
R. Lee (Ed.): Computer and Information Science, SCI 493, pp. 201–213.
DOI: 10.1007/978-3-319-00804-2_15 © Springer International Publishing Switzerland 2013

Intelligent Web Based on Mathematic Theory
Case Study: Service Composition Validation via Distributed
Compiler and Graph Theory

Ahmad Karawash, Hamid Mcheick, and Mohamed Dbouk

Abstract. This paper discusses a model for verifying service composition by
building a distributed semi-compiler of service process. In this talk, we introduce a
technique that solves the service composition problems such as infinite
loops,deadlock and replicate use of the service. Specifically, the client needs to
build a composite service by invoking other services but without knowing the
exact design of these loosely coupled services. The proposed Distributed Global
Service Compiler, by this article, results dynamically from the business process of
each service. As a normal compiler cannot detect loops, we apply a graph theory
algorithm, a Depth First Search, on the deduced result taken from business process
files.

Keywords: SOA (Service Oriented Architecture), Compiler, Business Process
Execution Language (BPEL), Depth First Search (DFS), Distributed Global
Service Compiler (DGSC).

1 Introduction

Web services are defined as self-contained, modular units of application logic
which provide business functionality to other applications via an Internet connec-
tion. Web services support the interaction of business partners and their processes

Ahmad Karawash · Hamid Mcheick
Department of Computer Science, University of Quebec at Chicoutimi (UQAC),
555 Boulevard de l’Université Chicoutimi, G7H2B1, Canada
e-mail: {ahmad.karawash1,hamid_mcheick}@uqac.ca

Mohamed Dbouk
Department of Computer Science, Faculty of Sciences (I), Lebanese University,
Rafic-Hariri Campus, Hadath-Beirut, Lebanon
e-mail: mdbouk@ul.edu.lb

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/77517703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

202 A. Karawash, H. Mcheick, and M. Dbouk

by providing a stateless model of atomic synchronous or asynchronous message
exchanges (B. Srivastava and J. Koehler). Every service consists of a domain of
computers and computers in a domain can just communicate with each other
through predefined functions (Amirjavid F. et al., 2011). Services can be invoked
by other services or applications. Services are designed for interaction in a loosely
coupled environment, and therefore are an ideal choice for companies seeking
inter or intra business interactions that span heterogeneous platforms and systems
(K. LI, 2005).

In many cases, a single service is not sufficient to the user's request and often
services should be combined through service composition to achieve a specific
goal. Nowadays, researches show that problems of composing web services are
expressed in designing, discovery, validation and optimization of service composi-
tion. The paper proposes a way of dynamic validation of service composition to
prevent some errors (infinite loops, blocked services, incorrect business flow
design and many others) at the beginning of the design phase of new composite
service.

Before designing a new composite service, the service discovery process
returns a set of candidate services and at some of those services are used in the
composition process according to non-functional criteria (cost, time, and context-
aware). But nothing, in this discovery notifies service developer if the invoked
services are working normally or not.

In the dynamic world of service-oriented architectures, however, what is sure at
design time, unluckily, may not be true at run time. The actual services, to which
the workflow is bound may change dynamically perhaps in an unexpected way,
may cause the implemented composition to deviate from the assumptions made at
design time. Traditional approaches, which limit validation to being a design time
activity, are no longer valid in this dynamic setting. Besides performing design-
time validation, it is also necessary to perform continuous run-time validation to
ensure that the required properties are maintained by the operating system. The
compiler is the only way to validate the sequence of service process. It is the pro-
gram that translates one language to another. Thus our goal is to implement a dis-
tributed dynamic compiler that compiles the composition of every new composite
service. When a client designs a new composite service, the related compiler
Grammar rules, of the invoked services, are sent to him as XML files then
combined together to constitutes a local compiler that validate new service
composition at design phase.

Section 2 describes the previous methods of service validation. Section 3
gives two service composition examples to highlight the problem of service vali-
dation. While section 4 proposes a new service composition validation model in
the service design development phase; two techniques of parsing and depth first
search are described and a simulation steps are given in this section. Section 5
summarizes the ideas as a conclusion and gives perspectives for future works.

Intelligent Web Based on Mathematic Theory 203

2 Background

This part describes the previous works and some basic features.

2.1 Related Works

Some ways of dynamic system validation are discussed in this section. In 2006
Colombo et al., undertake the topic of dynamic composition where the service
parts do not always behave along expected lines. They provide an extension to the
BPEL language in the form of the ‘SCENE platform’ which addresses this issue.
The proposed platform is validated forming an application using a set of real ser-
vices and observing the behavior of the application (Colombo et al, 2006). In
2009, Silva et al proposed the DynamiCos structure which response the require-
ments of different customers to dynamically put together personalized services. To
confirm the proposed structure they set together an extensive model of the struc-
ture which enables services to be deployed and be published in a UDDI-like regi-
stry (Silva et al, 2009).

In 2008, Eid et al explain a set of scales alongside which to evaluate the various
frameworks of dynamic composition. The set of scales is inclusive and is roughly
classified into three parts: input subsystem, composition subsystem, and execution
subsystem. To be considered good a composition model must achieve well against
these scales (Eid et al., 2008).

In 2007, Shen et al found the Role and Coordinator (WSRC) model to hold dy-
namism in web service compositions. In this model, the development of service
composition is divided into three layers: Service, Role, and Coordinator. To vali-
date the model, the authors describe a case-study of a vehicle navigation system
which comprises a global positioning system and a traffic control service (Shen et
al., 2007).

These are a small list of the validation methods in use for dynamic composition
models and structures. Some of these methods are quite complex like the model
proposed by DynamiCos or that of the SCENE platform. While, the validation
ways that are simple like the case-study in the WSRC model seem useless.

The validation model proposed in this paper, Global compiler service, relative-
ly simple as it expands the validation in one operating system to achieve a wide
convention between all the operating systems that deal with service composition.

2.2 Basic Features

Business process execution language (BPEL) - BPEL is a language created to
compose, orchestrate and coordinate web services. It is the result of over
ten years of collaborative effort in Business Project Management by Micro-
soft and IBM. It provides both synchronous and asynchronous interactions
and it gives suitable forms to create a process. It allows the creation of
composite processes with all its related activities. BPMN steps: invoking

204 A. Karawash, H. Mcheick, and M. Dbouk

web services, waiting for clients to invoke the service via message, gener-
ate response, manipulate variables, throws exceptions, pause for a selected
time, terminate.

Compiler - is a program that takes a source program typically written in a high-
level language and produces an equivalent target program in assembly or
machine language (Aho I. et al, 2007). Also it is reports error messages as
a part of the translation process. A compiler performs two major tasks:
analysis of the source program and synthesis of the target-language in-
structions. In order to build a compiler, there are six phases to follow as in
figure 1: i) scanning the input program will be grouped into tokens, ii)
parsing or syntax analysis, iii) building a Context-Free-Grammar, iv) ap-
plying semantic analysis to keep on mapping between each identifier of
data structure (symbol table) and all its information and ensure consistent,
v) extracting assembly code generation and vi) finally realizing code
optimization.

Depth First Traversal (DFS) – it is a graph theory algorithm for traversing a
graph. It is a generalization of preorder traversal. It starts from a vertex
and recursively it build a spanning forest that determine if the graph is
cyclic (contain cycle loop) or acyclic.

Scanning Parsing Semantic
analysis

Code
generation

Optimize
code

Target
Grammar

Fig. 1 Phases to build a compiler

3 Composition of Web Service

In order to highlight on the problem of web service composition and simplify the
idea for the reader, this section gives two examples about service composition.
The first example reflects a simple normal composition while the second shows an
abnormal service behavior.

3.1 Simple Services Composition Example

Figure 2 shows a simple example of how Providers of web services are communi-
cated to achieve a composed service.

Intelligent Web Based on Mathematic Theory 205

Let Client2 has to solve two mathematical formulas: “F1: A = 2*x +3*y” &
 “F2: B = 2*x “

In order to achieve his goal Client2 will design a new composite web service. First
of all, he searches in UDDI2 which gives him a summary about the services that
are existed in the Provider2. UDDI2 has two services that solve two equations:
EQ1:“2*x” & EQ2: “3*y”

Fig. 2 Example of composite services

Using the information given in the WSDL file by UDDI2, Client2 invokes
Provider2 operations. But the two services EQ1 and EQ2 invoke other services
ADD & Multiply from the Provider1 to complete the required answer. This is a
simple idea about how service composition works.

3.2 Infinite Loop Example

Web services are distributed through the whole internet and controlled by various
sides. In the modern state, services are dynamically managed. Because the most
used services are big and composite, the states of failure and infinite loop are

206 A. Karawash, H. Mcheick, and M. Dbouk

detected sometimes. Failure of composite services results from an obstacle in one
of its parts, while infinite loop exists as a result of wrong process flow design.

A real example of the service composition problem (infinite loop) is the
TIBCO web service. See the link below (https://www.tibcommunity.com/
message/70086). Figure 3 shows an infinite loop (or cycle) while executing com-
posite service.

Fig. 3 Infinite loop of web service

Let voltage represented by V, current by I, resistance by R and represent power
by P.

We have a set of service to use:

- Client2 build two services GET-SERVER-VOLT & GET-SERVER-POWER
- Provider2 provides two services Get-Volt (V= I*R) & Get-Power (P=V*I)
- Provider1 provides two services Get-Resistance & Get-Current (R=p/I^2)

Client2 wants to calculate the consumption of Voltage and Power of the last ser-
vice provider machine during a composite service process. To complete the

Intelligent Web Based on Mathematic Theory 207

needed service, Client2 invokes services from Provider2 while Provider2 invokes
other services of Provider1 to answer the question of Client2. To build his own
services (GET-SERVER-VOLT & GET-SERVER-POWER), Client2 firstly
searches in UDDI2 about services and invokes Get-Volt & Get-Power from
Provider2.

Regarding the service “Get-Volt”, it invokes Provider1 (the last service provid-
er in this process) services specifically the “Get-Resistance” service to calculate
resistance ‘R’ and it invokes the “Get-Current” service to calculate current ‘I’.

From the other side, the service “Get-Resistance” invokes “Get-Power” service
from Provider2 in order to calculate power ‘P’. But the service “Get-Power” in-
vokes “Get-Volt” service to calculate voltage V.

 Indeed, the “Get-Server-Volt” service falls into an infinite loop as seen above
(figure 3) in red color. The “Get-Volt” node invokes the “Get-Resistance” node
which needs results from “Get-Volt”. Thus “Get-Volt” invokes itself indirectly.
There are also other types of errors may occur because of partial fail or bad ser-
vice communications.

4 Distributed Global Service Compiler (DGSC)

Our DGSC model consists of extracting compiler Context-Free-Grammar rules of
the business process (BPEL) of a web service (figure 4). Then save these rules in
the UDDI registry. Grammar rules are used later by the client when he fetches the
registry to build a new composite service.

DGSC is simply a verification of new composite service before the execution
that is valuable. Beside the development of programming languages, there exist
many tools today, for example ATLAS in Eclipse, that transforms the design
phase of service to related code automatically. But how achieve the same for on-
line dynamic service composition without dangerous errors? As we know, it is
impossible to discover the business process for web service through SOA model
(meta-data about service process is just published by WSDL file).

Our goal is to discover design errors in the design phase of composite service
without knowing the exact flow of service process. In fact, there are many ob-
stacles facing our DGSC because the service design takes place in the client side
and the content of web services is dynamically edited from several sides.

Service designer (Client side) searches the UDDI in order to build a new
composite service. But nothing verifies that the new combination of service, that
may also invoke other services, is free of errors and infinite loops. Also even if a
correct composition of a complex service is achieved, this action may fail later
because services are dynamically edited.

The proposed solution uses two phases of compiler design (scanning and pars-
ing). This phase of the compiler is applied in the business process (BPEL) of ser-
vice that contains the internal service design. A grammar rules drive similar to the
case of the third phase of compiler design (Context-Free-Grammar). These rules
are sent to UDDI registry in XML format. But the client uses the WSDL files of
several services to design a new composite service. Thus depending on our

208 A. Karawash, H. Mcheick, and M. Dbouk

Fig. 4 Distributed global Service Compiler (DGSC)

proposed model he downloads the rules file, from the UDDI, with the WSDL file
and he uses these rules to compile a new design of composite service. Locally on
the client side, a mathematical algorithm (DFS) is applied in these rules to detect
if the new design of composite service contains infinite loop before service
deployment.

4.1 Extraction of Service Grammar

For every programming language there exists a compiler Grammar that is used to
verify the steps of building a new program. As mentioned in section 2.2, there are
six phases to build a compiler. But in our distributed compiler model we just need
to detect infinite loops. Thus scanning then parsing is applied to the BPEL file and
a result is a context-Free-Grammar for the service (similar to the third phase of
building compiler).

To achieve our BPEL parser, we used the BPEL grammar of BPLE4WS written
by the members of the ReDCAFD Laboratory at the University of Sfax.

The BPEL parser is implemented using Netbeans 6.9.1 and Java code. The out-
come of the parser is a database entry in a specific table.

Intelligent Web Based on Mathematic Theory 209

Fig. 5 Loan BPEL example

Table 1 The Output result of parsing the Loan BPEL code

Activity
name

0 1 2 3 4 5

Activity

Name
receive if invoke if invoke Reply

Current

State
ReceiveFrom-

Customer

nul

l

invokeloan-

Process

nul

l

invokeloan-

Process

ReplyToCus-

tomer
Conditions LoanRequesto-

rOpera.

nul

l

ProcessAppli-

cation

nul

l

ProcessAppli-

cation

LoanProces-

sor
Partner

Link
LoadRequestor nul

l

LoanProcessor nul

l

LoanProcessor LoanProces-

sor
Opera-

tions
LoanRequesto-

rOpera.

nul

l

ProcessAppli-

cation

nul

l

ProcessAppli-

cation

LoanProces-

sor
Next

Activity

1 2,3 5 4,5 5 6

210 A. Karawash, H. Mcheick, and M. Dbouk

Each row entry represents the details of an individual activity which provides
information about the current state name, current state properties (as My Role,
Partner Role), PartnerLink (which represents the associated web service), name of
the operation being invoked, condition of a looping structural activity, current
state number, and next possible state numbers. The result of parsing BPEL file is
saved in an Excel file. Table 6 below contains the output of parsing Loan BPEL
file in and the BPEL design is found in figure 5.

4.2 Detect Cycle by DFS

According to our model and after he requests the WSDL file from UDDI, the
Compiler rules in XML format will be received by the client. In this section, the
results of parsing the BPEL file will be considered as an inputs and these inputs
will be transformed into a direct graph (arcs between nodes have sense).

Now the problem is changed from programming into a graph theory problem
(figure 6).Instead of checking if the new design of composite service falls in infi-
nite loop or not, we can verify if that the obtained graph is directed cyclic or acyc-
lic. DFS algorithm is used to detect if the graph is acyclic.

Fig. 6 The directed graph of the BPEL example

Indeed, DFS starts from the root node and explores siblings as far as possible
along each branch before backtracking and if it arrive a visited node again it will
notify that the graph is cyclic (it contains cycle). But sometimes the service de-
signer need to have a cycle like while-loops, for-loops or even reply to node that
sends a request. Thus in all cases we give the designer the permission to discard
the detected harmful loops.

4.3 Distributed Compiler Concept

Composite services are built by invoking other already implemented services. But
the web services are dynamic and able to be edited at random time.

Intelligent Web Based on Mathematic Theory 211

In our case, the compiler is decentralized (federated) and the Grammar of every
service works as a small compiler. When service designer forms a new composite
service and the Grammar rules of all what is needed to be invoked services are
collected at the client’s machine. These rules are combined and DFS is applied to
detect errors (infinite loops, errors...etc.). If the result returns an error then a noti-
fication appears to the web service designer that he must change the wrong graph-
ical service design and the compiler gives him details about the error.

DGSC deals with the existing implemented services as standards, which have
correct design, for new composite service.

In other words, if a developer wants to develop new composite service called
XY and he needs to use other services then all these other services will stay non-
editable at the last stage of designing this service. Thus the developer will receive
an update message if the service he needs to invoke change during his design of
new composite service. There several scenarios may occur during the design phase
of new composite service:

- The relations between the services to be invoked are edited.
- One of the services to be invoked is being deleted or failed.
- An internal change occurs in the behavior of one of the services to be in-

voked.

Thus the server sends updates to a web service designer about any change occur in
the required services of the new composition. Also the server prevents changes in
these needed services while the deployment phase of the new composite service
takes place. After the deployment of this new service it will be standard for other
new services during the design phase.

4.4 Steps of DGSC Simulation

In this simulation we have used Netbeans6.9.1, Apache Tomcat server, Apache-
ode-war-1.3.5. We use http://ode.apache.org to execute a BPEL file based on the
Apache server.

