

Developing Service Oriented Computing Model Based
On Context-Aware

Hamid Mcheick*
University of Quebec At Chicoutimi, Computer Science Department
555 Boul De l'Universite, Chicoutimi (QC), Canada, G7H 2B1

*Corresponding author

Mohamed Dbouk
Department of Computer Science,
Faculty of Sciences (I), Lebanese University,
Rafic-Hariri Campus, Hadath-Beirut, Lebanon

Ahmad Karawash
Ecole Doctorale des Sciences et de Technologie, Lebanese University,
Rafic-Hariri Campus, Hadath-Beirut, Lebanon

Abstract: SOA and Cloud Computing are making major changes in the way
companies build and deploy applications. The challenge is to meet the business
expectation of faster delivery of new functionality, while at the same time
maintaining control of application performance and availability across a
growing network of service providers. SOA facilitates the development cycle
by providing common features to everyone. However, SOA has some
disadvantages such as the lack of information of what a service can provide and
how can we discover it. When working with web services, the number of
exposed methods or functions becomes a problem for developers. We do not
need to deal with whole services if a developer needs to call one function. This
article suggests and validates a new selected service model for the SOA. The
layout presentation and the communication is described between client and
services.

Keywords: Service Oriented Computing; Meta-Model; Web services; Cloud
Computing.

Reference to this paper should be made as follows: Mcheick, H. and Dbouk,
M. (2012) ‘Developing Service Oriented Computing Model Based On Context-
Aware’, Int. J. Communication Networks and Distributed Systems, Vol. X, No.
Y, pp.000-000.

Biographical notes: Hamid Mcheick is currently an associate professor in
Computer science department at the University of Quebec At Chicoutimi
(UQAC), Canada. He holds a master degree and PhD. in software engineering
from Montreal University, Canada. Professor Mcheick is interested in software
development and architecture for enterprise applications as well as in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 392

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/77517706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ijcsi.org/index.php�

separation of concerns (aspect, component, services, etc.). His research is
supported by many research grants he has received from the Canadian
government, University of Montreal, CRIM (Centre de Recherche informatique
de Montreal), University of UQAM, and University of UQAC.

Mohamed DBOUK is currently a full time Professor, at the Lebanese university
- Faculty of Sciences (I) - Department of Computer Science. He received a
Bachelor’s Honor” in Applied Mathematics (Computer Science) from the
Lebanese University, Faculty of Sciences, and a PhD from Paris-Sud 11
University (Orsay-France), 1997. His was (2005-2007) the director of the
“Faculty of Sciences, Section I”, Hadath-Beirut. He is the Founder and
Coordinator of the research master “M2R-SI: Information System” at the
Lebanese University (2009). His research interests include Software
engineering, Information systems, GIS, Cooperative and Multi-Agent Systems,
Groupware. He participates in many international projects: Euro-
Mediterranean/UNESCO Avicenna e-learning Project, UNDP / RBAS Project;
Enhancement of Quality Assurance and Institutional Planning at Arab
Universities (2002-2004).

Ahmad Karawash is currently a PhD student at the Lebanese University and at
the University of Quebec At Chicoutimi (UQAC). He received a Bachelor
degree in Applied Mathematics (Computer Science) from the Lebanese
University, Faculty of Sciences, and master degree from Lebanese University,
Ecole doctorale. His research interests include Web services, Distributed
systems, GIS, Social network services, network and Mobile technology.

1 Introduction
In the last decade, there has been lot of changes in the way software are developed and
deployed. We started by the Assembly language (early 1950), to C language to support
the concept of modules (1972), in which a developer could split his application into
different C files or modules, to object-oriented methodology and languages (1985: C++,
1996: Java). SOA began its first steps in 2000, to replace “Objects” by “Services”. These
services can be consumed like any function in a class. The SOA has overcome many
challenges, mainly the interoperability and the reusability.

