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SUMMARY 

This paper describes a procedure to analyse soluble carbohydrates and starch in xylem 15 

and cambium extracted by the scraping method. An application on woody logs of 2-

years-old Populus × canadensis Moench ‘I-214’ during different phases of cambium 

activity is reported. Samples are freeze-dried in liquid nitrogen and, successively, the 

bark is removed. The cambium and the differentiating xylem are gently scrapped with a 

razor blade from the inner side of the bark and the outermost side of the stem, 20 

respectively. The xylem is milled until obtaining a powder. After extraction of the 

powder in a EtOH solution and centrifugation, the supernatant and the resulting pellet 

are used for assessing the contents of soluble sugars and starch, respectively. Soluble 

sugars are determined using the High-Performance Liquid Chromatography (HPLC). 

The amount of the cambial region obtained by scraping changed in respect to cambium 25 

phenology with higher amount of dry matter obtained during tree ring production. The 

HPLC method was particularly suitable to study the intra-annual sugars dynamic in 

woody forming tissues and mature xylem. In both tissues (cambial region and xylem), 

the major soluble sugars detected were glucose and fructose which represented together 

more 80% of the total soluble sugars during wood formation However, the total soluble 30 

sugars was higher in cambium compared with xylem, especially with the trees were 

actively growing. The scraping technique provided the possibility to sampling different 

tissues (mature and developing xylem, cambium and phloem) during the year, allowing 

the metabolic changes during tree-ring formation to be investigated. 

Keywords: xylogenesis, cell differentiation, annual ring, soluble sugars, starch 35 
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INTRODUCTION 

Tree rings are the results of a complex process involving the division of the cambial 

tissues and the differentiation of the newly formed cells (Rossi et al., 2006). This 

growth process requires a great amount of carbon and energy translocated from the 

source, the crown, to branches, stem and roots in form of sugars. Sugars in the growing 40 

tissues are utilised by the carbon sinks or converted in starch for storage. Although 

seasonal dynamics of wood formation has been analyzed thoroughly in the last decade 

both directly and indirectly (Giovannelli et al., 2007; Thibeault-Martel et al., 2008; 

Moser et al., in press; Rossi et al., 2009), the internal factors affecting tree-ring 

formation, such as cambium age, hormone distribution and carbohydrate availability 45 

(Rossi et al., 2008; Uggla et al., 1998; Schrader and Sauter, 2002), still remain to be 

clearly identified and precisely quantified. In particular, since the 1960s biologists have 

been trying to explain the influence of carbohydrates on cambial activity and early-

latewood formation (Gordon and Larson, 1968; Wargo, 1976; Saranapää and Höll, 

1989; Geisler-Lee et al., 2006). However, only a few studies on intra-annual 50 

carbohydrate availability for wood production in broadleaves are available (Piispanen 

and Saranpää, 2001, Barbaroux et al., 2003; Hoch and Körner, 2003). These studies 

were focused on carbohydrate content in the stem, but did not consider the meristem at 

the origin of wood: the cambium. 

The main limitation in performing biochemical and molecular investigations in the 55 

cambial cells is that this tissue is usually difficult to collect. The cambial region consists 

of a cell layer in different developmental stages as the cambial zone (the true meristem) 

and the derivatives, which undergo expansion and secondary wall formation towards the 
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mature xylem and the phloem (Uggla and Sundberg, 2002). Even during the maximum 

expansion, cambium is constituted by 4-15 cells lacking in secondary wall (Rossi et al., 60 

2007; Deslauriers et al., 2009), a very thin and soft tissue. Surprisingly, all variations in 

biochemistry, metabolic activity and gene expression across the cambial region occur 

within a very narrow region. Nevertheless, few details have been given about the 

available techniques for sampling and preparing cambium for biochemical analyses 

(Uggla and Sundberg, 2002; Magel et al., 1994; Micheli et al., 2002), leading to a 65 

number of difficulties in the accomplishment of such important experiments (Chaffey, 

2002). 

The arising question concerns how to extract suitably the cambial region in living trees 

during the year. In spring, the bark slippage is a well known marker of cambial 

reactivation. In this period, the bark can be easily removed from the stem and the 70 

cambial region is visible as a translucid film on the inner part of the bark or on the 

outermost mature xylem side. Although apparently easy to do, this sampling procedure 

involves difficulties connected to the sample size (radial thickness of cambial region), 

which depends on the cambium phenology and the whole plant water status. On the 

contrary, during dormancy, cambium is composed of few cells, which are strictly 75 

attached to the inner part of the bark. As a result, the cambial region is very difficult to 

sample when the vigorous growth is not occurring. This represents one of the major 

limitations when investigations should be performed in the time and should involve the 

different phases of cambium phenology. 

According to the literature, the cambial region in trees is mainly extract from stem 80 

portions (consisting of bark, phloem, cambial region and mature xylem) through two 
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methods: (i) by scraping the macro-fractions (Micheli et al., 2002), or (ii) by cryo-

sectioning the micro-fraction (Uggla and Sundberg, 2002) of individual tissues. The 

scraping method uses the unlignified enlarging xylem as a breaking zone to separate the 

mature xylem from the cambium, phloem and bark. The scraping method is generally 85 

used when a large amount of differentiating cambial tissues are required for biochemical 

and molecular analyses. Even if this method is less time consuming and expensive that 

cryo-sectioning, some limitation may occur as: (i) the sample is not homogeneous but 

composed of a multiplicity of different tissues (cambium, developing xylem and 

phloem), (ii) the amount of scraped tissue depends on the phenological stage of 90 

cambium (growth or dormancy), (iii) the ratio between the amount of cambium and 

differentiating tissues changes during in time (season) and space (along the stem), and 

(iv) the chemical composition of the extracted heterogeneous tissues is often unknown. 

Therefore, there is a need to test the scrapping method to verify the collected material. 

The aim of this paper is to describe a suitable procedure to analyse soluble 95 

carbohydrates and starch in xylem and cambium extracted by the scraping method and 

to present an application on broadleaves. 
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SAMPLING CAMBIUM AND XYLEM 

Woody samples are extracted from the stem in form of logs of 10-15 cm in length, 100 

immediately immerged in liquid nitrogen and freeze-dried at a constant temperature of -

50 °C under vacuum (0.15 mbar or less). During drying, the loss of intra and 

intercellular water in the cambial region causes the shrinkage of the elastic developing 

tissues leading to the appearance of many wide empty spaces within the growing tree 

ring, as observed at the scanning electron microscope (Figure 1A). Occasionally, breaks 105 

between xylem and cork can take place in correspondence to the differentiating cells 

(Figure 1B). Before handling the samples, the temperature of the logs is gradually 

increased to 22 °C in an environment with a relative humidity of 40% (Magel, 2002). 

Before dissection, the dried logs have to be maintained into sealed bags under vacuum 

and stored at room temperature. For collecting the cambial zone, bark is removed from 110 

the logs and cambium and the differentiating xylem are gently scrapped with a razor 

blade from the inner side of the bark and the outermost side of the stem, respectively 

(Figure 1C-D). The mature xylem are cut off from the log using a chisel (Figure 2A), 

reduced to a fine powder with a rotor mill (Figure 2B) and stored in falcon tubes under 

vacuum up to biochemical analyses. 115 
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BIOCHEMICAL ANALYSES 

For both cambial region and xylem, 40 mg of dried powder are repetitively extracted 

three times in 5 ml of 80% EtOH solution, adjusted to pH 7, at room temperature. In 

each extraction, the homogenates are gently vortexed and, after 30 min, centrifuged at 120 

10.000 rpm for 5 min. The supernatant and the resulting pellet are used for assessing the 

contents of soluble sugars [High-Performance Liquid Chromatography (HPLC)] and 

starch, respectively. 

HPLC analysis 

The surnatant is evaporated to dryness at room temperature with a Savant Speedvac 125 

Plus SC210A system and diluted with 2 ml of distilled water (pH 7). The solution 

obtained is then fractionated using liquid-solid extractions carried out by eluting 

samples through a reverse-phase cyclohexyl resin (pre-packed 3 ml Bond Elut CH 

cartridge, Varian CA, USA) and a quaternary-amine, strong anion-exchange resin (pre-

packed 3ml Bond Elut SAX cartridge, Varian CA, USA). The cartridges are activated 130 

by 6 ml MeOH and conditioned by adding 6 ml of distilled water. The elution is 

performed using an additional 6 ml of distilled water, evaporated to dryness under 

vacuum and then diluted with 0.5 mm of distilled water. Analyses are conducted using a 

binary LC pump 250 (Perkin Elmer, USA) equipped with an automatic injection system 

(ISS101, Perkin Elmer). A Water Column Heater Module (Waters Division, Millipore, 135 

Milford, MA, USA), controlled by a Temperature Control Module (Waters), maintains 

the column at 80 °C. The column is an 8×300 mm Shodex Sugar SC 1011 (Showa 

Denko Europe GmbH, Germany) equipped with a Guard Pak Insert Sugar Pak II 



 8 

(Waters). The mobile phase is water, Milli Q grade, at 0.5 ml min
-1

. Identification and 

quantification of soluble carbohydrates is performed according to Romani et al. (1994) 140 

and the identity of soluble carbohydrates is confirmed using authentic carbohydrate 

standards (Sigma, USA) and adding an internal standard. In figure 3A, a typical 

chromatogram of 25 l injection of 0.1% standard solution of raffinose, sucrose, 

glucose, galactose, fructose, mannitol and sorbitol is reported. Sorbitol, a sugar not 

detected in woody poplar tissues is used as internal standard and added to the crush 145 

material. The recovery is estimated for each carbohydrate. Thus 0.25, 0.50, 0.75, and 

1.0 ml 1mg ml
-1

 carbohydrate solutions are fractionated and analysed as previously 

described, with recovery ranging from 92 to 99%. Calibration curves are performed for 

raffinose, sucrose, glucose, galactose, fructose, mannitol and sorbitol. Total soluble 

sugar content is obtained as the sum of the detected sugars (>0.1 µmol g
-1

DW). 150 

Starch content 

Starch content is measured in the pellet remaining after extraction with 80% ethanol 

according to Gucci et al. (1991). The ethanol-insoluble residue is suspended in 1.5 ml 

acetate buffer (pH 5), boiled at 100°C for 1 hour in a sand bath and cooled at room 

temperature. After incubation at 55°C for 16 h with 150 l amyloglucosidase from 155 

Aspergillus niger (Fluka), samples are diluted with distilled water to 5 ml and three 

0.25-ml aliquots and each sample are assayed colorimetrically by using glucose oxidase 

(Sigma-Aldrich, Italy). 
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AN APPLICATION ON POPLAR 160 

Material and methods 

Woody samples of Populus × canadensis Moench ‘I-214’ were collected in 2007 in 

Casale Monferrato (AL, Italy). Plants were growing on an alluvial sandy-loam soil in 

one-year-old coppice with stumps arranged in 350-m-long rows with a distance of 2 m 

between rows and 0.5 m within rows. The average stem diameter at 0.30 cm from the 165 

collar was 17 mm. 

Cambial phenology was studied by intra-annual analyses of wood formation on stem 

disks collected weekly according to Deslauriers et al. (2009). For the analysis of soluble 

sugars and starch, only the main phases of xylem growth were considered and 

corresponded to (i) dormancy [day of the year (DOY) 33], (ii) onset of xylem 170 

differentiation (DOY 110), (iii) maximum growth rate (DOY 152), (iv) decreasing 

(DOY 207) and (v) ending (DOY 236) of xylem differentiation. 

Results 

After freeze-drying, the bark was easily separated from the mature xylem except for the 

samples collected during dormancy (DOY 33). The amount of the cambial region 175 

obtained by scraping changed in respect to cambium phenology (table 1). Very low 

amounts of scrapped tissues were obtained during dormancy (0.05 g), due to the state of 

the cambium (a row of 3-4 cells). In most of the samples, this quantity was too low to 

perform HPLC analysis. Instead, during wood formation (DOY 110, 152 and 207), the 

scrapped tissues considerably increased with amounts varying between 0.16 and 0.23 g 180 
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of dry weight. These quantities represented about 1.8, 3.4 and 1.5 % of the collected dry 

material for onset, maximum growth rate and decreasing of cambium activity 

respectively. The high stem water content during onset and maximum growth rate also 

facilitated the extraction of the material by scrapping. At the end of wood formation, the 

quantity of scrapped tissues decreased at 0.2 g, representing less then 1 % of the 185 

collected dry material (20.3 g). 

In figure 3B, a typical chromatogram of 20 l woody tissue extracted of poplar, with 

sorbitol as internal standard is reported. In this exemple, it was possible to detected 

raffinose, sucrose, glucose, galactose, fructose and mannitol. In both tissues (cambial 

region and xylem), the major soluble sugars detected were glucose and fructose which 190 

represented together more 80% of the total soluble sugars during wood formation 

(figure 4). However, the variability of the soluble sugars found was greater in xylem, 

especially in winter. So, mannitol, raffinose and galactose accounted for about 15% of 

the total sugars within the xylem during winter (DOY 33). However, these 

carbohydrates disappeared completely during growth except for the galactose which 195 

was present only in small traces in the xylem. 

Compared with the xylem, the cambial region had quantities of soluble sugars about 6-

10 times higher (figure 5). Higher quantity of soluble sugars was found in cambium 

during the maximum growth rate (DOY 152), twice that observed at the onset or the end 

of wood formation, forming 16% of dry matter compared with about 8 % of dry matter 200 

respectively. In xylem, the total soluble sugar showed a high level in winter, a decrease 

during the onset of xylem differentiation (DOY 110) and a further increase in 

correspondence to the maximum growth rate (DOY 152). Afterwards, new minimums 
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were reached during decreasing and ending of xylem differentiation with values of less 

than 1% of dry matter. Starch was detected at different amount depending on the tissues 205 

in both the species (figure 5). As for the soluble sugars, cambial region had higher level 

of starch content than xylem. In cambial region of poplar, more than 80% of the total 

starch was detected at the end of wood formation (DOY 236) while within the xylem 

the highest level of starch was detected during dormancy (DOY 33) and at the onset of 

growth (DOY 110). 210 

Discussion 

Understanding of tree-ring formation involve knowledge on the growth processes in 

trees and investigations on the cambial meristems, which require specific technical 

procedures for sampling and preparing this thin and soft tissue. In this paper, we 

describe a suitable and rapid method to extract the cambial region and mature xylem 215 

from the stem for biochemical and molecular analyses. This technique provides the 

possibility to sampling different tissues (mature and developing xylem, cambium and 

phloem) along the stem and the circumference, allowing the metabolic changes during 

growth to be investigated. 

The amount of cambial region scraped from the inner side of the bark and the outermost 220 

side of the xylem varied between the phases of dormancy and growth. Higher quantities 

were recuperated when the width of the developing zone and the degree of hydration of 

the stem were superior. On DOY 152 for example, the developing area was fully 

hydrated and, due to the lack of lignification and the apposition of cellulosic matrix, it 

was highly elastic and easy to scrap with a razor blade. Similar results was reported for 225 
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Picea abies, where the maximum width of the developing zone was recorded during 

early spring and it was associated to the high stem water content (Rosner et al., 2001). 

On the contrary, during winter (DOY 33), the cambial zone of poplar consisted of 4-5 

narrow initial cells without differentiating xylem and phloem cells (Deslauriers et al., 

2009). In these conditions, it was possible to scrap a very little amount of cambial 230 

region (< 50 mg), and only on the phloem side. Therefore, an analysis of soluble sugars 

in cambium with the scraping technique is easier only when the tissue is actively 

producing cells and with differentiating xylem. Otherwise, larger amount of fresh 

material have to be collected. 