There are several steps in our simulation (check the sections 4.1 for detail of
this simulation):

1. Start the Apache server and Netbeans.
2. Create database then a table (we used EXCEL file) to save the result of pars-

ing a BPEL.
3. Apply the database connection between Netbeans and the database.
4. Use existing or Design some BPEL processes examples (as LoanProcess in

our case) in service composition
5. Execute the code of our parser and put the BPEL file which previously de-

signed as input and choose the excel database to save the output.
6. The XWTransformer class transforms the output result in the table to XML

format and inserts its content to the WSDL file of the service.

212 A. Karawash, H. Mcheick, and M. Dbouk

7. Apply SOAP to send the WSDL content file from server to client (for more
details refer to http://ode.apache.org/war-deployment.html).

8. Execute WXExctractor class code that extracts the parsing result from the
WSDL file.

9. Combine the parsing results of all the services invoked in this composition.
10. Execute the Depth first search (DFS) code using the combined result as input.

Fig. 7 The result DGSC simulation

This simulation validates the composition of new services. Before deploying
the new design composite service, if the simulation detects infinite loop, it will
notice the developer to fix it and then change the design. This model helps design-
er to avoid the cyclic composition service in the real world where a huge number
of invocations take place and all the design services are dynamically changed and
composed. Figure 7 shows the result of the DGSC simulation that is applied on a
group of BPEL files of the services to be invoked to form a new composed
service.

5 Conclusion and Future Works

The web service revolution simplified the building of new complex services be-
cause it gives the facility to invoke any type of services. On the other side, this
revolution offers only the meta-data to the user about the service to be invoked.
Thus invoking blindly another service may not give always the needed result.
From this point, we start searching about a way to validate the web service at the
design phase and the answer is the Distributed global Service Compiler. Since we
have millions of services we cannot build a centralized compiler for all the servic-
es, we have developed a dynamic compiler per each new composite service. To
deal with business process of the service, we started from BPEL and extract the
Grammar rules, which represent the internal map (sequence) of that service. As
the client contacts the Registry of services to get summary (such as WSDL file)

Intelligent Web Based on Mathematic Theory 213

before building a service, DGSC proposes to insert the Grammar rules in the
WSDL files of the registry. These rules will be downloaded later by the user
(when he invokes WSDL file) at the beginning of the design phase. The DGSC
model helps us to validate sequence of the services.

As a future work, our goal is to achieve an intelligent organized web depend-
ing on the theorems of Mathematic. Taking this article as a case study, we reach a
logical composition of service that can change its job according to client response
without destroy the behavior of other services.

References

Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-
lems. In: IBM India & Switzerland Research, ICAPS 2003 Workshop on Plan-
ning for Web Services, vol. 35 (2003)

Amirjavid, F., Mcheick, H., Dbouk, M.: Job division in service oriented computing based
on time aspect. Int. J. Communication Networks and Distributed Systems 6(1)
(2011)

Li, K.: LUMINA: Using WSDL-S For Web Service Discovery. Master Thesis; University
of Georgia (December 2005)

Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execution environ-
ment supporting dynamic changes disciplined through rules. In: Dan, A., Lamers-
dorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

Silva, E., Pires, L.F., van Sinderen, M.: Supporting dynamic service composition at runtime
based on end-user requirements. Centre for Telematics and Information Technol-
ogy University of Twente, The Netherlands P.O. Box 217, 7500 AE Enschede
(2009)

Eid, M.A., Alamri, A., El-Saddik, A.: A reference model for dynamic web service composi-
tion systems. International Journal of Web and Grid Services (2008)

Shen, L., Li, L., Ren, S., Mu, Y.: Dynamic composition of web service based on coordina-
tion model. In: The Joint International Conferences on Asia-Pacific, Web Confe-
rence and Web-Age Information Management (2007)

Aho, A.V., et al.: Compilers, principles, techniques, and tools, QA76.76.C65A37 (2007)

	Intelligent Web Based on Mathematic Theory
	1 Introduction
	2 Background
	2.1 Related Works
	2.2 Basic Features

	3 Composition of Web Service
	3.1 Simple Services Composition Example
	3.2 Infinite Loop Example

	4 Distributed Global Service Compiler (DGSC)
	4.1 Extraction of Service Grammar
	4.2 Detect Cycle by DFS
	4.3 Distributed Compiler Concept
	4.4 Steps of DGSC Simulation

	5 Conclusion and Future Works
	References