The software development practices have evolved a lot. Applications have become
more distributed in terms of their physical execution and the development of components.
Service-oriented approach has become an important alternative to traditional software
development [Cloud, 2012]. Applications such as Yahoo and Google can be considered
as success stories in the SOA implementation [Kiciman, and Livshits, 2010]. But also,
SOA has some drawbacks, services are published over the Internet and ready to be called
by clients’ applications but their metadata are limited. A developer can pass many hours
while trying to discover the functions provided by a service or by reading a document
describing these functions. There is no automatic method to filter or search a service.
This article proposes a method to publish the layout of each service and the layout of the
desired service that a client application needs. We suggest a model for the
communication between these two entities (layout of a service and the layout of a client
application).

For example, a web service can be published over the internet, it can provide the
prices of the stocks and the index of the local market, the regional markets, the European

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 393

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

market, and other functions can be provided to retrieve historical data about each market.
Also we can have functions that display charts on how the prices are moving during the
last month. Such functions are bounded and published in one service but a developer may
need the price of one index in his country, so why does he need to worry about all these
functions? Our model tries to solve this problem.

Such problem is frequent in real world, since large corporations tend to publish web
services with lot of functions in one package or service. The reason is that these services
may belong to the same application domain. We aim to build a logic layer that will
“hide” the unused functions of one or more services and “show” the functions requested
by a client application. As stated in this section, the functions needed by a client
application are highlighted in its layout.

We propose two methods of implementing this model:
1. Materialized. The logic layer built between the service and the client application

will be static; it is not updated at each service call.
2. Virtual or Cloud Computing. The logic layer built between the service and the

client application will be dynamic; it is updated at each service call.

We explain the SOA concepts and reflection methodology related to our work in

section 2. Section 3 describes related works in the service computing adaptation and
composition. Section 4 describes our model of ASC. Our experimental work is detailed in
section 5 in addition to a comparison between our model and previous models. Finally we
present the conclusion and the future works in section 6.

2 Background
This section explains briefly the service-oriented architecture, web services, services
types and refection that are used in our research.

2.1 Service-Oriented Architecture
Service-oriented architecture (SOA) is a way of developing distributed system to manage
and organize communications between web services. SOA defines how parts of job are
performed through interactions of several entities (programs). Description language is
used to define interactions between services. Interactions are independent of each other.

SOA is a method of architecting an application as a set of cooperating services that all
users want. The user can be a human user or a client application [Erl, 2012]. For example,
when we need to buy an item using an online electronics shop, many services can be
executed such as create order, check inventory, place order and track delivery. These
services are controlled using XML [SOA Definition, 2012].

2.2 Web services
“A Web service is an abstract notion that must be implemented by a concrete agent. The
agent is the concrete piece of software or hardware that sends and receives messages,
while the service is the resource characterized by the abstract set of functionality that is
provided” [W3C, 2004].
Web service has three parts: SOAP, WSDL and UDDI, which are summarized briefly in
this section.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 394

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

SOAP - This protocol is mainly used to exchange information over HTTP and over the
internet. It describes how a message can be crammed into an XML document, it
illustrates how a SOAP message should be transported through the Web and it puts set of
laws and conventions that must be followed when processing a SOAP message.
 The SOAP message body is designed to carry textual information. This is referred to
as payload [Panda, 2005].
The exchange of information can be in a synchronous, where exchange of information
takes place in a request/response form, and asynchronous mode, where exchange of
information between several applications uses the message queuing route.

WSDL - The Web Services Description Language (WSDL) is an extension of the
Extensible Markup Language (XML); it provides a mixture of tags including a complete
description of a service.
 WSDL forms one of the core building blocks of web services [UDDI, 2011]. Web
services involve 3 participants: service provider, service broker, and service requester.
The requester can also be called the web service client. A provider can be a system
providing services. A requester can be a system in need of this service. The broker is a
system that helps both provider and requester to discover each other [WebService, 2012].

UDDI - Universal Description, Discovery and Integration (UDDI) are a specification for
the XML-based registries to list and find services on the World Wide Web [UDDI, 2011].
Registries are the electronic databases that enable businesses to store and access the
services in an XML format. A registry can be a public registry or a private registry.
UDDI’s goal is to promote online collaboration among the business in the world. UDDI
is an XML document composed of businessEntity that describe the organization that
provides the service, businessService which contains list of web services presented by the
business entity, bindingTemplate that describes the technical side of the service and
tModel (technical model) that store additional information about the service.

