
[Type here]

Quality-of-Service Data Warehouse for the

Selection of Cloud Service: A Recent Trend

Ahmad Karawash1, 2, Hamid Mcheick1 and Mohamed Dbouk2
{ahmad.karawash1, hamid_mcheick}@uqac.ca, mdbouk@ul.edu.lb

1: Department of Computer Science, University of Quebec at Chicoutimi (UQAC), 555

Boulevard de l’Université Chicoutimi, G7H2B1, Canada.

2: Ecole Doctorale des Sciences et de Technologie, Lebanese University, Rafic-Hariri

Campus, Hadath-Beirut, Lebanon.

Abstract Cloud computing presents an efficient managerial, on-demand and

scalable way to integrate computational resources. However, existing Cloud is

increasingly transforming the information technology landscape, and organisations

and businesses are exhibiting strong interest in Software-as-a-Service. This enables

application service providers to lease data centre capabilities for deploying

applications depending on Quality of Service (QoS) requirements. However, it still

remains a challenging task to provide QoS assured services to serve customers with

best quality, while also guaranteeing the maximisation of the business objectives to

service provider and infrastructure provider within certain constraints. In order to

address these issues, this chapter proposes building a Data Warehouse of QoS to

achieve better service matching and enhance dynamic service composition. The

proposed QoS Data Warehouse model supports the following: ensures a deep

analysis of the service’s interior structure and properties through online database

analysis; facilitates reasoning about complex service weakness points; supports

visual representation of analysis results; and introduces a new QoS factor for study.

Keywords: Cloud service, Data Warehouse, Quality of Service.

1. Introduction

Cloud computing is a model for allowing expedient, on-demand network access

to a shared collection of configurable computing resources (e.g., networks, servers,

storage, applications and services) that can be rapidly released with minimal

management effort or service provider interaction. Cloud computing promotes

availability and is composed of three service models. These services in industry are

respectively referred to as Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). Clouds aim to power the next generation

data centres by exposing them as a network of virtual services (hardware, database,

user-interface, application logic) so that users are able to access and deploy

applications from anywhere in the world on demand at competitive costs depending

on users’ QoS requirements [1].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/77517701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[Type here]

Cloud computing presents an efficient managerial, on-demand and scalable way

to integrate computational resources. However, existing Cloud architecture lacks

the layer of middle-ware to enable dynamic service composition. Service

composition provides a current technology for developing complex applications

from existing service components. Prediction of the QoS of Composite Services

makes it possible to determine whether the composition meets the non-functional

requirements [2]. Previous researches have focused on service composition and

integration in terms of services, orchestration and choreography.

As SaaS gains greater acceptance, user cloud expectations start moving from

best-effort service to guaranteed service. Hence, it is foreseen the development of

QoS as a dominant consideration for cloud service adaptation. QoS has many facets

which depend on the aspect that is crucial for the user. Application specific

performance includes, for example, response time or throughput, application

security varying from data integration and consistency to privacy and service

availability, which are some of the QoS considerations that clouds need to address.

Such qualities are of interest to service providers and service consumers alike. They

are of interest to service providers when implementing multiple service levels and

priority-based admission mechanisms. The agreement between the customer and

the service provider is referred to as the Service Level Agreement (SLA). An SLA

describes agreed service functionality, cost and qualities [3]. This work proposes

building a Data Warehouse of QoS to manage the matching between customer and

service provider. The obtained Data Warehouse gives a better analysis level,

reasoning and decision-taking before selecting a cloud service.

This chapter is organised as follows. Section 2 describes some previous methods

of service’s selection. Section 3 discusses the service selection structure. In section

4, Quality of Service Data Warehouse model components are introduced, and

section 5 highlights the model’s benefits. The model simulation and the results are

shown in section 6. As conclusion, the main ideas of this chapter are summarised

and future perspectives considered.

2. Background

QoS has received much interest in cloud service research because of the rapid

increase of the number of services and the approximate equal qualities of the

discovered services. Several research activities focused on how to benefit from the

QoS in the service selection process. Some of these studies sought to extend the

Universal Description, Discovery and Integration (UDDI) Registry to support

service consumers by comprehensible QoS information. First, it is relevant to

mention the service selection algorithms used by the QoS broker for sequential

composite flow models with only one QoS constraint (i.e. Throughput). There are

two main approaches we can use to select the optimal services for each component

of a business process. The first approach is the combinatorial approach [4],

modelling the problem as a Multiple Choice Knapsack Problem (MCKP). In order

to solve the MCKP, three methods are proposed: exhaustive search, dynamic

programming and a minimal algorithm for MCKP and performance study method.