The rapid HPLC method used was particularly suitable for studies involving synthesis 235 

of sugars in woody forming tissues and mature xylem. The use of a single column 

enabled the quantification of five soluble sugars, namely, the sucrose pool (sucrose and 

raffinose), glucose, galactose, fructose and mannitol. These sugars represented more 

than 95% of total soluble carbohydrates in the woody tissues of poplar. With such a 

precise determination of sugars, it was possible to observe that the oligosaccharides 240 

concentration changed with respect to the tissue and cambium phenology. The period of 

wood formation was characterized by a high concentration of fructose and glucose both 

in cambial region and in xylem while an increase of sucrose was recorded at the end of 

xylem differentiation. Sucrose represents the major substrate for the synthesis of sugar 

polymers forming the microfibrillar phase of the cell. In the cytosol, sucrose is 245 

converted by sucrose synthase to fructose (used in the glycolisys) and the activated 

sugar uridine diphosphate-(UDP)-glucose which represent the substrate for the cellulose 

biosynthesis (Kock, 2004). The high level of glucose in the cambial region could be 

linked to the high 1,4-glucan unit requirement during secondary wall formation. 
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In this work, more than 75% of the total starch measured in cambial region and wood 250 

ray parenchyma was detected during dormancy (DOY 33) and after the end of xylem 

differentiation (DOY 236). These results support the hypothesis that starch is directly 

used in differentiating tissues during wood formation as source of glucose for cellulose 

biosynthesis. Elle and Sauter (2000) found that the increased endoamylase activity, 

related with the starch degradation, leads to higher concentrations of malto-255 

oligosaccharides, maltose and finally glucose. 
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CAPTION LIST 

Table 1. Weight (g) and water content of the sampled log and amount of scrapped 345 

tissue of the cambial region (g) collected in Populus × canadensis. The sampling days 

correspond to the main stages of cambial activity: dormancy (DOY 33), onset of xylem 

differentiation (DOY 110), maximum growth rate (DOY 152), decreasing (DOY 207) 

and ending (DOY 236) of xylem differentiation. 

Figure 1. Analyses of a dried stem section of poplar collected on DOY 164 under a 350 

scanning electron microscope. A: Intact section of phloem (ph) developing xylem (dx) 

and mature xylem (mx) showing collapsed cambial regions (asterisk) due to the water 

extraction by vacuum. B: section with a break between phloem (ph) and mature xylem 

(mx) in correspondence of the developing xylem (dx). C: outermost part of mature 

xylem (mx) with scrapped (arrowhead) and intact (dx) developing xylem. D: inner part 355 

of the bark after separation from the xylem with cambial zone (cz) and phloem (ph). 

Figure 2. Sampling (A) and milling (B) of the xylem of Populus × canadensis. 

Figure 3. Chromatograms of (A) 25 l injection of 0.1% standard solution of raffinose, 

sucrose, glucose, galactose, fructose, mannitol and sorbitol and (B) 20 l of xylem of 

Populus × canadensis, with sorbitol as internal standard. 360 

Figure 4. Proportion of soluble sugars in cambium and xylem of Populus × canadensis 

during the year. The sampling days correspond to the main stages of cambial activity: 

dormancy (DOY 33), onset of xylem differentiation (DOY 110), maximum growth rate 

(DOY 152), decreasing (DOY 207) and ending (DOY 236) of xylem differentiation. 
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Figure 5. Total soluble sugar and starch expressed as dry matter percent in cambium 365 

and xylem of Populus × canadensis during the year. The sampling days correspond to 

the main stages of cambial activity: dormancy (DOY 33), onset of xylem differentiation 

(DOY 110), maximum growth rate (DOY 152), decreasing (DOY 207) and ending 

(DOY 236) of xylem differentiation. Vertical bars indicate the standard deviation 

between six measurements. Asterisk represent missing data. 370 
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TABLE 1 

 Sampled log 
Scrapped cambial 

region 

DOY 
Fresh weight 

(g) 

Dry weight 

(g) 

Water content 

(%) 
Dry weight (g) 

33 27.2±2.5 9.2±1.2 180 0.05±0.001 

110 25.6±2.8 8.6±1.2 195 0.16±0.005 

152 26.0±1.3 9.1±1.0 186 0.31±0.004 

207 36.4±1.3 15.2±1.6 138 0.23±0.002 

236 42.7±10.0 20.3±4.5 109 0.20±0.006 
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FIGURE 1 
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FIGURE 2 
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FIGURE 4 380 
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FIGURE 5 
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