There are several steps in the entire Web Service process:

- Creation of the service by the service provider, and generation of WSDL
document.

- The provider publishes the services in UDDI registries. The service publication
includes the details of the provider.

- Publication of the location of the WSDL document in the registry exposes the web
services to the community.

- The client side searches in the service registry by an SOAP-RPC invocation.
- To understand the web service semantics, the client side downloads the WSDL

document and examines it.
- Service is invocated via a SOAP request over a transport protocol such as http.

2.3 Services evolution and types
Figure 1 illustrates the four important service-oriented life cycle transformation states. At
the beginning, a service appears as an idea. Then, it becomes an analysis task. When the
analysis phase is completed, a service evolves into a design entity. Finally, the service-
oriented development life cycle produces a physical service ready to be deployed in
production environment [Bell, 2008].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 395

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1 Services Evolution Life cycle.

2.4 Reflection
Reflection is the technology by which a program can view and modify its own structure
and behavior. This is exactly how Reflection in Java and C# works. The ability to
examine and change information about an application during runtime, offers huge
potential [CodeSource, 2005]. In traditional software methodologies, developers are able
to read/update their classes or components during design time, which means before
running a program. With reflection, this manipulation is also available during run time,
this leads to great flexibility to developers. Reflection is both a general term, as well as
the actual name of the reflection capabilities in C# [CodeSource, 2005].

In many applications, we might need to save the users settings. When we get several
settings, we can create a Settings class, which will handle loading and saving of the
desired settings. Each time we need a new setting in our Settings class, we will have to
update the Load() and Save() methods, to include this new setting. With Reflection, we
can let the Settings class discovers its own properties and then loads and saves them
automatically [Liberty, 2001].

3 Related works
Initially web services discovery was primarily syntactic. After development of semantic
Web technologies, the proposed techniques for web service discovery became essentially
semantic (level of semantic similarity between terms query and semantic web services
description). This section describes three approaches of discovery services: Syntactic,
Semantic and context-awareness.

3.1 Syntactic approach
The general principle of syntactic approach is to compare between query syntax based

on user’s keywords and syntactic Web Services description (WSDL).
In the UDDI approach [Newcomer, 2004], user or research program sends a query

consists of keywords that is compared with registry keywords. The search result is a set
of web services descriptions; the user selects the web service that best meets its
requirements. This method returns a large number of results or conversely few results.

AASDU (Agent Approach for Service Discovery and Utilization) is another syntactic
approach for discovering web services was proposed in [Palathingal and Chandra, 2004].
It is a multi-agent approach containing four components: a graphical user interface
(GUI), an agent query analyzer (QAA), a system used to reference agents according to
their expertise, where each agent has only knowledge of services related to their field of
expertise, and the last component is the service module offering to providers.

Indeed to answer a query Q, the user enters his search query as string through GUI
interface, this request is sent to agent QAA that extracts relevant keywords then selects a

Conceptual
Service

Analysis
Service

Design
Service

Solution
Service

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 396

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

set of expert agents which are linked to the agent composition. These agents invoke a
service according to user's choice.

3.2 Semantic approach
Recent work has focused on semantic description web services, ontologies are used to
model the semantic service representation, and it helps to institute semantic relations
between concepts in a domain.

We mention the OWL-S approach [Matin et al., 2004] that uses the OWL-S ontology,
the latter extends UDDI with semantic description of Web services.

In this method, discovery is based on Matchmaking algorithm, which allows finding
web services descriptions that have semantic correspondence between functional
parameters defined in descriptions services and those introduced in search query. Web
services are then classified by semantic correspondence level between their output
parameters and those cited in the query. If two services have the same correspondence
level with the request in relation to their output parameters, a comparison on semantic
correspondence level relative to the input parameters is then performed.

3.3 Context-aware Semantic Service Discovery

Context parameter was firstly used in the web services discovery process in 2006 by
[Suraci1 et al., 2006].