The second approach is the graph approach, modeling the problem as the

constrained shortest path problem in the graph theory. The proposed methods to

solve the shortest path algorithm are: Constrained Bellman-Ford (CBF),

[Type here]

Constrained Shortest Path (CSP) and Breadth-First-Search (BFS). Also, there are a

number of other research studies that dealt with the service selection problem.

Keskes et al. proposed a model of automatic selection of the best service provider,

which is based on mixing context and QoS ontology for a given set of parameters

of QoS [5]. In 2010, Raj and Saipraba proposed a service selection model that

selects the best service based on QoS constraints [6]. Squicciarini et al. (2011),

furthermore, studied the privacy implication caused by the exchange of a large

amount of sensitive data required by optimised strategies for service selection [7].

Garg et al. proposed the SMICloud framework for comparing and ranking cloud

services by defining a set of attributes for the comparison of mainly IaaS cloud

offerings [8], while Hussain et al. proposed a multi-criteria decision-making

methodology for the selection of cloud services [9]. To rank services, they matched

the user requirements against each service offering for each criterion. Wang et al.

proposed a cloud model for the selection of Web services [10]. This model relies on

computing what the authors called QoS uncertainty and identifies the most

appropriate Web services using mixed integer programming. In 2012, Anita Mohebi

proposed a vector-based ranking model to enhance the discovery process of services

[11]. Rehman et al. proposed a cloud service selection framework that relies on QoS

history [12]. A heuristic service selection method, called “Bee Algorithm”, was

proposed by Karry et al., which helped to optimise the discovery and selection of a

service that meets customer requirements [13]. In this paper, we adopt the Service

Oriented Architecture to build a Data Warehouse of quality of services. It enables

application of an advanced level of analysis and optimisation in discovering cloud

services.

3. Cloud service selection structure

Cloud computing can be defined as a model for enabling convenient, on-demand

network access to a shared pool of resources that can be rapidly provisioned and

released with minimal management effort or service provider interaction. A cloud

environment is characterised by system level, Cloud Broker level and user middle-

ware level.

The user Middle-ware level includes the software frameworks such as Web

2.0 Interfaces and provides the programming environments and composition tools

that ease the creation, deployment and execution of applications in Clouds.

The system level is composed of thousands of servers, each with its own

service terms management systems, operating platforms and security levels. These

servers are transparently managed by the higher level virtualisation [14] services

and toolkits that allow sharing their capacity among virtual instances of servers.

The Cloud Broker level implements the platform level services that provide

runtime environment enabling Cloud computing capabilities to build cloud services.

The Cloud Service Broker performs several management operations to deliver

personalised services to consumers. These operations are: security and policy

management, access and identity management, SLA management, provision and

integration management. The security and policy manager is responsible for

managing different kinds of policies such as authorisation policies and QoS-aware

selection policies of service providers. The access and identity manager is

responsible for the accessing services and respect the identity rules of services. The

SLA Manager directs the concession process between a consumer and a selected

[Type here]

SaaS provider in order to reach an agreement as to the service terms and conditions.

The provision and integration manager is responsible for implementing different

policies for the selection of suitable SaaS providers, based on the consumer’s QoS

requirements and the SaaS providers’ QoS offerings. The back-end database stores

sustain information about service policies, consumer profiles, SLAs, Registry and

dynamic QoS information. Cloud broker layer works to identify the most

appropriate cloud resource and maps the requirements of application to customer

profile. Its job can also be dynamic by automatically routing data, applications and

infrastructure needs based on some QoS criteria like availability, reliability, latency,

price, etc. On the Broker side, service properties are stored as a combination of

functional and non-functional properties. The functional properties relate to the

external behaviour of a service such as: service inputs and outputs, service type and

the information required for connecting to the service. However, the non-functional

properties are summarised by the QoS.

Figure 1: Main Layers of cloud service infrastructure.

 By dynamically provisioning resources, Cloud broker enables cloud

computing infrastructure to meet arbitrary varying resource and service

requirements of cloud customer applications. However, there are still imperfections

regarding service matching based on available services and customer profile

requirements. The services selection problem is identified by an inaccurate QoS

dependency and the utility of the imprecise domain of results suggested by QoS

broker. As in [19], services are ranked into many levels such as Poor, fair, Good,

[Type here]

Excellent or Bronze, Platinum, Silver and Gold, based on Web Service Relevancy

Function (WsRF), which is measured based on the weighted mean value of the QoS

parameters.

The QoS broker orchestrates resources at the end-points, coordinating resource

management across layer boundaries. Based on the available technology, Service

consumer is still incapable of a real analysis of the QoS based on the internal

structure of complex service. Today’s service selection solutions do not focus on

QoS support from the service requester view point, but they depend on service

provider interpretation. Indeed, the current form of service selection is provider

driven [15]. A consumer may interact with a composite service without knowing

much about the qualities of the services that underlie it [16].

In order to improve the selection of a complex service, we propose to analyse

the QoS of every sub-service, which shares in the composition of that service, using

a QoS Data Warehouse (QoSDW).

4. QoSDW model

Nowadays, the cloud is full of a large number of cloud services. Some of these

services are similar in goal and quality. Therefore, it is difficult to select best service

depending on the traditional QoS methods. In order to improve the service selection

process, we propose a QoS Data Warehouse (QoSDW) model. The QoSDW model

(described in Figure 2) supports a better analysis of services before taking a

selection decision. The QoSDW model extracts details about services stored in the

service provider, and gives the service’s consumer the ability to discover the hidden

facts about the properties of these services.

4.1 QoSDW components

This section describes a model for the selection of a cloud service that can fulfil

the service consumer request. In addition to the main cloud framework elements

discussed in the previous section, the proposed QoSDW model adds a group of other

components such as: QoSDW Parser, Schema Manager, Graph Manager, QoSDW

Analyser, QoSDW Cube, Analysis Interface, Service Tree Manager and Report

Manager.

QoSDW Parser: QoSDW Parser is simply a service business process parser.

Based on the parsers outputs and the QoS at service provider, QoSDW schema and

QoSDW graph are extracted and transported into the cloud broker to be stored in a

specific database. Regarding the database tables, each row entry collects details

about service activities. It provides information about the current state name, current

state properties (as My Role, Partner Role), PartnerLink, name of the operation

being invoked, condition of a looping structural activity, current state number and

next possible state numbers.

[Type here]

Figure 2: QoSDW model components.

Schema Manager is responsible for managing the QoSDW schemas. The

QoSDW Schema is a star schema which is composed of a set of organised tables,

and which has a main fact table and set dimensional tables. QoSDW Schema consists

of 22 dimensional tables as follows: Quality, Availability, ResponseTime,

Documentation, BestPractice, Throughput, Latency, Successability, Reliability,

Compliance, property, ServiceType, ServiceName, ExpiryDate, CreationDate,

ServiceFlow, Loop, Sequence, AndSplit, XorSplit, AndJoin and XorJoin table.

Graph Manager ensures transforming the output of parsing the service business

into a directed acyclic graph. Also, it converts the obtained graph into a service tree.

For example, figure 3 shows how Steam Boat service process diagram is

transformed into a service tree. The service tree inserts a semantic layer into the

service selection process.

Cloud Cloud

QoSDW-Graph

QoSDW Parser

QoSDW

Service

Business Process

Meta-

data parser

Cloud

Security &

policy management

Access &

identity

Provision &

Integration manage

SLAs & catalog

management

 Analysis

Interface

Report

Manager

Service

Tree

User level

QoSD

W Cube

Graph

Manager

Sche

ma

QoSDW

Analyzer

Profil QoS Polici

es

Regist SLA

s

QoSD

[Type here]

Figure 3: Transforming SteamBoat service business flow into a tree of sub-services.

QoSDW Cube is a Data Warehouse of quality and structure of both a service and

its sub-services. It is accessed as a cloud service and supports users by details about

the quality and flow of service through a special Analyser. It maps the idea of the

multidimensional data model to service selection model, through which it gives the

service’s user the ability to apply a multidimensional query on the discovered set of

services.

QoSDW Analyser works like an analysis tool. It monitors QoS changes and

prepares analytical reports about QoS information stored in the QoSDW Cube. It

gives the service consumer the right to query the QoSDW Cube through its interface.

Analysis Interface is a user interface application utilised to select cloud services

(SaaS). It consists of a statistical form which allows a user to deal easily with large

statistical data, through slice, dice, Drill Down/Up and Roll-up the statistical results.

It communicates with the QoSDW Analyser and allows users to connect to the QoS

data warehouse, at the cloud broker, and apply queries. When a service is selected,

the Selection Interface connects the user to the required service via the SOAP/HTTP

protocol.

Service Tree Manager supports a visual representation of the service’s tree. It

communicates with the Graph Manager indirectly through the QoSDW Analyser.

Based on the service graph, the Analyser supplies the user by the service tree.

[Type here]

Report Manager: Sometimes the service’s consumer needs ready reports that

support their analysis. Report Manager allows requesting two types of reports: the

primary report gives analysis results about the quality of first level sub-services, and

the advanced report supports a deep service tree analysis to detect a weak quality

subservice (or fatal sub-service). Both reports are requested from the QoSDW

Analyser.

4.2 Formal definitions of QoSDW model

The main objective of a QoSDW model is to provide efficient analytical reporting

on the quality of service. In order to qualify a service, the QoSDW depends on

analysing the quality of its sub-services. QoSDW depends on the service business

process to specify the structure of subservices.

Definition 1: A service business process is a tuple 𝐾 = (𝐴, 𝐸, 𝐶, 𝐿) where:

𝐴 is a set of activities,

𝐸 is a set of events,

𝐶 is a set of conditions and 𝐿 is a set of control links.

Let 𝑓: 𝐴 → 𝐵 be a function that assigns activities to types, where activities are

extracted from the set of activity A= {sequence, flow, pick, switch, while, scope,

invoke, receive, reply, wait, assign, empty, throw, compensate, exit}. Let I be a set

of service information, where I = {service name, service type, service creation date,

service expiry date).

Let g: P→I be a function which assigns service information to properties.

QoSDW utilises an On-line Analytical Processing (OLAP) approach and

performs analysis in conjunction with the operational database on a constant basis.

The basic concept of OLAP model is to map the initial database schema to a

multidimensional model. The QoSDW schema is structured as star (or snowflake)

schemas.

Definition 2: A QoSDW schema is a tuple 𝑆 = (𝑄, 𝑃, 𝐵) where:

𝑄 is a set of QoS, such that 𝑄 = {Response time, Availability, Throughput,

Successability, Reliability, Compliance, Best Practice, Latency, Documentation}.

 P is a set of service properties, such that P= {ServiceType,

ServiceName, ExpiryDate, CreationDate}.

 B is a set of activity type, where B= {Loop, Sequence, AndSplit,

XorSplit, AndJoin, XorJoin}.

 Let h be a function which assigns the values of QoS to elements

of set 𝑄.

The QoSDW graph adds a type of semantic knowledge when analysing the

quality of sub-services and covers indirectly the hidden service business process

vague.

Definition 3: A QoSDW graph is a tuple 𝐺 = (𝑁𝑖, 𝑁𝑓, 𝑁, 𝐹), where:

[Type here]

Ni is the node of the input, Nf is the node of output, N is the set of names of sub-

services and F is the set of service integration models. F = {Sequence, ANDSplit,

XORSplit, loop, ANDJoin, XORJoin}.

Let 𝑚: 𝐵 → 𝐹 be a function that maps service activities to integration models.

The operations which are applied in the analysis phase of the QoSDW model

are summarised by: Composition, Pairing, Projection and Restriction.

Composition takes as input two functions 𝑓 and 𝑔, such that

𝑟𝑎𝑛𝑔𝑒 (𝑓) ∁ 𝑑𝑒𝑓 (𝑔), and returns a function 𝑔 ° 𝑓: 𝑑𝑒𝑓 (𝑓) → 𝑟𝑎𝑛𝑔𝑒 (𝑔),

defined by: (𝑔 ° 𝑓) (𝑥) = 𝑔 (𝑓 (𝑥)) for all 𝑥 in 𝑑𝑒𝑓 (𝑓).

Pairing takes as input two functions 𝑓 and 𝑔, such that 𝑑𝑒𝑓 (𝑓) = 𝑑𝑒𝑓 (𝑔),

and returns a function 𝑓 ^ 𝑔: 𝑑𝑒𝑓 (𝑓) → 𝑟𝑎𝑛𝑔𝑒 (𝑓) 𝑋 𝑟𝑎𝑛𝑔𝑒 (𝑔), defined by:

(𝑓 ^ 𝑔) (𝑥) = < 𝑓(𝑥), 𝑔(𝑥)) >, for all 𝑥 in 𝑑𝑒𝑓 (𝑓).

Projection is the usual projection function over a Cartesian product. Take

function 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑋 → 𝑍 with common domain 𝑋, and let 𝜋𝑦 and 𝜋𝑧

denote the projection functions over 𝑌 𝑋 𝑍:

𝑓 = 𝜋𝑦 ° (𝑓 ^ 𝑔) 𝑎𝑛𝑑 𝑔 = 𝜋𝑧 ° (𝑓 ^ 𝑔).

Restriction takes as argument a function 𝑓: 𝑋 → 𝑌 and a set 𝐷, such that 𝐷 ∁ 𝑋,

and returns a function 𝑓/𝐷: 𝐷 → 𝑌, defined by: (𝑓/𝐷) (𝑥) = 𝑓 (𝑥), for all 𝑥 in

𝐷.

4.3 Building QoSDW Schema

The base of QoSDW schema is a finite labelled diagram whose nodes and

arrows satisfy the following conditions: there is only one root, at least one path from

the root to every other node and all arrow labels are distinct. Our goal from the

obtained QoSDW schema is to have an organised store of service qualities,

properties and structure in which multidimensional queries can be applied.

The proposed QoSDW Schema consists of the following tables:
Fact table: Fact (service_id*, URI_type);
Table of dimension Quality: Quality (Quality_id*, Quality_value, foreign_ service_id);
Tables of dimension Quality attributes:
Availability: Availability (avail_id*, avail_value, foreign_Quality_id);
Response time: ResponseTime (response _id*, response_time_value, foreign_Quality_id);
Documentation: Documentation (Doc _id*, Documentation _value, foreign_Quality_id);
BestPractice: BestPractice (practice_id*, practice _value, foreign_Quality_id);
Throughput: Throughput (throughput_id*, throughput_value, foreign_Quality_id);
Latency: Latency (Latency_id*, Latency _value, foreign_Quality_id);
Successability: Successability (Successability_id*, Successability _value, foreign_Quality_id);
Reliability: Reliability (Reliability_id*, Reliability_value, foreign_Quality_id);
Compliance: Compliance (Compliance_id*, Compliance_value, foreign_Quality_id);
Table of dimension property: property (property_id*, property_value, foreign_ service_id);
Tables of dimension property attribute:
Type: ServiceType (ser_type_id*, type_value, foreign_property_id) /value: service or sub-
service

[Type here]

Name: ServiceName (ser_name_id*, ser_value, foreign_property_id);
ExpiryDate: ExpiryDate (ExpiryDate_id*, ExpiryDate _value, foreign_property_id);
CreationDate: CreationDate (CreationDate_id*, CreationDate_value, foreign_property_id);
Table of dimension flow: ServiceFlow (flow_id*, service_flow_value, foreign_ service_id);
Tables of dimensional flow attribute:
Loop: Loop (loop_id*, input_service, output_service, service_stage, foreign_ flow_id) /
stages: start node, normal node or end node.
Sequence: Sequence (sequence_id*, input_service, output_service, service_stage, foreign_
flow_id);
AndSplit: AndSplit (AndSplit_id*, input_service, output_service, service_stage, foreign_
flow_id);
XorSplit: XorSplit (XorSplit_id*, input_service, output_service, service_stage, foreign_
flow_id);
AndJoin: AndJoin (AndJoin_id*, input_service, output_service, service_stage, foreign_
flow_id);
XorJoin: XorJoin (XorJoin_id*, input_service, output_service, service_stage, foreign_

flow_id);

4.4 Service selection based on QoSDW

Based on the QoSDW schema, the QoS Data Warehouse is built. Similar to the

traditional discovery method, the service consumer requests a service and the

service registry replies by a set of related service. If the QoS is not helpful to select

the best service, the service consumer requests an OLAP analysis report about the

quality of the discovered set of services. The QoSDW model consists of a special

QoSDW Analyser which supports two types of reports about QoS. The first type is

a preliminary report which provides information about the quality of first level sub-

services. Figure 4 shows a visual representation given by the QoSDW Analyser

about QoS of sub-services.

Figure 4: Visual representation of the initial report.

Sometimes the results of the initial report are not beneficial in designing a new

composite service of better quality. Thus, the advanced QoS report is demanded by

the service designer. As regards building the required report, the QoSDW Analyser

applies some queries on Data warehouse, which results in a service’s tree (figure 3

in section 4.1). Then, the Analyser utilises a tree search algorithm to detect fatal

sub-services (as shown in Algorithm 1 below).

Algorithm 1: Detection of infected services

Input: A tree graph,

[Type here]

A set of start nodes,
Boolean procedure undercritical (n), that tests if the QoS of a
tree node ‘n ‘is under critical values.

Frontier: = {<s>: s is a start node};
Fatalist: = {<r>: r is a sub-service of weak QoS};
Filter (x): a procedure that removes the node duplications from array list x.

While frontier is not empty:
Select and remove path <n0; …; nk> from the frontier;
If undercritical (nk)

Add node nk to the FatalList
For every neighbor n of nk

Add <n0; …; nk> to frontier;
End while
Filter (FatalList)
Output: Return the filtered set of FatalList

The fatal service is a weak quality sub-service (its QoS is below the critical

values), which causes weakness in the quality of the parent service. The existence

of fatal sub service is sufficient for the service consumers not to select the parent

service, because they pay their money for utilising an infected service. Thus, the

QoSDW models added a new quality attribute in the selection process – the number

of fatal sub-services. Indeed, if there is a group of discovered services of equal QoS

level, the service which has the least number of infected sub-services must be

selected. In terms of infected services detection, the service designer is capable of

rebuilding improved versions of these services, free of fatal sub-services.

Also, if the QoSDW Analyser reports are not helpful in selecting the best

service, service consumers can apply their own queries on the Data Warehouse as

described in the next section.

5. QoSDW model benefits

Because the QoS of sub-services are now accessible through OLAP queries,

some hidden facts, about QoS, can be discovered. In the previous approaches, the

discovered services are only qualified with no information about its internal sub

services. Based on the QoSDW model, the weak sub-services which lead to bad

parent service qualities can be studied and treated, in each part of the complex

service, before the selection process. Compared with the traditional selection

process, QoSDW is more advanced. Both service consumers and service providers

can benefit from the QoSDW model. Service consumers are capable of applying a

deep analysis concerning the service component before selection, using QoSDW

Analyser reports and OLAP queries. The QoSDW is also beneficial for cloud service

companies, because service designers are capable of analysing the fatal sub-services

that cause a weak service and redesigning a similar service with better quality.

In order to show the advantages of the QoSDW model from the queries

prospective, we present an OLAP example, which is simulated as graph and

algebraic queries. Consider a schema S, an OLAP Query over S is a triple Q = (x, y,

z), satisfying the following conditions:

[Type here]

 x and y are path expressions such that the source (x) = source (y) = root

object.

 z is an operation over the target of y.

The expression x will be referred to as the classifier of Q and the expression v as

the measure of Q.

Figure 5 shows the QoSDW schema as an acyclic graph, such that the root is

the object of an application, while the remaining nodes model the attributes of the

object. Through queries, some functions (such as av, rt and dc) are used when

invoking object. Concerning the online QoS analysis through QoSDW, OLAP

queries are prepared using paths starting at the root object (Fact).

Figure 5: The proposed QoSDW schema.

Through OLAP, service consumers can apply an advanced query such as:

- Q1: Ask for sub-services which utilise XORjoin integration when invoking

other services and their Response Time greater than 80 (ms) sorted by name

of service.

Let us divide the query Q1 (following figures 7 and 8):

 Ask for sub-services: pr o st.value== ‘sub-service’

 Which utilises XORjoin integration when invoking other services:

qu o xj

 Their Response Time greater than 80 (ms): qu o rt. value > 80

 Sorted by name of service: (pr o sn)^ (pr o st.value ==’service’)

- Q1 = < (pr o sn)^ (pr o st.value==’service’), ((pr o st.value== ‘sub-

service’) ^ (qu o xj) ^ (qu o rt. value > 80)), sum>

Considering the steamboat service (section 3), the answer of the query Q1 is:

Ticket_Process. For more details about the algebraic base of OLAP refer to [17].

[Type here]

6. Simulation and results

In order to facilitate understanding the model, we discuss in this part an example

of service selection and simulation of selecting service based on the fatal service

property.

6.1 Service selection example based on QoS

QoS consists of a group of properties, but for the purpose of simplicity, our

example examines just two of these properties (the service cost and service response

time). For complex services, six basic integration models (Figure 6) are considered

and they are compatible with the business process of a service.

Figure 6: Basic integration models for complex cloud services.

Suppose a client is looking for a service to make a steamboat travel reservation

(Figure 7). First, s/he needs to make a steamboat and hotel reservation and then

apply for a visa ticket. If the visa is approved, he can buy the steamboat ticket and

confirm the hotel reservation, otherwise, he will have to cancel both reservations.

Also, if the visa is approved, he needs to make a car reservation. To complete its

job, this complex service (Steamboat Service) invokes other services such as:

Steamboat-Reserve, Hotel-Reserve, Ticket-Process, Travel-Confirm, Hotel-

Confirm, Car-Reserve, Travel-Cancel and Hotel-Cancel.

Figure 7: Example of interior composition of the Steamboat.

A cloud service designer wants to compose a service that serves all types of

online travel reservation. One of the used services in this composition is Steamboat

service, which serves an online boat reservation. However, several cloud providers

support such type of boat service (Table 1). In this case, the service consumer

depends on the QoS (or QoSBroker) to select the best service.

Table 1: QoS (cost & response time) of three services

Service Name Cost ($) Response Time (ms) Class

[Type here]

Steamboat 0.088 106 Good

Steamboat-Travel 0.12 130 Good

Manage-Steamboat 0.18 183 Poor

Based on the service properties mentioned in Table 1, the service consumer

will choose the Steamboat service because it is evaluated as best service (Class:

Good) by QoSBroker. But how was the QoS calculated?

The QoS calculations are based on Cardoso's QoS formulas [18]. This provides

insights into computational details about the estimation of some QoS in the service

selection processes such as: response time and cost.

Response Time (T): Task response time refers to the time taken by a request to

be processed by a task. For sequential tasks, two tasks 𝒕𝒊 and 𝒕𝒋, which are in

sequence, may be reduced to a single task 𝒕𝒏𝒆𝒘, so that: 𝑻(𝒕𝒏𝒆𝒘) = 𝑻(𝒕𝒊) + 𝑻(𝒕𝒋).

In a parallel system, multiple tasks (𝒕𝒊, 𝒕𝒋, … , 𝒕𝒏) are reduced to their maximum

according to the formula: 𝑻(𝒕𝒏𝒆𝒘) = 𝑴𝒂𝒙𝒊𝜺(𝟎,𝟏,…,𝒏){𝑻(𝒕𝒊)}.

Cost (C): Task cost is taken to be cost incurred by the service provider when a

task is executed. For sequential tasks 𝒕𝒊 and𝒕𝒋, the new task is calculated according

to the following formula: 𝑪(𝒕𝒏𝒆𝒘) = 𝑪(𝒕𝒊) + 𝑪(𝒕𝒋). While in parallel tasks 𝒕𝒊 and𝒕𝒋, the

cost is obtained using this formula 𝑪(𝒕𝒏𝒆𝒘) = ∑ 𝑪(𝒕𝒊)𝟏≤𝒊≤𝒏 .

Table 2: QoS (cost & response time) of Steamboat sub-services

Service Name Cost ($) Response

Time(ms) ()(ms)

Class
Steamboat-Reserve 0.021 90 Poor
Hotel- Reserve 0.019 112 Good

Ticket-Process 0.015 125 Good

Travel-Confirm 0.009 122 Excellent
Hotel-Confirm 0.007 99 Good

Car-Reserve 0.012

84 Good
Travel-Cancel 0.003 114 Excellent

Hotel-Cancel 0.002 119 Excellent

The evaluation of a service depends on its entire structure and the quality of

the other sub-services invoked to compose such service. In our example, the

properties of the Steamboat service are based on the properties of its sub-services

such as Steamboat-Reserve and others (as shown in Table 2).

6.2 QoSDW simulation

This section explains the results of the QoS data warehouse simulation based on

the proposed QoSDW model. To implement this simulation, we use SQL server

2012, Eclipse indigo, Apache Tomcat Server (v.7), Microsoft visual studio 2012 and

windows Azure.

[Type here]

Figure 8: Difference in QoS values among three cloud services (SteamBoat,

TravelViaSteamboat and ManageSteamboat).

This simulation discusses a steam boat service selection, which was described

in section 5.1 above, based on the fatal service property that resulted from the

application of QoSDW model.

The service consumer requests a steam boat service and the cloud broker reply

by a list of three discovered services: SteamBoat, TravelViaSteamboat and

ManageSteamboat (see table 1 in section 5.1). In the traditional service selection

process, the QoSBroker calculates the QoS of the discovered set service, based on

the service provider measures. Figure 8 shows the variation of QoS (ResponseTime,

Availability, Throughput, Successability, Reliability, Compliance, BestPractice,

Latency, Documentation) of a three services (steamboat, TravelViaSteamboat and

ManageSteamboat) given by the QoSBroker.

As a result, the QoSBroker marks services steamboat and TravelViaSteamboat

as Good services. However, it marks ManageSteamboat as a Poor service. Based

on the QoS primary results, the weak service is excluded, while the QoS of the two

other good services is studied, in order to select the best of them. Indeed, the

traditional selection method shows that the QoS of the two good services is

approximately equal. Thus, it is difficult to decide which service is better.

Based on the QoSDW model, the service consumer is capable of requesting

more analysis details about the discovered services. Indeed, the QoSDW Analyser

supports the consumer by a preliminary report, which analyses the QoS of first sub-

service level of the discovered set of services.

Figures 9 and 10 show respectively the variation of quality of sub-services of

both steamboat and TravelViaSteamboat services.

[Type here]

Figure 9: QoS of the sub-services of steamboat service.

Figure 10: QoS of the sub-services of TraveVialSteamboat service.

Sometimes, the first report is not beneficial in selecting the best service, so a

more advanced report is requested from the QoSDW Analyser. In our example, the

QoSDW AnalySer, in its second report, detects a fatal sub-service in the tree of

TravelViaSteamboat service (as shown in figure 10, the SteamBoatTravel service

suffers from weak qualities in which: Response Time= 65 ms, Throughput= 17

invokes per second, Latency= 34 ms, Availability= 53 %, Reliability= 40 % and

Best Practice= 43 %). The final report concludes that the SteamBoat service is the

best service to be selected. However, if sometimes results are not convincing, a

service consumer can query the QoSDW Analyser, using OLAP queries, and build

a much advanced cloud service analysis (as discussed in section 4).

[Type here]

7. Conclusion

Clouds aim to power the next generation data centres by exposing them as a

network of virtual services. Cloud users are able to access and deploy applications

from anywhere in the world on demand at competitive costs depending on users’

QoS requirements. However, there are still many problems covering the selection

of cloud services and even if this level is introduced later, it needs a long time and

much effort to change the whole web structure. This research introduces a QoSDW

model that improves the selection process of cloud services. As a summary of the

QoSDW model, the service business flow is mapped into a star database schema on

the cloud provider side. At the cloud broker, an OLAP Cube is built from the stored

schemas. Depending on the obtained Cube, advanced analysis steps are applied to

QoS using a QoSDW Analyser. Indeed, QoSDW Analyser returns reports about QoS

that improves service selection and helps in reaching a better dynamic service

composition. As a future work, our goal is to achieve a logic layer for cloud services,

which support service autonomy in case of selection and composition procedures.

Acknowledgement

This work is supported by the Department of Computer Science at the University

of Quebec at Chicoutimi, the Ecole Doctorale des Sciences et des Technologies at

the Lebanese University and the AZM association.

References

1. Buyya R., Yeo C, Venugopal S, (2008), Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities. 2008 10th IEEE

Int. Conf. High Perform. Comput. Commun

2. Wu J, Yang F, (2007), QoS Prediction for Composite Web Services. System. 86–94

3. Dan A, Davis D, Kearney R, Keller A, King R, Kuebler D, Ludwig H, Polan M,

Spreitzer M, Youssef A, (2004), Web services on demand: WSLA-driven automated

management

4. Yu T, Lin K, (2004), Service selection algorithms for Web services with end-to-end

QoS constraints. Proceedings. IEEE Int. Conf. e-Commerce Technol. 2004. CEC 2004

5. Keskes N, Lehireche A, Rahmoun A, (2009), Web Services Selection Based on Context

Ontology and Quality of Services, king faisal Univ., Saudi Arabia.

6. Raj R, Sasipraba T, (2010), Web Service Selection Based on QoS

Constraints. Sathyabama Univ., Chennai, India

7. Squicciarini A, Carminati B, Karumanchi S, (2011) A Privacy-Preserving Approach for

Web Service Selection and Provisioning. 2011 IEEE Int. Conf. Web Serv. 33-40

8. Garg S, Versteeg S, Buyya R, (2011), SMICloud: A Framework for Comparing and

Ranking Cloud Services. 2011 Fourth IEEE Int. Conf. Util. Cloud Comput. 210–218

9. Rehman Z, Hussain O, Hussain F, (2012), Iaas Cloud Selection using MCDM Methods.

2012 IEEE Ninth Int. Conf. E-bus. Eng. 246–251

10. Wang H, Lee C, Ho T, (2007), Combining subjective and objective QoS factors for

personalized web service selection. Expert Syst. Appl. 32, 571–584

[Type here]

11. Anita M, (2012), An efficient QoS-Based Ranking Model for Web Service Selection

with Consideration of User’s Requirement. Thesis and dissertations, Ryerson

University, Ontario, Canada

12. Nallur V, Bahsoon R, (2012), A Decentralized Self-Adaptation Mechanism for Service-

Based Applications in the Cloud

13. Karray A, Teyeb R, Ben Jemaa M, (2013), A heuristic approach for web-service

discovery and selection, International Journal of Computer Science & Information

Technology (IJCSIT), Vol 5, Issue 2

14. Smith J, Nair R, (2005), Virtual machines: versatile platforms for systems and processes

15. Liu W, (2005), Trustworthy service selection and composition - reducing the entropy of

service-oriented Web. INDIN ’05. 2005 3rd IEEE Int. Conf. Ind. Informatics

16. Yu Q, and Bouguettaya A, (2010), Guest Editorial: Special Section on Query Models

and Efficient Selection of Web Services, IEEE Transactions on Services Computing,

Vol. 3, No. 3

17. Spyratos N, (2006), A Functional Model for Data Analysis, Lecture Notes in Computer

Science, Publisher Springer Berlin Heidelberg, Volume 4027, pp 51-64

18. Cardoso, J (2002), Quality of Service and Semantic Composition of Workflows

19. Al-Masri E, Mahmoud Q, (2007), Discovering the best web service. 65. p. 1257

No index entries found.

http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

