
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

MÉMOIRE PRESENTE À

L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

COMME EXIGENCE PARTIELLE

DE LA MAÎTRISE EN INFORMATIQUE

OFFERTE A

L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

PAR

YANG YANG

ALGORITHMS FOR TWO-STAGE FLOW-SHOP WITH A

SHARED MACHINE IN STAGE ONE AND TWO PARALLEL

MACHINES IN STAGE TWO

ABSTRACT
Scheduling problems may be encountered in many situations in everyday life.

Organizing daily activities and planning a travel itinerary are both examples of small

optimization problems that we try to solve every day without realizing it. However,

when these problems take on larger instances, their resolution becomes a difficult task

to handle due to prohibitive computations that generated.

This dissertation deals with the Two-Stage Flow-shop problem that consists of three

machines and in which we have two sets of jobs. The first set has to be processed, in this

order, by machine M± and then by machine M2. Whereas, the second set of jobs has to

be processed, in this order, by machine M± and then by machine M3. As we can see,

machine M1 is a shared machine, and the other two machines are dedicated to each of

the two subsets of jobs.

This problem is known to be strongly NP-Hard. This means there is a little hope that

it can be solved by an exact method in polynomial time. So, special cases, heuristic, and

meta-heuristic methods are well justified for its resolution.

We thus started in this thesis to present special cases of the considered problem

and showed their resolution in polynomial time.

In the approximation front, we solved the considered problem with heuristic and

meta-heuristic algorithms.

In the former approach, we designed two heuristic algorithms. The first one is based

on Johnson's rule, whereas the second one is based on Nawez, Enscore, and Ham

algorithm. The experimental study we have undertaken shows that the efficiency and

the quality of the solutions produced by these two heuristic algorithms are high.

In the latter approach, we designed a Particle Swarm Optimization algorithm. This

method is known to be popular because of its easy implementation. However, this

algorithm has many natural shortcomings. We thus combined it with the tabu search

algorithm to compensate the negative effects. The experimental study shows that the

new hybrid algorithm outperforms by far not only the standard Particle Swarm

Optimization, but also the tabu search method we also designed for this problem.

ACKNOWLEDGEMENTS

First of all, I must give my most sincere thanks to my supervisor Professor Djamal

Rebaïne, for his availability, his involvement and his support throughout his research. I

am particularly grateful that he was attentive to my ideas and comments, and also for

responding too many of my questions. Without this assistance and dynamism, this

research would probably not have been born.

Research work could not be done without financial support. As such, I would like to

thank Professor Djamal Rebaïne again, because he gave me a scholarship to reduce

much of my burden, allowing me to focus on my research.

Secondly, I would also like to thank my parents deeply. They really sacrificed a lot

for me in the past 31 years. It is difficult to find the language to express this gratitude. I

can only say that, at present, my greatest wish is to be able to ensure that they live a

happy life forever.

Finally, I would also like to thank all who helped me in the past four years.

in

TABLE OF CONTENTS

ABSTRACT I

ACKNOWLEDGEMENTS Ill

TABLE OF CONTENTS , IV

LIST OF TABLES VI

LIST OF FIGURES VII

Chapter 1 General introduction: 8

Chapter 2 Scheduling problems 12

2.1 Introduction 12

2.2 Problem description 15

2.3 Classification of scheduling problems 16

2.4 Flow-shop problem 23

Chapter 3 Concepts of complexity theory 25

3.1 Introduction 25

3.2 Class P and NP 25

3.3 NP-hard and NP-complete problems 26

3.4 Combinatorial optimization problems 28

3.5 Exact algorithms 29

3.5.1 Branch and bound 29

3.5.2 Dynamic programming 30

3.5.3 Reduction methods 30

3.5.4. Constructive methods 31

3.6 Approximation approach 31

3.6.1 Heuristic algorithms 31

3.6.2 Meta-heuristic algorithms 32

3.7. Solving scheduling problems 35

Chapter 4 Two-stage Flow-shop with a shared machine in stage one and two

parallel machines in stage two 37

4.1 Introduction 37

4.2 Study of special cases 38

4.2.1 First special case: standard two-stage flow-shop 38

4.2.2 Second special case: constant processing times 40

4.2.3 Third special case: Large processing times in Stage 1 48

4.2.4 Fourth special case: Large processing times in Stage 2 53

Chapter 5 Heuristic approach 57

IV

5.1 Introduction 57

5.2 Heuristic algorithms of FSP 57

5.2.1 CDS heuristic algorithm 58

5.2.2 Palmer heuristic algorithm.. 59

5.2.3 RA heuristic algorithm 59

5.2.4 NEH heuristic algorithm 59

5.2.5 Gupta heuristic algorithm 60

5.3 Heuristic design for F 3 | M 1 -> M 2 ; M l -> M3\Cmax 60

5.3.1 A heuristic based on Johnson's rule 61

5.3.2 A heuristic based on NEH 65

5.3.3 Experimental study 66

Chapter 6 Meta-heuristic approach 70

6.1 Introduction 70

6.2 Tabu Search (TS) 70

6.2.1 Neighbourhood search 71

6.2.2 Principles of Tabu search 73

6.3 Particle Swarm Optimization (PSO) 75

6.3.1 Principles of PSO 75

6.3.2 Process of PSO algorithm 78

6.4 Encoding 79

6.5 Hybridization 82

6.5.1 Features of TS and PSO 82

6.5.2 Design of the hybrid algorithm 84

6.5.3 Experimental study 88

Conclusion 90

References ; 92

LIST OF TABLES

Table 2.1: Processing times of jobs 15

Table 2.2: Processing times of jobs for Example 2.2 23

Table 4.1: Processing times of jobs for Example 4.1 39

Table 5.1: Set of two-machine flow shop problems 58

Table 5.2: Processing times of jobs for Example 5.1 63

Table 5.3: Schedule two subsets by Johnson's rule 63

Table 5.4: Processing times of jobs for Example 5.2 66

Table 5.5.1: Simulation of both heuristics where processing times are in [50,100] . 68

Table 5.5.2: Simulation of both heuristics where processing times are in [20,100] . 68

Table 5.5.3: Simulation of both heuristics where processing times are in [10,100] . 69

Table 5.5.4: Simulation on the heuristic based on Johnson's rule 69

Table 6.1: Processing times of jobs for Example 6.1 72

Table 6.2: Neighbourhood of solution x = (3,4,2,1) 72

Table 6.3: Tabu list after the first iteration 73

Table 6.4: Tabu list after the second iteration 73

Table 6.5: Position of the particle and the corresponding ROV value 80

Table 6.6: After SWAP operations, the particle component position is adjusted 82

Table 6.7: Characteristics of TS and PSO approaches 83

Table 6.8: Initial tabu list and swarm 85

Table 6.9: The tabu list and swarm after first iteration 85

Table 6.10: The tabu list and swarm after second iteration 86

Table 6.11: The tabu list and swarm (Unified Pardon Rule) 86

Table 6.12: The tabu list and swarm (Prioritized Pardon Rule) 86

Table 6.13.1: Simulation of hybrid PSO where processing times are in [50,100] 89

Table 6.13.2: Simulation of hybrid PSO where Processing times are in [20,100] 89

Table 6.13.3: Simulation of hybrid PSO where Processing times are in [10,100] 89

VI

LIST OF FIGURES

Figure 1.1: The model studied 10
Figure 2.1 CIM and a production control system 13
Figure 2.2 Two Gantt charts for Example 2.1 16
Figure 2.3: Gantt chart for order A->B->C->D 24
Figure 2.4: Gantt chart for order B->D->C->A 24
Figure 3.1: Relationship between NP, P, and NPC classes. 27
Figure 4.1: Two-stage flow-shop with one shared machine in stage one and two

parallel machines in stage two 38
Figure 4.2: Divide the problem into two standard two-stage flow-shop problems....39

Figure 4.3: Gantt chart for the case p1 = p2
 = V 41

Figure 4.4: Size o f / x larger than that of J2 44
Figure 4.5: Size of J2 larger than that ofj1 45

Figure 4.6: [y] < nx 47

Figure 4.7: I �I >n± 47
L AC J

Figure 4.8: Crossed scheduling for the jobs of/x and/2 50
Figure 4.9:/! is processed before J2 50
Figure 4.10: No change on the makespan after inserting job/ 54
Figure 4.11: One job of another subset between two jobs of either J± or J2 55
Figure 5.1: Minimal value of two functions 62
Figure 6.1: Model of the swarm of RSO 76
Figure 6.2: Updating the particle 77

VII

Chapter 1

General introduction

The theory of scheduling is one well-established discipline of combinatorial

optimization field. A scheduling problem involves organizing, over time, the realization

of a set of jobs over a set of resources, usually named as machines.

A job ji is composed of n different operations { O Q , 0i2f..., 0jn}, and every operation

requires a period of time ty. The machine is a kind of technique or human resource to

be used to carry out jobs, and it is available in limited proportions and capacities.

The evaluation of a scheduling solution is compared to one or more goals of

performance that satisfy certain conditions of treatment.

The popularity of scheduling theory stems from the fact that a multitude of

situations encountered in practice within companies and organizations that can be

reduced to the problems of scheduling. For example, machines may represent

processors and jobs, nurses and patients, workers and products, etc.

Among the scheduling problems that have been studied in the literature, the

problem of serial workshops (Flow-shop Scheduling Problem, FSP) is one of the first that

was studied in the early fifties. Johnson, in 1954, was the first to examine and design an

efficient solution for the Flow-shop with two machines [Johnson, 1954]. Since then,

many studies appeared in the literature. However, experience has shown a gap between

the theory and what actually happens in the centres of production. We may mention

the following constraints that the theory of scheduling has not considered until recently.

1. The latency of the work corresponding to the different time needed between

the end of an operation and the beginning of the next operation in the same job.

For example, the cooling time before their next job manipulation. These times,

in some cases to a significant degree, must not be ignored, but in others cases,

we could incorporate latency into the processing time of an operation to reduce

the complexity of the problem. However, the correctness of the solution will be

only slightly influenced or not at all affected.

2. Resources constraints corresponding to the situation where jobs cannot be

processed unless sufficient (human or else) resources are available.

Research in scheduling can be divided into two parts: modelling and algorithm

design. The modelling part is about designing appropriate mathematical models to

capture the complexity of real problems, whereas the algorithm design part is about the

design of analysis of algorithms, the convergence algorithms and the optimization

quality.

In this dissertation, we study the model of flow-shop with two stages as Figure 1.1.

The criterion we seek to minimize the overall completion time of the jobs, known as the

makespan. This problem may be defined as follows.

We are given a set J of n independent jobs partitioned in two disjoint subsets that

have to be scheduled on a two-stage flow-shop: the first stage contains one machine

and the second stage contains two dedicated machines. The first subset of jobs is

processed first by the machine of the first stage, and then by on machine of the second

stage. The second subset is processed by the machine of the first stage, the by the other

machine of the second stage. We assume that all of the jobs are available at time 0 and

have exactly two operations executed on two different machines; the transportation

time and latency are included in the processing time of operation; pre-emption is not

allowed and the machines in the model are always available and can process only one

job at one time [Chikhi, Boudhar, and Soukhal, 2011]. This problem is strongly NP-hard

[Tuong Soukhal and Miscopein, 2009].

Set N of Jobs each of which has two operations.

Two subsets of job Jx and / 2 / / i u / 2 = 1 �
Subset/j must be executed by machine 1 and then by machine 2,1.

Subset]2 must be executed by machine 1 and then by machine 2,2.

The order of the jobs is the same at each stage.

Figure 1.1: The model studied

Our study is three folds. First, we seek polynomial time algorithms to solve this

model in some special cases, in our case the processing times are special pattern. The

second goal is to solve the general model by two meta-heuristic algorithms. The third

goal is to improve the original meta-heuristic and make it more efficient for our model.

This thesis is divided into six chapters. Besides this present chapter, Chapter 2

introduces the different models encountered in the theory of scheduling. Chapter 3 is

devoted to the basic concepts used in the complexity theory, along with the different

10

methods used when confronted with an NP-difficult problem. Chapter 4 first proposes a

formulation of the problem we are considering, and then presents several special cases

along with their solving algorithms and proofs of their optimality. Chapter 5 is devoted

to the study of the heuristic approach. In this chapter, we proposed two new algorithms

along with an experimental study to discuss their performance. Chapter 6 is about the

meta-heuristic approach. In this chapter, we first proposed two meta-heuristic

algorithms: one is based on the tabu search approach, and the second is based on the

particle swarm optimization approach. After studying their respective performance

through an experimental simulation, we proposed a third approach which is a

hybridisation of the two approaches. Again an experimental study is performed to see

how efficient this new approach is. We close this dissertation by a conclusion.

11

Chapter 2

Scheduling problems

2.1 Introduction

With the development of science and technology, the scale of production has

become increasingly important, and the process of production has also become more

and more complicated, and market competition is getting increasingly fierce. In this

environment, organizations have to face increasingly greater numbers of problems, such

as the control of production process in response to changing production planning, and

also how to maximize their interests or efficiencies.

As a solution to these problems, [Harrington, 1974] introduced the concept of CIM

(computer integrated manufacturing), as pictured by Figure 2.1. CIM is a manufacturing

approach in which computers are used to control the entire production process [Serope

and Steven, 2006]. In a CIM system, functional areas such as design, analysis, planning,

purchasing, cost accounting, inventory control and distribution are all linked through the

computer with factory floor functions such as material handling and management,

thereby allowing monitoring of all of the operations.

The production plan is an important component of CIM as it plays a substantial role

in the entire operation of an enterprise. The task of the production plan is to maximize

the benefits of the targeted companies. The development of a production plan is

12

generally considered as a static situation. The production plan is executed by the

scheduling system.

ReqpestfertsiimaiiS
Proposais 1

* 7 Oesigû,

Chatty
peftamanoe

i / methods,
I / CAD&AM

simulaSon

What and wheft?

t

Figure 2.1 CM and a production control system [Toni and Tonchia, 1998]

Production scheduling plans the production process as a decisive advantage, which

is the core of the production plan. An efficient scheduling method is a key to improve

the efficiency of production. Improvements in production scheduling now allow us to

pay more at tent ion to improving the efficiency of production and resource use.

Production scheduling is based on the production plan and depends on market demands

and conditions and technical equipment . The task of production scheduling is to plan

and organize the production process. Its main factors are as follows:

(1) The number of products.

(2) Production Line.

(3) Production Order.

13

(4) The production constraints.

In the field of theoretical research, production planning and production scheduling

are referred to as scheduling problems. The difference between them is that the

production planning principally considers the long-term plan while neglecting or

simplifying production constraints. In contrast, production scheduling considers the plan

in the short term; its main purpose is to organize the production and distribute

resources over time. So, it must take into account a variety of constraints in the real

production environment. Therefore, production scheduling is the process of achieving

the production plan.

A scheduling problem involves the organization, overtime, of the realization of a set

of tasks based on the resource availability.

Production management may differ for different optimization objectives, such as

strategy optimization or model optimization of a scheduling problem. Each production

environment is almost unique because of the dynamics of the production environment

and the diversity of the knowledge production, which makes it difficult to find a

corresponding method for all situations. Scheduling problems are usually of

optimization nature and are part of the combinatorial optimization class (for more

details see Section 3.4). It is worth to mention that the vast majority of scheduling

problems turn out to be NP-complete (see the definition in Chapter 3). When a problem

is shown to be an NP-complete problem, this means that there is a little hope to find an

exact algorithm to solve it within a reasonable time. The use of approximation approach

or the design of well solvable cases is therefore justified.

14

2.2 Problem description

Scheduling problems are described basically by two sets:

/ = {JiJ2> � Jn) of n jobs that will be executed in the system.

- M = {Mlt M2,..., Mm} of m machines present in the system to process set J.

A scheduling problem involves assigning the set M to complete all jobs of / with

some constraints/Scheduling has two constraints: occupation constraints and order

constraints. Occupation constraints indicate that each job is executed by at most one

machine at the same time and that each machine can process at most one job at the

same time; order constraints indicate that each job must be executed in a certain order.

All scheduling solutions can be represented by a diagram called the Gantt chart.

This is a type of bar charts, developed by Gantt [Gantt, 1910]. These diagrams help to

visualize a solution. Gantt charts illustrate the starting and finishing dates of the

terminal elements and summary elements of a project. Terminal elements and summary

elements comprise the work breakdown structure of the project. The chart has two

perpendicular axes; the horizontal axis represents the time units, while the vertical axis

represents the machines that are in the centre.

Example 2.1: Let J = {JlfJ2/ ��� ,]v), with n = 3, and M � {Mlf M2,..., Mm}, with m = 2.

Table 2.1 shows the processing time for each job.

Mi
M2

h
4
2

h
3
3

h
2
4

Table 2.1: Processing times of jobs

15

Figure 2.2 shows the Gantt chart associated with the scheduling solution. From this

diagram, we can determine the value of the criterion we considered. This diagram may

help to determine the strength or the weakness of this solution.

Machines

M2 Time

(a) A machine-oriented Gantt chart for example 2-1

i
Machines

A

h

h

Mx | M2

| Mi M2 |

M2
 M2 | T i n i e

(b) A job-oriented Gantt chart for example 2-1

Figure 2.2 Two Gantt charts for Example 2.1

2.3 Classification of scheduling problems

The variety of scheduling problems that arise in practice leads to a notation that

allows us to classify them. This notation was first proposed by Graham et al. (1979) and

expanded later by several authors to include other new scheduling problems.

This notation comprises three fields and is of the form a\P\y . The first field a

represents the environment of the machines; the second field (5 describes the

16

characteristics of the jobs and the resources that are utilized, and the third field y

represents the criterion (or the set of criteria) we are optimizing.

Let us now go into details. Field a consists of two parameters ax and a2 :

a± G { 0 , P, Q, R, PMPM, QMPM, G,X, 0, J F] and ct2 are equal to positive integer

1. If <*! G { 0 , P, Q; R, PMPM, QMPM}: any job comprises one single operation.

2. If <*! = 0 : we have one single machine to process the set of jobs. The processing

times Pij are reduced to pj.

3. If c*! G {P, Q, R}, then we have a set of m machines (m > 1) operating in parallel,

that is to say each job can be processed by one of the machines M 1 ; . . . , M m . Usually

we distinguish between three models as below according to the speed of the

machines:

a. If a± = P, then the machines are identical, and thus the speed is the same for

the machines. The processing time pjj of job Jj on Mj are reduced to Pi for all

machines Mj.

b. b. If cti = Q, then the machines have related speeds, and we say that the

machines are uniform. Indeed, within this model, the processing times become

as Pij = Pi/Sj where Sj is the speed of machine Mj.

c. Finally, if ax = R, then there is no relationship between their speeds, and the

machine are said to be unrelated. In this case, the processing times depend on

the machine in which the jobs are processed. So the notation p^ denote the

processing time of job Ji on machine Mj.

17

4. If a ! = PMPM or a± = QMPM, then we have multi-purpose machine model with

identical and uniform speeds, respectively.

5. If ax E {G,X, 0, J F}, then we have a multi-operational model known as the general

shop. This means that the jobs comprise several operations. We indicate the

general shop by setting ax = G. Job shops, flow-shops, open shops, and mixed

shops are special cases of the general shop. The differences are based on the nature

of the job routing.

a. The job shop is indicated by at = J. In this case, an associated route through

the machine is associated with each job.

b. The Flow-shop is indicated by ax = F. In this case, the route though the

machine is the same for the whole set of jobs; by convention each job start from

machine 1, and then machine 1, and so on, until reaching machine m. If addition,

if the same order of processing is kept through all the machines, then we have a

restricted model (which exists in its own right) known as the permutation flow

shop. There are some situations where this model is dominant over the set of all

the solution of a flow shop model.

c. The open shop is indicated by a± = 0. The route of processing of the jobs, in

this case, is not known in advance, but is part of the solution.

d. The mixed shop indicated by at = X is a combination of a flow shop and an

open shop (the combination of a job shop and an open shop is known as the

general mixed shop).

Parameter cx2 denotes the number of machines utilized if ct2 = k. However, this value is

fixed in advance. Thus/it is part of the input of the problem. If the number of machines

is arbitrary, we set oc2 = 0 .

The second field p describes the characteristics of the jobs and resources utilized. It

comprises eight parameters J31j32j33j34p5fi6j37ps.

� pxe {0,pmtn} indicates whether pre-emption is permitted or not.

� P2 e{0,res} indicates whether resources considerations are taken into account. The

presence of res means that additional resources other than machines (such as

manpower) are needed for the processing of jobs. In case parameter res is not

empty, then it is further divided into three fields "res AoS " denoting respectively

the number of resources, the total amount of available resources per time unit, and

the maximum resource requirements of operations. Note that a dot "." for each of

these parameters indicates that the corresponding variable can take any integer

value, whereas a positive integer indicates that the corresponding variable is fixed.

Moreover, researchers in this area distinguish between renewable and non-

renewable resources.

� J33 E { 0 , prec} indicates whether precedence relations exists between jobs.

Sometimes, we only consider special graphs. In this case, we have to specify the

nature of this graph. Usually we consider tree (denoted by tree), chains (denoted by

chains), series-parallel graphs (denoted by sp-graph).

� /?4 e{0,rj} indicates whether release dates are associated with jobs. Otherwise,

we assume that all jobs are available for processing at time 0.

19

� jB5 G{0,pij = 1, p. = p, px<ptj <p2} indicates special values that can be taken by

the processing times of the jobs. Other values are also possible. The case of 0

indicates that the processing times are arbitrary.

� J36 e{0,df} indicates whether deadlines for the jobs are considered.

� /?7 e{0,ni <k) indicates the maximal number of operations of jobs in the case of a

job shop model.

� /?8 G { 0 , nowait} indicates in the case of shop models whether the processing of the

jobs is done in a no-wait manner. This means that once a job is completed in a

machine, it should immediately, without any waiting time, start its processing in the

following machine.

The third field y represents the criterion we are optimizing. The quality of a

schedule is evaluated to a given criterion (or to a set of given criteria if we are in a multi-

objective environment). In scheduling theory, several criteria are considered in the

literature to build a solution; Mellor [Mellor, 1966] enumerated 26 different criteria.

Associated with each job Jf is a function ŷ that depends on the completion time Ci of that

job. Basically two type of objective function are considered in the literature:

1. Bottleneck objective function fW2^ =maxb^, I / (C -) .

2. Sum of objective functions

Even though Mellor [Mellor, 1966] has enumerated more than 27 criteria (some of

them are equivalent between each other), the most common criteria utilized in the

literature in building a scheduling solution are as follows:

20

a. The overall completion time (known as the makespan): C =maxC,.
1<7<«

b. The mean finish time:
7 = 1

n

c. The maxim lateness: L^ = m a x f e ~di\
7 = 1

d. The number of tardy jobs: 2mdUi where Uj = l i f Ci < di, 0 otherwise.
7 = 1

e. The total tardiness: ^maxjO^C, -dt\
7 = 1

Let us first mention that when deadline are specified, then in some cases there is no need

to minimize an objective function. The only problem we need to solve is to find a feasible

solution. If it is the case, then the field y =

Let us also mention that we usually differentiate between two types of criteria:

regular and non-regular.

Definition 2.1: A criterion is regular if it is non-increasing with respect to the

completion times of the job.

Most of the research in scheduling theory has been done under the assumption that

criteria considered are regular. However, a few papers appeared in the literature in

which non regular criteria are also studied (for more details see for e.g. [Raghavachari,

1988].

Definition 2.2: A schedule is called semi active when machines never idle if they can

process jobs.

21

Theorem [Brucker, 1995] Semi-active schedules are dominant with respect to regular

criteria.

To conclude a scheduling problem is fully described by the above notation. As an

illustration, the following problems denote:

1. l\prec,pmtn\ C^ : scheduling problem with a single machine, the jobs are

related by a general precedence graph, and pre-emption is allowed. The criterion

to minimize is the makespan.

2. Pm \treer)pi = l , r . \L1SBgi: scheduling problem with m (fixed) identical machines

operating in parallel, the precedence constraints form a tree, the processing

times are unitary, each job is associated with a release date, and deadline which

is stated in the criterion Zmax to be minimized.

3. Fm\no � wait\^jcoiCi\ flow shop problem with no-wait in process. The

criterion to minimize is the mean weighted finish time.

Let us recapitulate. The goal is to build a schedule that generates an optimal (or a

near optimal) solution with respect to a given criterion (or several criteria if we are in a

multi-objective environment; however this is not the case in this thesis). We will assume

throughout this dissertation that all the parameters are known in advance.

Definition 2.3: A solution is feasible if a machine does not process more than one job at

a time, and a job is not processed by more than one machine at a time. In addition,

depending on the problem, a number of specific characteristics may be requested to be

satisfied.

Definition 2.4: We say that a schedule is optimal if it minimizes a given criterion.

22

2.4 Flow-shop problem

In this dissertation, FSP is the problem we will be focussing on. The Flow-shop

scheduling problem (FSP) can be described as follows:

A set of n jobs is to be processed by Stage 1, Stage 2, and so on until reaching Stage

m, in that order. Each centre may have more than one machine operating in parallel.

The processing time ttj (i = 1,2, ...,n;y = 1,2, ...,m)of job i in centre y is given. For

the FSP, we usually make the following assumptions:

(1) Each machine can only process one job, at the same time.

(2) A job cannot be processed by two machines at the same time.

The preparation time is included in the processing time, and has nothing to do with the

order.

Example 2.2: Let A, B, C, D be 4 jobs, where every job includes two operations 0lf 02

and the processing times are shown in Table 2.2.

Jobs
A
B
C
D

Total

15
8
6
12

41

t2
4
10
5
7

26

Table 2.2: Processing times of jobs for Example 2.2

Here, tx is the processing time of operation 0x and t2 is the processing time of

operation 02- O n e machine, Mj., is in operation 0x and another machine M2 is in

operation 02 . In the above scheduling problem, we use three variables (i,j,k) to

express that the operation y of job i is executed by machine k. If the jobs are executed

23

with order A, B, C, and D, then the Gantt chart that expresses it, as it is pictured by

Figure 2.3.

1 (A,l,l)

0

2

15

(B,l,l)

(A,2,2)

(C,l,l)

23

(B,

29

2,2)

D,l,l)

(C,2,2)

4]

(D,2,2)Af,

0 15 19 23 33 38 48

Figure 2.3: Gantt chart for order A->B->C-^D

In Figure 2.3, the boxes represent the operations while the length of the box indicates

the processing time ttjk of the operation (i,j,k).

In a Gantt chart, a feasible schedule should ensure the order of jobs and that no

overlap occurs between boxes. For this example, if we change the job order to B, D, C,

and A, and the corresponding Gantt chart is shown in Figure 2.4.

41

Af,

0 8 18 20

Figure 2.4: Gantt chart for order

27 32 41 45

The makespan of the first schedule is 48, while the makespan of the second schedule is

45. So, we may conclude that the second solution is better than the first one.

24

Chapter 3

Concepts of complexity theory

3.1 Introduction

Complexity theory is used to measure the degree of difficulty to solve given problem.

Intuitively, if longer computing time is needed to solve a problem, we could say this

problem is harder, otherwise, we say the problem is easier. An important source of

information about this theory is the book of [Garey and Johnson, 1979].

3.2 Class P and NP

Polynomial time is the central concept in computational complexity. This is the

criterion that determines whether an algorithm finds a solution efficiently. Let us recall

that a polynomial time algorithm is an algorithm whose running time is bounded above

by a polynomial expression of the size of the input of the considered problem.

Definition 3.1: Class P is the class of problems for which there exists a polynomial time

algorithm that solve them.

However, there exist problems for which we do not know whether there exist

polynomial time algorithms for their resolution. In order to proceed we need first to

introduce another class named the NP class.

Intuitively, NP class represents the set of all decision problems (see the definition

below) for which we may not have a known polynomial method to solve them, but if we

25

were given a candidate answer, we are able to verify that whether it is the right answer

of our question in polynomial time. From this definition, it is easy to observe that class P

is a subset of class NP.

3.3 NP-hard and NP-complete problems

Besides class P, there is also another subclass of NP class called NP-complete (NPC

for short) class. This class contains the hardest problems of NP in the following sense.

Definition 3.2: NP-Complete class is a class that is composed of problems that:

Belong to class NP.

If only one problem of that class can be solved in polynomial time, then every

problem in that class can also be solved in polynomial time.

The central notion behind NP-completeness is the concept decision problems and

the concept of polynomial reduction (transformation).

Definition 3.3: A decision problem is a problem for which the solution is a yes or a no

answer.

Definition 3.4: A decision problem L is said to be reducible to another decision problem

K if we can transform an instance of problem L into a instance of problem K in such a

way there is yes-answer to problem L if, and only if, there is a yes-answer problem K.

In order to prove the NP-completeness of a problem L, from above/we proceed as

follows.

1. First, show that the decision version of the considered problem is class NP.

26

2. Find a known NP-complete problem K and a construct a polynomial reduction

from L to K such that there is a yes answer to L if, and only if, there is yes answer

to problem K.

In other word, we have to prove that problem L is a special case of problem K. Let us

also observe that proving that a problem is NP-hard means only that there exists at least

one instance of that problem which is difficult to solve. In other words, there can be

instances of that problem which can be solved efficiently.

[Cook, 1971] was the first to prove the existence of such a problem known as the

satisfiability problem. Shortly after this important result, 21 other problems were

proved to be NP-complete by [Karp, 1972]. Nowadays, thousands of problems have

been proved to be NP-complete. In fact, as cited in [Graham et al., 1979] the vast

majority of combinatorial optimization problems (the definition follows shortly) are NP-

complete.

Figure 3.1 resumes the relationship between NP, P, and NP-complete classes.

Figure 3.1: Relationship between NP, P, and NPC classes

27

The most important open question in the complexity theory is whether P = NP, that

is to say whether all problems in NP can be solved in polynomial time. This widely

believed not to be the case.

Before closing this section, let us make the following observations. First, when we

talk about optimization problem problems, we prefer to use the term NP-hard problem

when its corresponding decision version is NP-complete. Second, when we talk about

the encoding of an input, we mean the binary encoding. However, even if it is not used

in practice, one could also use the unary encoding. Within that respect, in the

complexity theory, the degree of hardness of a problem is further refined.

Definition 3.5: A problem is NP-complete in the strong sense if it still remains NP-

complete even if the input is encoded in unary.

Definition 3.5: A problem is NP-complete in the weak sense if it can be solved in

polynomial time within the unary encoding. This type of algorithm is called pseudo-

polynomial time.

3.4 Combinatorial optimization problems

Combinatorial optimization is a topic of operations research that consists of finding

an optimal solution from a finite set of solution, which constitutes the search (solution)

space. These kinds of problems are involved in many areas such as: information

technology, timetabling, production scheduling, graph theory, transportation,

bioinformatics, and so on. Let us observe that, even though the solution space is finite,

in many such problems, exhaustive search is not feasible for the simple reason that the

solution space is huge to enumerate in a reasonable time even with the fastest

computer.

Most of combinatorial optimization problems are NP-Complete problem as are

scheduling problems. However, for small instances they can still be solved efficiently. In

what follows, we describe some resolution techniques that are used to solve scheduling

problems.

3.5 Exact algorithms

In what follows we will be discussing a number of approaches used to solve

combinatorial optimization problems.

3.5.1 Branch and bound

A branch and bound algorithm consists of breaking up the target problem into

successively smaller sub-problems, computing bounds on the objective function

associated with each sub-problem, and using them to discard certain of these sub^

problems from further consideration. The procedure ends up when each sub-problem

has either produced a feasible solution or been shown to contain no better solution

than the one already in hand. The best solution found at the end of the procedure is the

global optimum. Applying a branch-and-bound algorithm requires specifying the several

ingredients (lower bounds, dominance rules, search strategies, etc). It is worth

mentioning that the effectiveness of branch and bound algorithms relies not only on the

tightness of these ingredients but also on the running time to compute them. For more

details on this technique see for e.g. [Balas and Toth, 1985].

29

3.5.2 Dynamic programming

The method of dynamic programming is an approach, which starts by establishing a

recursion to link the optimal solution of the whole problem under consideration to

those of its sub-problems. Then by carefully implementing this recursion though the use

of a table, we avoid solving sub-problems several times. When the number of different

sub-problems is polynomially bounded, the dynamic programming approach generates

efficient solutions. For more details on this approach, see for e.g. [Dasgupta etal., 2007].

3.5.3 Reduction methods

This method consists of reducing the problem under study into another problem for

which a method of resolution is already known. The most used one are the following.

However, one could use other problems to reduce the original problem into them. For

more details on this approach, see for e.g. [Levitin, 2003].

1. Graph theory: this approach consists of translating the problem into an

equivalent problem of graph theory, such as travelling salesman problem, graph

coloration, shortest path, linear assignment, etc.

2. Mathematical programming: this approach consists of formulating the problem

into a mathematical program by introducing suitable decision variables and an

objective function. We usually try either the linear programming formulations

with or without integer variables. The reason is that for those formulations,

there exist several resolution methods, and certain of them are quite efficient

such as the simplex methods. On the other hand, from the computational point

30

of view, when we succeed to derive a linear formulation, this means that the

corresponding problem can be classified as an easy problem.

3.5.4. Constructive methods

This approach uses some properties related to the problem under study to generate

simple rules that may lead to the solution of the considered problem. We may mention

Johnson rule that solves to optimality the two-machine problem with respect to the

overall completion time criterion.

3.6 Approximation approach

Approximation algorithms are methods that find near optimal solutions. They are

often used to solve NP-hard problems since it is unlikely that these problems can be

solved exactly by efficient methods.

We usually distinguish between two types of approximation techniques: the

heuristic approach and the meta-heuristic approach. In the former, only one solution is

generated, whereas in the second approach, several solutions may be generated

iteratively.

3.6.1 Heuristic algorithms

Heuristic algorithms usually start with an empty solution. According to some

predefined rules for the problem under study, the algorithm expands the partial

solution at each iteration until getting into the complete solution. Greedy methods and

list scheduling fall into this category of algorithms. The strength of these algorithms is

that the solution is produced very quickly, even though there is no guarantee that it is

31

optimal. Even though, for some problems this way of proceeding may lead to optimal

solutions as it is the case for Johnson rule in the-two machine flow shop problem for the

makespan criterion or the Shortest Processing Time rule in the single machine problem

for the mean finish time criterion.

Heuristic algorithms may produce results by themselves, or they may be used in

conjunction with optimization algorithms to improve their efficiency (e.g., they may be

used to generate good seed values).

Let us mention an important feature of heuristic algorithms. They lend themselves

to a mathematical analysis. This analysis measures the distance that separates the

optimum solution (that we do not know) to the value of the solution produced by this

algorithm. Thus evaluation may be undertaken in the worst case or in the probabilistic

case. In the former, the goal if to find an upper bound on this distance; for more details,

see for e.g. [Fisher, 1982]. In the latter, we measure this distance by means of average

and standard deviation; for more details, see for e.g. [Rinnooy Kan, 1986].

3.6.2 Meta-heuristic algorithms

A meta-heuristic algorithm, also called ameliorative methods, is a method that

solves a problem (usually of optimization nature) by iteratively trying to improve a

candidate solution over the space of feasible solutions with regard to a given measure

of quality, without guaranteeing the optimal solution. Let us point out that the main

difference between meta-heuristic algorithms and heuristic algorithms is that the

former produce several solutions, whereas the latter generate one single solution.

32

Popular meta-heuristic algorithms for combinatorial optimization problems include

simulated annealing [Kirkpatrick, Gelatt, and Vecchi, 1983], genetic algorithms [Holland,

1975], ant colony optimization [Dorigo, 1992], scatter search [Glover, 1977], tabu search

[Glover, 1986], and particle swarm optimization [Kennedy and Eberhart, 1995]. Tabu

search algorithm and Particle swarm optimization algorithm are discussed in details in

Chapter 6. For the sake of completeness, we present briefly in the following some of the

above cited meta-heuristic algorithms. For a general view on these techniques, see for

e.g. [Fatos and Ajith, 2008].

1. Hill climbing (steepest descent) technique: This method is an iterative search

procedure that, starting from an initial feasible solution, progressively improves it by

applying a series of local modifications. At each iteration of the algorithm, the algorithm

moves to a better feasible solution. The search terminates when no more improvement

is possible. The major drawback of this approach is that, since it is somehow greedy, it

ends up in a local optimum frequently of low quality. Meta-heuristic algorithms (such as

the ones that follow) extend steepest descent methods by allowing the search beyond

the first local optimum. An immediate improvement of this technique is to repeat the

hill climbing technique from several different initial feasible solutions.

2. Simulated annealing algorithm: Annealing is the process of slowly cooling a

physical system in order to obtain states wi th globally minimum energy. By simulating

such a process, near globally-minimum-cost solutions can be generated in a efficient

way. The corresponding algorithm (see for e.g. [Kirpatrick, Gelatt, and Vecchi, 1983])

uses an approach similar to hill-climbing, but f rom t ime to t ime accepts solutions that

33

are worse than the current solution. The probability of such acceptance decreases over

time. In order to apply the Simulated Annealing method to a specific problem, the

following parameters must be specified: the search space, the objective function, the

neighborhood of solution S, the initial temperature, the cooling factor, and the stopping

criteria. The choice of these parameters has a significant impact on the efficiency of the

method.

3. Genetic algorithms: Genetic algorithm (GA), introduced by [Holland, 1975] is a

method that uses techniques inspired by natural evolution, such as inheritance,

mutation, selection, and crossover. Indeed, once the fitness function is defined, which is

associated to the objective function, the genetic algorithm consists of improving an

initial set of solutions, generated usually at random, through the use of application of

the mutation, crossover, and selection operators. Crossover operator consists in

generating new solutions by combining candidate solutions, whereas the mutation

operator generates a solution by slightly changing a candidate solution. Basically, a

genetic algorithm starts from an initial set candidate solutions, say P, and repeats the

following steps until some stopping criterion is reached:

a. Generate a set of new solutions, say Q, from the set of solutions that can be

obtained from P through the use of crossover and mutation operators.

b. Choose a subset T�QUP according to the selection rule, and set P = T.

For more details, see for e.g. [Yagiura and Ibaraki, 2001].

34

3.7. Solving scheduling problems

We present in this section the methodology to follow in order to solve a scheduling problem.

Indeed, the first question to ask, when confronted to a scheduling problem, is whether the

problem is NP-hard or not. The only way to state that a problem is easy to solve is to exhibit a

polynomial solution. If the problem has already been shown to be in the class P, then we usually

try to design other solutions with a better time complexity than the existing solution. If, on the

other hand, the problem under study is shown to be NP-hard, then several approaches can be

tried.

1. We could tight up the NP-hardness by showing the NP-hardness in the strong

sense, or by exhibiting a pseudo-polynomial time algorithm.

2. We could also study to what extent the problem can be solved efficiently by

designing polynomial solutions to special cases. What we mean by that is we

relax some constraints of the problem and see whether the problem is well

solvable or it is still NP-hard. In scheduling problem, we usually consider the

cases where the processing times are restricted to some particular values, we

assume that preemption is permitted; the precedence graphs are of special

types if precedence relations exist between jobs, etc.

3. Design exact algorithms (branch and bound, dynamic programming,

mathematical formulation, etc.) and try to solve larger input of the problem

through the design of ad hoc properties (tight lower bound bounds, strong

dominance relations, etc.).

4. The approximation approach by designing either heuristic algorithms or a meta-

heuristic algorithms:

35

a. If we have chosen the heuristic approach, then the goal here is generally

to undertake a worst-case analysis and get a better ratio by measuring the

distance between the optimal value and the value produced by the

heuristic algorithm. A simulation is also performed to measure the

effectiveness of the proposed solution.

b. If we have preferred the meta-heuristic approach, then in this case we try

to design efficient solutions that solve large instances. In the recent years,

many papers appeared in the literature combined two or more met-

heuristic algorithms. This approach seems to be promising as the results

they produce are by far much better.

36

Chapter 4

Two-stage Flow-shop with a shared machine in

stage one and two parallel machines in stage two

4.1 Introduction

In this dissertation, we study one kind of FSP, named Two-Stage Flow-shop with one

shared machine in stage 1 and two parallel machines in stage two. It is denoted

by F3\M1 -» M2,M\ -» M3\Cmax. This problem may be described as follows.

We are given a set of n independent jobs to be distributed in two disjoint subsets

and scheduled on a two-Stage Flow-shop. The first Stage contains one machine and the

second one contains two machines operating in parallel. We assume that all jobs are

available at time 0 and have exactly two operations to be executed by the two stages.

Furthermore, the jobs in the first subset must be executed on the machine of stage one,

and on machine of stage two, whereas, the jobs of the second subset must be processed

by the machine of stage one, and the other machine of stage two (as illustrated by

Figure 4.1).

The processing times of each job in each Stage are not equal to 0; the transport

time between different Stages are included in the processing time; the three machines

are always available and can process only one job at a time, and one job can be

executed by only one machine at a time. The goal is to minimize the makespan of the

the jobs.

37

Stage 1 Stage 2

h

h

M2,1

'2,2

Figure 4.1: Two-stage flow-shop with one shared machine in stage one

and two parallel machines in Stage two

Even though a problem is NP-hard, there might still are special instances for which

this problem may be solvable in polynomial time. In this section, Then, several special

cases for which the corresponding problem is well solved are discussed.

4.2 Study of special cases

This section is devoted to the presentation of special cases that are solvable in

polynomial time.

4.2.1 First special case: standard two-stage flow-shop

We consider the following two cases:]x = 0 or/2 = 0. This means that Stage 2 is

reduced to one machine. In this case, this problem corresponds to the standard flow-

shop, as illustrated by Figure 4.2.

38

Figure 4.2: Divide the problem into two standard Two-stage flow-shop problems

This problem can then be solved by the Johnson's rule. Johnson's rule may be

resumed as follows: If min{pi i l , p7- 2] � m^n{Pi,2' Vj,\\>tnen job i precedes job ; .

We can use this rule to construct the optimal schedule of a two-Stage FSP. The

following is the corresponding algorithm.

Step 1: Select the job with the shortest processing time. If that processing time is for

the first Stage, then schedule the job first. If that processing time is for the

second Stage then schedule that job last.

Step 2: Repeat steps 1 until all the jobs have been scheduled.

Example 4.1: Assume we have a two-machine Flow-shop problem, and there are 6 jobs

to be executed; the processing times are shown in Table 4.1.

Job

The processing time in Stage 1

The processing time in Stage 2

1

10

4

2

5

7

3

11

9

4

3

8

5

7

10

6

9

15

Table 4.1: Processing times of jobs for Example 4.1

1. The smallest time is located with Job 4 (3, 8). Since the time is in Stage 1, schedule

this job first. Eliminate Job 4 from further consideration.

39

I 4 I I I I I
2. The next smallest time is located with Job 1 (10, 4). Since the time is in Stage 2,

schedule this job last. Eliminate Job 1 from further consideration.

3. The next smallest time after that is located with Job 2 (5, 7). Since the time is in

Stage 1, schedule this job first. Eliminate Job 2 from further consideration.

i 2 i
4. The next smallest time after that is located with Job 5 (7, 10). Since the time is in

Stage 1, schedule this job first. Eliminate Job 5 from further consideration.

1:1
5. The next smallest time after that is located with Job 6 (9, 15). Since the time is in

Stage 1, schedule this job first. Eliminate Job 6 from further consideration.

1 4 I 2 I 5 I 6 I � T i l
6. The only job left to consider is job 3.

1 4 1 2 1 5 1 6 1 3 1 1 I
For this schedule, the minimal makespan is 56.

4.2.2 Second special case: constant processing times

In this case, the processing times of the jobs both stage the same. Furthermore, the

processing times of the jobs within the same subset are also identical. Formally we have

� _(Pi,k = 1,2, if iejlr
Pi>k-\p2fk = 1,2, if iej2.

Since there is just one machine in Stage 1, we have that

CMl>1 =n1xp1+n2x p2m

On the other hand, the following is an obvious lower bound on the value of the

makespan.

40

min Cmax = CMii + min(p1/p2).

For the different subsets, the processing times of the jobs may be the same or different.

So, we need to distinguish between these two cases.

A. Processing times of the two subsets are identical

This corresponds to the case where no difference between J1 and/2 . Intuitively, an

optimal solution is achieved by any permutation of the jobs.

Theorem 4.1 An optimal solution can be achieved by any permutation, if the processing

times of the two subsets are identical and constant.

Proof: Recall that we have Pi = p2 = V- $°> 'n t n ' s case, for any processing sequence, no

job is delayed on stage two. So, the completion time of the last job of / in Stage 2 of any

sequence is (nx +n2 + l)p as pictured by Figure 4.3. Thus, the statement of the theorem

follows immediately.

Machines

+ n2)p

Figure 4.3: Gantt chart for the case where Pi = P2 = P

B. Processing times of two subsets are different

Without loss of generality, we suppose that px > p2. In what follows, we discuss two

cases: � < p2 < px and �^ < p2 < ^ (k > 1, k G Z).

41

Case 2.1 y<p 2 <Pi

Let us again distinguish two cases: nx > n2 and nx < n2. Let us start with the first case,

and derive the following result:

Theorem 4.2 Let A = {xl9x2, .~,xni},J2 = [yi,y2> ->yn2], and assume that ^ > n2. If

7 < P2 < Pi, then S = {xl9x2, ^fxn^n2txn^n2+lfyltxn^n2+2fy2f ...,xni,y2,n2)
 i s a n

optimal solution.

Proof: Since the last processed job in S isyn2, then we first need to prove that the

equations

Cyn2>2=CMll+p2 (4.1)

and

cyn2.2 > cXni.2, (4-2)

Hold. Second, cyn 2 is the makespan of Sand is also the lower bound of the model.

From here, we may conclude that schedule 5 is optimal. To do so, we proceed by

mathematical induction. The start time yt is

"yiX = Cxni-n2+i'lu

So, its start time in Stage 2 is

by±,2
 = cyltl

 = byltl + P2/

and its completion time is

cy±,2 = byi,z +P2 = byitl + 2p2.

The start time of the second job of J2 in Stage 1 is

by2,i = cyi.i + Pi = bylti + Vi + Vi>

42

and its start time in Stage 2 is

Since

by2ti + P2= by±tl + 2p 2 +Vi> Cy1>2,

then

by22
 = by2>i +P2 = cy2,i-

It means that job y2 need not wait to be processed in Stage 2. Hence,

cy2,2 = Cy2tl + Vi = by2fl + 2p2 = cXni_nz+ltl + 2p2.

Now, assume that the start time of yk, 1 < k < n2, is

Its start time in Stage 2 is

byk,2 = Cy^ = by^ + P2f

and its completion time is

cyfc,2 = byk>2 + p2 = byk>1 + 2p2.

So, the start time of yk+1 in Stage 1 is

byk+i.i = cy^ + Vi = byk>1 +p2+Pt

Its start time in Stage 2 is

byk+i>2 = m a x (6 y * + 1 , i + P2. c2 J f 2) .

Since

b y k + l f i + P z = b2J>1 + 2 p 2 + p x > c2J>2,

then

43

It means that job y^+j need not wait to be executed in Stage 2. Therefore,

= c
y k + 1 , i = b

yk+lil
2p2 = 2p2.

Therefore, we have

and

2p2 = 2p2

As yn2 is the last job processed in S, then cyn t = CMl x. Therefore

P iMoreover, since � < p2 < Pi, then cyn 2 = cXn x + 2p2 > cXn % + px. It follows that

(4.1) and (4.2) are established. Therefore, schedule 5 is optimal (Figure 4.4). �

i

M2,2

Pi Pi

Pi

���

Pi

Pi

...

Pz

Pi

...

Pz

Pi Pz

Pi

t

» � �

Pz

Pi

1 « �

c
Pi

Pi

Pi Tir
^

Figure 4.4: Size of J1 larger than that of J2-

Now, let us focus our attention to the case where n2 > n1. We get the following

result.

Theorem 4.3: Let A = {x1 (x2 , - , x n i } , 72 = {yi,y2, - ,yn2},
 a n d assume thatr^ < n2 .

L, thenS= Oi,y i ,x2)y2 , . . .xn i ,yn i ,yn i + 1 ,yn i + 2 , ...,yn2) is an optimal

schedule.

44

Proof: Again, since the last processed job in S is yn2, then we first need to prove (4.1)

and (4.2), which in turn establish Theorem 4.3. Similarly as in Theorem 4.2, we have that

P2 = T>2 =

It means that y n i + 1 need not wait to be processed in Stage 2 as after yni, jobs in) 1 will

have already finished. So, next, the rest jobs of J2 will be continuously processed.

Furthermore, in Stage 1 and 2, the processing times of / are the same. Thus, the rest of

the jobs need not wait either to be processed in Stage 2. Now, since yn2 is the last job of

S, then Cyn x = CMii. Therefore, we have that cyn 2 = CMll + p2, and since � < p2 <

p1; then Cyn 2 == cXn a + 2p2 > cXn fl + px. It follows that (4.8) and (4.9) hold. Thus

schedule S is optimal (Figure 4.5). �

Pi P2

Pi

Pi

P2

P2

Pi

*��

P2

Pi

t � �

� �

P2

Pi

�

P2

P2

P2

Pi Pi

Pz

� ��

'1.1

Pi Time

Figure 4.5: Size of J2 larger than that of J1

Based on Theorem 4.2 and Theorem 4.3, we may conclude that Case 2.1 is solvable

in polynomial time with an optimal makespan as follows:

� CM H + Vz-

45

The following discusses the case in which the processing times of two subsets are

different.

First, let us point out that If k=l, then Case 2.2 is the same as Case 2.1. So, in what

follows we assume that k > 1. In this case, we must first reconstruct the subset that has

the shorter processing time. The method is as follows:

Compose k original jobs as a group and regard it as a new subset;^, where k is the

smallest integer, which makes kxp2> plf and the jobs' processing time of j21 is

kxp2=p2 . Thus, subset j'2 includes �I new jobs and n 2 mod k original

jobs, that is to say

A =]J2,1'J2,2> ~'J2 \J}2.\>J2,1>J2,2> ' � 'J2,(n2 mod k) (�

Now, if I�I < nlf we first get nx � I�I jobs out of N± and put them at the top of the

schedule. Then, we use � jobs of]1 and � new jobs of J2 to make � pairs of jobs

(put the jobs of J± in front of the new jobs of]2) and then put them into the schedule.

At last, we put y mod n jobs originally from]2 at the end of the schedule.

On the other hand, if � > nlf we use nx jobs from]t and n± new jobs from]2 to

maken! pairs of jobs (put the jobs of]1 in front of the new jobs of J2), and put them at

the front of the schedule. Then, we put the rest of the original jobs of J2 at the end of

the schedule. Therefore, Case (2.2) is reduced to Case (2.1) already studied above.

46

Both of these two schedules, pictured by Figure 4.6 and Figure 4.7, generate the

minimum makespan Cmax = C1 + p2.

I Pi

V2

Machines

Pi � pairs of jobs

Pi

(n2 mod

Time

I P2

P2

Machines

Figure 4.6: ^ <

0 2 -

pairs of jobs

Figure 4.7: [^J >

CM

Time

47

Combining Case 2.1 with Case 2.2, we derive a polynomial algorithm in the case of

constant processing time as follows. Without loss of generality, we may suppose

that Pi > p2-

Step 1: If � < p2 < plf then process J± and]2 as in Case 2.1.

Step 2: If � < p2 < �, k > 2, reconstruct J2 as follows:
/ C T I /C

Jl = y2,1^2,2' �'�J2\I}2\>J2,l>J2,2>'''J2,(ji2rnodkU-

Step 3: Schedule \j'2 lfj2 2,... ,j
r in î | and / x as in Case 2.1, and then, put the rest of

the jobs of]2 at the end of the schedule generated in Step 2.

In the previous section, we considered the case with constant processing time. Now,

we turn our attention into some more general processing times.

4.2.3 Third special case: Large processing times in Stage 1

In this case, for each subset, the minimal job processing time in Stage 1 is larger

than the maximal processing time in Stage 2. It then follows that no job will wait to be

executed in Stage 2. Next, based on Lemma 4.1, we provide the algorithm for this case

though Theorem 4.1. Let us first define following notations.

If j2 = 0f p is the optimal schedule of problem, and its makespan is CP.

If]1 = 0, Q is the optimal schedule of problem, and its makespan is CQ.

CJliMl is the total processing times of]1 in Stage 1.

Cj2 Ml is the total processing times of J2 in Stage 1.

48

Without loss of generality, we suppose that CP>CQ. Let us first prove then

following result.

Lemma 4.1: Let 5 be a schedule of / = { / i , /2} in which the jobs in J± and J2 are

processed alternately in Stage 1. Then, there exists another schedule Sr, where the jobs

of/x and/2 are continuously processed in Stage 1. Moreover, the makespan of 5" is not

worse than the makespan of S.

Proof: For any subset, the maximum processing time in Stage 2 is always smaller than

the minimum processing time in Stage 1. So, we know that any job need not wait when

it is ready to enter Stage 2. This means that the makespan of a subset equals its total

processing time in Stage 1 plus the processing time of its last job in 5 in Stage 2. Without

loss of generality, we assume that the last job in 5 belongs t o / 2 and one job oij1 is

processed first, and in 5, the jobs from the two subsets are not continuously processed.

Let us now consider another schedule, say S ' , in which/ ! is processed before/2 .

Before proceeding further, let us introduce the following notations in schedule S:

- The start time to process / x is Ttl = 0.

The makespan of J± is C±.

- The start time to process]2 is T2i±.

The end of processing time of / 2 in Stage 1 is C2|1.

- The makespan of/2 is C2.

- The makespan of S is Cmax = max{Clf C2}, see Figure 4.8.

Similarly, we introduce the following notations in schedule 5':

- The start time to process]1 is T[x � 0.

49

The makespan of]x is C[.

The start time to process J2 is F ^ .

The end of the processing time of J2 in Stage 1 is C21.

The makespan o f / 2 is C2.

The makespan of 5 ' , C'max = max{C[, C2), see Figure 4.9.

Machine

Ml,!

M2,2

A job of A

A job ofy2

I l l I

L_l
� � c2� Time

Figure 4.8: Crossed scheduling for the jobs of A and/2

A job of h

1
Vlachine

Mi

M2,i

M2,2

A job of/2

1 1 1

7"
' 2 , 1

1
1 r~

1 1

1
� �

ft
L2,l

1

Ci

�
Time

Time

Figure 4.9: J1 is processed before]2-

50

Since there is just one machine in Stage 1, and that all jobs must first pass through it,

then we get thatC2 2 = C22. The sequencings of the jobs are the same for both

schedules, and there is no waiting time when the last job of J2 enters Stage 2. Therefore,

we may deduce that C2 = C2. However, in S,]x is not continuously processed. This leads

to Cx > C[. Let us summarize what we have got so far:

= max{ClfC2}^
= max{CifC^}\

It then follows that5'is not worse than 5. Therefore, the result is established and this

ends the proof. �

Now we are ready to state the following result.

Theorem 4.4: if the minimal processing time in Stage 1 is larger than the maximal

processing time in Stage 2, then the value of the optimal makespan of F3\M1 ->

M2tM1 -> M3\Cmax problem is min[max(CP,CJl>Ml + CQ), ChMl + CP\ Furthermore,

we have that

1) Cmax = ynax{CP, CJl)Ml + CQ) if, and only if, the optimum schedule is S = P + Q,

where P + Q means that, first, schedule^ and/2 as P and Q, and then, put/2

before]x.

2) Cmax = CjzMi + CP\f, and only if, the optimum schedule is S = Q + P, where

Q + P means that that, first, schedule^ and/2 as P and Q, and then, put/x

before J2.

Proof: From Lemma 4.1, there are only two cases that we need to distinguish: either]1

precedes J2 or]2 precedes Jlm So, in any case, F3\M1 -> M2)MX -> M3\Cmax is reduced

51

to F2\M1 -> M2\Cmax, and can be scheduled by Johnson's rule. Let us recall the

following:

Cp > CQ.

- P is the optimal schedule of Jlf and its makespan is CP.

Q is the optimal schedule of/2, and its makespan is CQ.

We start with the sufficient condition. If J± precedesJ2, then the optimal schedule of/ is

P + Q and Ch = CP and Ch = Ch>Ml + CQ . Since Cmax = [Ch> Ch}, then

C-max = rnax(CP, CJltMl + CQ). Now, if J2 precedes/1; then the optimal schedule o f / is Q + P,

and C7i = C;2 M l + CP with C/z = CQ . Since Cmax = {Ch, Cj2} and CP>CQt then we have

^max = 02,Mi + CP. Thus, the result follows.

Let us now prove the necessary condition, and proceed as follows:

(1) \fCmax = max(<CPtCjlfMl + CQ), whether CP and CJltMl + CQ, which one is

bigger, in order to make CJ± = CP and CJz = CQ/ we always must schedule Jlf J2

as in P and Q, and obviously]1 must precede/2 . So the optimal schedule o f / is

P + Q

(2) If Cmax = Cj2fM± + CP, then similarly as above, we schedule/iand/2 as in P and

Q, respectively. Obviously J2 must precede J±. It follows that the optimal

solution is Q + P. The necessary condition is thus established.

This ends the proof as both sufficient and necessary conditions are now established. �

Therefore, for the case of large processing times in Stage 1, the following is the

algorithm we might derive:

Step 1: Schedule/x and/2 as in the standard flow-shop by Johnson's rule.

52

Step 2: If Cmax = max{CP, CJltMl + CQ), the optimal solution is S = P + Q.

Step 3: Else (we have Cmax = Cj2tMl + CP), the optimal solution is S = Q + P.

4.2.4 Fourth special case: Large processing times in Stage 2

Without loss of generality, we suppose that CP > CQ. Let us first proceed with the

following result.

Lemma 4.2: Les P be an optimal solution of]v and CP the corresponding makespan. Let

also a,b and c are three different jobs of/. lfpa,2 ^ Vb,i +Va> then inserting a job of/2

into P will not change CP.

Proof: Let x, y be two jobs ofj1 and assume they are adjacent in P such that x precedes

y. The start time of y in stage 2 is

byt2 = max[(bXil + pXgl + pXi2), (bXtl + px>1 + py#1)].

Since pa2 > Pb,i + Vex» ̂ en px2 > pyil. So, we have that

byt2 = bXtl + pXtl + pX)2i

Now, let us insert job y of/2, say/, between x and y. The start time of y in stage 2 will

be delayed and the new one will be

b'y>2 = max[(6JC#1 + pXil + pXt2), (bXil + pXil + plx + py>1)].

Since pa>2 > pbtl + pc>1, then we have that pXi2 > pJtl + pyil. So, by§2 = bxX + pxX + pXt2,

and Cy 2 = ^y,2 + Vy,2 � bx>1 + pXtl + pX/2 + py>2 = cy>2 . Therefore, inserting job j into P

does not change CP (see Figure 4.10 for an illustration). Thus, the result is established.

�

53

Machine
4 i

M2,x

-V.2

Machine

Mu

M2,2

X i

X

y 1
1

j

y

Figure 4.10: No change on the makespan after inserting job j

Now we are ready to state the following result. Let us first introduce the following

notation.

P = {A(1),A(2), ...Airii)} is the optimal solution of J1 (obtained by Johnson's rule),

with a makepan CP, and A(i) denotes the job processed at position i.

Q = {Ju(l),//(2), ...y.(n2)} is the optimal solution of/2 (obtained by Johnson's rule),

with a makespan CQ, and / i(i) denotes the job processed at position i.

Theorem 4.5: Let nx > n2,and a, b and c be three different jobs of y such that pa2 >

Vb i + Pc,i' a ' b' c 'n /- An optimal solution is achieved by sequence 51 or 52, as defined

below, depending on the smallest value of their corresponding makespan.

or

51 =

52 =

, A(2), ii(2),..., A(n2), i - n2 + 1),...

^ ^ - n2 + 1),

54

Proof: Let us consider two cases: either A(l) or (x(l) is processed at the first position

of S. Let us start with the first case. We insert the jobs of Q between every two jobs ofP,

one by one, and create a schedule S = (A(ï), n(l), A(2),n(2),..., A(n2),

n2 + 1), ...^(nj), see Figure 4.11.

A job of/ i

I | A job of h
Machines

M
2,2

in n I-I i r i-[
L l j

Time

Figure 4.11: One job of another subset between two jobs ofj1 or two jobs of/2

Note that since between two jobs of]1 or two jobs of J2, there is just one job of

another subset. From Lemma 4.2, it follows that

Ch = CP, Ch - CQ.

A s Cmax � max{CJi,Cj2), then we have that Cmax = max[cP)px,1,1 + CQ). Therefore,

any change of permutation of jobs will increase CP and CQ, and then C]l and Cj2 will be

increased too. Therefore, 5 is the optimal schedule.

On the other hand, if M(1) 'S a t t n e first position of the job sequence of J, and we

insert the jobs of P between every two jobs of Q, one by one, then

S = 0(1) , A(l), ii{2), A(2),..., fi(nz), A(n2), Xiyi^ - n2 + 1),..., Afa)),

and

55

Ch - Pji(l),l + Cp>

As Cmax = max(Ch,Ch), then we Cmax = ma*(pM(1)>1 + CP,C^)- So, we just need to

compare the two values of the makespan in order to derive the optimal solution. D

The following is the algorithm we might derive from the above discussion:

Step 1: Scheduling]x and/2 according to Johnson's rule to generate, respectively,

the sequences P = {A(l) f A(2) À(nO} and Q = {/*(l)f/z(2), ...;Ju(n2)}.

Step 2: The final solution is one of the following with a smaller makespan:

a. 51 = (A(l),M(1), A(2), fi(2) A(n2),n(n2), A(ni - n2 + 1) !(%)).

b. 52 = (/*(!),A(l),//(2),A(2), ...,/i(n2), A(n2), A ^ - n2 + 1),...,!(%)).

Chapter 5

Heuristic approach

5.1 Introduction

In this chapter, we present two heuristic algorithms to solve the general version of

the problem we are considering in this dissertation. They start from scheduling the jobs

by an existed heuristic of standard two-stage flow-shop. Then, according to some rules,

it expands from the current iteration to the next iteration the partial solution, until

reaching the terminal condition. Even the time complexity of such approach is usually

attractive, experimental studies have shown that the quality of the solution may be

poor.

5.2 Heuristic algorithms of FSP

Many heuristics of FSP are based on Johnson's rule. Next, we will introduce some of

the more popular heuristics used to solve FSP. In order to obtain the optimal solution of

FSP, we need to use the optimal algorithm, as Johnson's rule. Unfortunately, except

standard two-stage FSP, the vast majority of FSP are not in P-class, their exact optimal

algorithm's time complexity is often too large and grows exponentially with the scale of

the problem. It was proved that Flow-shop problems with three machines are already

NP-Hard [Garey and Johnson, 1979]. Therefore, the use of heuristic approach is well

justified.

57

5.2.1 CDS heuristic algorithm

By extending Johnson's rule, we can construct our first heuristic, CDS (Campbell-

Dudek-Smith) heuristic algorithm [Campbell, Dudek, and Smith, 1970]. It is used to solve

an n-job, m-machine Flow-shop problem. This algorithm is recognized as the most

efficient and robust among the existing heuristic algorithms, and it has been the

standard for comparison in many studies.

First, get CDS heuristic group m machines so as to get a set of two-machine Flow-

shop problems, which has m-1 factors (see Table 5.1). Then, use Johnson's rule to get an

m-1 optimal schedule for those m-1 problems. Finally, choose the best one as an

approximate optimal solution of the original problem.

Stepi

1

2

3

m-1

Simulation

Group 1

1

1,2

1,2,3

lA~ fm-l

of two-machine problems

Group 2

M

m,m-l

m,m-l,m-2

m,m-l,..,2

Combined

4

ta + ti2

processing time . i

%

iii
iii
ii

rem T ^^m�t * ^̂ m�2

Hm + %m-l + �** + t̂ 2

Table 5.1: Set of two-machine flow shop problems

In Step k, the combined processing time is defined as:

Li2

58

5.2.2 Palmer heuristic algorithm

The Palmer heuristic algorithm [Palmer, 1965] sorts the jobs by slop order index.

According to the order of the machine, the job whose processing time tends to increase

is given greater weight number; otherwise, the job whose processing time tends to

reduce is given smaller weight number. The slop order index of job i is defined as

Si = ZjLi(2y - m - ï)tijMi = 1,2, . . . ,m.

According to the non-increasing order of sif we can construct a schedule of jobs as

sh>sh>...>stn.

5.2.3 RA heuristic algorithm

Dannenbring combined the Palmer heuristic and CDS heuristic, and proposed a rapid

access (RA) heuristic algorithm [Dannenbring, 1977]. The RA heuristic does not need to

solve m-1 two-machine problems, but just needs to solve one simulated problem by

Johnson's rule. Combined processing time is defined as follows:

The weights are defined as follows:

Wi = (w/i \j = 1,2,... m} = {m, m - 1 , . . . ,2,1}.

W2 = [wj2 \j = 1,2,... m] = {1,2,..., m - 1, m}.

5.2.4 NEH heuristic algorithm

The NEH heuristic algorithm [Nawaz, Enscore, and Ham, 1983] supposes that the

priority of the job that has the longer total processing time should be greater than that

59

ofthe job that has a shorter total processing time. That means that we need to calculate

each job's total processing time, and then sort all jobs in descending order according to

the total processing time. Doing this produces the optimal schedule for the first two jobs,

and we then put the remaining jobs into the job queue that has been scheduled until all

the jobs are inserted into the queue. Ultimately, we get a schedule for the problem. NEH

is a relatively good performance heuristic; it is often used to optimize the initial solution

of meta-heuristic. The steps of this algorithm are as follows:

Step 1: Sort n jobs in descending order by total processing times.

Step 2: Scheduling the first two jobs, and let the makespan be minimal.

Step 3: Insert the remaining jobs, always keeping the makespan minimal.

5.2.5 Gupta heuristic algorithm

Gupta proposed a heuristic similar to the Palmer heuristic [Gupta, 1971]. At the

beginning, the algorithm calculates the parameter of each job:

S(î) =

Here, if tim < tilt then C = � 1 , else C = 1. After that, we sort the jobs by the order of

increasing of parameters and a schedule is thus derived for the problem.

Ï -*5.3 Heuristic design for F3\M1 ^M2

In the literature, there is not much discussion regarding the models discussed in this

dissertation. Based on Johnson's rule and the NEH heuristic, in this section, we will

construct two heuristic algorithms for the model we are studying and test their

performance.

60

5.3.1 A heuristic based on Johnson's rule

Before proceeding, let us clarify the following points:

When/ 2
 = 0/ the corresponding problem P is solvable by the Johnson rule. The

generated makespan is denoted by CP.