The adaptation process is implemented in the mechanism of search services. This
mechanism is based on the reference architecture based systems of services; the provider
publishes its services on a server that the user sends a service request. We summarize the
steps of this work in the following steps:

– The provider must publish in the context manager the context in which the
service can meet and conditions.

– The provider must publish in the register the two descriptions of the basic
and semantic service conditions of use service, and the reference of the
context service.

The user must save its context (User Context) in the context manager (Context
Manager) before he can make a request. This request may be a basic query expressed in
low-level research language or query semantic expressed as a semantic language query of
high level.

Then the user must send to the server requests and the pointer to its context. This
information is stored in a server module named User. Once the user request is received,
the search server service enables the filtering engine service based on three phases:

The basic filter: allows selecting the category of the service to be selected and so

decreases the number of services which are going to be subjected to the second
stage of the filtering.

The semantic filter: The result of this filter is a list of services which answer exactly
the characteristics wished by the user, without the information of the context.

The filter of context: this last stage is decomposed into three phases. First, the server

of research services (SDS) compares the service context and the waits of the
user in terms of context of service. It compares the context of the user with the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 397

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

conditions of use of the service, and then it compares the context of the
environment with conditions of use.

4 Adapted Service Computing Model

4.1 Current situation
When a list of services is published on a web server in SOA architecture, any client

application can access one or more of these services. To use one method or function of a
service, a client application should reference the service that the method belongs to.
Therefore all methods or functions of this service will be available to be used. This leads
to problems since the interest is limited to only one method. Why should the developers
of a client application get lost due to the huge number of methods available in a service
when they only need one specific method or functionality?

Figure 2 shows the SOA model: Service providers publish their web services on a
web server. Any client application can connect to this server and call one or more of
these services.

In order to use method i of the service j, a developer might need to discover lot of
unnecessary functions.

Figure 2 SOA Model

Figure 3 displays the current problem with the SOA architecture. In this figure, a

developer is working on a client application “Application 1”. This application needs to
call method i of the service 1. In this case, the developer will have all methods of service
1 available. This service might have hundreds of functions depending on its complexity
or its business domain, while the developer needs only one method.

Another example illustrated in this figure, a developer is working on a client
application “Application 2”. This application needs to call method i of the service 2 and
method j of the service n. In this case, the developer will have all methods of service 2

WebService-11

WebService-12

…

WebService-21

…

WebService-i1

WebService-11

WebService-12

…

Service provider-1

WebService-i1

WebService-i2

…

Service provider-i

WebService-21

WebService-22

…

Service provider-2

WebService
publishing

Server

Client

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 398

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

and service n available. Similar to the first case above, these services might have
hundreds of functions depending on their complexity or their business domain, while the
developer needs only one method of each service.

Figure 3 Problems with the SOA Architecture.

4.2 Our Adapted Service Computing Model

We are proposing a model to decompose a service and to adapt it to clients’ needs. We
suggest the following model to solve this problem. Our model aims to adapt the
service(s) based on a client application and not in a unique way for all clients’
applications. The steps of this model can be described as follows:

1. Each service should be published with its layout. For example: the service S1 is
published with its layout Ct1.

2. The layout Ct1 should contain the following fields: Business Domain; Category;
URL Function Name; List of the input parameters’ types; Output type of the
function; Dependency; Data constraint, example; the account number maximum
length is 15 digits. The date format is mm/dd/yyyy; Username, some services may
need credentials to be accessed; Password, some services may need credentials to be
accessed. Description, example: this function returns the list of indices available in
Beirut Stock exchange. Last update date; this is an indicator to the developer if the
function is being updated frequently.

3. When an application needs to call a service, it should also provide its layout.

WebService-1 Method-11, Method-12, …

WebService-2 Method-21, Method-22, …
…
WebService-i Method-i1, Method-i2, … Method-ij,…
…

WebService-m Method-m1, Method-m2, …
…

Method-11

Method-12

…

WebService-1

Publishing
Server

Method-21

Method-22

…

WebService-2

 Method-i1

Method-i2

…

WebService-i

 Method-m1

Method-m2

…

WebService-m

Service Provider - 1

Service Provider - 2

Service Provider - n

Client Application-1 Client Application-2

Client Application-n

This application wants
to call/use only one
method of service -1!

