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Abstract 

Hydrophobic properties of thin nanostructured silver films produced by galvanic 

exchange reaction on a copper surface were studied after passivation with stearic acid. 

The morphology of the silver films was controlled by varying the concentration of silver 

nitrate in the solution. Water contact angle as high as 156° and contact angle hysteresis 

as low as 5° were achieved for samples obtained with initial silver ion concentration of 

24.75 mM in the solution. However, a strong dependence of contact angle and contact 

angle hysteresis on the fractal-like morphology of the silver films was observed with the 

variation of silver ion concentration. 

Keywords : Superhydrophobicity; Microstructure; Electron microscopy; Galvanic 
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1. Introduction 

Superhydrophobicity is currently the focus of considerable research because of its 

scientific and technological importance [1], [2], [3], [4], [5] and [6]. Many plants and 

insects feature surface microstructures covered with waxy tissues which make them 

superhydrophobic, i.e. with surface contact angle of water greater than 150° and where 
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water drops roll off easily even with the slightest inclination. This special behavior is 

called the “lotus effect” [7]. As the basic electrostatic interactions at water/solid and 

ice/solid interfaces remain the same, superhydrophobic surfaces have potential to be 

icephobic, i.e. to reduce adhesion strength at ice/solid or snow/solid interfaces 

[8] and [9]. 

Since the water–solid interactions are limited to the outermost layers of solid surfaces, it 

is possible to mimic the lotus effect by altering the chemical and morphological 

properties of surfaces [10], [11] and [12]. In view of rendering a surface 

superhydrophobic, many strategies have been investigated to control the shapes, 

dimensions and regularity of the surface patterns using several methods which include 

photolithography [13], sol–gel [14] and [15], plasma etching [16], and chemical etching 

[17] and [18]. 

Electrochemistry has been used extensively for the formation of nanostructured 

surfaces, either by applying certain external potential between the electrodes [19], [20], 

[21] and [22] or simply by making use of the galvanic ion exchange reaction (without 

external potential) between a substrate and ions [23], [24], [25] and [26]. These methods 

have also been used to produce superhydrophobic surfaces after passivation with a 

monolayer of n-dodecanethiol [17], [25] and [26]. In particular, superhydrophobic 

behavior has been reported on a copper substrate with the formation of urchin-like 

copper phosphate dehydrate structures prepared by galvanic cell corrosion [25]. 

Particularly, the galvanic exchange reaction has been used to create superhydrophobic 

fractal-like gold nanostructured films on silicon surfaces [26]. Similarly, this method has 

been used to create silver nanostructured films on silicon surfaces [27] and the 

superhydrophobicity of such films has been reported as well [28]. 

In this paper, it is reported that superhydrophobicity of nanostructured silver films was 

achieved by galvanic exchange reaction on copper surfaces after passivation with 

stearic acid (SA) molecules. The properties of these surfaces are discussed through 

measuring the contact angle of water and characterizing their surface topography by 

scanning electron microscopy. 

 

2. Experimental procedures 

One-inch-square copper substrates were ultrasonically cleaned in potassium hydroxide 

solution then rinsed in deionized water. The coatings of thin silver films were performed 

by immersing the copper substrates in a silver nitrate solution for a range of time. These 



samples were passivated with SA dissolved in acetone or hexane (2 mM) for 30 min 

then dried in an oven at 80 °C overnight. The stability of SA passivation was investigated 

by immersing the passivated samples in water or some organic solvents such as 

ethanol, acetone and hexane for 12 h, followed by drying for more than 10 h in the oven. 

Smooth silver films were grown on silicon wafer by a thermal evaporation technique with 

0.2 nm/sec deposition rate up to a thickness of 40 nm. After drying, the silver-coated 

samples were passivated with the method mentioned above. The surface morphology of 

the copper samples was studied with a field emission scanning electron microscope 

(FESEM, Leo 1525), whereas the silicon samples were observed with an atomic force 

microscope (tapping mode, VEECO, IIIa). The water contact angle measurements were 

made with the sessile drop method using a Krüss DSA100 drop shape analyzer. 

 

3. Results and discussion 

It is well known that copper can reduce silver ions spontaneously as described by the 

following reaction: 

 

Equation (1) 

2Ag+ + Cu → 2Ag + Cu2+ 

 

Several thin silver films were coated on copper substrates by placing them in a silver 

nitrate solution involving this reaction (1). The passivation process is done using SA 

dissolved in acetone or hexane. It is known that SA molecules are chemisorbed on silver 

as carboxylate with its two oxygen atoms bound symmetrically to the surface [29]. No 

difference in water contact angle was detected according to the type of solvent. Fig. 1 

depicts the variation of contact angle and hysteresis over a range of coating times for 

three values of initial Ag+ concentrations of 13.2, 24.75 and 50 mM. With the 3.2 mM 

solution, contact angle increases monotonically from 134° at 0.5 min to 150° at 10 min, 

and finally to 151° after 12 h, while hysteresis correspondingly reduces from 29.5° at 

1 min to 7.6° at 10 min and then to 6.5° after 12 h. On the other hand with the 50 mM 

solution, contact angle reduces from 155° to 147° and hysteresis increases from 5.1° to 

10.3° at 0.5 and 10 min, respectively. Using the 24.75 mM solution, the highest contact 

angle, 156°, is obtained at 1 min while the least hysteresis, 4.1°, is achieved at 2 min. 



  

Fig. 1.  

Variation of water contact angle and hysteresis with coating time. 

 

Fig. 2 shows the water contact angle and its hysteresis for samples prepared at 1-min 

coating time within a range of silver ion concentrations. Increasing the Ag+ concentration 

from 13.2 to 396 mM increases contact angle from 137° to its maximum of 156° at 

24.75 mM, and then decreases it to 141°. On the other hand, hysteresis reduces from 

29.5° to 5° at 24.75 mM, and then increases to 15.5°. At higher concentrations the 

surface of coating is quite non-uniform and the errors in the measured contact angle and 

hysteresis are much higher. 

 

Fig. 2.  

Variation of water contact angle (a) and hysteresis (b) with the initial Ag+ concentrations. 

 

Fig. 3(a)–(c) show the SEM images of samples prepared using three different initial Ag+ 

concentrations of 13.2, 24.75 and 396 mM, respectively. It can be seen that the size and 

number of both the fractal-like structures and the voids surrounded by them are 



concentration-dependent. Because of the low Ag+ concentration, the reaction is slow 

and the film has tiny, almost indistinguishable voids, as shown in Fig. 3(a). After SA 

passivation, this sample shows a water contact angle and a contact angle hysteresis of 

137° and 29.5°, respectively, as shown in the inset of Fig. 3(a). When the initial Ag+ 

concentration is increased, the reaction becomes faster and larger fractal-like structures 

of silver appear. Consequently, the size of the voids between those structures also 

increases. The average diameter of the voids is ∼5 µm, as shown in Fig. 3(b). The 

contact angle and contact angle hysteresis obtained are 156° and 5°, respectively, as 

shown in the inset of Fig. 3(b). By further increasing the concentration of Ag+ ions in the 

solution, the size of the voids increases to ∼10 µm, as seen in Fig. 3(c) and the contact 

angle and hysteresis are 141° and 15.5°, respectively, illustrated in the inset of Fig. 3(c). 

Fig. 3(d) depicts a magnified fractal-like structure from Fig. 3(b). Due to their self-

similarity, several nanometric empty spaces exist around the micrometric structures 

which are separated by voids. 



  

Fig. 3.  

SEM images of samples prepared using three different initial Ag+ concentrations of (a), 

13.2 mM, (b) 24.75 mM and (c) 396 mM, respectively; and (d) a magnified section of (b). 

In the insets, the states of the droplets are shown. 

 

To fully understand the superhydrophobicity of the surface of the Ag-aggregate-coated 

copper samples, the contact angles can be studied as follows: the water contact angle 

on rough surfaces is commonly explained with two models, namely Wenzel [30] and 

Cassie–Baxter [31] models. In the Wenzel model [30] the contact angle is given by 

 

Equation (2) 

cos θ′=r cos  



where r is the roughness factor defined as the ratio of the actual area of a rough surface 

to the projected area, θ is the contact angle on the corresponding smooth surface and θ′ 

is that of the rough surface. Since r is greater than 1 due to roughness, then θ′  < 90° if 

θ < 90° and θ′  > 90° if θ > 90°. On the other hand, the modified Cassie–Baxter model 

[32] and [33] predicts the equilibrium contact angle as 

 

Equation (3) 

cos θ′=f(1+cos θ) −  

 

where f is the fraction of solid surface area in contact with the water drop and remaining 

area (1−f) is occupied by air for which the contact angle of water is 180°. With this 

model, it is possible to obtain θ′ > 90° even if θ < 90°, provided that f is very small, which 

is achievable by means of fractal structures [34], by a bottom-up approach [35] or even 

by highly ordered surface by photolithography [13]. 

A smooth thin film of silver was prepared on silicon (1 0 0) wafer and its morphology was 

observed with AFM. From the AFM images, one can see that the Ag layer is flat and 

homogenous, as shown in Fig. 4. For the sample of Fig. 4 with 2 µm scan length, the 

measured RMS roughness is determined to have a maximum value of 1.08 nm. With this 

value, it is assumed that the surface is smooth and can be used for evaluating water 

contact angle on smooth silver. 

 

Fig. 4.  



AFM image of the smooth silver surface and its corresponding parameters. 

 

The surface wettability of the smooth silver was studied by contact angle measurements 

after passivation with SA in acetone or hexane, and no difference in water contact 

angles was detected according to the type of solvent. As shown in Fig. 5, the water 

contact angle was about 79 ± 1.1°, implying that the passivated surface is slightly 

hydrophilic. Although many of the reported superhydrophobic materials are based on the 

materials with water contact angle greater than 90° in their smooth form, it is not a 

necessary condition and it is possible to produce superhydrophobic surfaces using 

slightly hydrophilic materials [35] and [36]. In our experiment, increasing the passivation 

period or the concentration of SA by more than 2 mM may lead to the formation of 

patches of SA on the surface, detectable by AFM, which increases its roughness. In 

such cases, higher water contact angles may be obtained because the film which is not 

smooth. 

 

Fig. 5.  

Image of a water droplet of about 6 µL on the smooth silver surface of Fig. 4, with water 

contact angle of 79°. 

 

The fractions of solid surface, f, of the samples prepared with different Ag+ ion 

concentrations were calculated using Eq. (3) with the measured values of θ′ (137°, 156° 

and 141°) for the samples shown in Fig. 3(a)–(c), respectively, and considering that θ 

has a value of 79° for the stearic acid-passivated smooth surface. The calculated f 

values are found to be 0.226, 0.072 and 0.187 for the microstructures presented in Fig. 

3(a)–(c), respectively. These values are comparable with the reported solid fraction 

values belonging to other disordered microstructures, for example, the results of Tavana 



et al. [37] on thermal evaporated polymer (C36H74) surface or Wang et al. [26] on 

branch-like structures of gold, resulting from galvanic exchange reaction. In the 

experiment of Tavana et al. [37], the samples have suitable roughness for AFM studies, 

and the experimentally achieved solid fraction was reported to be ∼0.12. Our samples 

are highly rough and therefore inappropriate for AFM measurements to determine the f 

value experimentally. On the other hand, there exists a consistency between the 

achieved contact angles and the calculated f values in the present study on the fractal-

like structures of silver (contact angle: 156° and f value: 0.072) and those on the branch-

like structures of gold (contact angle: 158° and f value: 0.09) by Wang et al. [26]. The 

fraction of solid 0.09 has been calculated from the given air fraction of 0.904 in Table 1 

by Wang et al. [26] as (1−0.904) = 0.096 ∼ 0.09. 

 

Table 1.  

Water contact angle (CA) and hysteresis (CAH) of the as-prepared superhydrophobic 

surface and the samples treated with water or some organic solvents 

Sample CA (°) Variation of CA (°) CAH (°) Variation of CAH (°) 

As-prepared 156.3 ± 1.2 – 5.0 ± 1.3 – 

Treated with water 155.8 ± 1.2 −0.5 ± 2.4 5.3 ± 1.1 +0.3 ± 2.4 

Treated with ethanol 156.2 ± 1.4 −0.1 ± 2.6 5.2 ± 1.4 +0.2 ± 2.7 

Treated with acetone 156.1 ± 1.7 −0.2 ± 2.9 5.2 ± 1.7 +0.2 ± 3.0 

Treated with hexane 156.1 ± 1.7 −0.2 ± 2.9 5.2 ± 1.7 +0.2 ± 3.0 

 

In the experiment of Wang et al. [26], the best hydrophobicity was achieved with the 

HAuCl4 reagent with concentration equal to 25 mM. Comparing their experiment with 

this work, there is not only a qualitative similarity in the morphology of fractal-like 

nanostructures, but also a quantitative similarity in initial reagent concentrations 

(24.75 mM AgNO3 versus 25 mM HAuCl4). However, the fractal-like nanostructures of 

silver have smaller solid fraction (f = 0.072) compared with the branch-like structures of 

gold (f = 0.09). 

The stability of superhydrophobicity of the SA-passivated fractal-like silver 

nanostructured surfaces (24.75 mM, 1 min) was verified by immersing them in water and 

different organic solvents, namely ethanol, acetone and hexane, prior to performing the 

contact angle measurements. Fig. 6 and Table 1 show the measured values of water 



contact angle and hysteresis. The as-prepared SA-passivated surfaces have contact 

angle and hysteresis of 156.3 ± 1.2° and 5.0 ± 1.3°, respectively. After immersion in 

water, these values change to 155.8 ± 1.2° and 5.3 ± 1.1°, respectively, which are very 

close to those of the as-prepared surfaces. As a whole, the variations of contact angle 

and hysteresis are found to be less than 0.5° and 0.3°, respectively, after treating with 

either water or organic solvents of ethanol, acetone and hexane. These results suggest 

that SA-passivated fractal-like silver nanostructured surfaces are very stable with 

respect to treating with water and organic solvents. 

 

 

Fig. 6.  

Variation of water contact angle and hysteresis after treating the passivated samples 

with water or organic solvents of ethanol, acetone or hexane. 

 

4. Conclusion 

In this study, a simple procedure to produce stable superhydrophobic surfaces with 

contact angles as high as 156° and contact angle hysteresis as low as 5°, is proposed. It 

makes use of the galvanic ion exchange reaction between silver ions with copper on the 

surface, and of passivation with stearic acid organic molecules. Microstructures of silver-

coated samples are composed of fractal-like structures, as well as voids surrounded by 

fractals. The optimum void size of ∼5 µm leads to the maximum contact angle and 

minimum contact angle hysteresis. These superhydrophobic nanostructured surfaces 

are found to be resistant to water and organic solvents. 

 

 

 



Acknowledgements 

This work was carried out within the framework of the NSERC/Hydro-Quebec/UQAC 

Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and the 

Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE) 

at Université du Québec à Chicoutimi. The authors would like to thank the CIGELE 

partners (Hydro-Québec, Hydro One, Électricité de France, Alcan Cable, K-Line 

Insulators, CQRDA and FUQAC) whose financial support made this research possible. 

They would also like to thank Ms. Hélène Grégoire, CNRC Chicoutimi for providing 

access to FESEM and Mr. Jian Hung Lin, Advanced Material Laboratory, Center for 

Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan, for preparing 

smooth silver-coated silicon samples. 

 

References 

 

[1] B. Bhushan, Y.C. Jung 

Ultramicroscopy, 107 (2007), p. 1033 

[2] Z. Guo, J. Fang, L. Wang, W. Liu 

Thin Solid Films, 515 (2007), p. 7190 

[3] A. Satyaprasad, V. Jain, S.K. Nema 

Appl. Surf. Sci., 253 (2007), p. 5462 

[4] A. Egatz-Gómez, S. Melle, A.A. García, S.A. Lindsay, M. Márquez, P. Domínguez-

García, M.A. Rubio, S.T. Picraux, J.L. Taraci, T. Clement, D. Yang, M.A. Hayes, D. Gust 

Appl. Phys. Lett., 89 (2006), p. 034106 

[5] D. Quéré 

Nat. Mater., 1 (2002), p. 14 

[6] H.Y. Erbil, A.L. Demirel, Y. Yonca, O. Mert 

Science, 299 (2003), p. 1377 

[7] W. Barthlott, C. Neinhuis 

Planta, 202 (1997), p. 1 

[8] T. Kako, A. Nakajima, H. Irie, Z. Kato, Z. Uematsu, T. Watanabe 

J. Mater. Sci., 39 (2004), p. 547 

[9] S.A. Kulinich, M. Farzaneh 

Appl. Surf. Sci., 230 (2004), p. 232 

[10] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu 



Adv. Mater., 14 (2002), p. 1857 

[11] Z.Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato 

Angew. Chem. Int. Ed., 42 (2003), p. 894 

[12] S.A. Kulinich, M. Farzaneh 

Vacuum, 79 (2005), p. 255 

[13] D. Öner, T.J. McCarthy 

Langmuir, 16 (2000), p. 7777 

[14] K. Satoh, H. Nakazumi 

J. Sol–Gel Sci. Technol., 27 (2003), p. 327 

[15] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, P. Roach 

Mater. Chem. Phys., 103 (2007), p. 112 

[16] R. Olde, J.G.A. Terlingen, G.H.M. Engbers, J. Feijen 

Langmuir, 15 (1999), p. 4847 

[17] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry 

Langmuir, 21 (2005), p. 937 

[18] D.K. Sarkar, M. Farzaneh 

Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, vol. 3, 

Boston, MA, USA (2006), p. 166 

[19] J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic 

J. Phys. Chem. B, 108 (2004), p. 10955 

[20] D.K. Sarkar, X.J. Zhou, A. Tannous, K.T. Leung 

J. Phys. Chem. B. (Lett.), 107 (2003), p. 2879 

[21] D.K. Sarkar, X.J. Zhou, A. Tannous, M. Louie, K.T. Leung 

Solid State Commun., 125 (2003), p. 365 

[22] N. Zhao, F. Shi, Z. Wang, X. Zhang 

Langmuir, 21 (2005), p. 4713 

[23] X.H. Xia, C.M.A. Ashruf, P.J. French, J.J. Kelly 

Chem. Mater., 12 (2000), p. 1671 

[24] S.J. Huo, X.K. Xue, Q.X. Li, S.F. Xu, W.B. Cai 

J. Phys. Chem. B, 110 (2006), p. 25721 

[25] X. Wu, G. Shi 

Nanotechnology, 16 (2005), p. 2056 

[26] C. Wang, Y. Song, J. Zhao, X. Xia 

Surf. Sci., 600 (2006), p. L38 



[27] Y.Y. Song, Z.D. Gao, J.J. Kelly, X.H. Xia 

Electrochem. Solid State Lett., 8 (2005), p. C148 

[28] F. Shi, Y. Song, J. Niu, X. Xia, Z. Wang, X. Zhang 

Chem. Mater., 18 (2006), p. 1365 

[29] S.J. Lee, K. Kim 

Vib. Spectrosc., 18 (1998), p. 187 

[30] R.N. Wenzel 

Ind. Eng. Chem., 28 (1936), p. 988 

[31] A.B.D. Cassie, S. Baxter 

Trans. Faraday Soc., 40 (1944), p. 546 

[32] J. Bico, C. Marzolin, D. Quéré 

Europhys. Lett., 47 (1999), p. 220 

[33] A. Nakajima, K. Hashimoto, T. Watanabe 

Monatshefte für Chemie, 132 (2001), p. 31 

[34] S. Shibuichi, T. Onda, N. Satoh, Kaoru Tsujii 

J. Phys. Chem., 100 (1996), p. 19512 

[35] E. Hosono, S. Fujihara, I. Honma, H. Zhou 

J. Am. Chem. Soc., 127 (2005), p. 13458 

[36] N.J. Shirtcliffe, S.A. Aqil, C. Evans, G. McHale, M.I. Newton, C.C. Perry, P. RoachJ 

Micromech. Microeng., 14 (2004), p. 1384 

[37] H. Tavana, A. Amirfazli, A.W. Neumann 

Langmuir, 22 (2006), p. 5556 

 


