

© 2016 Adam Chehouri, Rafic Younes, Jean Perron and Adrian Ilinca. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

A Constraint-Handling Technique for Genetic Algorithms

using a Violation Factor

1,2
Adam Chehouri,

2
Rafic Younes,

1
Jean Perron and

3
Adrian Ilinca

1Anti Icing Materials International Laboratory (AMIL),

Université du Québec à Chicoutimi, 555 boulevard de l’Université, Canada G7H 2B1, Canada
2Faculty of Engineering, Third Branch, Lebanese University, Rafic Harriri Campus, Hadath, Beirut, Lebanon
3Wind Energy Research Laboratory (WERL),

 Université du Québec à Rimouski, 300 allée des Ursulines, Québec, Canada G5L 3A1, Canada

Article history

Received: 17-03-2016
Revised: 23-08-2016
Accepted: 31-08-2016

Corresponding Author:
Adam Chehouri
Anti Icing Materials
International Laboratory
(AMIL), Université du Québec
à Chicoutimi, 555 Boulevard de
l’Université, Canada G7H 2B1,
Canada
Tel: +1 (418) 290-0705
Fax: +1 (418) 696-2908
Email: adam.chehouri1@uqac.ca

Abstract: Over the years, several meta-heuristic algorithms were proposed
and are now emerging as common methods for constrained optimization
problems. Among them, genetic algorithms (GA’s) shine as popular
evolutionary algorithms (EA’s) in engineering optimization. Most
engineering design problems are difficult to resolve with conventional
optimization algorithms because they are highly nonlinear and contain
constraints. In order to handle these constraints, the most common
technique is to apply penalty functions. The major drawback is that they
require tuning of parameters, which can be very challenging. In this paper,
we present a constraint-handling technique for GA’s solely using the
violation factor, called VCH (Violation Constraint-Handling) method.
Several benchmark problems from the literature are examined. The VCH
technique was able to provide a consistent performance and match results
from other GA-based techniques.

Keywords: Constraint-Handling, Genetic Algorithm, Constrained
Optimization, Engineering Optimization, Evolutionary Algorithms

Introduction

Many optimization problems in engineering are highly
nonlinear, containing a mixture of discrete and continuous
design variables subject to a series of constraints. Such
problems are known as constrained optimization problems
or nonlinear programming problems in which traditional
calculus-based methods struggle to solve. These numerical
optimization methods are highly deterministic and are
convenient in finding the global optimum for simple
problems by improving the solution in the vicinity of a
starting point. However, they have major drawbacks with
complex engineering problems i.e.: difficulty in
computing the derivatives, sensitivity to the initial
conditions and a large memory requirement.

Because of these downsides, over the years, several
heuristic and meta-heuristic algorithms were proposed.
They are now emerging as popular methods for the
solution of complex engineering problems. These
algorithms are purely stochastic and consist of
approximate methods but on the contrary are derivative-
free techniques. Heuristic methods try to find decent
solutions that are easily reachable but are not necessarily

the best solutions by means of trial and error. Further
developments of heuristics are the so-called meta-heuristic
algorithms: A higher level of optimization compared to
heuristic algorithms. The meta-heuristic techniques
include: genetic algorithms (GA, Holland (1975)),
simulated annealing (SA, Kirkpatrick and Vecchi (1983)),
particle swarm optimization (PSO, Eberhart and Kennedy
(1995)), ant colony optimization (ACO, Dorigo et al.
(1996)), tabu search (Glover 1977) etc. Among all meta-
heuristics, genetic algorithms (proposed by Holland
(1975)) are one of the most popular evolutionary
algorithms (EA’s). By mimicking the basic Darwinian
mechanism from the famous book “The Origin of
Species” (Darwin and Bynum, 2009) defined natural

selection of biological systems or the principle of the
survival of the fittest. GA’s try to evolve the population of
chromosomes that are fitter by applying three key
evolutionary operators: selection, crossover and mutation.
The attempt is to produce a new generation or descendants
with a better fitness value than their parents.

Most engineering optimization design problems are
difficult to solve using conventional algorithms since
they comprise problem-specific constraints (linear, non-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/77517662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

351

linear, equality or inequality). Despite the success of GA
in a wide-range of applications, solving constrained
optimization problems is no easy task. The most
common technique is to apply penalty functions. As a
result, the problem is converted from a constrained to an
unconstrained optimization problem. The major
drawback of these penalty functions is the requirement
of a definition and proper tuning of their parameters,
which can be challenging and problematic.

Hence, the aim of this paper is to answer one of the
most stimulating questions encountered in meta-
heuristics: constraint-handling in evolutionary
algorithms. In this paper, we will use a GA as a
numerical tool to propose a constraint-handling
technique that eliminates the use of penalty functions.
We present a parameter-free constraint-handling
technique for GA using the violation factor; hence, the
method will be referred to as VCH (Violation
Constraint-Handling). This paper is organized as
follows: Section 2 contains the most relevant constraint-
handling techniques proposed by previous works. Then,
the VCH approach is described in Section 3 and
validated with the numerical examples in Section 4. Our
technique and results are discussed in Section 5 and the
conclusion and some paths for future research are
provided in Section 6.

Literature Review

Below are the most relevant constraint-handling
techniques used in EA’s for the purpose of this study. The
reader is referred to the following surveys (Coello, 2002;
Coello and Carlos, 1999; Dasgupta and Michalewicz,
1997; Gen and Cheng, 1996; Michalewicz, 1995a; 1995b;
Michalewicz and Schoenauer, 1996; Yeniay, 2005) for
further details, explanations and comparison.

Penalty Methods

The penalty methods are the most common
approaches for constraint-handling in EA. Penalty
functions were initially suggested by (Courant, 1943)
and later extended by (Carroll, 1961) and (Fiacco and
McCormick, 1966). Generally, the penalty term is
determined from the amount of constraint violation of
the solution vector. The formulation of the exterior
penalty functions can be expressed as:

() ()
1 1

n m

i i j j

i j

f a Hx bx Gψ
= =

= ± × + ×

∑ ∑

� �

 (1)

where, ()xψ

�

is the new fitness function to be optimized,

Gi and Hj depend on the inequality constraints ()ig x
�

and

equality constraints ()jh x
�

 respectively and ai, bj are

called penalty factors.

The determination of the magnitude of the penalty
term is a vital concern. The penalty term cannot be too
high or else the algorithm will be locked inside the
feasible domain and cannot move towards the border
with the infeasible area. Too low, the term will be
irrelevant in regard to the objective function and the
search will remain in the infeasible region. Knowing
how to exploit the search space in order to guide the
search in the utmost desired direction is still unclear and
rather challenging.

Static Penalty

In this group, the penalty factors remain constant
during the evolution process and do not vary during each
generation. A popular method is to define several levels
of violation and attribute to each higher level a greater
penalty coefficient Aki. Homaifar et al. (1994) proposed
to convert the equality constraints into inequality
constraints and evaluate the following:

() () []2

,
1

(max 0, ())
m n

k i i

i

x x A g xfψ
+

=

= + ×∑
� � �

 (2)

Other researchers (Hoffmeister and Sprave, 1996;

Morales and Quezada, 1998) have proposed interesting
static penalties, but the main downside in these
approaches are the necessity of a high number of
parameters. They are difficult to describe and may not
always be easy to obtain for real-world applications.

Dynamic Penalty

In this category, the penalty function depends on the
generation number and usually the penalty term will
increase over each generation. Joines and Houck (1994)
evaluate each individuals using the following expressions:

() ()

() ()
n m

β
i j

i 1 j 1

(0.5) (,)

(β,) A B

f t SVC

SVC

x x x

x x x

αψ β

= =

= + × ×

= +∑ ∑

� � �

� � �

 (3)

and:

()
0, if () 0

() , otherwise
i

i

i

g x
x

x
A

g

≤
=

�

�

�

()
0 if ()

() , otherwise

j

j

j

h

h

x
x

x
B

−∈≤ ≤∈
=

�

�

�

The cooling parameters α and β are user defined

constants, gi and hj are the inequality and equality
constraints respectively.

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

352

A common dynamic penalty function is based on the
notion of simulated annealing (Kirkpatrick and Vecchi,
1983; Michalewicz and Attia, 1994), where the penalty
term is updated on every occasion the solution is locked in
near a local optimal. Dynamic penalties that learn from the
search process are called adaptive penalty functions.

An incorrect choice of the penalty factor may lead to a
local feasible solution or an infeasible solution (Back et al.,
1997). In regards to the simulated annealing, the solution is
extremely sensitive to the cooling parameters.

Co-Evolution

Coello (2000b; 1999) proposed to evaluate the
following fitness function with only inequality
constraints as follows:

() () 1 2()f CV wx Viox l wψ = − × + ×
� �

 (4)

with w1 and w2 two integers considered as penalty
factors, Viol is an integer that is incremented for each
violated constraint and CV is the sum of all violated
constraints expressed as:

[]
1

max 0, ()
n

i

i

xCV g
=

=∑
�

 (5)

The idea of this method is to use a population to

evolve the solution vector and another to develop the
penalty factors w1 and w2. This technique still requires
the definition of four parameters and according to the
author, they must be empirically determined. A major
drawback of this penalty method is that it is very subtle
to variations in the parameters in addition of their
rigorous definition and high computational cost.

Death Penalty

A major concern in optimization algorithms in
general and in EA’s in particular is the element of
‘infeasible solutions’. The simplest way is to reject the
individual-(hence ‘death’) when at least one constraint is
violated. A new point is generated until a feasible
solution is found, therefore making this approach a
lengthy process with the high risk of stagnating.

Separation of Objectives and Constraints

There are more than a few proposed approaches that
separate the amount of constraint violation and the
objective function. For instance, Powell and Skolnick
(1993) scale the objective function ()f x

�

 into the

interval]-∞,1], whereas ()ig x
�

 and ()jh x
�

are scaled into

the interval [1, +∞[and when the solution is unfeasible
the objective function is not combined with the penalty
term. During the search, each individual is assessed
according to the following form:

()
()

()
1 1

if feasible

1 () otherwise
n m

i j

i j

f

A
x

xg h

x

x
ψ

= =

=
+ +

∑ ∑

�

�

� �
 (6)

with A a constant to be determined by the user.

The main difficulty with Powell and Skolnick (1993)
is not the definition of the penalty factor A but rather
with the concept of superiority of feasible over infeasible
solutions. Deb (2000) uses a similar separation approach
and evaluates the individuals using:

()
()

()
1

if feasible

otherwise
m n

worst i

i

f

f

x

k
x

x
ψ +

=

=
+

∑

�

�

�
 (7)

where, fworst is the worst feasible solution in the
population and ()ik x

�

 include the inequality constraints

and the transformed equalities. The constraints are
normalized since they are each expressed in different
units and to avoid any preference.

Proposed Technique

One of the key complications in using GA for practical
engineering optimization applications is the design of the
fitness function. When dealing with constrained problems,
we must find a mean to estimate the closeness of an
infeasible solution to the feasible region. By simply
examining the previously proposed constraint-handling
techniques, several key points can be derived about the
existing methods. Initially, they are diverse, yet require the
definition and fine-tuning of at least one parameter.

Apart of being an arduous procedure to define and
control the penalty terms, we claim that such methods
deviate from the essence of the philosophy of the
evolutionary algorithms (i.e., techniques based on the
principle of natural selection). Arguably, the most widely
used algorithm is the genetic algorithm developed by
(Holland, 1975). Despite the success of GA’s as
optimization techniques in many engineering applications,
they are mostly applied on unconstrained problems.

Therefore, the main proposal of the authors is to
suggest a constraint-handling technique that preserves
the notions of the GA. The key motif is to keep the
fitness function equivalent to the designer’s objective
and eliminate any additional penalty functions. The
core structure of GA is analogous to the theory of
biological evolution mimicking the principle of the
survival of the fittest. The proposed constraint-handling
technique is directly inspired from the nature of genetic
algorithms, since the objective function is preserved
during the evolution process. In this study, we will
implement the proposed VCH method inside a genetic
algorithm due to its advantages:

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

353

a) Adaptability: Does not oblige the objective
function to be continuous or in algebraic form.

b) Robustness: Escapes more easily from local
optimums because of its population-based nature.

c) Equilibrium: Provide a good balance between
exploitation and exploration. Do not need specific
domain information, but can be further exploited it
if provided.

d) Flexibility: GA’s are simple and relatively easy to
implement.

 We are interested in the general nonlinear

programming problems (NLP); a minimization or
maximization of a constrained optimization problem in
which we want to:

()Find which minimizesx f x
� � (8)

Subject to certain set of constraints:

()
()

0, 1, ,

0, 1, ,

, 1, ,

i

j

L U

k k k

x

x

x

g i n

h j m

kx x p

≤ = …

= = …

≤ ≤ = …

�

�

� � �

where, x

� is the solution vector with p

variables 1 2, , px x x x = …
�

, n is the number of inequality

constraints, m the number of equality constraints and the

k
th variable varies in the range [,]L U

k k
x x
� � ; the lower and

upper bounds for each variable.
These constraints can be either linear or non-linear.

Most constraint-handling approaches tend to deal with
inequality constraints only. Therefore, a customary
approach is to transform equality to inequality
constraints using the following expression:

() 0jh x −∈≤
�

 (9)

which is equivalent to () 0jh x −∈≤

�

and () 0j xh− −∈≤
�

,

where ∈ is the tolerance (usually a very small value,
user-defined). This is justified by the fact that obtaining
sampling points that satisfy the equality exactly is very
difficult and hence, some tolerance or allowance is used
in practice.

We shall first illustrate the overall procedure of the
VCH technique for GA. In the subsequent, we assume
the following:

• PopNum: Population length
• Nelite: Number of elites
• Ncross: Number of crossover-ed individuals
• Nmut: Number of mutated individuals (Bmut =

PopNum-Nelite-Ncross)

• Real-coded GA according to which each
chromosome is a string of the form 〈d1,d2,…,dm〉,
where d1, d2 …, dm are real numbers

Step 1: Initialization of the population:

The design variables are randomly initialized to
satisfy the upper and lower constraints as follows:

* (0,1)L U L

k k kx x x x rand = + −
� � � �

 (10)

Step 2: Evaluation of the fitness function, normalized

constraints and constraint violation:

For each individual x
�

, the fitness function ()f x
�

 is

calculated along with the resulting constraints. All the
equality constraints are converted into inequalities using (9),
hence a total of n+m inequality constraints. These equations
are all normalized and therefore become in the form of:

(), 1, ,i iG normalized xg i n= = …
�

 (11)

() / 1 0, 1,i jG h j mx n n= ∈− ≤ = + … +
�

 (12)

Furthermore, the amount of Constraint Violation
(C.V) of the normalized constraints Gk, (k = 1, …n+m),
is determined using:

1

. max(0,)
i n m

i

i

C V G
= +

=

= ∑ (13)

In addition, the number of violation is defined as the

percentage of violated constraints for a given solution:

.

number of violated constraints
N V

n m
=

+
 (14)

Step 3: Sorting of the population:

The population is separated into two families;
feasible solutions (V0) and unfeasible (V1) consisting of
individuals that violate at least one constraint. The first
set (V0) is sorted with respect to the fitness value
(ascending order, assuming a minimization problem).
The second family (V1) is sorted according to the
proposed pair-wise comparison rules. In the VCH
approach, we adopted a feasibility-based rule, a set of
rules to evolve the population at each generation:

• If one individual is infeasible and the other is

feasible, the winner is the feasible solution
• If both individuals are feasible, the winner is the one

with the highest fitness value
• If both individuals are infeasible, the winner is the

one with the lowest Number of Violations (N.V)
• If both individuals are infeasible with the same

(N.V), the one with the lowest Constraints Violation
(C.V) value wins

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

354

Fig. 1. Complete flowchart of the proposed GA

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

355

Step 4: Formation of Elites:

The sorted families V0 and V1 form the new
population. The first Nelite individuals are the elites,
which are kept intact to the next generation with no
alteration. This selection operator, one form of elitism
consists of a driving force for self-organization or
convergence and is essentially an intensive exploitation.

Step 5: Reproduction by crossover and mutation:

A tournament-based technique is used to perform the
crossover among the individuals of the population.
Whole arithmetic crossover (Michalewicz and Janikow,
1996; Michalewicz and Nazhiyath, 1995; Michalewicz and
Schoenauer, 1996) is applied in our algorithm. It is
composed of a linear combination of two parent vectors
to be crossed (as shown in 15). This genetic operator
uses simple static parameter φ (a random number
between 0 and 1). Any linear combination of two
feasible points in a convex domain will produce another
feasible point (Michalewicz, 1992).

(1)A B A B⊗ = ∗∅ + ∗ −∅ (15)

with φ = rand(0,1)

The reproduction and crossover operators are
programmed to imitate the paradigm of the survival of
the fittest. The crossover operator is a recombination of
two chromosomes, an operation that ensures an efficient
exploitation in the local search within a subspace.
Therefore, the offspring are spread over the entire
feasible space. The crossover-elitism pair eases the
achievement of global optimality. In contrast, the
mutation operator is a randomization mechanism for
global search and exploration.

Step 6: Stopping criteria:

Steps 2-5 are repeated until either the stopping criteria
is respected or the maximum number of generation is
attained. We implemented a severe stopping criterion on
the best solution of each generation; the relative error
between the present and the past generation for each
design variable must remain less than the user-defined
tolerance for at least N amount of generations.

As the population evolves, the proposed VCH
process will lead the search to reach feasible regions,
much similar to a severe penalty function. Nonetheless,
in order to maintain infeasible solutions near the
feasible region, at each generation, the infeasible
solution with the lowest C.V and best objective
function value will be kept in the population for the
next generation. As a result, the population will most
likely have fewer infeasible solutions located in
promising areas of the search space. The VCH

approach does not use any penalty function to handle
the constraints. Instead, it can be seen to have a
mechanism that encourages the solutions close to the
feasible region in favorable areas of the design space to
remain in the population. This does not add substantial
computational cost.

An optimization problem is called a convex
programming problem if the objective function and the
constraint functions are both convex. Originally, EAs
were developed to solve unconstrained problems.
Constrained optimization is a computationally
challenging task, mainly if the constraint functions are
nonlinear and/or nonconvex. A positive feature of the
proposed VCH approach is that it does not care about
the structure of the constraint functions (linear or
nonlinear, convex or nonconvex). An accelerated VCH
technique for convex optimization problems is to
generate an initial population with only feasible
solutions. Thereafter, the reproduction by means of an
arithmetic crossover (as per expression 15) will
continue to generate feasible solutions (Michalewicz,
1992). Testing for convexity or concavity can be done

by evaluating if the Hessian matrix ()
2 ()

i j

f X
H X

x x

 ∂
=

∂ ∂
is

positive semi definite (for minimization problems). The
accelerated genetic algorithm for the solving of
constrained problems in the case of convex design and
objective spaces would not require the use of any
feasibility-rules. Rather, solutions with high fitness
values are preferred since all the individuals of the
population are feasible (as described in Fig. 1).

Numerical Examples

In order to validate the proposed constraint handling
technique, several examples taken from the literature
will be used. These numerical examples are all
constrained optimization problems that include linear
and nonlinear constraints. These are benchmark
optimization problems that have been previously
evaluated by other GA-based techniques, which is useful
to investigate and demonstrate the quality and usefulness
of the proposed VCH approach.

The algorithm is implemented in Matlab (R2013 a
Student Version 8.1.1.604) run by a 2.90 GHz Intel®
Core™ i7-3520M CPU (4 Duo processor) with 4096 MB
of Random Access Memory (RAM). The number of
crossover-ed and mutated individuals in the population
(100 chromosomes) are 94 and 5 respectively.

That means only one individual is preserved to the
following generation based on elitism. The termination
criterion is taken as either the reach of the maximum
number of generations (set to 500 in all examples) or
the achievement of the relative error on the design
vector (set to be equal to 10−6). To demonstrate the

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

356

effectiveness of the proposed VCH, the best, mean,
median, worst and fitness evaluations are recorded for
20 independent runs. We are concerned with the
efficiency of the technique in terms of CPU time,
because we are particularly interested in solving
engineering optimization problems, for which the cost
of fitness evaluations is generally high. However, it is
more convenient to adopt the number of fitness
evaluations since it is independent of the implemented
hardware. The stopping condition employed in the
numerical simulations is identical to the criteria
described in step 6.

Himmelblau’s Nonlinear Optimization Problem

This problem was originally proposed by
(Himmelblau, 1972) and has been widely used as a point
of reference for nonlinear constrained optimization
problems and several other constraint handling
techniques that use penalties. In this formulation, there
are five design variables [x1, x2, x3, x4, x5], six nonlinear
inequality constraints and 10 boundary conditions.

The problem can be stated as follows:

()
2
3 1 5 1

5.3578547

0.8356891 37.293239 40792.141

Minimizef

x x x x

x =

+ + −

�

Subject to:

()

()

()

1 2 5

1 4 3 5 3 5

2 2 5

2 2
1 2 3 3

3 3 5

1 3 3 4

85.334407 0.0056858

0.00026 0.0022053 0.0022053

80.51249 0.0071317

0.0029955 0.0021813x 0.0021813x

9.300961 0.0047026

0.0012547 0.0019085

g x x

x x x x x x

g x x

x x

g x x

x x x

x

x

x

x

= +

+ − −

= +

+ + +

= +

+ +

�

�

�

() () ()1 2 30 92 90 110 20 25g x g x g x≤ ≤ ≤ ≤ ≤ ≤
� � �

Himmelblau’s Nonlinear Problem

The best solution was found to be ()f x =
�

-30988.951,

with 15000 evaluations only. The design vector is: x1 =
78.0029, x2 = 33.080, x3 = 27.353, x4 = 44.61 and x5 =

44.264. The mean is ()f x =
�

-30845.42278, with a

standard deviation of 48.60 (as listed in Table 2). The
worst solution found was ()f x =

�

-30800.89145, which

is better than 75% of the reviewed methods as per
Table 1. The significantly fewer function evaluations
reduced the computational cost of the optimization
procedure to an average CPU time of 0.52 s/run for 20
independent runs.

Minimization of the Weight of a

Tension/Compression Spring

This optimization problem was described by
(Arora, 1989) and (Belegundu, 1983) and it consists
of minimizing the weight of a tension/compression
spring, subject to constraints on minimum deflection,
shear stress, surge frequency, outside diameter and on
the design variables. The later are the wire diameter d
(= x1), the mean coil diameter D (= x2) and the number
of active coils N (= x3).

The problem is expressed as follows:

2
3 1 2Minimize () (2)f x x x x= +

�

Subject to:

()

() ()

()

3
2 3

1 4
1

1 1 2
3 42

2 3

2
2 1 2

2 3 4 2
1 2 1 1

1 0
71785

140.45
1 0 1 0

1.5

4 1
1 0

12566() 5108

x x
g x

x

x x x
g x g x

x x

x x x
g x

x x x x

= − ≤

+
= − ≤ = − ≤

−
= + − ≤

−

�

� �

�

Spring Design

The optimal solution for this problem is at: x1 =
0.0513412, x2 = 0.3483225, x3 = 11.80261, with an
optimal fitness value of ()f x =

�

0.012672, obtained after

28000 evaluations (as per Table 3 and 4). The mean is
0.01269293 with a low standard deviation of
8.32845×10−6.

Table 1. Optimal results for Himmelblau’s nonlinear problem (NA = Not Available)
 Design variables
 --
Method x1 x2 x3 x4 x5 ()f x

�

Present study 78.00 33.08 27.35 44.61 44.26 -30988.951
Coello (2000a) 78.59 33.01 27.64 45.00 45.00 -30810.359
Deb (1997) NA NA NA NA NA -30665.539
Deb (2000) 78.00 33.00 29.99 45.00 36.77 -30665.5
Homaifar et al. (1994) NA NA NA NA NA -30575.86
(Bean, 1994; Ben Hadj-Alouane and Bean, 1997) NA NA NA NA NA -30560.361
Gen and Cheng (1997) 81.49 34.09 31.24 42.20 34.37 -30183.575
Coello and Cortés (2004) NA NA NA NA NA -30665.51

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

357

Table 2. Statistical results for Himmelblau’s nonlinear problem (NA = Not Available)
 Fitness
Method Mean Worst Std Evaluations
Present study -30845.422 -30800.891 48.60797 15000
Coello (2000b; 1999) -30984.240 -30792.407 73.63353 900000
Coello (2000a) NA NA NA 16000
Deb (2000) -30665.53 -29846.65 NA 250000
Homaifar et al. (1994) -30403.87 -30294.50 64.19172 40000
(Bean, 1994; Ben Hadj-Alouane and Bean, 1997) -30397.40 -30255.37 -73.8032 NA
Gen and Cheng (1997) NA NA NA NA
Coello and Cortés (2004) -30654.98 -30517.44 32.67 150000

Table 3. Optimal results for tension/compression spring design problem (NA = Not Available)
 Design variables

Method x1 x2 x3 ()f x

�

Present study 0.0513412 0.3483225 11.80261 0.012672
Coello and Mezura-Montes (2002) 0.051989 0.363965 10.890522 0.012681
Mezura-Montes and Coello (2005) 0.052836 0.384942 9.807729 0.012689
Coello (2000b; 1999) 0.05148 0.351661 11.632201 0.012704

Table 4. Statistical results for tension/compression spring design problem (NA = Not Available)
 Fitness
Method Mean Worst Std Evaluations
Present study 0.0126929 0.01270562 8.32845E-06 28000
Coello and Mezura-Montes (2002) 0.012742 0.012973 5.9E-05 80000
Mezura-Montes and Coello (2005) 0.013165 0.014078 3.90E-04 30000
Coello (2000b; 1999) 0.0127692 0.01282082 3.939E-05 900000

Table 5. Optimal results for pressure vessel design problem (NA = Not Available)
 Design variables
 --
Method x1 x2 x3 x4 ()f x

�

Present study 0.8125 0.4375 42.0978 176.644 6059.79164
Mezura-Montes and Coello (2005) 0.8125 0.4375 42.0984 176.636 6059.7143
Coello and Mezura-Montes (2002) 0.8125 0.4375 42.0974 176.654 6059.946
Coello and Cortes (2004) 0.8125 0.4375 42.0869 176.779 6061.1229
Coello (2000c) 0.875 0.5000 42.0939 177.080 6069.3267
Coello (2000b; 1999) 0.8125 0.4375 40.3239 200.00 6288.7445
Deb (1997) 0.9375 0.5000 48.3290 112.679 6410.3811
Yun (2005) 1.125 0.6250 58.2850 43.725 7198.424
Wu and Chow (1995) 1.125 0.6250 58.1978 44.293 7207.494

Design of a Pressure Vessel

This problem was originally proposed (Sandgren,
1988; 1990) for the design of a pressure vessel with
minimal overall cost (material, forming and welding). The
air storage tank has a working pressure of 2000 psi and a
maximum volume of 750 ft3. There are four design
variables namely; TS(= x1)thickness of the shell, Th(= x2)
thickness of the head, R (= x3) inner radius and L(= x4)
length of the cylindrical section of the vessel, not
including the head. TS and Th are integer multiples of
0.0625 inch and R and L are continuous.

The following pressure vessel design problem is
taken from Kannan and Kramer (1994) as follows:

1 3 4

2 2 2
2 3 1 4 1 3

Minimize () 0.6224

1.7781 3.1661 19.84

f x x x x

x x x x x x

=

+ + +

�

Subject to:

() ()
()

()

1 1 3 4 4

2 2 3

2 3
3 3 4 3

0.0193 0 240 0

0.00954 0

4
1,296,000 0

3

g x x x g x x

g x x x

g x x x xπ π

= − + ≤ = − ≤

= − + ≤

= − − + ≤

� �

�

�

Welded Beam Design Problem

The welded beam problem has been used as a
benchmark problem originally proposed by (Rao, 1996).

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

358

Table 6. Statistical results for pressure vessel design problem (NA = Not Available)
 Fitness
Method Mean Worst Std Evaluations
Present study 6060.06181 6060.21499 0.12847724 24250
Mezura-Montes and Coello (2005) 6379.938037 6820.397461 2.10E+02 30000
Coello and Mezura-Montes (2002) 6177.253268 6469.32201 130.929702 80000
Coello and Cortes (2004) 6734.0848 7368.0602 457.9959 150000
Coello (2000) 6177.253268 6469.32201 130.929702 50000
Coello (2000b; 1999) 6293.843232 6308.14965 7.41328537 900000

Table 7. Optimal results for welded beam design problem (NA = Not Available)
 Design variables

Method x1 x2 x3 x4 ()f x

�

Present study 0.20578 3.47294 9.02922 0.20608 1.726718
Coello and Mezura-Montes (2002) 0.20599 3.47133 9.02022 0.20648 1.728226
Coello (2000b) 0.20880 3.42050 8.99750 0.21000 1.7483094
Siddall (1972) 0.2444 6.2189 8.2915 0.2444 2.3815433
Ragsdell and Philipps (1976) NA NA NA NA 2.385937
Deb (1991) 0.2489 6.173 8.1789 0.2533 2.433116

Table 8. Statistical results for welded beam design problem (NA = Not Available)
 Fitness
Method Mean Worst Std evaluations
Present study 1.727529953 1.72807450 0.0004207 30000
Mezura-Montes et al. (2007) 1.725 1.725 1.00E-15 24000
Coello and Mezura-Montes (2002) 1.792654 1.993408 0.074713 80000
Coello (2000b) 1.77197269 1.78583465 0.0112228 900000

The beam is designed for minimum cost subject to
constraints on shear stress (τ), bending stress in the
beam (σ), buckling load on the bar (Pc) end deflection
of the beam (δ) and side constraints. In this problem
there are four design variables namely; thickness of
the beam h(= x1), length of the welded joint l (= x2),
width of the beam t(= x3) and thickness of the beam b

(= x4). It is important to note that in this problem,
there are several models in the overviewed literature,
with different number of constraints and variable
definitions. In the present study, the results for the
following optimization formulation are presented:

2
1 2 3 4 2Minimize () 1.1047 0.04811 (14)f x x x x x x= + +

�

Subject to:

() () () ()
() ()
() () () ()
() ()

1 max 2 max

3 1 4 4 1

5 max 6

2
7 1 3 4 2

0 0

0 0.125 0

0 0

0.10471 0.04811 14.0 5.0 0

c

g x x g x x

g x x x g x x

g x x g x P P x

g x x x x x

τ τ σ σ

δ δ

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= + + − ≤

� � � �

� �

� � � �

�

where, τ is the shear stress in the weld (it has two
components namely primary stress τ′ and secondary
stress τ′′), τmax is the allowable shear stress of the weld
(= 13600 psi), σ the normal stress in the beam, σmax is

the allowable normal stress for the beam material (=
30000 psi), Pc the buckling load, P the load (= 6000 lb)
and δ the beam end deflection:

()

()

' 2 '' 2 ' ''2

1 2

22
2 2 1 3

2
4 3

2 ' ''
() () , ,

2 2

6
, ,

2 4 2

x P MR
x

R Jx x

x x x x PL
M P L R x

x x

τ τ
τ τ τ τ τ

σ

= + + = =

+
= + = + =

�

�

()
22 3

2 1 3
1 2 3

3 4

2 6
3 4

3
2

6 6
max

4
2 2 , ,

12 2

4.013 36 1
2 4

14 0.25 30 10 12 10

c

x x x PL
J x x x

Ex x

x x
E x E

P x
L L G

L in in E psi G psi

δ

δ

 + = + =

 = −

= = = × = ×

�

�

Welded Beam Design

The presented algorithm has been tested on this
optimization problem and compared with the best
solutions by previous methods reported in Table 7. The
optimal design vector was found to be: x1 = 0.20578, x2 =
3.47294, x3 = 9.02922, x4 = 0.20608 with an optimal fitness
value ()f 1.726718x =

�

. In average, the time elapsed for one

execution of the program is 1.82 sec and the average
number of fitness evaluations for 20 runs is 30000.

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

359

Fig. 2. Average constraint-handling (CV) and best fitness function obtained with the proposed VCH method for numerical example 4

Discussion

In this paper, we have developed a constraint-
handling method for GA, free of any penalty parameters
using only the violation factor called VCH (as
summarized in the flowchart of Fig. 1) that is capable of
sorting a population with both feasible and infeasible
individuals. In the proposed VCH method, at a given
iteration, the individuals of the population are never
compared in terms of both objective function value and
constraint violation information. Essentially, the main
motif is to keep the fitness function equivalent to the
designer’s objective function and therefore the
conversion of the constrained problem into an
unconstrained one is no longer required.

Genetic algorithms try to mimic the principle of the
survival of the fittest, where newer generations are evolved
in attempt to produce descendants with a better ‘fitness’.
Because at all times the fitness function is equal to the
objective function to be minimized, our proposed VCH
technique is more conforming with the biological
fundamentals of genetic algorithms. A major drawback of
many techniques in the literature is that the constraint
handling method requires a feasible initial population. For
some problems, finding a feasible solution is NP-hard and
even impossible for the problems with conflicting
constraints. In the VCH approach, it is not required to have
a feasible initial population. There are available techniques
that ensure feasibility of the population when dealing with
linear constraints such as (Yun, 2005) by means of
mathematical programming.

Compared to other constraint-handling techniques
based on penalty functions, the VCH method was able to
provide a consistent performance and demonstrated to be
simpler, faster and delivered reliable optimal solutions
without any violation of the constraints. As the

population evolves, the VCH method will lead the search
to reach faster feasible regions. This is revealed in Fig. 2,
with the convergence of the average constraint violation
of the elites towards zero (no violation) as the population
evolves. The VCH method allows the closest solutions to
the feasible region in favorable areas of the search space
to remain in the population. Specific methods such as the
reduced gradient method, cutting plane method and the
gradient projection method are appropriate. However,
they are only fitting either to problems having convex
feasible regions or with few design variables.
Furthermore, the overall results suggest that the
proposed approach is highly competitive and was even
able to contest (some cases improve) the results
produced by other methods, some of which are more
difficult constraint-handling techniques applied to
genetic algorithms. The VCH algorithm was tested on
several benchmark examples and demonstrated its ability
to solve problems with a large number of constraints.

Conclusion and Future Work

The diversity and popularity of evolutionary
algorithms does not imply that there are no problems that
need urgent attention. From one point of view, these
optimization algorithms are very good at obtaining
optimal solutions in a practical time. On the other, they
still lack in balance of accuracy, computational efforts,
global convergence and the tuning and control of their
parameters. Nature has evolved over millions of years,
providing a rich source of inspiration for researchers to
develop diverse algorithms with different degrees of
success and popularity. Such diversity and
accomplishment does not signify that we should focus
solely on developing more algorithms for the sake of
algorithm development, or even worse for the sake of

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

360

publication. This attitude distracts from the search for
solutions for more challenging and truly important
problems in optimization and new algorithms may be
proposed only if they:

• deliver truly novel ideas
• demonstrate to be efficient techniques that solve

challenging optimization problems (that are not
solved by existing methods)

• verify to the “3-self” (self-adaptive, self-evolving
and self-organizing algorithms)

It is vital to state that during the development of this

technique, several other versions of the same approach were
examined without much success. For example, different
reproduction probabilities (crossover and mutation) were
tested. The authors avoided a high mutation rate to prevent
the method of becoming a random search, but choose to
keep it at 0.05 for a more robust global search and
exploration. More than a few other crossover techniques
were examined but the objective of this paper was not to
present a comparative study on their performance but rather
present the parameter-free constraint-handling technique
using the violation factor. It is still unclear how to achieve
optimal balance of exploitation and exploration by proper
parameter tuning of the evolutionary operators of GA in
general and in the VCH algorithm in particular. The
crossover operator ensured an efficient exploitation in the
local search within a subspace and can provide good
convergence in local subspace. The selection and mutation
operators enabled the GA to have a higher ability for
exploration. It could be argued that the VCH technique is
competent because it does not require any fine-tuning of the
GA, which is normally performed by trial and error and is
time consuming. Finally, it is worth mentioning that for
many of them, it is unclear if the authors implemented a
stopping criterion or not. In our study however, a severe
criterion was introduced based on the minimum relative
error of the design variables. Moreover, the user–defined
tolerance has to be respected for a number of generations
before the execution is terminated.

The main challenges that still require further
examination are: The proof of convergence of some EA,
control and tuning of parameters, the solution of large
scale applications (e.g., the traveling salesman problem)
and finally tackling Nondeterministic Polynomial (NP)-
hard problems. Solving these issues is becoming more
imperative than ever before. Among these matters is the
open question of constraint-handling in GA specifically
to solve engineering optimization problems. The insights
gained by the proposed VCH technique should have an
impact on the manner constrained problems are solved.

Lastly, the authors suggest in the upcoming work,
further numerical simulations could be investigated for
more complex optimization problems. It would be

motivating to explore the integration of VCH technique
in other EA’s such as Particle Swarm Optimization
(PSO), ant Colony Optimization (ACO), Bee Colony
Optimization (BCO) and Differential Evolution (DE).
Parameter tuning of the evolutionary operators in GA is
an active area of research and could be examined in
future work. Present work is aimed at introducing the
proposed constraint-handling technique in a multi
objective platform for the optimization of the composite
lay-out of wind turbine blades using a genetic algorithm
as discussed in (Chehouri et al., 2015).

Acknowledgement

The authors would like to thank everyone who has
contributed to the progress of the research. We thank the
anonymous referees for their useful suggestions. Finally,
the corresponding author would like thank his loving
friends and family, particularly my brother Adel
Chehouri and my girlfriend who I love dearly.

Funding Information

The authors greatly acknowledge the Université du
Québec à Chicoutimi (UQAC), Anti-Icing Materials
International Laboratory (AMIL), MMC team, École
Doctorale des Sciences et de la Technologie (EDST),
Lebanese University (LU) and the Fonds de Recherche
Nature et Technologie (FRQNT) for their continued
financial support.

Author’s Contributions

Adam Chehouri: Main author and researcher of the
manuscript. Developed the initial draft of the proposed
constraint-handling technique and conducted the
numerical simulations.

Rafic Younes: Main supervisor who organized the
writing and structure of the paper and monitored the
research.

Jean Perron and Adrian Ilinca: Research advisor,
supervision and monitoring of the research.

Ethics

The authors confirm that this manuscript has not been
published elsewhere and that no ethical issues are
involved.

References

Arora, J.S., 1989. Introduction to Optimum Design. 1st
Edn., McGraw-Mill, New York,

 ISBN-10: 007002460X, pp: 625.
Back, T., D.B. Fogel and Z. Michalewicz, 1997. Handbook

of Evolutionary Computation. 1st Edn., Taylor and
Francis, ISBN-10: 0750308958, pp: 1130.

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

361

Bean, J.C., 1994. Genetic algorithms and random keys
for sequencing and optimization. ORSA J. Comput.,
6: 154-160. DOI: 10.1287/ijoc.6.2.154

Belegundu, A.D., 1983. Study of mathematical
programming methods for structural optimization.
Dissertat. Abs. Int. Part B: Sci. Eng.

Ben Hadj-Alouane, A. and J.C. Bean, 1997. A genetic
algorithm for the multiple-choice integer program.
Operat. Res., 45: 92-101. DOI: 10.1287/opre.45.1.92

Carroll, C.W., 1961. The created response surface
technique for optimizing nonlinear, restrained
systems. Operat. Res., 9: 169-184.

 DOI: 10.1287/opre.9.2.169
Chehouri, A., R. Younes, A. Ilinca and J. Perron, 2015.

Review of performance optimization techniques
applied to wind turbines. Applied Energy, 142:
361-388. DOI: 10.1016/j.apenergy.2014.12.043

Coello, C.A.C., 2000a. Treating constraints as objectives
for single-objective evolutionary optimization. Eng.
Optimizat., 32: 275-308.

 DOI: 10.1080/03052150008941301
Coello, C.A.C. 2000b. Use of a self-adaptive penalty

approach for engineering optimization problems.
Comput. Ind., 41: 113-127.

 DOI: 10.1016/S0166-3615(99)00046-9
Coello, C.A.C., 2000c. Constraint-handling using an

evolutionary multiobjective optimization technique.
Civil Eng. Syst., 17: 319-346.

 DOI: 10.1080/02630250008970288
Coello, C.A.C., 1999. Self-adaptive penalties for GA-

based optimization. Proceedings of the Congress on
Evolutionary Computation, Jul. 06-09, IEEE Xplore
Press, Washington, DC.

Coello, C.A.C. and A. Carlos, 1999. A survey of
constraint handling techniques used with
evolutionary algorithms. Laboratorio Nacional de
Informática Avanzada.

Coello, C.A.C. and E.M. Montes, 2002. Constraint-
handling in genetic algorithms through the use of
dominance-based tournament selection. Adv. Eng.
Inform., 16: 193-203.

 DOI: 10.1016/S1474-0346(02)00011-3
Coello, C.A.C. and N.C. Cortés, 2004. Hybridizing a

genetic algorithm with an artificial immune
system for global optimization. Eng. Optimizat., 36:
607-634. DOI: 10.1080/03052150410001704845

Coello, C.A.C., 2002. Theoretical and numerical
constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the
art. Comput. Methods Applied Mechan. Eng., 191:
1245-1287. DOI: 10.1016/S0045-7825(01)00323-1

Courant, R., 1943. Variational methods for the solution
of problems of equilibrium and vibrations. Bull.
Amer. Math. Soc, 49: 1-23.

 DOI: 10.1090/S0002-9904-1943-07818-4

Darwin, C. and W.F. Bynum, 2009. The origin of
species by means of natural selection: Or, the
preservation of favored races in the struggle for life.

Dasgupta, D. and Z. Michalewicz, 1997. Evolutionary
Algorithms in Engineering Applications. 1st Edn.,
Springer Science and Business Media, Berlin,
ISBN-10: 3540620214, pp: 554.

Deb, K., 1997. Geneas: A Robust Optimal Design
Technique for Mechanical Component Design.
Evolutionary Algorithms in Engineering
Applications, Dipankar Dasgupta, Zbigniew
Michalewicz (Eds.), Springer Science and Business
Media, Berlin, ISBN-10: 3540620214, pp: 497-514.

Deb, K., 1991. Optimal design of a welded beam via
genetic algorithms. AIAA J., 29: 2013-2015.

 DOI: 10.2514/3.10834
Deb, K., 2000. An efficient constraint handling method

for genetic algorithms. Comput. Methods Applied
Mechan. Eng., 186: 311-338.

 DOI: 10.1016/S0045-7825(99)00389-8
Dorigo, M., V. Maniezzo and A. Colorni, 1996. Ant

system: Optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybernet. Part B, 26:
29-41. DOI: 10.1109/3477.484436

Eberhart, R.C. and J. Kennedy, 1995. A new optimizer
using particle swarm theory. Proceedings of the 6th
International Symposium on Micro Machine and
Human Science, Oct. 4-6, IEEE Xplore Press,
Nagoya, pp: 39-43. DOI: 10.1109/MHS.1995.494215

Fiacco, A.V. and G.P. McCormick, 1966. Extensions
of SUMT for nonlinear programming: Equality
constraints and extrapolation. Manage. Sci., 12:
816-828. DOI: 10.1287/mnsc.12.11.816

Gen, M. and R. Cheng, 1996. A survey of penalty
techniques in genetic algorithms. Proceedings of
IEEE International Conference on Evolutionary
Computation, May 20-22, IEEE Xplore Prss, Nagoya,
pp: 804-809. DOI: 10.1109/ICEC.1996.542704

Gen, M. and R. Cheng, 1997. Genetic Algorithms and
Engineering Design. 1st Edn., John Wily and Sons,
New York.

Glover, F., 1977. Heuristics for integer programming
using surrogate constraints. Decis. Sci., 8: 156-166.
DOI: 10.1111/j.1540-5915.1977.tb01074.x

Himmelblau, D.M., 1972. Applied Nonlinear
Programming. 1st Edn., McGraw-Hill, New York,
pp: 498.

Hoffmeister, F. and J. Sprave, 1996. Problem-
independent handling of constraints by use of metric
penalty functions.

Holland, J.H., 1975. Adaptation in natural and artificial
systems: An introductory analysis with applications
to biology, control and artificial intelligence.

Homaifar, A., C.X. Qi and S.H. Lai, 1994. Constrained
optimization via genetic algorithms. Simulation, 62:
242-253. DOI: 10.1177/003754979406200405

Adam Chehouri et al. / Journal of Computer Sciences 2016, 12 (7): 350.362
DOI: 10.3844/jcssp.2016.350.362

362

Joines, J.A. and C.R. Houck, 1994. On the use of non-
stationary penalty functions to solve nonlinear
constrained optimization problems with GA's.
Proceedings of the 1st IEEE Conference on
Evolutionary Computation, Jun. 27-29, IEEE Xplore
Press, Orlando, FL, pp: 579-584.

 DOI: 10.1109/ICEC.1994.349995
Kannan, B. and S.N. Kramer, 1994. An augmented

Lagrange multiplier based method for mixed
integer discrete continuous optimization and its
applications to mechanical design. J. Mechanical
Des., 116: 405-411. DOI: 10.1115/1.2919393

Kirkpatrick, S. and M. Vecchi, 1983. Optimization by
simulated annealing. Science, 220: 671-680.

 DOI: 10.1126/science.220.4598.671
Mezura-Montes, E. and C.A.C. Coello, 2005. Useful

infeasible solutions in engineering optimization with
evolutionary algorithms. Proceedings of the 4th
Mexican International Conference on Artificial
Intelligence, Nov. 14-18, Springer, pp: 652-662.
DOI: 10.1007/11579427_66

Mezura-Montes, E., C.A. Coello, J. Velázquez-Reyes
and L. Muñoz-Dávila, 2007. Multiple trial vectors in
differential evolution for engineering design. Eng.
Optimizat., 39: 567-589.

 DOI: 10.1080/03052150701364022
Michalewicz, Z. and C.Z. Janikow, 1996. GENOCOP: A

genetic algorithm for numerical optimization
problems with linear constraints. Commun. ACM.
DOI: 10.1145/272682.272711

Michalewicz, Z. and G. Nazhiyath, 1995. Genocop III: A
co-evolutionary algorithm for numerical
optimization problems with nonlinear constraints.
Proceedings of the IEEE International Conference
on Evolutionary Computation, 29 Nov-1 Dec, IEEE
Xplore Press, Perth, WA, pp: 647-651.

 DOI: 10.1109/ICEC.1995.487460
Michalewicz, Z. and M. Schoenauer, 1996. Evolutionary

algorithms for constrained parameter optimization
problems. Evoluti. Comput., 4: 1-32.

 DOI: 10.1162/evco.1996.4.1.1
Michalewicz, Z. and N. Attia, 1994. Evolutionary

optimization of constrained problems. Proceedings
of the 3rd Annual Conference on Evolutionary
Programming, (CEP’ 94), pp: 98-108.

Michalewicz, Z., 1992. Genetic Algorithms + Data
Structures = Evolution Program. 2nd Edn., Artificial
Intelligence, Springer.

Michalewicz, Z., 1995a. Genetic algorithms, numerical
optimization and constraints. Proceedings of the 6th
International Conference on Genetic Algorithms,
(CGA’ 95), Morgan Kaufmann, pp: 151-158.

Michalewicz, Z., 1995b. A survey of constraint handling
techniques in evolutionary computation methods.
Evolu. Programm., 4: 135-155.

Morales, A.K. and C.V. Quezada, 1998. A universal
eclectic genetic algorithm for constrained
optimization. Proceedings of the 6th European
Congress on Intelligent Techniques and Soft
Computing, (TSC’ 98), pp: 518-522.

Powell, D. and M.M. Skolnick, 1993. Using genetic
algorithms in engineering design optimization with
non-linear constraints. Proceedings of the 5th
International Conference on Genetic Algorithms,
(CGA’ 93), pp: 424-431.

Ragsdell, K. and D. Phillips, 1976. Optimal design of
a class of welded structures using geometric
programming. J. Manufactur. Sci. Eng., 98:
1021-1025. DOI: 10.1115/1.3438995

Rao, S.S., 1996. Engineering Optimization: Theory and
Practice. 1st Edn., New Age International, New
Dehli, ISBN-10: 8122411495, pp: 112.

Sandgren, E., 1988. Nonlinear integer and discrete
programming in mechanical design. Proceedings of the
ASME Design Technology Conference, (DTC’ 90),
pp: 95-105.

Sandgren, E., 1990. Nonlinear integer and discrete
programming in mechanical design optimization. J.
Mechan. Des., 112: 223-229. DOI: 10.1115/1.2912596

Siddall, J., 1972. Analytical design-making in
engineering design. Englewood Cliffs, NJ.

Wu, S.J. and P.T. Chow, 1995. Genetic algorithms for
nonlinear mixed discrete-integer optimization
problems via meta-genetic parameter optimization.
Eng. Optimizat., 24: 137-159.

 DOI: 10.1080/03052159508941187
Yeniay, O., 2005. Penalty function methods for

constrained optimization with genetic algorithms.
Math. Comput. Applic., 10: 45-56.

 DOI: 10.3390/mca10010045
Yun, Y., 2005. Study on adaptive hybrid genetic

algorithm and its applications to engineering design
problems. Waseda University.