All methods of
service-1 are

exposed!

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 399

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4. The layout of a client application should contain some (or all) of the following
fields:

a) Business Domain.
b) Category.
c) Function Name.
d) Input parameters’ types (mapping the service and the client application).
e) Returned type.
f) Web server URL, which represents the server where this service is hosted.
g) Username, some services may need credentials to be accessed.
h) Password, some services may need credentials to be accessed.
i) The description.
j) The last update date.

Figure 4 Proposed Model of ASC.

The layout of the client application may contain some of the above fields, as much as this
layout is detailed, which means many properties are filled, then the matching with the
layout of the service will be easier and accurate.

1. The client application layout explores the layout of the service.
2. A contract will be set between the service and the application. By contract, we

mean an agreement of communication between both parties.
3. The layout of the service is a XML document.
4. The layout of the client application is a XML document.
5. An object model will result from the communication between the 2 layout files; this

model is detailed in the experimental section.
6. The client layout is prepared manually by the application developer because he

knows what he needs from a specific service published on the web.
7. The service layout is prepared manually by the service provider.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 400

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Using this object model, the client application calls the needed functions only and
disregards all other methods (table 1). The layout of the service is of the form: Name →
Value

Example: a service contains 3 web methods:
1. Make Transfer.
2. Approve Transfer.
3. Add Beneficiary.

Table 1 Layout of service (description)

Name Value
Domain Financial
Category Banking
URL http://192.168.1.111/MyService.asmx
FunctionName MakeTransfer
InputParam1 Integer
InputParam2 Integer
InputParam3 Decimal
OutputParam Integer
Username NA
Password NA
Description This function is used to transfer money between 2 accounts
LastUpdateDate 01/05/2011
Domain Financial
Category Banking
URL http://192.168.1.111/MyService.asmx
FunctionName ApproveTransfer
InputParam1 Integer
OutputParam Integer
Username user123
Password 12345678
Description This function is used to approve a transfer operation
LastUpdateDate 01/05/2011
Domain Financial
Category Banking
URL http://192.168.1.111/MyService.asmx
FunctionName AddBeneficiary
InputParam1 String
InputParam2 String
InputParam3 Integer
InputParam4 String
OutputParam Integer
Username NA
Password NA
Description This function is used to add a beneficiary
LastUpdateDate 01/05/2011

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 401

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://192.168.1.111/MyService.asmx�
http://192.168.1.111/MyService.asmx�
http://192.168.1.111/MyService.asmx�

If we have a client application that needs to calls the “MakeTransfer” and the
“AddBenficiary” functions of this service. The model that will represent this request
might be as shown in table 2.

Table 2 Request of clients

Name Value
Domain Financial
Category Banking
URL http://192.168.1.111/MyService.asmx
FunctionName
InputParam1 Integer
InputParam2 Integer
InputParam3 Decimal
OutputParam Integer
Username NA
Password NA
Domain Financial
Category Banking
URL http://192.168.1.111/MyService.asmx
FunctionName
InputParam1 String
InputParam2 String
InputParam3 Integer
InputParam4 String
OutputParam Integer
Username NA
Password NA

.

4.3 Modifying WSDL file to implement our model: an alternative way
Another method for implementing our model is also available; we can use a modified
version of the WSDL file generated for every web service. Mainly the WSDL contains
the input, output and the function name of every function. We can add the additional
fields such as the category and the domain to the WSDL file.

For sure, this will lead to a major change in how the WSDL is generated, that’s why
we focused on the first option. A second disadvantage of this method is that the services’
providers should implement major updates to the existing web services.

5 Experimented works
The service adaptation model that we propose in this research can be implemented in 2
methods:

- Adapting services by searching the metadata using the Web Services Inspection
Language.

