeshan Jayaraman, Kansas State University, Indus–

Kaveri, 2008.
 [16] Len Bass, Paul Clements, and Rick Kazman. Software

Architecture in Practice, Addison-Wesley, 2003.
[17] Venkatesh Prasad Ranganath , John Hatcliff, "Slicing

concurrent Java programs using Indus and Kaveri",
International Journal on Software Tools for Technology
Transfer (STTT), v.9 n.5, p.489-504, October 2007

[18] Reference Documentation of Spring Framework, Available
at http://www.springsource.org/

[19] Rod Johnsonet al., Professional Java development with the
Spring Framework, John Wiley & Sons, 2005

[20] D. Balek and F. Plasil (2000). "Software connectors: A
hierarchical model". Technical Report 2000/2, Charles
University.

[21] William G. Wood (2007). "A Practical Example of Applying
Attribute-Driven Design (ADD)",Version 2.0. TECHNICAL
REPORT CMU/SEI-2007-TR-005 ESC-TR-2007-005.

Hamid Mcheick professor of computer science at the University of
Quebec in Chicoutimi, Chicoutimi, Canada. He has PhD in
computer Science from Montreal University, Msc in Computer
science from University of Quebec at Montreal, Canada, and
Bachelor in Computer Science-Mathematic from Lebanese
University. Professor Mcheick is a member of IEEE, IEEE Society
and ACM. He is interested in software architecture, evolution and
distributed object and service oriented computing.

Yan Qi Student Master degree at the University of Quebec at
Chicoutimi. He has Bachelor in Computer science from China. He
is interested in Software architecture area.

Hafedh Mili professor of computer science at the University of
Quebec in Montreal, Montreal, Canada. Throughout his academic
career, he worked on a variety of subjects, starting with knowledge
representation, object-oriented software engineering, aspect-
oriented development, service-oriented computing, and business
process engineering.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064�
javascript:alert('Please%20join%20this%20workspace%20to%20see%20more%20details%20about%20this%20user.');�
http://hannemann.pbworks.com/Design+Patterns�
http://www.springerlink.com/content/1433-2779/�
http://www.springerlink.com/content/1433-2779/�
http://www.springerlink.com/content/1433-2779/9/5-6/�
http://indus.projects.cis.ksu.edu/�
http://www.springsource.org/�

