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Abstract: Over the years, several meta-heuristic algorithms were proposed 
and are now emerging as common methods for constrained optimization 
problems. Among them, genetic algorithms (GA’s) shine as popular 
evolutionary algorithms (EA’s) in engineering optimization. Most 
engineering design problems are difficult to resolve with conventional 
optimization algorithms because they are highly nonlinear and contain 
constraints. In order to handle these constraints, the most common 
technique is to apply penalty functions. The major drawback is that they 
require tuning of parameters, which can be very challenging. In this paper, 
we present a constraint-handling technique for GA’s solely using the 
violation factor, called VCH (Violation Constraint-Handling) method. 
Several benchmark problems from the literature are examined. The VCH 
technique was able to provide a consistent performance and match results 
from other GA-based techniques. 
 
Keywords: Constraint-Handling, Genetic Algorithm, Constrained 
Optimization, Engineering Optimization, Evolutionary Algorithms 

 
Introduction 

Many optimization problems in engineering are highly 
nonlinear, containing a mixture of discrete and continuous 
design variables subject to a series of constraints. Such 
problems are known as constrained optimization problems 
or nonlinear programming problems in which traditional 
calculus-based methods struggle to solve. These numerical 
optimization methods are highly deterministic and are 
convenient in finding the global optimum for simple 
problems by improving the solution in the vicinity of a 
starting point. However, they have major drawbacks with 
complex engineering problems i.e.: difficulty in 
computing the derivatives, sensitivity to the initial 
conditions and a large memory requirement. 

Because of these downsides, over the years, several 
heuristic and meta-heuristic algorithms were proposed. 
They are now emerging as popular methods for the 
solution of complex engineering problems. These 
algorithms are purely stochastic and consist of 
approximate methods but on the contrary are derivative-
free techniques. Heuristic methods try to find decent 
solutions that are easily reachable but are not necessarily 

the best solutions by means of trial and error. Further 
developments of heuristics are the so-called meta-heuristic 
algorithms: A higher level of optimization compared to 
heuristic algorithms. The meta-heuristic techniques 
include: genetic algorithms (GA, Holland (1975)), 
simulated annealing (SA, Kirkpatrick and Vecchi (1983)), 
particle swarm optimization (PSO, Eberhart and Kennedy 
(1995)), ant colony optimization (ACO, Dorigo et al. 
(1996)), tabu search (Glover 1977) etc. Among all meta-
heuristics, genetic algorithms (proposed by Holland 
(1975)) are one of the most popular evolutionary 
algorithms (EA’s). By mimicking the basic Darwinian 
mechanism from the famous book “The Origin of 
Species” (Darwin and Bynum, 2009) defined natural 

selection of biological systems or the principle of the 
survival of the fittest. GA’s try to evolve the population of 
chromosomes that are fitter by applying three key 
evolutionary operators: selection, crossover and mutation. 
The attempt is to produce a new generation or descendants 
with a better fitness value than their parents. 

Most engineering optimization design problems are 
difficult to solve using conventional algorithms since 
they comprise problem-specific constraints (linear, non-
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linear, equality or inequality). Despite the success of GA 
in a wide-range of applications, solving constrained 
optimization problems is no easy task. The most 
common technique is to apply penalty functions. As a 
result, the problem is converted from a constrained to an 
unconstrained optimization problem. The major 
drawback of these penalty functions is the requirement 
of a definition and proper tuning of their parameters, 
which can be challenging and problematic. 

Hence, the aim of this paper is to answer one of the 
most stimulating questions encountered in meta-
heuristics: constraint-handling in evolutionary 
algorithms. In this paper, we will use a GA as a 
numerical tool to propose a constraint-handling 
technique that eliminates the use of penalty functions. 
We present a parameter-free constraint-handling 
technique for GA using the violation factor; hence, the 
method will be referred to as VCH (Violation 
Constraint-Handling). This paper is organized as 
follows: Section 2 contains the most relevant constraint-
handling techniques proposed by previous works. Then, 
the VCH approach is described in Section 3 and 
validated with the numerical examples in Section 4. Our 
technique and results are discussed in Section 5 and the 
conclusion and some paths for future research are 
provided in Section 6. 

Literature Review 

Below are the most relevant constraint-handling 
techniques used in EA’s for the purpose of this study. The 
reader is referred to the following surveys (Coello, 2002; 
Coello and Carlos, 1999; Dasgupta and Michalewicz, 
1997; Gen and Cheng, 1996; Michalewicz, 1995a; 1995b; 
Michalewicz and Schoenauer, 1996; Yeniay, 2005) for 
further details, explanations and comparison. 

Penalty Methods 

The penalty methods are the most common 
approaches for constraint-handling in EA. Penalty 
functions were initially suggested by (Courant, 1943) 
and later extended by (Carroll, 1961) and (Fiacco and 
McCormick, 1966). Generally, the penalty term is 
determined from the amount of constraint violation of 
the solution vector. The formulation of the exterior 
penalty functions can be expressed as: 
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where, ( )xψ

�

is the new fitness function to be optimized, 

Gi and Hj depend on the inequality constraints ( )ig x
�

and 

equality constraints ( )jh x
�

 respectively and ai, bj are 

called penalty factors. 

The determination of the magnitude of the penalty 
term is a vital concern. The penalty term cannot be too 
high or else the algorithm will be locked inside the 
feasible domain and cannot move towards the border 
with the infeasible area. Too low, the term will be 
irrelevant in regard to the objective function and the 
search will remain in the infeasible region. Knowing 
how to exploit the search space in order to guide the 
search in the utmost desired direction is still unclear and 
rather challenging.  

Static Penalty 

In this group, the penalty factors remain constant 
during the evolution process and do not vary during each 
generation. A popular method is to define several levels 
of violation and attribute to each higher level a greater 
penalty coefficient Aki. Homaifar et al. (1994) proposed 
to convert the equality constraints into inequality 
constraints and evaluate the following: 
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Other researchers (Hoffmeister and Sprave, 1996; 

Morales and Quezada, 1998) have proposed interesting 
static penalties, but the main downside in these 
approaches are the necessity of a high number of 
parameters. They are difficult to describe and may not 
always be easy to obtain for real-world applications. 

Dynamic Penalty 

In this category, the penalty function depends on the 
generation number and usually the penalty term will 
increase over each generation. Joines and Houck (1994) 
evaluate each individuals using the following expressions: 
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The cooling parameters α and β are user defined 

constants, gi and hj are the inequality and equality 
constraints respectively. 
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A common dynamic penalty function is based on the 
notion of simulated annealing (Kirkpatrick and Vecchi, 
1983; Michalewicz and Attia, 1994), where the penalty 
term is updated on every occasion the solution is locked in 
near a local optimal. Dynamic penalties that learn from the 
search process are called adaptive penalty functions. 

An incorrect choice of the penalty factor may lead to a 
local feasible solution or an infeasible solution (Back et al., 
1997). In regards to the simulated annealing, the solution is 
extremely sensitive to the cooling parameters. 

Co-Evolution 

Coello (2000b; 1999) proposed to evaluate the 
following fitness function with only inequality 
constraints as follows: 
 

( ) ( ) 1 2( )f CV wx Viox l wψ = − × + ×
� �

  (4) 
 
with w1 and w2 two integers considered as penalty 
factors, Viol is an integer that is incremented for each 
violated constraint and CV is the sum of all violated 
constraints expressed as: 
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The idea of this method is to use a population to 

evolve the solution vector and another to develop the 
penalty factors w1 and w2. This technique still requires 
the definition of four parameters and according to the 
author, they must be empirically determined. A major 
drawback of this penalty method is that it is very subtle 
to variations in the parameters in addition of their 
rigorous definition and high computational cost. 

Death Penalty 

A major concern in optimization algorithms in 
general and in EA’s in particular is the element of 
‘infeasible solutions’. The simplest way is to reject the 
individual-(hence ‘death’) when at least one constraint is 
violated. A new point is generated until a feasible 
solution is found, therefore making this approach a 
lengthy process with the high risk of stagnating. 

Separation of Objectives and Constraints 

There are more than a few proposed approaches that 
separate the amount of constraint violation and the 
objective function. For instance, Powell and Skolnick 
(1993) scale the objective function ( )f x

�

 into the 

interval ]-∞,1], whereas ( )ig x
�

 and ( )jh x
�

are scaled into 

the interval [1, +∞[ and when the solution is unfeasible 
the objective function is not combined with the penalty 
term. During the search, each individual is assessed 
according to the following form: 
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with A a constant to be determined by the user. 

The main difficulty with Powell and Skolnick (1993) 
is not the definition of the penalty factor A but rather 
with the concept of superiority of feasible over infeasible 
solutions. Deb (2000) uses a similar separation approach 
and evaluates the individuals using: 
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where, fworst is the worst feasible solution in the 
population and ( )ik x

�

 include the inequality constraints 

and the transformed equalities. The constraints are 
normalized since they are each expressed in different 
units and to avoid any preference. 

Proposed Technique 

One of the key complications in using GA for practical 
engineering optimization applications is the design of the 
fitness function. When dealing with constrained problems, 
we must find a mean to estimate the closeness of an 
infeasible solution to the feasible region. By simply 
examining the previously proposed constraint-handling 
techniques, several key points can be derived about the 
existing methods. Initially, they are diverse, yet require the 
definition and fine-tuning of at least one parameter. 

Apart of being an arduous procedure to define and 
control the penalty terms, we claim that such methods 
deviate from the essence of the philosophy of the 
evolutionary algorithms (i.e., techniques based on the 
principle of natural selection). Arguably, the most widely 
used algorithm is the genetic algorithm developed by 
(Holland, 1975). Despite the success of GA’s as 
optimization techniques in many engineering applications, 
they are mostly applied on unconstrained problems. 

Therefore, the main proposal of the authors is to 
suggest a constraint-handling technique that preserves 
the notions of the GA. The key motif is to keep the 
fitness function equivalent to the designer’s objective 
and eliminate any additional penalty functions. The 
core structure of GA is analogous to the theory of 
biological evolution mimicking the principle of the 
survival of the fittest. The proposed constraint-handling 
technique is directly inspired from the nature of genetic 
algorithms, since the objective function is preserved 
during the evolution process. In this study, we will 
implement the proposed VCH method inside a genetic 
algorithm due to its advantages: 
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a) Adaptability: Does not oblige the objective 
function to be continuous or in algebraic form. 

b) Robustness: Escapes more easily from local 
optimums because of its population-based nature. 

c) Equilibrium: Provide a good balance between 
exploitation and exploration. Do not need specific 
domain information, but can be further exploited it 
if provided. 

d) Flexibility: GA’s are simple and relatively easy to 
implement. 

 
 We are interested in the general nonlinear 

programming problems (NLP); a minimization or 
maximization of a constrained optimization problem in 
which we want to: 
 

( )Find which minimizesx f x
� �  (8) 

 
Subject to certain set of constraints: 
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�  is the solution vector with p 
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, n is the number of inequality 

constraints, m the number of equality constraints and the 

k
th variable varies in the range [ , ]L U

k k
x x
� � ; the lower and 

upper bounds for each variable. 
These constraints can be either linear or non-linear. 

Most constraint-handling approaches tend to deal with 
inequality constraints only. Therefore, a customary 
approach is to transform equality to inequality 
constraints using the following expression: 
 

( ) 0jh x −∈≤
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which is equivalent to ( ) 0jh x −∈≤

�

and ( ) 0j xh− −∈≤
�

, 

where ∈ is the tolerance (usually a very small value, 
user-defined). This is justified by the fact that obtaining 
sampling points that satisfy the equality exactly is very 
difficult and hence, some tolerance or allowance is used 
in practice. 

We shall first illustrate the overall procedure of the 
VCH technique for GA. In the subsequent, we assume 
the following: 
 
• PopNum: Population length 
• Nelite: Number of elites 
• Ncross: Number of crossover-ed individuals 
• Nmut: Number of mutated individuals (Bmut = 

PopNum-Nelite-Ncross) 

• Real-coded GA according to which each 
chromosome is a string of the form 〈d1,d2,…,dm〉, 
where d1, d2 …, dm are real numbers 

 
Step 1: Initialization of the population: 

The design variables are randomly initialized to 
satisfy the upper and lower constraints as follows: 
 

* (0,1)L U L

k k kx x x x rand = + − 
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  (10) 
 
Step 2: Evaluation of the fitness function, normalized 

constraints and constraint violation: 

For each individual x
�

, the fitness function ( )f x
�

 is 

calculated along with the resulting constraints. All the 
equality constraints are converted into inequalities using (9), 
hence a total of n+m inequality constraints. These equations 
are all normalized and therefore become in the form of: 
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Furthermore, the amount of Constraint Violation 
(C.V) of the normalized constraints Gk, (k = 1, …n+m), 
is determined using: 
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In addition, the number of violation is defined as the 

percentage of violated constraints for a given solution: 
 

   
.

number of violated constraints
N V

n m
=

+
  (14) 

 
Step 3: Sorting of the population: 

The population is separated into two families; 
feasible solutions (V0) and unfeasible (V1) consisting of 
individuals that violate at least one constraint. The first 
set (V0) is sorted with respect to the fitness value 
(ascending order, assuming a minimization problem). 
The second family (V1) is sorted according to the 
proposed pair-wise comparison rules. In the VCH 
approach, we adopted a feasibility-based rule, a set of 
rules to evolve the population at each generation: 
 
• If one individual is infeasible and the other is 

feasible, the winner is the feasible solution 
• If both individuals are feasible, the winner is the one 

with the highest fitness value 
• If both individuals are infeasible, the winner is the 

one with the lowest Number of Violations (N.V) 
• If both individuals are infeasible with the same 

(N.V), the one with the lowest Constraints Violation 
(C.V) value wins 
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Fig. 1. Complete flowchart of the proposed GA 
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Step 4: Formation of Elites:  

The sorted families V0 and V1 form the new 
population. The first Nelite individuals are the elites, 
which are kept intact to the next generation with no 
alteration. This selection operator, one form of elitism 
consists of a driving force for self-organization or 
convergence and is essentially an intensive exploitation. 

Step 5: Reproduction by crossover and mutation:  

A tournament-based technique is used to perform the 
crossover among the individuals of the population. 
Whole arithmetic crossover (Michalewicz and Janikow, 
1996; Michalewicz and Nazhiyath, 1995; Michalewicz and 
Schoenauer, 1996) is applied in our algorithm. It is 
composed of a linear combination of two parent vectors 
to be crossed (as shown in 15). This genetic operator 
uses simple static parameter φ (a random number 
between 0 and 1). Any linear combination of two 
feasible points in a convex domain will produce another 
feasible point (Michalewicz, 1992). 
 

(1 )A B A B⊗ = ∗∅ + ∗ −∅   (15) 

with φ = rand(0,1) 
 

The reproduction and crossover operators are 
programmed to imitate the paradigm of the survival of 
the fittest. The crossover operator is a recombination of 
two chromosomes, an operation that ensures an efficient 
exploitation in the local search within a subspace. 
Therefore, the offspring are spread over the entire 
feasible space. The crossover-elitism pair eases the 
achievement of global optimality. In contrast, the 
mutation operator is a randomization mechanism for 
global search and exploration. 

Step 6: Stopping criteria: 

Steps 2-5 are repeated until either the stopping criteria 
is respected or the maximum number of generation is 
attained. We implemented a severe stopping criterion on 
the best solution of each generation; the relative error 
between the present and the past generation for each 
design variable must remain less than the user-defined 
tolerance for at least N amount of generations. 

As the population evolves, the proposed VCH 
process will lead the search to reach feasible regions, 
much similar to a severe penalty function. Nonetheless, 
in order to maintain infeasible solutions near the 
feasible region, at each generation, the infeasible 
solution with the lowest C.V and best objective 
function value will be kept in the population for the 
next generation. As a result, the population will most 
likely have fewer infeasible solutions located in 
promising areas of the search space. The VCH 

approach does not use any penalty function to handle 
the constraints. Instead, it can be seen to have a 
mechanism that encourages the solutions close to the 
feasible region in favorable areas of the design space to 
remain in the population. This does not add substantial 
computational cost. 

An optimization problem is called a convex 
programming problem if the objective function and the 
constraint functions are both convex. Originally, EAs 
were developed to solve unconstrained problems. 
Constrained optimization is a computationally 
challenging task, mainly if the constraint functions are 
nonlinear and/or nonconvex. A positive feature of the 
proposed VCH approach is that it does not care about 
the structure of the constraint functions (linear or 
nonlinear, convex or nonconvex). An accelerated VCH 
technique for convex optimization problems is to 
generate an initial population with only feasible 
solutions. Thereafter, the reproduction by means of an 
arithmetic crossover (as per expression 15) will 
continue to generate feasible solutions (Michalewicz, 
1992). Testing for convexity or concavity can be done 

by evaluating if the Hessian matrix ( )
2 ( )

i j

f X
H X

x x

 ∂
=  

∂ ∂  
is 

positive semi definite (for minimization problems). The 
accelerated genetic algorithm for the solving of 
constrained problems in the case of convex design and 
objective spaces would not require the use of any 
feasibility-rules. Rather, solutions with high fitness 
values are preferred since all the individuals of the 
population are feasible (as described in Fig. 1). 

Numerical Examples 

In order to validate the proposed constraint handling 
technique, several examples taken from the literature 
will be used. These numerical examples are all 
constrained optimization problems that include linear 
and nonlinear constraints. These are benchmark 
optimization problems that have been previously 
evaluated by other GA-based techniques, which is useful 
to investigate and demonstrate the quality and usefulness 
of the proposed VCH approach. 

The algorithm is implemented in Matlab (R2013 a 
Student Version 8.1.1.604) run by a 2.90 GHz Intel® 
Core™ i7-3520M CPU (4 Duo processor) with 4096 MB 
of Random Access Memory (RAM). The number of 
crossover-ed and mutated individuals in the population 
(100 chromosomes) are 94 and 5 respectively. 

That means only one individual is preserved to the 
following generation based on elitism. The termination 
criterion is taken as either the reach of the maximum 
number of generations (set to 500 in all examples) or 
the achievement of the relative error on the design 
vector (set to be equal to 10−6). To demonstrate the 
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effectiveness of the proposed VCH, the best, mean, 
median, worst and fitness evaluations are recorded for 
20 independent runs. We are concerned with the 
efficiency of the technique in terms of CPU time, 
because we are particularly interested in solving 
engineering optimization problems, for which the cost 
of fitness evaluations is generally high. However, it is 
more convenient to adopt the number of fitness 
evaluations since it is independent of the implemented 
hardware. The stopping condition employed in the 
numerical simulations is identical to the criteria 
described in step 6. 

Himmelblau’s Nonlinear Optimization Problem 

This problem was originally proposed by 
(Himmelblau, 1972) and has been widely used as a point 
of reference for nonlinear constrained optimization 
problems and several other constraint handling 
techniques that use penalties. In this formulation, there 
are five design variables [x1, x2, x3, x4, x5], six nonlinear 
inequality constraints and 10 boundary conditions. 

The problem can be stated as follows: 
 

( )
2
3 1 5 1

5.3578547

0.8356891 37.293239 40792.141

Minimizef

x x x x

x =

+ + −

�

 

 
Subject to: 

 
( )

( )

( )

1 2 5

1 4 3 5 3 5

2 2 5

2 2
1 2 3 3

3 3 5

1 3 3 4

85.334407 0.0056858

0.00026 0.0022053 0.0022053

80.51249 0.0071317

0.0029955 0.0021813x 0.0021813x

9.300961 0.0047026

0.0012547 0.0019085

g x x

x x x x x x

g x x

x x

g x x

x x x

x

x

x

x

= +

+ − −

= +

+ + +

= +

+ +

�

�

�

 

( ) ( ) ( )1 2 30 92 90 110 20 25g x g x g x≤ ≤ ≤ ≤ ≤ ≤
� � �  

 
Himmelblau’s Nonlinear Problem 

The best solution was found to be ( )f x =
�

-30988.951, 

with 15000 evaluations only. The design vector is: x1 = 
78.0029, x2 = 33.080, x3 = 27.353, x4 = 44.61 and x5 = 

44.264. The mean is ( )f x =
�

-30845.42278, with a 

standard deviation of 48.60 (as listed in Table 2). The 
worst solution found was ( )f x =

�

-30800.89145, which 

is better than 75% of the reviewed methods as per 
Table 1. The significantly fewer function evaluations 
reduced the computational cost of the optimization 
procedure to an average CPU time of 0.52 s/run for 20 
independent runs. 

Minimization of the Weight of a 

Tension/Compression Spring 

This optimization problem was described by 
(Arora, 1989) and (Belegundu, 1983) and it consists 
of minimizing the weight of a tension/compression 
spring, subject to constraints on minimum deflection, 
shear stress, surge frequency, outside diameter and on 
the design variables. The later are the wire diameter d 
(= x1), the mean coil diameter D (= x2) and the number 
of active coils N (= x3). 

The problem is expressed as follows: 
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Spring Design 

The optimal solution for this problem is at: x1 = 
0.0513412, x2 = 0.3483225, x3 = 11.80261, with an 
optimal fitness value of ( )f x =

�

0.012672, obtained after 

28000 evaluations (as per Table 3 and 4). The mean is 
0.01269293 with a low standard deviation of 
8.32845×10−6.  

 
Table 1. Optimal results for Himmelblau’s nonlinear problem (NA = Not Available) 
 Design variables 
 ------------------------------------------------------------------------------------------ 
Method x1 x2 x3  x4 x5 ( )f x

�

 

Present study 78.00 33.08 27.35 44.61 44.26 -30988.951 
Coello (2000a) 78.59 33.01 27.64 45.00 45.00 -30810.359 
Deb (1997) NA NA NA NA NA -30665.539 
Deb (2000) 78.00 33.00 29.99 45.00 36.77 -30665.5 
Homaifar et al. (1994) NA NA NA NA NA -30575.86 
(Bean, 1994; Ben Hadj-Alouane and Bean, 1997) NA NA NA NA NA -30560.361 
Gen and Cheng (1997) 81.49 34.09 31.24 42.20 34.37 -30183.575 
Coello and Cortés (2004) NA NA NA NA NA -30665.51 
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Table 2. Statistical results for Himmelblau’s nonlinear problem (NA = Not Available) 
    Fitness 
Method Mean Worst Std Evaluations 
Present study  -30845.422 -30800.891 48.60797 15000 
Coello (2000b; 1999) -30984.240 -30792.407 73.63353 900000 
Coello (2000a)  NA  NA NA 16000 
Deb (2000) -30665.53 -29846.65 NA 250000 
Homaifar et al. (1994) -30403.87 -30294.50 64.19172 40000 
(Bean, 1994; Ben Hadj-Alouane and Bean, 1997) -30397.40 -30255.37 -73.8032   NA  
Gen and Cheng (1997)  NA  NA NA NA 
Coello and Cortés (2004) -30654.98 -30517.44 32.67 150000 

 
Table 3. Optimal results for tension/compression spring design problem (NA = Not Available) 
 Design variables 
 ----------------------------------------------------------------------------------------------------- 
Method x1 x2 x3  ( )f x

�

 

Present study  0.0513412 0.3483225 11.80261  0.012672 
Coello and Mezura-Montes (2002) 0.051989 0.363965 10.890522 0.012681 
Mezura-Montes and Coello (2005) 0.052836 0.384942 9.807729 0.012689 
Coello (2000b; 1999) 0.05148 0.351661 11.632201 0.012704 

 
Table 4. Statistical results for tension/compression spring design problem (NA = Not Available) 
    Fitness 
Method Mean Worst Std Evaluations 
Present study 0.0126929 0.01270562 8.32845E-06 28000 
Coello and Mezura-Montes (2002) 0.012742 0.012973 5.9E-05 80000 
Mezura-Montes and Coello (2005) 0.013165 0.014078 3.90E-04 30000 
Coello (2000b; 1999) 0.0127692 0.01282082 3.939E-05 900000 

 
Table 5. Optimal results for pressure vessel design problem (NA = Not Available) 
 Design variables 
 ---------------------------------------------------------------------------------------------------------- 
Method x1 x2 x3  x4 ( )f x

�

 

Present study 0.8125 0.4375 42.0978 176.644  6059.79164 
Mezura-Montes and Coello (2005) 0.8125 0.4375 42.0984 176.636 6059.7143 
Coello and Mezura-Montes (2002) 0.8125 0.4375 42.0974 176.654 6059.946 
Coello and Cortes (2004) 0.8125 0.4375 42.0869 176.779 6061.1229 
Coello (2000c) 0.875 0.5000 42.0939 177.080 6069.3267 
Coello (2000b; 1999) 0.8125 0.4375 40.3239 200.00 6288.7445 
Deb (1997) 0.9375 0.5000 48.3290 112.679 6410.3811 
Yun (2005) 1.125 0.6250 58.2850 43.725 7198.424 
Wu and Chow (1995) 1.125 0.6250 58.1978 44.293 7207.494 

 
Design of a Pressure Vessel 

This problem was originally proposed (Sandgren, 
1988; 1990) for the design of a pressure vessel with 
minimal overall cost (material, forming and welding). The 
air storage tank has a working pressure of 2000 psi and a 
maximum volume of 750 ft3. There are four design 
variables namely; TS( = x1)thickness of the shell, Th( = x2) 
thickness of the head, R (= x3) inner radius and L(= x4) 
length of the cylindrical section of the vessel, not 
including the head. TS and Th are integer multiples of 
0.0625 inch and R and L are continuous. 

The following pressure vessel design problem is 
taken from Kannan and Kramer (1994) as follows: 

1 3 4

2 2 2
2 3 1 4 1 3

Minimize ( ) 0.6224

1.7781 3.1661 19.84

f x x x x

x x x x x x

=

+ + +

�

 

 
Subject to: 
 

( ) ( )
( )

( )

1 1 3 4 4

2 2 3

2 3
3 3 4 3

0.0193 0 240 0

0.00954 0

4
1,296,000 0

3

g x x x g x x

g x x x

g x x x xπ π

= − + ≤ = − ≤

= − + ≤

= − − + ≤

� �

�

�

 

 
Welded Beam Design Problem 

The welded beam problem has been used as a 
benchmark problem originally proposed by (Rao, 1996). 
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Table 6. Statistical results for pressure vessel design problem (NA = Not Available) 
    Fitness 
Method Mean Worst Std Evaluations 
Present study 6060.06181 6060.21499 0.12847724 24250 
Mezura-Montes and Coello (2005) 6379.938037 6820.397461 2.10E+02 30000 
Coello and Mezura-Montes (2002) 6177.253268 6469.32201 130.929702 80000 
Coello and Cortes (2004) 6734.0848 7368.0602 457.9959 150000 
Coello (2000) 6177.253268 6469.32201 130.929702 50000 
Coello (2000b; 1999) 6293.843232 6308.14965 7.41328537 900000 
 
Table 7. Optimal results for welded beam design problem (NA = Not Available) 
 Design variables 
 --------------------------------------------------------------------------------------------------------------- 
Method x1 x2 x3  x4 ( )f x

�

 

Present study 0.20578 3.47294 9.02922 0.20608 1.726718 
Coello and Mezura-Montes (2002) 0.20599 3.47133 9.02022 0.20648 1.728226 
Coello (2000b) 0.20880 3.42050 8.99750 0.21000 1.7483094 
Siddall (1972) 0.2444 6.2189 8.2915 0.2444 2.3815433 
Ragsdell and Philipps (1976) NA NA NA NA 2.385937 
Deb (1991) 0.2489 6.173 8.1789 0.2533 2.433116 
 
Table 8. Statistical results for welded beam design problem (NA = Not Available) 
    Fitness 
Method Mean Worst Std evaluations 
Present study 1.727529953 1.72807450 0.0004207 30000 
Mezura-Montes et al. (2007) 1.725 1.725 1.00E-15 24000 
Coello and Mezura-Montes (2002) 1.792654 1.993408 0.074713 80000 
Coello (2000b) 1.77197269 1.78583465 0.0112228 900000 

 
The beam is designed for minimum cost subject to 
constraints on shear stress (τ), bending stress in the 
beam (σ), buckling load on the bar (Pc) end deflection 
of the beam (δ) and side constraints. In this problem 
there are four design variables namely; thickness of 
the beam h(= x1), length of the welded joint l (= x2),  
width of the beam t(= x3) and thickness of the beam b 

(= x4). It is important to note that in this problem, 
there are several models in the overviewed literature, 
with different number of constraints and variable 
definitions. In the present study, the results for the 
following optimization formulation are presented: 
 

2
1 2 3 4 2Minimize ( ) 1.1047 0.04811 (14 )f x x x x x x= + +

�

 
 

Subject to: 
 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )
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2
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where, τ is the shear stress in the weld (it has two 
components namely primary stress τ′ and secondary 
stress τ′′), τmax is the allowable shear stress of the weld 
(= 13600 psi), σ the normal stress in the beam, σmax is 

the allowable normal stress for the beam material (= 
30000 psi), Pc the buckling load, P the load (= 6000 lb) 
and δ the beam end deflection: 
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Welded Beam Design 

The presented algorithm has been tested on this 
optimization problem and compared with the best 
solutions by previous methods reported in Table 7. The 
optimal design vector was found to be: x1 = 0.20578, x2 = 
3.47294, x3 = 9.02922, x4 = 0.20608 with an optimal fitness 
value ( )f 1.726718x =

�

. In average, the time elapsed for one 

execution of the program is 1.82 sec and the average 
number of fitness evaluations for 20 runs is 30000. 
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Fig. 2. Average constraint-handling (CV) and best fitness function obtained with the proposed VCH method for numerical example 4 
 
Discussion 

In this paper, we have developed a constraint-
handling method for GA, free of any penalty parameters 
using only the violation factor called VCH (as 
summarized in the flowchart of Fig. 1) that is capable of 
sorting a population with both feasible and infeasible 
individuals.  In the proposed VCH method, at a given 
iteration, the individuals of the population are never 
compared in terms of both objective function value and 
constraint violation information. Essentially, the main 
motif is to keep the fitness function equivalent to the 
designer’s objective function and therefore the 
conversion of the constrained problem into an 
unconstrained one is no longer required. 

Genetic algorithms try to mimic the principle of the 
survival of the fittest, where newer generations are evolved 
in attempt to produce descendants with a better ‘fitness’. 
Because at all times the fitness function is equal to the 
objective function to be minimized, our proposed VCH 
technique is more conforming with the biological 
fundamentals of genetic algorithms. A major drawback of 
many techniques in the literature is that the constraint 
handling method requires a feasible initial population. For 
some problems, finding a feasible solution is NP-hard and 
even impossible for the problems with conflicting 
constraints. In the VCH approach, it is not required to have 
a feasible initial population. There are available techniques 
that ensure feasibility of the population when dealing with 
linear constraints such as (Yun, 2005) by means of 
mathematical programming. 

Compared to other constraint-handling techniques 
based on penalty functions, the VCH method was able to 
provide a consistent performance and demonstrated to be 
simpler, faster and delivered reliable optimal solutions 
without any violation of the constraints. As the 

population evolves, the VCH method will lead the search 
to reach faster feasible regions. This is revealed in Fig. 2, 
with the convergence of the average constraint violation 
of the elites towards zero (no violation) as the population 
evolves. The VCH method allows the closest solutions to 
the feasible region in favorable areas of the search space 
to remain in the population. Specific methods such as the 
reduced gradient method, cutting plane method and the 
gradient projection method are appropriate. However, 
they are only fitting either to problems having convex 
feasible regions or with few design variables. 
Furthermore, the overall results suggest that the 
proposed approach is highly competitive and was even 
able to contest (some cases improve) the results 
produced by other methods, some of which are more 
difficult constraint-handling techniques applied to 
genetic algorithms. The VCH algorithm was tested on 
several benchmark examples and demonstrated its ability 
to solve problems with a large number of constraints.  

Conclusion and Future Work 

The diversity and popularity of evolutionary 
algorithms does not imply that there are no problems that 
need urgent attention. From one point of view, these 
optimization algorithms are very good at obtaining 
optimal solutions in a practical time. On the other, they 
still lack in balance of accuracy, computational efforts, 
global convergence and the tuning and control of their 
parameters. Nature has evolved over millions of years, 
providing a rich source of inspiration for researchers to 
develop diverse algorithms with different degrees of 
success and popularity. Such diversity and 
accomplishment does not signify that we should focus 
solely on developing more algorithms for the sake of 
algorithm development, or even worse for the sake of 
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publication. This attitude distracts from the search for 
solutions for more challenging and truly important 
problems in optimization and new algorithms may be 
proposed only if they: 
 
• deliver truly novel ideas 
• demonstrate to be efficient techniques that solve 

challenging optimization problems (that are not 
solved by existing methods) 

• verify to the “3-self” (self-adaptive, self-evolving 
and self-organizing algorithms) 

 
It is vital to state that during the development of this 

technique, several other versions of the same approach were 
examined without much success. For example, different 
reproduction probabilities (crossover and mutation) were 
tested. The authors avoided a high mutation rate to prevent 
the method of becoming a random search, but choose to 
keep it at 0.05 for a more robust global search and 
exploration. More than a few other crossover techniques 
were examined but the objective of this paper was not to 
present a comparative study on their performance but rather 
present the parameter-free constraint-handling technique 
using the violation factor. It is still unclear how to achieve 
optimal balance of exploitation and exploration by proper 
parameter tuning of the evolutionary operators of GA in 
general and in the VCH algorithm in particular. The 
crossover operator ensured an efficient exploitation in the 
local search within a subspace and can provide good 
convergence in local subspace. The selection and mutation 
operators enabled the GA to have a higher ability for 
exploration. It could be argued that the VCH technique is 
competent because it does not require any fine-tuning of the 
GA, which is normally performed by trial and error and is 
time consuming. Finally, it is worth mentioning that for 
many of them, it is unclear if the authors implemented a 
stopping criterion or not. In our study however, a severe 
criterion was introduced based on the minimum relative 
error of the design variables. Moreover, the user–defined 
tolerance has to be respected for a number of generations 
before the execution is terminated. 

The main challenges that still require further 
examination are: The proof of convergence of some EA, 
control and tuning of parameters, the solution of large 
scale applications (e.g., the traveling salesman problem) 
and finally tackling Nondeterministic Polynomial (NP)-
hard problems. Solving these issues is becoming more 
imperative than ever before. Among these matters is the 
open question of constraint-handling in GA specifically 
to solve engineering optimization problems. The insights 
gained by the proposed VCH technique should have an 
impact on the manner constrained problems are solved. 

Lastly, the authors suggest in the upcoming work, 
further numerical simulations could be investigated for 
more complex optimization problems. It would be 

motivating to explore the integration of VCH technique 
in other EA’s such as Particle Swarm Optimization 
(PSO), ant Colony Optimization (ACO), Bee Colony 
Optimization (BCO) and Differential Evolution (DE). 
Parameter tuning of the evolutionary operators in GA is 
an active area of research and could be examined in 
future work. Present work is aimed at introducing the 
proposed constraint-handling technique in a multi 
objective platform for the optimization of the composite 
lay-out of wind turbine blades using a genetic algorithm 
as discussed in (Chehouri et al., 2015). 
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