- Adapting services by searching the metadata as string comparison.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 402

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://192.168.1.111/MyService.asmx�
http://192.168.1.111/MyService.asmx�

5.1 Web Services Inspection Language
 The Web Services Inspection Language (WSIL) is a service discovery mechanism

[Modi, 2002]. WSIL allows us to go directly to the service provider and ask for the
services it provides.

 The WSIL specification does not define a service description language. WSIL
documents provide a method for aggregating different types of service descriptions.
Within a WSIL document, a single service can have more than one reference to a service
description. For example, a single Web service might be referenced twice in a WSIL
document: once directly via its WSDL, and again via its business service entry in a UDDI
registry. References to these two service descriptions should be put into a WSIL
document.

If multiple references are available, it is good to put all of them in the WSIL
document so that the application that uses the document can select the type of service
description that is compatible with and preferred by that application [Modi, 2002].

The WSIL specification serves two important functions:
1. WSIL defines an XML format for listing references to existing service

descriptions. These service descriptions can be defined in any format, such as
WSDL, UDDI, or plain HTML. The ability to link a WSIL document to one or
more different WSIL documents allows us to manage service description
references by grouping them into different documents and to build a hierarchy of
WSIL documents. For example, separate WSIL documents can be created for
different categories of services, and one primary WSIL document can link all of
them together.

2. WSIL defines a set of conventions so that it is easy to locate other WSIL
documents. The WSIL specification does not limit the type of service descriptions
that can be referenced.

Two conventions make the location and retrieval of WSIL documents easy:
- Fixed-name WSIL documents. The fixed name for WSIL documents is

inspection.wsil. The inspection.wsil file is placed at common entry points for a
Web site. For example, if the common entry point is http://entrypoint.com
then the location of the WSIL document would be
http://entrypoint.com/inspection.wsil.

- Linked WSIL documents. References to WSIL documents can also appear
within different content documents, such as HTML pages.

This work focused on string comparison between the service metadata and the client
application metadata as discussed in the next section.

5.2 Text Search

During the demo, we will use the C# programming language. The demo will consist of:
1. A web service containing a number of web methods.

2. The layout of the service will be prepared as a XML file.

3. A windows application which represents the client application that needs to call
the web service.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 403

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://entrypoint.com/inspection.wsil�

4. The layout of the windows application which represents in our model the needs
of the application from the service or the specifications of the methods that the
application needs to call.

5. A layer will be built (DLL); this layer contains the functions that were matched
between the service methods and the requests of the application.

6. An object will be created in order to invoke the matched functions.

5.3 Comparison

As shown in the comparison table below, the main difference between our model and the
models discussed in the related work section is that our model can be implemented during
the analysis phase of the service development project or even after launching this service
to the public, where as almost all previous models had to be implemented at design level.

Our model can be rapidly used by developers since it requires some XML knowledge
only. Moreover, the most important advantage of our model is that the adaptation is per
client. This means we do not have an adapted or composed model that all clients’
applications should use, but in our model, the client defines his needed functions, and
based on this definition, the service is adapted. Our model offers an “adaptation per
client”. The ASC model has one limitation which is the manual written of the service
layout. If we have a service containing hundreds of functions, the preparation of this
layout will take lot of time.

Table 3 Comparison between existing Model of compositiona and our model

6 Conclusion and future works
The SOA technology is being adopted by the most software companies. The published
services need an adaptation or a composition due to many reasons, mainly because when
a service is published, limited information is published about what it can provide. When
working with web services, the huge number of exposed methods or functions becomes a
problem for developers. Also there is no automatic method to filter or adapt services
based on client needs. As for the WSDL file that is automatically created with each web
service, it is hard to read and extract information from it.

We propose a model that will adapt a service per client needs. The result of this
model is a logic layer that shows the functions or services requested by a client and hides
unwanted functions.

Finally, there are a number of unaddressed issues, which, once solved, may turn out
to be very helpful. The automatic update of the DLL was not discussed. If the service’s
functions were modified due to a software updates, the output of our model which is a

Specification Related Works ASC Model
Implementation Design Level Design and Deployment Level

Difficulty Depend on the Research XML Basic Knowledge

Adaptation One Model for All Clients One Model Per Client

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 404

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

DLL, should be dynamically updated too. We didn’t focus on the Information Retrieval
methods on metadata (part 1 of the Experimental Work section).

7 Acknowledgment
This work was sponsored by Natural Sciences and Engineering Research Council of
Canada (NSERC), the University of Quebec at Chicoutimi (Quebec), Canada and the
Lebanese university, Beirut, Lebanon.

8 References
 [Cloud, 2012] Cloud Computing, www.gomez.com. deVadoss J. Understanding Service

Composition, Part I: Dealing With Workflow Across Services. SOA Magazine Issue XXXVIII.
http://www.soamag.com/I38/0410-2.php, April 8, 2010.

[Erl, 2012] Erl T. What is SOA: an Introduction to Service Oriented Computing,
http://www.whatissoa.com, SOA System, 2012.

[CodeSource, 2005] http://www.codersource.net/microsoft-net/c-basics-tutorials/c-net-tutorial-
reflection.aspx, Code Source, 2005.

[Kiciman, and Livshits, 2010] Kiciman E., and Livshits B. AjaxScope: A Platform for Remotely
Monitoring the Client-Side Behavior of Web 2.0 Applications , Emre Kiciman and Benjamin
Livshits, Microsoft Research Project, ACM Transactions on The Web, Vol. 4, No. 4, Article
13, Pub. date: September 2010.

[Liberty, 2001] Liberty J. Programming C#, Chapter 18, Attributes and Reflection, O'Reilly, 2001.

[Martin et al., 2004] Martin D., Burstein M., Hobbs J., Lassila O., McDermott D., Mcllraith S.,
Narayanan S., Paolucci M., Parsia B., Payne T., Sirin E., Srinivasan N., Sycara K. Owl-s :
Semantic markup for web services. Technical report, W3C, 2004.

[w3c, 2004]: web service definition, http://www.w3.org/TR/wsa-reqs/, (2004).

[Modi, 2002] Modi T. WSIL: Do we need another web service specification?
http://www.webservicesarchitect.com/content/articles/modi01.asp. Web Services Architect,
2002.

[Newcomer, 2004] Newcomer E. Understanding Web Services- XML, WSDL, SOAP and UDDI,
chapter 5, Finding Web Services : UDDI Registry. Addison Wesley Professional, May, 2004.

[Palathingal and Chandra, 2004] Palathingal P., and Chandra S., Agent approach for service
discovery and utilization. In HICSS, 2004.

[Panda, 2005] Panda D. An Introduction to Service-Oriented Architecture from a Java Developer
Perspective. http://onjava.com/pub/a/onjava/2005/01/26/soa-intro.html, O'Reilly 2005.

[Suraci1 et al., 2006] Suraci1 V., Mignanti S., and Aiuto A., Context-aware Semantic Service
Discovery. University of Rome "Sapienza", Department of computer and system sciences,
2006.

 [UDDI, 2011] Universal Description, Discovery, and Integration (UDDI). http://www.service-
architecture.com/web-
services/articles/universal_description_discovery_and_integration_uddi.html, 2011 Barry &
Associates.

[SOA Definition, 2012] Service-oriented architecture (SOA) definition, http://www.service-
architecture.com/web-services/articles/service oriented_architecture_soa_definition.html,
Barry & Associates, 2012.

 [Bell, 2008] Bell M. Service Oriented Modeling, John Wiley & Sons, Feb 25, 2008 - 384 pages.

[WebService, 2012] Web Services explained. http://www.service-architecture.com/web-
services/articles/web_services_explained.html, 2012 Barry & Associates.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 405

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.gomez.com/�
http://www.soamag.com/contributors/bio-jdevadoss.php�
http://www.codersource.net/microsoft-net/c-basics-tutorials/c-net-tutorial-reflection.aspx�
http://www.codersource.net/microsoft-net/c-basics-tutorials/c-net-tutorial-reflection.aspx�
http://www.w3.org/TR/wsa-reqs/�
http://www.webservicesarchitect.com/content/articles/modi01.asp�
http://onjava.com/pub/au/801�

