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Abstract 29 

Relationships between environmental factors and stem radius variation at short temporal scales 30 

can provide useful information regarding the sensitivity of tree species’ productivity to climate 31 

change. This study used automatic point dendrometers to assess the relationship between 32 

environmental variables and stem radius contraction and increment in ten Fitzroya cupressoides 33 

trees growing in two sites, the Coastal Range (Alerce Costero National Park) and the Andean 34 

Cordillera (Alerce Andino National Park) of southern Chile. The growing season in each site, 35 

determined using stem daily cycle patterns for each month, was longer in the Coastal site than in 36 

the Andes. Warmer and sunnier conditions were positively related with daytime tree radius 37 

contraction in both areas, and relationships were stronger in the Coastal site where more 38 

pronounced shrinking events were associated with prolonged warm and dry conditions compared 39 

to the Andes. Stem increment was positively related with precipitation and humidity in both 40 

sites, reflecting the positive effect of water on cell turgidity and consequent enlargement. 41 

Relationships between stem radius change and environmental variables considering longer 42 

temporal scales (7 to 31 days), confirmed a stronger association with humidity/vapor pressure 43 

deficit and precipitation, rather than with temperature. Although Fitzroya grows in particularly 44 

wet and somewhat cool areas, current and projected drier and warmer summer conditions in 45 

southern Chile might have a negative effect on Fitzroya stem increment and carbon 46 

accumulation in both sites. This effect would be more critical in the Coastal Range compared 47 

with the Andes though, due in part to more limiting soil conditions and less summer precipitation 48 



in this area. Long-term research is needed to monitor different aspects of the response of these 49 

endangered ecosystems to this additional threat imposed by climate change.  50 

Keywords: dendrometer, stem daily cycle, stem increment, carbon accumulation, 51 

dendrochronology. 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 



 72 

 73 

1. Introduction 74 

Climate change is likely to have considerable effects on tree growth and forest productivity 75 

(Boisvenue et al., 2006); however, the directionality of these changes remains unclear. Positive 76 

effects on growth may occur due to CO2 fertilization of photosynthesis (although there is an 77 

ongoing debate on the extent of this effect on forests), as well as because of an increase in 78 

growing season length due to higher temperatures (Allen et al., 2010). Increases in productivity 79 

might be observed in cold climates due to warming, where water is sufficient to compensate for 80 

greater vapor pressure deficits, and also in water-limited systems due to precipitation increases. 81 

Negative effects on growth may occur due to increased evaporative demand due to warmer 82 

temperatures and deficits in precipitation (Fischlin, et al., 2007). The specific response of forests 83 

is likely to vary from site to site, so the mechanistic assessment of current tree growth-climate 84 

relationships can inform our understanding of species’ sensitivities to climate change.  85 

In southern Chile, summer temperatures are projected to increase up to 4° C and precipitation is 86 

projected to decrease up to 50% by 2100 in a medium-high greenhouse gas emission scenarios 87 

(Fuenzalida et al., 2007). In fact, a pronounced decrease in annual precipitation has been 88 

observed in the region during the last century in combination with an increase in the frequency of 89 

droughts, especially during the last 50 years (Trenberth et al., 2007; Christie et al., 2011; 90 

González-Reyes and Muñoz, 2013). These changes are likely to have a particular impact on the 91 

growth of endemic tree species, commonly adapted to high precipitation and cool climate 92 

conditions. 93 



Among the most compelling and least well-understood ecosystems in southern South America 94 

are Fitzroya cupressoides forests. Fitzroya, or alerce, is the second longest-lived tree in the 95 

world, with a maximum life span of >3600 years (Lara and Villalba, 1993). Fitzroya is endemic 96 

to the temperate rainforests of southern South America and mainly grows in the Andes of Chile 97 

and adjacent Argentina and in the Coastal Range of Chile between 39° 50’ and 43° S (Veblen 98 

and Schlegel, 1982, Lara et al., 2002). It is a giant conifer that can reach heights of > 50 m and 99 

diameters > 5 m (Donoso et al., 2006), thus representing a huge potential for long-term carbon 100 

sequestration and storage under undisturbed conditions. It is currently listed as endangered in the 101 

IUCN Red List of Threatened Species (IUCN, 2013).  102 

Despite the importance of Fitzroya given its long lifespan, slow growth, and conservation status, 103 

it has been poorly studied in terms of its physiology and growth responses to environmental 104 

conditions and climate change. Dendroclimatological studies have found that Fitzroya tree-ring 105 

growth is positively related with summer precipitation, and mainly negatively related with 106 

summer temperature, especially from the previous growing season (Villalba, 1990, Villalba et 107 

al., 1990, Lara and Villalba, 1993, Neira and Lara, 2000, Barichivich, 2005). It is likely however, 108 

that these are not the direct drivers of stem productivity, since this type of study focuses on 109 

growth processes at long time spans, leaving a gap in the understanding of the causal chain 110 

between cellular and radial growth (Köcher et al., 2012). Since inter-annual radial growth 111 

variability is the result of a combination of average climate conditions, as well as specific events, 112 

it is clear that the effect of short duration climatic events on radial growth in this species, cannot 113 

be detected using a dendrochronological approach (Duchesne and Houle, 2011).   114 

Cell division and enlargement, which are the main processes that contribute to growth, are 115 

considerably more sensitive to water changes than photosynthesis, having water availability a 116 



direct effect on growth (Sala et al., 2012 See also Deslauriers et al. 2014). Irreversible growth 117 

occurs in a cell when a certain pressure threshold in the tissue is exceeded, so when there is 118 

water deficit in the tree, this inhibits cell division, and more sensitively cell expansion (Hsiao 119 

and Acevedo, 1974, Lambers et al., 2008). Besides the positive effects of water, it has also been 120 

reported that temperature would be important in determining the growth rate of metabolic 121 

processes in the cambium, as temperature is minimum at night, when conditions are more 122 

suitable for growth (Drew et al., 2008, Pantin et al. 2012 New Phytol). One of the only and 123 

probably the most straightforward way to monitor growth at a short time scale and therefore 124 

assess the direct environmental correlates of radial increment in particular species is through the 125 

use of automatic dendrometers. This monitoring can provide valuable information regarding 126 

subtle differences in climate sensitivity among species or populations, and potential long-term 127 

limitations to forest productivity caused by climate change (Perez et al., 2009). High precision 128 

automatic dendrometers can provide information on variation in water storage throughout the 129 

year, as well as seasonal growth (Deslauriers et al., 2007a), and they have been widely used to 130 

describe stem growth phenology and to evaluate growth-climate relationships in various 131 

ecosystems (e.g. Downes et al., 1999, Deslauriers et al., 2003, Mäkinen et al., 2003, Bouriaud et 132 

al., 2005, Deslauriers et al., 2007b, Biondi and Hartsough, 2010, Köcher et al., 2012).  133 

To date, the only study that has assessed Fitzroya stem increment-climate relationships at a daily 134 

time scale was carried out using band dendrometers in Chiloé Island (at the southern distribution 135 

of Fitzroya in the Coastal Range, Perez et al., (2009)). The authors reported that daily stem 136 

growth was positively related to precipitation and negatively related to radiation. Nevertheless, it 137 

is not clear if these relationships hold for populations located towards the north in the Coastal 138 



Range, as well as in the Andes, where forests are much older and environmental conditions are 139 

different.  140 

We investigated environmental correlates of stem radial contraction and increment of Fitzroya 141 

trees growing in two distinct environments in southern Chile (the Coastal Range and the Andean 142 

Cordillera). These sites were chosen because they contain the main populations of this species 143 

and the forests greatly differ in their structure, disturbance regime and environmental conditions.  144 

The studied stands are representative of the widespread condition of forests in each range, with 145 

old and large trees in the pristine Andean area and younger and smaller trees in the Coastal 146 

Range, where there has been a permanent influence of fires. We sought to resolve the following 147 

questions: 1) How do the stem radial change patterns compare between trees growing in these 148 

two areas?, 2) What environmental variables are related to daily stem radial contraction and 149 

increment in both sites?, 3) How can we better interpret the coarse-scale dendroclimatological 150 

relationships previously reported for this species?, and 4) Considering findings from objectives 151 

1-3, what are the implications of climate change for Fitzroya stem growth and carbon 152 

sequestration in these two areas? 153 

 154 

2. Methods 155 

2.1. Study sites and tree selection 156 

The study was conducted in the Alerce Costero National Park, close to the northern distribution 157 

of Fitzroya in the Coastal Range at 850 m.a.s.l (40° 10’ S, 73° 26’ W) and in the Alerce Andino 158 

National Park in the Andean Cordillera at  760 m a.s.l  (41° 32’ S, 72° 35’ W, Figure 1). Mean 159 

annual precipitation and temperature in 2012 were 4,860 mm and 7.26° C in the coastal site and 160 

ca. 6,600 mm and ca. 6.89° C in the Andes (Urrutia-Jalabert, 2014).  161 



The effective soil depth in Alerce Costero is generally thin (29 to 67 cm), and soils are brown-162 

earths and severely podzolized (Veblen and Ashton, 1982, Urrutia-Jalabert, 2014). Soil texture in 163 

the upper horizon is mostly sandy-loam and organic matter content is ca. 10%. The studied forest 164 

is medium-age, dense (1415 trees/ha, considering trees ≥10 cm diameter at breast height (DBH)) 165 

and predominantly dominated by Fitzroya. Sampled trees were dominant and ranged between 166 

35.5 and 47.9 cm DBH and 14.4 and 15.8 m height. In Alerce Andino, the effective soil depth is 167 

larger than in the Coast (56 to 100 cm), soils are derived from volcanic material (silty-loam 168 

texture) and contain a high amount of organic matter in the upper horizon (ca. 80%, Urrutia-169 

Jalabert, 2014). The studied forest is old-growth, less dense than in the coast (782 trees/ha) and 170 

Fitzroya is the most important species in terms of basal area. Sampled trees were dominant and 171 

ranged between 82.5 and 161.5 cm DBH and 33.2 and 35.6 m height.  172 

 173 

 174 

 175 

 176 



 177 

Figure 1. Study sites in the Alerce Costero and Alerce Andino National Parks in southern Chile. 178 

The approximate location of the three major physiographic units in the area is shown (Coastal 179 

Range, Central Depression and Andean Cordillera). The distribution of Fitzroya forests north of 180 

41° 45’ S is also displayed. 181 

 182 

2.2. Dendrometer data collection 183 

From Spring 2011 (October-November) to Fall 2013 (May 2013), stem size variation was 184 

recorded in five dominant trees per site every 30 minutes and averaged over each hour using 185 

automatic point dendrometers (DR model, Ecomatik, Munich, Germany) installed at breast 186 



height. The instrument consists of a displacement transducer that is anchored to the tree using 187 

two screws. The instrument resolution is 2.6 µm and thermal expansion is < 0.1 µm/K. The 188 

temperature variation does not affect the sensor measurements, and due to construction the 189 

thermal expansion of the framework is negligible. To reduce the influence of bark expansion and 190 

contraction, the outermost part of the bark was removed taking care to not damage the cambium. 191 

Raw measurements of every dendrometer were carefully checked and noisy or unexplained data, 192 

such as periods with constant or sudden extreme values, were removed for further analyses. 193 

 194 

2.3. Environmental data 195 

A weather station (Skye Instruments, Powys, UK) recording precipitation, temperature, relative 196 

humidity and total radiation was installed < 1 km from the monitored trees at each site. In 197 

addition, one soil temperature sensor (Decagon EC-T, Pullman, USA) was installed close to the 198 

monitored trees in each site at 10 cm below the surface. Data were recorded every 30 minutes 199 

and hourly means were calculated. Vapor pressure deficit (VPD, hPa) was calculated from the 200 

hourly means of temperature and relative humidity (Jones, 1992).  201 

 202 

2.4. Growing season estimation 203 

Since only the growing period is recommended to be used to examine correlations with 204 

environmental parameters (Deslauriers et al., 2007a), some studies have assessed this period 205 

using micro-coring techniques and subsequent cell analyses (Deslauriers et al., 2003, Rossi et al., 206 

2006). Alternatively, growing season estimates have commonly relied on meteorological 207 

parameters (e.g. the period between the last spring and the first fall frost), phenological 208 

observations and satellite data, among others (Zhou et al., 2001, Menzel et al., 2003). Here, in 209 



order to assess site-specific periods according to patterns of stem variation recorded by trees, an 210 

analysis of the daily cycle was performed. During the growing season, a clear pattern of daytime 211 

contraction and nighttime expansion (with high amplitudes) should be observed; while during the 212 

dormant season, amplitudes should be much lower in temperate climates or cycles can even be 213 

inverted in cold climates (Turcotte et al., 2009, Devin and Harrington, 2011, King et al., 2013). 214 

Therefore in each site, the amplitude of the daily cycle (from 0 to 23 hours) was calculated for 215 

each month including the mean of all dendrometers for the whole sampling period. 216 

The daily cycles of each month were scaled to start in zero and a K-means cluster analysis with 217 

k=2 was used to divide the year in two periods: non-active and growing season. This clustering 218 

procedure is a partitioning method that finds a single partition for a group of objects; where 219 

objects within each cluster are more alike to one another than to objects assigned to other clusters 220 

(Legendre and Legendre, 2012). To confirm the definition of clusters, a hierarchical cluster 221 

analysis using the R package “pvclust” was performed (Suzuki and Shimodaira, 2006). Data 222 

recorded during the months defined as the growing period were used for subsequent analyses 223 

focused on the relationship between stem radius change and climate.  224 

 225 

2.5. Extraction of stem radius variation 226 

In order to extract the stem radius variation during the growing period, the stem cycle approach 227 

was used in this study (Downes et al., 1999 modified by Deslauriers et al., 2003). This approach 228 

uses stem shrinking and swelling to divide the stem cycle into three different phases: contraction, 229 

expansion and stem radius increment (Downes et al., 1999, Deslauriers et al., 2003, Figure 2). 230 

Contraction (phase 1), includes the period between the morning radius maximum and the 231 

afternoon minimum and expansion (phase 2) includes the total period between the radius 232 



minimum to the next morning maximum. Stem radius increment (ΔR or phase 3) corresponds to 233 

the portion of the expansion phase from the time the stem radius surpasses the morning 234 

maximum until the following maximum, and has been considered as an estimate of growth 235 

(Deslauriers et al., 2003, Deslauriers et al., 2007a). When the previous cycle maximum was 236 

reached a positive stem radius change (ΔR +) was calculated. When this maximum was not 237 

reached, a negative stem radius change (ΔR -) was defined; however, only positive values were 238 

used for further analyses. The duration of each phase (h, hours) was also estimated. 239 

Environmental variables were also processed according to each phase division in order to match 240 

them with stem data. Analyses were carried out using a routine specially developed for this 241 

purpose by Deslauriers et al., (2011) using the SAS software (SAS Institute, Cary, NC). 242 

The stem circadian cycle commonly lasts around 24 hours, but rain events can result in longer or 243 

shorter cycles (Deslauriers et al., 2003, Deslauriers et al., 2007a, Deslauriers et al., 2007b, Figure 244 

2). We defined regular (24h ±3h), short (< 21h) and long (>27h) cycles (Deslauriers et al., 245 

2007b, Turcotte et al., 2009).  246 

 247 

 248 

 249 

 250 

 251 

 252 



Date

2/1/2013 3/1/2013 4/1/2013 5/1/2013 6/1/2013 7/1/2013 8/1/2013

S
te

m
 r

a
d
iu

s
 v

a
ri
a
ti
o
n
 (

m
m

)

1.60

1.62

1.64

1.66

1.68

1.70

1.72

1.74

1.76

Expansion (phases 2 and 3)

Stem radius increment (phase 3)

1
2

3

Long cycle

Regular cycle

Contraction (phase 1)

 253 

Figure 2. Cycles in stem variation divided in three distinct phases: contraction (phase 1), 254 

expansion (phases 2 and 3) and radius increment (phase 3). Each dot represents an hourly 255 

measurement and the cycles are an example of data recorded during the first week of January 256 

2013 in one tree from the coastal site.  257 

 258 

2.6. Relationship between stem radius change and climate variables 259 

In order to find the environmental correlates of stem radius change, bootstrapped correlations 260 

were calculated between stem contraction (magnitude of phase 1) and stem radius increment 261 

(magnitude of phase 3) and the environmental variables occurring during each phase (average or 262 

sum (precipitation) of values for the respective phase). The Kendall tau-b correlation coefficient 263 

(Ƭ) was used since these relationships did not comply with all assumptions for a parametric test 264 

and the data contained tied observations (tied ranks). To make variables independent from each 265 

other and avoid using non-stationary data in the correlation analyses, the first difference was 266 

used for contraction and for all the climate variables, except precipitation. Mean correlations 267 



were significant if after 1000 bootstrapped iterations their absolute values were at least two times 268 

their standard deviations (SD) (Deslauriers et al., 2003). Data for the two estimated growing 269 

seasons (2011-2012, 2012-2013) were used.  270 

Correlations were performed considering all cycles, as well as regular cycles alone, allowing to 271 

primarily assess the effect of long cycles on the relationship between climate and stem radius 272 

change. In addition, phase duration could be highly dependent on environmental factors and the 273 

effect of these factors on stem increment could be indirect through phase duration (Deslauriers et 274 

al., 2007b). As such, partial correlations were performed for all cycles’ data using duration as a 275 

partial correlate.  276 

Finally, to examine the relationships between stem radius change and environmental variables at 277 

a longer time-scale, and thereby establish a better link with dendrochronological findings, 278 

correlations were also performed using time windows of 7, 21 and 31 days. For this purpose, the 279 

daily maximum radius was obtained and the first difference (difference between the maximum 280 

stem radii of two subsequent days) was used as a proxy of daily stem radius change (all data, 281 

including positive and negative values were used). A moving average for 7, 21 and 31 days was 282 

calculated for the mid-point of each window position and the deviations of each daily value from 283 

the mean average were calculated for the dendrometer and environmental data to perform 284 

correlations using these anomalies.  285 

In order to have a spatial representation of the environmental variables mostly related with stem 286 

radial change, and since most environmental parameters are strongly correlated, a principal 287 

components analyses (PCA) was performed using all the variables during each time period. 288 

Variables were logarithmically transformed as necessary to comply with linear relationships for 289 

the PCA.  290 



3. Results and Discussion 291 

3.1. Patterns of stem radius change 292 

Radius variation in all trees showed characteristic seasonal patterns in both sites (Figure 3). Most 293 

of variation and stem increment were observed during the period of higher temperature, radiation 294 

and VPD in spring and summer (~November-December through March). Precipitation was 295 

abundant all year long, with lower values recorded during summer (average of 839 and 1413 mm 296 

during December-February in Alerce Costero and Alerce Andino, respectively, Figure 3). The 297 

amplitude of stem variations was lower during winter months in both sites and generally higher 298 

in the Coastal Range than in the Andes throughout the year. Trees responded synchronously in 299 

both study sites. 300 

Stem radius especially in two trees from the coastal site and in one tree from the Andes 301 

decreased during the summer of the first year, reaching the lowest values at the end of December 302 

2011 and beginning of January 2012. This decrease corresponded with a rainless period of 15 303 

days, accompanied with high values of radiation and temperature. The magnitude of this 304 

shrinking event was higher in the Coastal Range than in the Andes. An important shrinking was 305 

also observed in most trees of both sites during the second half of January 2013. This 306 

corresponded to a period of very little precipitation during 17 days, with the warmest 307 

temperatures registered during the whole studied period (mean values of 16.9° and 16.1° C in 308 

Alerce Costero and Alerce Andino, respectively). January was a particularly dry and hot month, 309 

where minimum and maximum temperatures in Valdivia (at a low altitude close to Alerce 310 

Costero) were up to 2° C and 4.9° C warmer than the climatological mean (1961-1990), 311 

respectively (Quintana and Aceituno, 2013). The amplitude of this decrease was also larger in 312 

the coastal site than in the Andes and both periods with strong shrinking were the longest ones 313 



with almost no precipitation and warm temperatures in both areas. Strong stem shrinking in the 314 

middle of the summer was also reported for Fitzroya, but not for other evergreen broadleaf 315 

species in Chiloé, when a strong El Niño event (1998) affected the region and a long rainless and 316 

warm period (26 days) hit Southern Chile (Perez et al., 2009). According to these authors, radial 317 

growth of Fitzroya is negatively affected by increased evaporative demand during rainless and 318 

sunny periods.  319 

 320 
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Figure 3. Stem radius variation of the five trees monitored in each site and climate data from 326 

Alerce Costero (AC, left) and Alerce Andino (AA, right) for the whole studied period. Higher 327 

variability in stem radius is displayed during austral spring-summer months, when mean 328 

temperature, radiation and vapor pressure deficits (VPD) are higher and precipitation is a bit 329 

lower. 330 

 331 

 332 



3.2. Growing season estimation, cumulative radial increment and cycle 333 

characterization 334 

The evident higher stem activity during spring-summer compared to fall-winter resulted in a 335 

clear pattern of physiological activities suitable for wood formation and helped to estimate a 336 

potential period of growth in both study sites. According to the K-means cluster analyses, the 337 

growing season which was characterized by higher stem daily amplitudes, was estimated to 338 

occur from November to March in the Coastal Range and from December to February in the 339 

Andes (Figure A1, appendix). The remaining months in both sites were assigned to the second 340 

cluster and could be considered as part of a dormancy or “less active” period (Figure A1). These 341 

results were confirmed by the hierarchical cluster analysis (results not shown). In spring and 342 

summer, the increases in temperature and radiation drive greater evaporative demand during the 343 

day that contribute to deplete stem water reserves and, combined with the refilling at night, 344 

increase the amplitude of diurnal cycles (King et al., 2013). The lower daily amplitude observed 345 

during fall and winter seems characteristic of temperate regions, where there are no pronounced 346 

freeze-thaw events that could affect stem variation (Turcotte et al., 2009, Devine and Harrington, 347 

2011, King et al., 2013). 348 

These results agree with the difference in climate between both sites, with air temperature, and 349 

particularly soil temperature and radiation being most of the time lower in the Andes than in the 350 

Coastal Range (Figure A2, appendix). Mean summer air temperature (December-February, 2012 351 

and 2013) was 11.9° and 11.1° C in Alerce Costero and Alerce Andino, respectively. Mean 352 

radiation was 259 and 218 W m
-2 

and mean soil temperature was 11.1° and 9.4° C in the coastal 353 

site and the Andes, respectively. 354 



The shorter growing season in Alerce Andino is in agreement with Donoso et al., (1990) who 355 

stated that the growing season should be significantly shorter in the Andes than in the Coastal 356 

Range due to a more intense snow precipitation during winter and long-lasting snow cover in 357 

spring. 358 

The mean cumulative radial increment in trees from Alerce Costero was 0.41 (±0.21) and 0.25 359 

mm (±0.02) for the growing seasons 2011-2012 and 2012-2013, respectively. In Alerce Andino, 360 

the mean cumulative radial increment was 0.31 mm (±0.23) and 0.25 mm (±0.13) for 2011-2012 361 

and 2012-2013, respectively. These results indicate that tree growth in both sites was lower 362 

during the second growing period (2012-2013), likely due to the strong decreases in stem radius 363 

recorded in most trees during January 2013 in both areas. 364 

In terms of cycle characterization, in the coastal site 75% of the cycles were classified as regular 365 

cycles, 17% as long cycles and 8% as short cycles. The longest cycle in this site lasted 128 hours 366 

(Figure A3, appendix). In the Andes, 70% of the cycles were classified as regular cycles, 20% as 367 

long cycles and 10% as short cycles. The longest cycle event lasted 126 hours (Figure A3). 368 

On average, the contraction phase was longer in Alerce Costero (9.3 h ±2.5) than in Alerce 369 

Andino (8.3 h± 2.8, p<0.05). The mean time when this cycle started in the morning was 9:48 h 370 

(±2:04) in the coastal site, and 8:48 h (±2:06) in the Andes, and it was later in Alerce Costero 371 

mainly due to lower temperatures and higher relative humidity conditions in the early morning, 372 

because of the oceanic influence of this area.  373 

The duration of the expansion phase varied considerably due to rainfall events, ranging from 1 to 374 

118-119 h in the coastal site and the Andes, respectively. The mean start time of this event was 375 

19:24 (±1:48) in the coast and 17:12 h (±2:22) in the Andes. The longest increment phases were 376 

observed to last 108 and 115 h in Alerce Costero and Andino, respectively.  377 



The longer contraction phase in Alerce Costero than Alerce Andino was mainly due to the higher 378 

radiation and air temperature experienced by trees during the day (from 09:00 to 19:00 h) in the 379 

former site (540 W m
-2

 and 14.3° C) compared with the latter (465 W m
-2

 and 13.1° C) during 380 

summer (December-February).  381 

Additionally, a higher amplitude of contraction was found in the Coastal Range (0.06 mm) 382 

compared to the Andes (0.01 mm, p<0.05), indicating that trees in the coast would utilize their 383 

internal stem water reserves faster than in the Andes (King et al., 2013). One possible 384 

explanation for this would be the difference in soil conditions between both sites: the Alerce 385 

Costero site is characterized by shallower soils with lower water retention capacity, which is 386 

accentuated by the sandy texture and less organic material in this site compared to Alerce 387 

Andino (Barichivich, 2005, Gerding, 2013). These characteristics would result in a greater 388 

resistance of water flow from the soil, causing higher amplitudes of stem variation and a higher 389 

use of the stem water pool during the day (Sevanto et al., 2005). Soil water content 390 

measurements in each site during summer (at a monthly basis at 12 cm depth) partly reflect the 391 

differences that exist between areas: values reached 39% and 50% in Alerce Costero and Andino 392 

during 2011-2012 and 32% and 51% during the drier summer (2012-2013). A particularly strong 393 

drop in water content was observed during January and February 2013 in the Coastal site 394 

(Urrutia-Jalabert, 2014). An additional explanation for the difference between sites, would be 395 

that conditions are commonly cloudier and rainier (~40% more precipitation during December-396 

February) in Alerce Andino than in Alerce Costero, and daily contraction amplitudes have been 397 

reported to be lower on overcast or rainy days (Devine and Harrington, 2011, King et al., 2013). 398 

The higher amplitude of contraction in the coastal site could not be explained by a higher amount 399 

of bark in trees from this site, since most bark was removed and trees have thinner bark in the 400 



coast than in the Andes. Finally, an alternative explanation might be that larger and taller 401 

Fitzroya trees in the Andes have a greater sapwood capacitance compared to the trees from the 402 

Coastal Range which would depend more on soil water availability (Scholz et al., 2011).  403 

 404 

3.3. Relationships between environmental factors and stem radius change 405 

Considering all and just regular cycles, stem contraction during the day in both sites was 406 

positively related with mean and maximum temperatures, VPD and radiation (Figure 4). 407 

Humidity on the other hand, was negatively related with contraction (Ƭ=-0.58) and precipitation 408 

also was negatively related with this variable, but just in Alerce Costero when considering all 409 

cycles (Figure 4). This is in agreement with what was found by Devine and Harrington (2011) 410 

for young Douglas-fir and supports the above reported statement that warmer and drier 411 

conditions are usually associated to strong stem shrinking patterns. Relationships were stronger 412 

in the coastal site than in the Andes, meaning that trees in the former site would be more 413 

sensitive to environmental conditions that make the stem contract.  414 

Stem radius increment mainly occurs at night or early morning, as was corroborated in this 415 

study. It has been reported that cell enlargement takes place mostly at night or on rainy days, 416 

when turgor is high and cambium is supplied with optimal water availability (Dünisch, and 417 

Bauch, 1994, Downes et al., 1999, Deslauriers et al., 2003, Steppe et al., 2006, Gruber et al., 418 

2009). During the day, more water is lost through transpiration than absorbed through the roots, 419 

so an internal water deficit affects trees and transpiration would negatively affect radial 420 

expansion (Tardif et al., 2001).  421 

Stem increment had a significantly positive correlation with precipitation and humidity 422 

considering all cycles in the Coastal Range. VPD and radiation on the other hand, had a negative 423 



correlation with this factor. In the Andes, the pattern was more or less the same, but maximum 424 

temperature was also significantly and positively correlated with stem increment and radiation 425 

was not correlated with this factor (Figure 4). Radiation was not important, probably because it is 426 

lower in this site. When performing correlations just considering regular cycles in the coastal 427 

site, correlation with precipitation was not significant implying that the relationship between 428 

precipitation and stem increment is just seen when long precipitation events occur in this site. 429 

Additionally, a higher negative correlation with radiation was observed and a slightly significant 430 

positive relationship was obtained with soil temperature. In the Andes, relationships remained 431 

significant for the same variables, although correlation with precipitation decreased considerably. 432 

In addition, a positive correlation with soil temperature also appeared in this site (Ƭ=0.21, Figure 433 

4). Since VPD is derived from and strongly related to air humidity, relationships between these 434 

variables and stem radius change were usually similar in magnitude, but in opposite directions. 435 

The positive relationship between maximum night temperature, soil temperature and stem 436 

increment particularly in the Andes, can be justified due to generally colder conditions in this site 437 

compared to the Coastal Range. A number of studies have reported a positive relationship 438 

between night temperatures and stem increment (Deslauriers et al., 2003, Xiong et al., 2007, 439 

Drew et al., 2008). Night-time temperatures have been found to have a greater effect on tracheid 440 

expansion than daytime temperatures (Richardson and Dinwoodie, 1960, Richardson, 1964, 441 

Dünisch, 2010). Moreover, low night temperatures were reported to negatively affect the 442 

expansion of differentiating tracheids in Podocarpus latifolius (Dünisch, 2010). The positive 443 

relationship between soil temperature and stem increment on the other hand, could be associated 444 

to a positive effect of warmer soil temperatures on root water uptake and stem rehydration and 445 

the consequent beneficial effect on internal water balance (Tardif et al., 2001, Perez et al., 2009). 446 



Precipitation and humidity have been usually reported to positively affect stem increment in 447 

different conifer and broadleaved species (Deslauriers et al., 2003, Deslauriers et al., 2007b, 448 

Duchesne and Houle, 2011, Krepkowski et al., 2011, Köcher et al., 2012). The direct effect of 449 

precipitation on radial growth is to increase the water status in the stem, inducing high water 450 

potentials that favor cell enlargement (Steppe et al., 2006). Humidity on the other hand, also 451 

contributes reducing the negative pressure in the conducting system, helping to increase turgor 452 

(Köcher et al., 2012). In the same sense, high VPD acts to inhibit cell enlargement and growth, 453 

due to its indirect effect on cell turgidity (Pantin et al. 2012). 454 

It is relevant to highlight the importance of maintaining the water status in the stem, through 455 

adequate precipitation and humidity conditions, in order to induce cell enlargement and radial 456 

growth in this species. This occurs even in our very rainy sites which receive more than 800 mm 457 

of precipitation during summer. 458 

 459 
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Figure 4. Left panel: Kendall tau-b correlations between environmental variables in Alerce 467 

Costero (AC) and Alerce Andino (AA) and stem contraction (top panel) and increment (bottom 468 

panel) considering all cycles. Right panel: Kendall tau-b correlations between environmental 469 

variables in Alerce Costero and Alerce Andino  and stem contraction (top panel) and increment 470 

(bottom panel) considering just regular cycles. Significant correlations are present when the error 471 

bar does not cross cero. 472 

 473 

Figure 5 shows correlations between environmental factors and duration of the increment phase 474 

(phase 3), as well as partial correlations between environmental factors and stem radius 475 

increment using duration as the partial correlate (considering all cycles). Precipitation showed 476 

the highest correlation with duration in both study sites, so when rainfall was higher duration of 477 

the increment phase was longer. Humidity also had a significant positive correlation with 478 

duration of the increment phase in Alerce Andino, but not in Alerce Costero. VPD and minimum 479 

temperature had a negative correlation with duration of cycles in both areas. In the coastal site, 480 

radiation also had a negative correlation with cycle duration (Figure 5). 481 



Partial correlations were performed given the positive and significant relationship between 482 

duration and stem radius increment (kendall tau-b =0.52 in both sites). Only humidity and VPD 483 

remained as variables with significant correlation with stem radius increment in the coastal site. 484 

The other variables that were reported as significant in Figure 4 (precipitation and radiation) 485 

would have an indirect relationship with stem increment through phase duration. The fact that 486 

the positive effect of precipitation is mediated through duration, can be explained probably 487 

because soils do not have good water retention capacity, so more rainy days are needed in order 488 

to induce growth. On the other hand, the above reported negative relationship with radiation was 489 

mainly mediated through duration in this site. More radiation shortens the expansion/increment 490 

phases, reducing the favorable period for growth. Radiation increases transpiration and water 491 

loss from the tree, causing less cell turgidity and consequently less cell enlargement (, add more 492 

recent references such as Pantin or others). 493 

In the Andes, correlations remained significant for all the reported variables in Figure 4 (Figure 494 

5).  495 

Finally, since prevailing weather conditions mostly during the expansion phase have been shown 496 

to affect tree radial increment (Deslauriers et al., 2003), correlations were performed between 497 

environmental conditions during this phase and stem increment. This was done just using regular 498 

cycles to minimize the effect of large differences in duration between phases. The only variables 499 

that were related with increment were humidity (Ƭ=0.24) and VPD (Ƭ =-0.19) just in Alerce 500 

Andino, but these correlations were lower than when using environmental variables from the 501 

increment phase.  502 

General findings in this study are in agreement with Perez et al., (2009), who reported a positive 503 

effect of precipitation, soil hydration and temperature and a negative effect of photosynthetic 504 



active radiation on the radial increment of Fitzroya from Chiloé. Strong shrinkage events were 505 

equally experienced by trees from these areas, located in both extremes of the Coastal Range.  506 
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Figure 5. Top panel: Kendall tau-b correlation coefficients between environmental factors and 509 

duration of the increment phase in Alerce Costero (AC) and Alerce Andino (AA). Bottom panel: 510 

Partial correlations between environmental factors and stem increment considering duration as 511 

the partial correlate. Significant correlations are present when the error bar does not cross cero. 512 

 513 

3.4. Insights and interpretation of findings in dendrochronological studies 514 

Relationships between stem radius change and environmental variables considering longer time 515 

scales revealed that correlations with precipitation, humidity and VPD remained significant and 516 

even increased in the case of humidity and VPD, compared with correlations using the daily 517 

increment (considering all cycles) in both sites. Moreover, negative correlations with mean and 518 



maximum temperature were also significant, as well as with radiation in both areas (Table A1, 519 

appendix).  520 

The PCA plots (component 1 vs. component 2) for the different time scales highlight the close 521 

positive association between stem radius change and precipitation and humidity (Figure 6). A 522 

negative association was particularly strong with radiation at longer time scales in both sites. For 523 

conciseness, and since patterns for 21 and 31 days were the same, Figure 6 shows only the 524 

“daily”, 7 and 31 days results. “Daily” here and in the rest of the text refers to the time scale 525 

given by the stem cycle. Principal components 1 and 2, explained 58.5, 73.6 and 78.8% at a 526 

“daily”, 7 and 31 days scale in the coastal site. In the Andes these values were 60.6, 76.3 and 527 

79.5%, respectively. 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 



Figure 6. Principal component analysis between a) stem radius increment and environmental 537 

variables at a “daily” basis in Alerce Costero (AC), b) stem radius change and environmental 538 

variables at a time scale of 7 days in the same site and c) stem radius change and environmental 539 

variables at a time scale of 31 days also in Alerce Costero. d),e), f) the same as a),b) c), but for 540 

Alerce Andino (AA). Arrows in each plot point towards the stem increment/stem radius change 541 

variable. Environmental variables closely located to the stem radius variables or in direct 542 

opposite direction are more strongly related to them (closer variables are positively related and 543 

opposite variables are negatively related). 544 

 545 

 546 
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Climate-tree growth relationships established in dendrochronological studies have a limited 547 

explanatory power in terms of an implicit growth mechanism (Zweifel et al., 2006), so a better 548 

understanding of the processes behind these relationships in Fitzroya can be obtained using this 549 

high-resolution study. The reported negative relationships of Fitzroya tree-ring width with 550 

summer temperature (Villalba, 1990, Villalba et al., 1990, Lara and Villalba, 1993, Neira and 551 

Lara, 2000, Barichivich, 2005) mainly appeared when longer time scales were considered in this 552 

study. This relationship can be understood through the strong shrinking events recorded in 553 

Fitzroya when long warm, sunny and particularly dry periods occur. This would reduce the 554 

number of days with appropriate climate conditions for growth to take place, producing a smaller 555 

tree ring.  556 

The correlation and the PCA examined together indicate that variables directly influencing the 557 

stem water status, namely humidity, precipitation and VPD, had a stronger relationship with stem 558 

radius change. In the second place, radiation and, to a lesser extent, maximum temperatures were 559 

negatively related with this variable. It is likely that these negative correlations are a by-product 560 

of the strong correlation between humidity and radiation, and between VPD and maximum 561 

temperature, rather than a direct causal relationship among radiation/temperature and growth 562 

rate. It is noteworthy that mean temperature had a weaker relationship with stem radius change 563 

and minimum temperature did not have any significant relationship at all. This suggests that 564 

maximum temperature would matter, because of its links with VPD, rather than through direct 565 

effects on plant metabolism. Hence the results support the primary influence of humidity 566 

conditions on cell growth rates on the studied time scales. The negative association between tree-567 

ring width chronologies and summer temperature appears to be mediated through the effect of 568 



temperature on VPD. The use of multiple variables in this study, although correlated among 569 

them, provided important insights that would not be possible to obtain with just a few of them. 570 

The reported negative effect of previous summer temperature and precipitation on the other 571 

hand, can be because warm temperatures are usually associated with dry conditions in the study 572 

area, and hence carbon assimilation can be reduced if stomata close (McDowell et al., 2008, Sala 573 

et al. 2012). Less carbon assimilation would result in less carbon reserves and a smaller tree-ring 574 

during the next season. Moreover, high temperatures during the previous growing season 575 

combined with higher respiration rates reduce the starch reserves in the stem that can be used for 576 

the following growth period (Deslauriers et al. 2014).  577 

Finally, the positive relationships between tree-growth and summer precipitation found here are 578 

consistent with the findings of dendrochronological studies (Neira and Lara, 2000, Barichivich, 579 

2005).  580 

 581 

3.5. Stem growth sensitivity to climate change  582 

Findings of this study allow some tentative inferences to be made regarding the vulnerability of 583 

Fitzroya’s growth rates to climate variations. Current and projected climate change, 584 

characterized by decreased precipitation and warmer temperatures in southern Chile (González-585 

Reyes and Muñoz, 2013, Fuenzalida et al., 2007), might have a negative effect on the carbon 586 

sequestration capacity and long-term storage of Fitzroya populations from both study sites. 587 

However, Fitzroya’s radius variation currently appears to be especially sensitive to dry and warm 588 

conditions in Alerce Costero, meaning that forests growing under similar restrictive site 589 

conditions in the Coastal Range are more vulnerable to experience stem shrinking and lower 590 

growth compared with trees from the Andes. Strong stem shrinking is experienced by Fitzroya 591 



trees in the coastal site even during years that are not as extreme as El Niño years, which 592 

indicates that restrictive soil conditions and a more Mediterranean climate influence can make 593 

Fitzroya tree growth more vulnerable to future climate change. In addition, precipitation seems 594 

to be related with stem increment on a daily basis in Alerce Costero only when long rainfall 595 

events take place, so less precipitation in the future, may negatively affect this variable. A 596 

significant negative trend in tree-ring growth and basal area increment has been observed in this 597 

site especially in the last 40 years, likely reflecting the effect of decreased precipitation and the 598 

indirect effect of increasing maximum temperatures on stem radial growth (increasing trend in 599 

summer maximum temperature in Valdivia for the period 1960-2009, Urrutia-Jalabert, 2014). 600 

These environmental conditions are probably leading to more frequent or more pronounced stem 601 

shrinking events and consequently to lower radial increment in trees from this site. This trend has 602 

not been seen so far in the older trees from the Andean site (Urrutia-Jalabert, 2014). 603 

It is important to emphasize, however, that further studies should address measurements of 604 

leafwater potential, sapwood capacitance and carbon reserve in Fitzroya trees, especially during 605 

dry periods, to assess to what extent they are affected by these conditions. In the case of trees 606 

from the Andes, and since it has been reported that absolute daily reliance on stored water across 607 

different species is higher in larger trees; stored water might help avoiding embolism conduits in 608 

a future drier climate (Scholz et al., 2011). 609 

 610 

4. Conclusions and implications 611 

This study is the first to assess, at a high resolution level, the relationship between stem radius 612 

contraction and increment and environmental conditions in Fitzroya trees growing in the Andes 613 

and Coastal Range of southern Chile. The high resolution approach that we used was unique in 614 



allowing us to track the seasonal course of stem radius variation throughout the studied period 615 

and estimate a growing season for each area based on the definition of stem daily cycles. 616 

Moreover, we could explore the stem daily cycle in detail, understand its differences between 617 

sites and define the contraction and increment phases for subsequent correlation analyses. We 618 

found that stem radius contraction was positively related with radiation, temperature and VPD in 619 

both sites, so sunnier, warmer and less humid conditions conducive to higher transpiration rates, 620 

were associated to stronger stem contraction and shrinking events. The amplitude of these events 621 

was more pronounced in Alerce Costero than Alerce Andino, reflecting a higher sensitivity of 622 

this site to these growth-adverse conditions. Stem increment on the other hand, was primarily 623 

related with precipitation and humidity in both sites, reflecting the positive effect of water on 624 

stem water potential and especially cell enlargement. Relationships with humidity/VPD were 625 

stronger when considering longer time scales (7 to 31 days), and VPD appears to be the driver of 626 

the previously reported negative correlations between tree-ring width chronologies and 627 

temperature. Projected climate change in southern Chile is likely to impose restrictions to 628 

Fitzroya’s stem radius increment and carbon uptake, especially in the Coastal Range. This is 629 

somewhat surprising given the high amounts of annual precipitation that fall in Fitzroya sites. 630 

Long-term monitoring is needed in order to assess the responses of these forests total 631 

productivity to climate variations. Future research on Fitzroya forests should concentrate on 632 

multi-scale assessments ranging from cellular-scale analyses to determine the environmental 633 

variables that mostly influence xylogenesis, to ecosystem-scale studies to assess the actual 634 

condition of these forests and their interaction with climate (e.g flux towers). This knowledge is 635 

fundamental to better understand the vulnerability of these unique ecosystems and their carbon 636 

sequestration capacity to climate change. 637 
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Figure A1. Daily cycles found for the mean of the stem radius variation in Alerce Costero (AC, 820 

top) and Alerce Andino (AA, bottom). Months depicted in bold black, which present more 821 

defined and higher amplitude cycles, were the ones selected as the growing season according to 822 

K-means cluster analysis. 823 
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Figure A2. a) Daily mean air temperature for the period October 2011-May 2013 in both study 826 

sites (Alerce Costero, AC and Alerce Andino, AA), b) daily mean soil temperature and c) daily 827 

mean total solar radiation. For illustration purposes data were smoothed using a cubic spline 828 

designed to reduce 50% of the variance in a sine wave with a periodicity of 25 days. Soil 829 

temperature and radiation are clearly higher in Alerce Costero than Alerce Andino throughout 830 

the year, but the difference is less clear for air temperature. 831 
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Figure A3. Distribution (in percentage) of the number of hours of stem circadian cycles in Alerce 837 

Costero (AC) and Alerce Andino (AA). Regular cycles (24 ± 3 h), representing the highest 838 

proportion of cycles, are delimited by dashed lines. 839 
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Table A1. Kendall-tau b correlations between stem radius increment at a “daily” basis 852 

(considering short, regular and long cycles), stem radius change at 7, 21 and 31 days and 853 

environmental variables in Alerce Costero (AC) and Alerce Andino (AA). “Daily” refers to the 854 

time scale given by the stem cycle. Significant correlations are marked with an asterisk.  855 

Site and 

time period 

Mean 

temp. 

Max. 

temp. 

Min. 

temp. 

Precip. Humidity VPD Radiation Soil 

temp. 

AC “daily” 

increment 

0.01 0.10 -0.08 0.34* 0.18* -0.18* -0.15* 0.01 

AC 7 days -0.21* 

 

-0.32* 

 

0.02 

 

0.25* 

 

0.47* 

 

-0.45* 

 

-0.34* 

 

0.05 

 

AC 21 days -0.25* 

 

-0.37* 

 

0.01 

 

0.30* 

 

0.49* 

 

-0.46* 

 

-0.42* 

 

0.01 

 

AC 31 days -0.26* 

 

-0.38* 

 

-0.01 

 

0.28* 

 

0.48* 

 

-0.46* 

 

-0.40* 

 

-0.02 

 

AA “daily” 

increment 

0.03 0.18* -0.11 0.48* 0.28* -0.24* -0.02 0.05 

AA 7 days -0.20* 

 

-0.30* 

 

-0.05 

 

0.33* 

 

0.45* 

 

-0.41* 

 

-0.38* 

 

0.16* 

 

AA 21 days -0.18* 

 

-0.29* 

 

-0.05 

 

0.30* 

 

0.44* 

 

-0.39* 

 

-0.39* 

 

0.11 

 

AA 31 days -0.19* 

 

-0.29* 

 

-0.05 

 

0.28* 

 

0.43* 

 

-0.39* 

 

-0.37* 

 

0.07 
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