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Abstract

Visceral fat (VF) promotes the development of metabolic syndrome (MetS), which emerges as early as in adolescence. The
clustering of MetS components suggests shared etiologies, but these are largely unknown and may vary between males and
females. Here, we investigated the latent structure of pre-clinical MetS in a community-based sample of 286 male and 312
female adolescents, assessing their abdominal adiposity (VF) directly with magnetic resonance imaging. Principal
component analysis of the five MetS-defining variables (VF, blood pressure [BP], fasting serum triglycerides, HDL-cholesterol
and glucose) identified two independent components in both males and females. The first component was sex-similar; it
explained .30% of variance and was loaded by all but BP variables. The second component explained .20% of variance; it
was loaded by BP similarly in both sexes but additional loading by metabolic variables was sex-specific. This sex-specificity
was not detected in analyses that used waist circumference instead of VF. In adolescence, MetS-defining variables cluster
into at least two sub-syndromes: (1) sex-similar metabolic abnormalities of obesity-induced insulin resistance and (2) sex-
specific metabolic abnormalities associated with BP elevation. These results suggest that the etiology of MetS may involve
more than one pathway and that some of the pathways may differ between males and females. Further, the sex-specific
metabolic abnormalities associated with BP elevation suggest the need for sex-specific prevention and treatment strategies
of MetS.
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Introduction

Metabolic syndrome (MetS) is defined as a cluster of risk factors

for cardiovascular disease (CVD) and type-2 diabetes mellitus

(T2DM) occurring in the same individual; it includes elevated

blood pressure (BP), atherogenic dyslipidemia (raised triglycerides

[TG] and lowered HDL-cholesterol [HDL-chol]), raised fasting

glucose (Glu) and abdominal obesity. For diagnostic purposes,

MetS is defined by the presence of at least three out of these five

risk factors [1]. The syndrome is associated with a two-fold

increase for the risk of CVD and a five-fold increase for the risk of

T2DM [2]. Therefore, it is alarming to see that the prevalence of

MetS is reaching epidemic proportions worldwide. In Canada and

USA, for example, .25% of adults suffer from the syndrome

[3,4,5]. Moreover, MetS, typically regarded as a middle- to late-

adulthood disorder, is now emerging in adolescence [6] with close

to 10% of all 12–19-year olds being affected [7,8]. This emergence

of MetS in adolescence has been in part attributed to obesity; it is

one of the components as well as the main risk factor for MetS,

and its prevalence has tripled during the last 30 year in this age

group [9,10].

Obesity-related risk for MetS increases not only with the

quantity of body fat but also with its distribution – individuals who

store body fat viscerally rather than elsewhere in the body are at a

greater risk [11,12,13]. Abdominal obesity is typically assessed

with a readily available waist circumference (WC), that reflects not

only the quantity of fat but also the quantity of lean body mass

(muscles, bones and internal organs) and cannot distinguish

between subcutaneous and visceral fat. As such, WC may

misclassify visceral obesity: there are individuals who have a

normal WC but an excessive amount of VF and high risk for

MetS, and individuals who have a large WC but a normal amount

of VF and low risk for MetS [14].

Despite the critical role of VF in MetS pathogenesis and the

recent emergence of MetS in adolescence, only a few large-scale

population-based studies quantified VF directly (with magnetic

resonance imaging [MRI] or computed tomography) [11,12,15];

none of them were conducted in adolescents. Furthermore, sex

differences exist in the prevalence of some MetS components and

in certain relationships between MetS-defining variables. For

example, hypertension is more common in men than women [16]

and VF is more closely correlated with BP in males than females
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[11,17,18]. Therefore, the aim of the present study was to examine

the clustering of VF (measured directly using MRI) with other

MetS-defining variables in community-based samples of males

(n = 286) and females (n = 312) during adolescence, when the

initial stages of MetS (‘‘pre-clinical’’ disease [19]) may be

emerging.

Methods

Ethics Statement
Written consent of the parents and assent of the adolescents

were obtained before the commencement of data collection. The

Research Ethics Committee of the Chicoutimi Hospital and the

Hospital for Sick Children in Toronto approved the study

protocol.

Participants
Caucasian male (n = 286) and female (n = 312) adolescents aged

12 to 18 years were recruited from the French-Canadian

population living in the Saguenay-Lac St. Jean region of Quebec,

Canada, as part of the Saguenay Youth Study (SYS). The SYS is a

population-based, cross-sectional study of cardiovascular, meta-

bolic and brain health in adolescence. All participants were

recruited through local high schools, as we described previously

[20]. The current sample consists of participants recruited and

tested between November 2003 and June 2009.

Assessments
All participants underwent a 15-hour cardiovascular, metabolic

and brain phenotyping protocol, which included assessments of all

five MetS-defining variables [20].

Abdominal obesity was assessed with MRI and by measuring

WC. MRI was used to measure volume of VF. MRI is currently

the only non-invasive (i.e. without radiation) method that can

measure VF directly in population-based studies of children and

adolescents [21,22]. T1-relaxation time for adipose tissue is much

shorter than that of most other tissues, and thus T1-weighted MRI

produces images on which fat is very bright and easy to segment

by semi-automated or automated techniques [23]. In the present

study, volume of VF was measured with a semi-automated

technique [24] from a 10-mm-thick (in-plane resolution

1.5661.56 mm2) axial T1-weighted image (repetition time/echo

time = 200 ms/20 ms) acquired at the level of the umbilicus on a

Phillips 1.0-T magnetic resonance scanner. In more detail, images

were smoothed using an adaptive bilateral filter to remove image

noise while preserving edge information. An initial fat-classifica-

tion map was obtained using a standard region-growing algorithm.

An iterative refinement procedure corrected false positives and

false negatives using a battery of morphological operators,

including hysteresis, thresholding over small neighborhoods and

median filtering to remove salt and pepper noise. The resulting

classification map was manually segmented into VF, which was

defined as adipose tissue lying within the innermost aspect of the

abdominal cavity, and not contained within other abdominal

organs or muscles. A histogram counting algorithm computed the

total number of voxels for VF. This semi-automated method was

validated against manual segmentation in 20 randomly selected

subjects (r2 = 0.97), as described previously [17]. In addition,

height and weight were measured using standard operating

procedures [20] and BMI was calculated as weight (in kilograms)

divided by height (in meters) squared.

BP was measured beat-by-beat during a 52-min cardiovascular

protocol designed to mimic daily life activities, such as changes in

posture and mental stress. This protocol included a succession of

three 10-min periods when participants were in supine, standing

and sitting positions, which was followed by a 2-min math-stress

and 10-min stress-recovery periods (both in a sitting position). The

recording was made with a non-invasive hemodynamic monitor

FinometerTM (FMS Finapres, Amsterdam, The Netherlands); the

device measures finger blood-flow continuously and, from these

data, it derives beat-by-beat brachial BP using the reconstruction

and level-correction of the finger blood-flow waveform. The

FinometerTM is a reliable device for tracking BP in adults and

children older than six years [25]. Averages of systolic BP (SBP)

during the five sections of the cardiovascular protocol described

above (supine, standing, sitting, mental stress and mental stress

recovery) were used for statistical analyses. We chose to study SBP

because (1) systolic rather then diastolic hypertension is predom-

inant among obese children [26] and young adults [27], and (2)

population variance in SBP vastly exceeds that in diastolic BP [28].

Serum concentrations of TG, HDL-chol and Glu were

measured from a blood sample drawn between 8 AM and 9 AM

after overnight fasting; the measurements were made at the clinical

Biochemistry Department of the Hôtel-Dieu Hospital (Montreal,

Quebec, Canada).

In the present study, we defined MetS according to the

recommendations of the International Diabetes Federation; the

panel proposes that, for age 10 to ,16 years, adult criteria are

used for BP, TG, HDL-chol and Glu and age-specific criteria are

used for waist circumference [29], and, for age $16 years, adult

criteria are used for all components of MetS [1,6]. The exact cut-

off values are provided in Table S1. The prevalence of MetS was

2.9% in males and 1.3% in females (Table S1), which is

comparable to that reported previously [7].

Statistical Methods
Descriptive statistics used to characterize the study population

included means and standard deviations (SDs) for continuous

variables and proportions for categorical variables (presented in

Table 1). Our main analyses focused on examining the architec-

ture of pre-clinical MetS by identifying components of shared

variance using principal component analysis (PCA) of the five

MetS-defining variables, namely SBP, fasting serum TG, HDL-

chol, Glu and VF. We also examined whether the components of

shared variance differ when VF is replaced with WC. Prior to

PCA, we assessed the normality assumption on which the

statistical inference about PCA relies. VF, WC and serum TG,

HDL-chol and Glu had positively skewed distributions and were

log transformed using logarithm with base 10, which improved the

fit. Before conducting PCA, all variables were adjusted for age

and, in the case of VF, WC and SBP also for height. Age and

height are known to correlate with BP in children and adolescents

[30,31].

PCA was used to identify components of shared variance among

the five MetS-defining variables described above. To examine

whether these components vary across the cardiovascular protocol,

the analysis was repeated for each of the five sections protocol (i.e.,

supine, standing, sitting, stress and stress recovery). PCA is a

multivariate statistical technique that transforms a number of

possibly correlated variables into a number of uncorrelated

variables, so called principal components [32]. Each principal

component represents a different linear combination of the

original correlated variables. The original variables are first

normalized to their respective means and, then used to generate

a correlation matrix (Tables S2 and S3). PCA is then performed by

eigenvalue decomposition of the correlation matrix. Principal

components with eigenvalue.1 and loadings of individual MetS

variables $0.3 were considered significant, as suggested previously
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for data with sample size $100 [33]. These analyses were done in

males and females both separately and together, in the latter case

adjusting for sex (JMP, Release 9, SAS Institute Inc., Cary, NC).

Results

PCA of the five MetS-defining variables (SBP, fasting serum

TG, HDL-chol, Glu and VF) identified two independent

components of shared variance in both males and females. The

first component, PC1, explaining ,30% of total variance, was almost

identical in males and females. In both sexes, it was loaded by all

MetS-defining variables except for SBP; VF, TG and Glu

contributed positively and HDL-chol contributed negatively

(Figure 1A). As pointed out above, this component did not involve

SBP; this was the case across all five sections of the cardiovascular

protocol (i.e., supine, standing, sitting, stress and post-stress) in

both males and females (Figure 1A).

In contrast, the second component, PC2, explaining ,20% of total

variance, was loaded mainly by SBP in both sexes but, at the same

time, SBP clustered with other MetS-defining variables differently

in males and females. In males, SBP clustered positively with VF

and HDL-chol. In females, SBP clustered positively with TG and

negatively with Glu (Figure 1A). In both sexes, the clustering

remained relatively constant throughout the cardiovascular

protocol, except for the supine section when the contribution of

HDL-chol in males was weaker (Figure 1A).

In most population-based studies, ‘‘abdominal obesity’’ is

measured indirectly with WC. Therefore, we explored whether

clustering of the five MetS-defining variables differs when WC is

used instead of VF. In these analyses, the first component, PC1,

remained similar, but the second component, PC2, changed

(Figure 1B [WC]; compare with Figure 1A [VF]). In males, SBP

no longer clustered with ‘‘abdominal obesity’’ and HDL-chol, but

it did with ‘‘abdominal obesity’’ (represented here by WC) alone.

In females, SBP no longer clustered with TG and Glu, but it did

with HDL-chol and Glu (Figure 1B; compare with Figure 1A).

Overall, sex differences of this component became less pro-

nounced (Figure 1B; compare with Figure 1A).

Further, a potentially confounding effect of sex is frequently

accounted for by adjusting statistically for sex. But this simple

statistical treatment may not account for the existing biological

differences between males and females [18]. To explore this issue,

we performed sex-pooled analyses adjusted for sex, and compared

them with the sex-specific analyses described above. These sex-

pooled analyses showed that, as expected, the first component

(PC1), which was similar in males and females in the sex-specific

analyses, remained almost the same in the sex-pooled analysis

(Figure 1A). But the second component (PC2), which was different

in males and females in the sex-specific analyses, changed in that

SBP did not cluster with any metabolic component (Figure 1A).

This is likely due to the fact that the sex-specific metabolic

correlates of SBP were often of the opposing relationship in males

and females; for example, TG loaded positively in females but this

variable loaded negatively in males (Figure 1A). In the pooled

analyses, these sex-specific relationships canceled each other out.

Table 1. Basic characteristics and main outcomes in studied adolescent males and females.

Characteristic/Outcome Males Females P-value

N Mean±SD/N N Mean±SD/N

Age (years) 286 15.061.8 310 15.161.9 0.37

Height (cm) 281 167.0610.6 306 160.166.6 ,0.001

Weight (kg) 274 59.0613.8 307 54.8610.6 ,0.001

BMI (kg/m2) 276 21.263.8 306 21.463.6 0.64

BMI (log kg/m2) 276 1.3260.07 306 1.3260.07 0.60

Visceral fat (cm3)* 276 27.1628.4 296 23.4616.9 0.70

Visceral fat (log cm3) 276 1.2560.38 296 1.2660.29 0.60

Waist circumference (cm)* 273 72.868.9 306 69.468.1 ,0.001

Waist circumference (log cm) 273 1.8660.05 306 1.8460.05 ,0.001

Supine SBP (mm Hg) 236 118.9611.5 263 118.2610.2 0.50

Standing SBP (mm Hg) 233 125.1613.7 259 120.1612.2 ,0.001

Sitting SBP (mm Hg) 237 125.4613.6 262 120.2611.9 ,0.001

Math SBP (mm Hg) 235 140.3616.8 260 133.3615.1 ,0.001

Post-math SBP (mm Hg) 234 128.0612.6 259 123.8612.2 ,0.001

Triglycerides (mmol/L)* 253 1.0260.46 277 1.0760.45 0.12

Triglycerides (log mmol/L) 253 20.0360.19 277 20.0160.18 0.16

HDL-cholesterol (mmol/L)* 254 1.4060.28 277 1.5660.32 ,0.001

HDL-cholesterol (log mmol/L) 254 0.1460.09 277 0.1860.09 ,0.001

Glucose (mmol/L)* 254 4.8060.42 275 4.6460.43 ,0.001

Glucose (log mmol/L) 254 0.6860.04 275 0.6660.04 ,0.001

Fasting insulin (pmol/L) 243 67.6630.5 266 78.4628.8 ,0.001

BMI: body-mass index. Non-adjusted means and standard deviations are presented. Sex differences were evaluated with Student T-test or with non-parametric Wilcoxon
test when data were not normally distributed*.
doi:10.1371/journal.pone.0082368.t001
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Discussion

The results of the present study demonstrate that the five MetS-

defining variables cluster into at least two independent compo-

nents of shared variance in both male and female adolescents. The

first component, capturing the variance related to obesity-related

insulin resistance, is similar in males and females, whereas the second

component, capturing the variance associated with metabolic

correlates of BP, is different in the two sexes. These results suggest

that the etiology of MetS may involve more than one underlying

pathway and that some of the pathways may differ in males and

females.

In the present study, the first component of shared variance

among the five MetS-defining variables was loaded positively by

VF, TG and Glu and negatively by HDL-chol; BP did not load on

this component at all. This component was the same in male and

female adolescents. The loading of this component is consistent

with the classical clustering of metabolic variables due to obesity-

induced insulin resistance, whereby excess VF (a) increases peripheral

and hepatic insulin resistance, which in turn augments fasting

glycemia, and (b) promotes the development of atherosclerotic

dyslipidemia, characterized by increased TG and decreased HDL-

chol [1,34]. In more detail, fat tissues secrete adipokines, such as

TNFa and free fatty acids, which when released into the

circulation enhance insulin resistance in skeletal muscle and liver

[35]. Assuming some degree of failure of pancreatic b-cells, this

leads to higher fasting glycemia. In addition, augmented lipid flux

from fat tissues to the liver increases TG through augmented liver

production of very-low density lipoproteins (VLDL), which are

particles rich in TG. Increased TG, in turn, activate cholesteryl

ester transfer protein, which is a plasma protein facilitating the

transport of cholesteryl esters and TG between lipoproteins; it

collects TG from VLDL and exchanges them for cholesteryl esters

from HDL (and vice versa). This process results in TG enrichment

of HDL and, at the same time, a decrease of cardio-protective

HDL-chol [36]. As pointed out above, this cluster of obesity-induced

insulin resistance was remarkably similar in males and females and

remained virtually unchanged (a) when VF was replaced with WC

as a measure of ‘‘abdominal obesity’’ and (b) when the two sexes

were analyzed together and a potentially confounding effect of sex

was accounted for by statistical adjustment for sex. These results

suggest that the component is not specific to VF only and it is not

influenced by sex. They are consistent with previous factor

analyses of MetS in adults demonstrating the existence of sex-

similar clustering of various obesity measures with insulin

resistance and lipid abnormalities [37,38].

In contrast, the second component of shared variance among

the five MetS-defining variables was different in each sex and in

sex-pooled analyses, and differed also when VF was replaced with

WC as a measure of ‘‘abdominal obesity’’. Although BP loaded

into this component in all these analyses, the clustering of BP with

additional metabolic variables varied. In males, BP clustered

positively with VF and HDL-chol, whereas in females, it clustered

positively with TG and negatively with Glu. In sex-pooled

analyses, BP no longer clustered with any metabolic component,

possibly due to the fact that the sex-specific metabolic correlates of BP

were often of the opposing relationship with BP in males and

females.

The sex-specific clustering of BP with MetS-defining metabolic

variables suggests the existence of sex-specific mechanisms of BP

regulation. This is consistent with the fact that BP is a sexually

dimorphic trait, with both BP and the prevalence of hypertension

being higher in males than females during reproductive age,

beginning in early adolescence [39,40]. In the present study, BP

clustered positively with VF in males but not females. This sex

difference in the relationship of VF to BP is not very well

understood but it may, in part, be related to obesity-induced

sympathoactivation. Sympathoactivation, which is one of the key

mechanisms of BP elevation in obesity [41] is closely related to the

quantity of VF [42] but not subcutaneous fat [43] and, in

adolescence, VF-related sympathoactivation is seen in males but

not females [17].

In the present study, BP also clustered with MetS-defining lipid

variables (TG and HDL-chol) in a sex-specific manner. In females

only, it clustered positively with TG, which is a finding consistent

with studies demonstrating that acute administration of TG

increases BP in animals and humans [44,45]. In males only, it

clustered positively with HDL-chol. Classically, high-density

lipoproteins (HDL) have BP-lowering effects [46,47]; however, in

MetS and other cardiometabolic disease states, some of these

protective properties of HDL may be lost due to structural changes

of HDL [48,49]. It is, perhaps, this fraction of so called

‘‘dysfunctional’’ HDL that contributes to the positive relationship

between HDL-chol and BP observed in males.

Finally, BP also clustered with Glu in a sex-specific manner.

The relationship was negative and was present only in females.

Glu is an index of impaired glucose tolerance that develops due to

insulin resistance (and pancreatic b-cell dysfunction). The inverse

relationship between Glu and BP in females may result from the

action of a molecule that (a) has both insulin-sensitizing (Glu-

lowering) and fluid retentive (BP-elevating) effects and (b) shows

higher expression/activity in females than males. One such

molecule may be PPARc: it has both insulin-sensitizing [50] and

fluid-retentive [51,52,53] effects, and some of its actions are more

pronounced in women than men [54]. PPARc is a transcription

factor expressed mainly in adipose tissue (but also in the kidneys)

where it plays a key role in promoting adipogenesis as part of its

insulin-sensitizing actions [55]. Enhanced adipogenesis, in turn,

contributes to accelerated weight gain that occurs at later stages of

pubertal development and is more pronounced in females than

males [56]. Further experimental studies are required to support

the possible role PPARc in mediating the inverse relationship

between BP and Glu and whether this relationship is specific to the

later stages of puberty studied here (Table 1).

The current study is a cross-sectional investigation and, as such,

no causal conclusions can be drawn. A longitudinal design would

facilitate examination of causal relationships between, e.g.,

metabolic variables and BP, and their predictive value vis-à-vis

the emergence of a full-blown MetS. Usefulness of cross-sectional

studies, however, should not be underestimated, as they have

generated many clinically highly relevant findings (e.g., NHANES

III [7], Framingham Study [57] and Bogalusa Heart Study [58].

Figure 1. Clustering of MetS-defining variables with visceral fat or waist circumference. Principal component analysis (PCA) was
performed with either visceral fat (VF) or waist circumference (WC) and remaining four MetS-defining variables: systolic blood pressure (SBP) and
fasting serum concentrations of triglycerides (TG), HDL-cholesterol (HDL-chol) and glucose (Glu). To examine whether identified principal
components vary across the cardiovascular protocol, the analysis was repeated for each of its five sections (i.e., supine, standing, sitting, stress and
stress recovery). Principal components with eigenvalue.1 and loadings of individual MetS-defining variables $0.3 were considered significant [33].
These analyses were done in males and females separately and males and females together adjusting for sex (sex-pooled analyses). All variables were
adjusted for age and when relevant for height prior to sex-separate PCA and additionally for sex prior to sex-pooled PCA.
doi:10.1371/journal.pone.0082368.g001
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In summary, the results of the present study suggest that, in

adolescence, MetS consists of at least two sub-syndromes, one

reflecting sex-similar metabolic abnormalities of obesity-induced insulin

resistance and the other capturing sex-specific metabolic correlates of BP

elevation. The results also suggest that VF may enhance the first

sub-syndrome (obesity-induced insulin resistance) in both males and

females, whereas it may contribute to the second sub-syndrome

(BP elevation) only in males. Adolescents may be an important age

group for investigating the pre-clinical stages of MetS.
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