- W h e n / ! = 0, the corresponding problem Q is solvable by the Johnson rule. The

generated makespan is denoted by CQ.

CJliMl is the total processing times of]x in Stage 1.

Cj2Ml is the total processing times of Jz in Stage 1.

The reason we say that this heuristic method is based on Johnson's rule is that we

need to use the rule to get CP and CQ. Here CP has two meanings. First, it is the minimal

makespan ofjlf \fj1 is executed in a two-stage Flow-shop system; second, in the model

of Two-Stage Flow-shop with two parallel machines in Stage two, it is the minimum total

completion time ofjt. Similarly, CQ is the minimal makespan of/2 and it is also the

minimum total completion time o f / 2 . Without loss of generality, we suppose

that CQ< CP < ChMl + CQ.

According to Section 4.3.3, we can consider that CP is a lower bound of the

makespan, while CjltMl + CQ is the upper bound. So

CP < Cmax < Cjl>Ml + CQU.

We assume t h a t / (5) and g(S) are the functions of the total completion time ofj±

and/ 2 . The focus of the curves of these two functions is the minimal makespan of the

model (Figure 5.1), the image of / (S) through point (S, CP) and the image of g(S)

through point (5, CJlMl + CQ), here 5 = P + Q.

61

The total

completion time

S - p + Q Scheduling

Figure 5.1: Minimal value of two functions

Based on this discussion, the basic principle of building the heuristic algorithm is

that we try to get a new schedule by keeping changing the order of jobs and letting

I/(S) " "5(5) | get as small as possible. Let us now give the specific steps of the heuristic.

Assume that there are m jobs in Jt and n jobs i n / 2 ; the initial scheduling is

S = P + Q. In this scheduling, there are m � 1 positions between every two jobs ofj1

and n � 1 positions between every two jobs of/2-

Step 1: Using the scheduling S = P + Q as the initial schedule. Upper Bound=

g(S) = CJlfMl + CQ, Lower Bound= / (S) = CP and i = 1

Step 2: Insert joby of]2 into the m - i + (/ - 1) position, j = (1,2 ... min(£, n)) ,

and if m � i + (/ � 1) < 1, then we put this job before all the jobs of N±.

So the new solution is 5'. Obviously, f(S') > / (S) and #(S') < #(5).

Step 3: If 5' =5, then return max(/CHOCS')) .

Step 4: I f / (S ') > flf(SO return Cmax = min(max(f(SO,g(SO),max(f(S),g(S)));

62

If Cmax = rnax(f(S'),g(S'))f then the final schedule is Sr, else the final

schedule is S.

Step 5: If / (S ') < g(S'), let S = S',i = i + l and go back to step 2.

Let us now concentrate on the convergence of the heuristic. When i > m + (n � 1),

all jobs of/2 precede those of Jlm As in the process of the algorithm, the order of jobs of

each subset is never changed. So with the increase of i, it will no longer generate new

scheduling. Therefore, the algorithm will end at the third step.

The following is a running example to illustrate the above heuristic algorithm.

Example 5.1: Table 5.2 presents the jobs ofj1 and /2 .

M2rl

A.i
8
10 !

A.2
9
6

A.3
3
6

A.4
4
9

[ht
7

| 9

Jzz

\ 3

| 5 '

8

1

Table 5.2: Processing times of jobs for Example 5.1

We use Johnson's rule to schedule the two subsets as shown in Table 5.3.

1

A,3

2

A,4

� 1 - . � '

3

A, i

2

4 |

A,2

3 "-.

Makespan

34

Makespan

20

24

Table 5.3: Schedule two subsets by Johnson's rule

Set the initial schedule:

1

As

2

A.4

3

A,i

4

A.2

5

Jz,2 \

6

hi

7

As

Total Time
A
34

h
44

Makespan

44

Insert/2,2 between Jlfl a n d / 1 2

1

A,3

2

hjk

3

A,i

4

h,t

5 |

A,2 1

6

hi

7 '

Total Time
A
34

h
44

Makespan

44

Continue to adjust the schedule

1

A,3

2

A,4 1 hz 1
4

A,i

5

hx

6 |

hz

7

As

Total Time
Ni
40

A?2

43
Makespan

43

1

A,3

2

Aa

3

A.4

4

A,i

5

Ax 1

6

As

7

A,2 |

Total Time 48
N2

34
Makespan

48

The algorithm terminates, and returns the solution S = {jit3,Jif4,J2,2>Ji,i>J2,iJi,2j2,3 }/

and the corresponding makespan is 43.

64

5.3.2 A heuristic based on NEH

We also gave a detailed description of another heuristic for standard FSP; this is

NEH, which is a relatively efficient heuristic. It is often used to optimize the initial

solution of a meta-heuristic algorithm.

As we have observed so far, it is not difficult to find that if we want to minimize

makespan, we must let the idle time of the machines be as short as possible. This makes

it easy to think that we should let the jobs of two subsets, as much as possible, stagger

through stage 1.

Here, we just make few changes to the NEH; the new version of algorithm can be

described as follows:

Step 1: Sort jobs of two subsets by descending order of total processing time.

Step 2: Find out the optimal scheduling of the first job ofj± and first job of/2-

Step 3: Suppose that the total processing time of the first job ofjt is larger than

that of/2. Insert the second job of Jt into the job sequence, and keep the

makespan minimal, and then insert the second job of/2 into the job

sequence, and keep also the makespan minimal.

Step 4: The remaining jobs of the two subsets are alternately inserted into the job

sequence.

Example 5.2: Let us consider the following instance as in Table 5.4 in which the jobs are

already sorted.

65

Mt

M2,i

ki
8
10

kz
9

6

A3 |
3

^2 , 2

hx
7 � 1
9

/a.2
3

5

Table 5.4: Processing times of jobs for Example 5.2

Now, we schedule the two jobs jltl andy2,i, which have the biggest total processing

time of the two subsets.

S = 0W2,i)-

We then insert the second biggest job of Jt into the job sequence,

and the next is the second biggest of J2,

Insert the remaining work into the sequence,

S = (/i,l'A,l j'l,2 >h,2 Jl,3J'

The corresponding makespan is 36.

5.3.3 Experimental study

The simulation we have undertaken runs in Apple's iMac with Core i3 and 4GB

memory and be programmed by Java. All the processing time of jobs are randomly

generated.

Tables 5.5.1 to 5.5.3 show the simulation results of the two algorithms, and their

comparison. In Table 5.5.1, 5.5.2, and 5.5.3, the processing times are random positive

66

integers drawn from [50,100], [20,100], and [10,100], respectively. The sizes of the job

sets are 50, 100 and 200. In the program we have coded, we added appropriate to

ensure that the special cases studied in Chapter 4 do not appear.

From Table 5.5.1 to Table 5.5.3, we observe that the heuristic based on Johnson's

rule is slightly better than the heuristic based on NEH. With the growth of the problem

size, the rate of increase of the time complexity of the heuristic based on NEH is much

higher than that of the heuristic based on Johnson's rule. Let us also mention that most

of the time, both algorithms find an optimal solution as the makespan generated is

LB = CMll + mmi<i<n{pj i2}, which is a lower bound. Let us point out that the quality
7 = 1,2

of the solution gets much better as the size of the input gets over 200 jobs.

For further verification of this observation, we conducted a separate experiment to

determine which algorithm has a better performance. In this experiment, we carried out

100,000 calculations in each case, and the value of processing time was still a random

positive integer. The experimental results show that the performance of the heuristic

based on Johnson's rule in the smaller range of processing time is superior to a larger

range. As the size of the job reaches 500, according to the computations of 400000

groups of data, the heuristic based on Johnson's rule always finds the optimal solution.

Heunstjc
based on Johnson's rule

14942*493 1.008000066927693 80.692

Table 5.5.1: Simulation of both heuristics where processing times are in [50,100]

Processing'..v
time'/ 20-'

i 10Q/--- ...: :

The sizes
of subsets

35x15

25x25

70x30

60X40

50X50

150x50

Average of
lower
bouncl(AlB
)

�1
I 8 2 - 3 6 4

_i
11920.18
3

Heuristic
based on Johnson's rule

Number
of
optimal
solutions

�
�
1000

Average of
the
resuits(AR)

AR/AiB

WÈÊIÈÈÈÈÈÈÈÈMWÊÈÈÈÈÊÈÊÈÈËËÈËÊÈÊÊË

11920,188 1 1,0

Average
of the
running
time

lIHSiii^Hi�
llîiliISiBïlllilIIll

0.355

Heuristic i
based on NEH

The
number
of
optima!
solutions

�
ii^Biiiiiiw

lliilÉiH^iitiiiilitiiiiffi

998

Average of
the
resuits(AR)

AR/ALB

11920,191 1.000000251673883

Average
of the I
running ;
time

Hi l l l l l l l l l l l l l l l

76*942

Table 5.5.2: Simulation of both heuristics where processing times are in [20,100]

Processing -
time 10-
100

The sizes
of subsets
(NtxN2)

35X15

25X25

70X30

60X40

50X50

150X50

Average of
lower
bound(AL8)

HI
liHHHEl

WÊË
wÊÊÊÊÊÊÊ

HHH1
ISiiiiiiiiii^Sii

5 4 7 2 � e "

10895,S69

Heuristic
based on Johnsons rule

Number
of
optimal
solutions

1
Average of
the
resuits(AR)

2736.447

HHHHIHH

1000 10895,569

AR/ALB

Average
of the
running
time

Heuristic
based on NEH

The
number of
optima!
solutions

IJJBJIf
�m
01 5163264

0,421 | 10895*575

Average of
the
results(AR)

^^^^^^^^^^^^^

�
995

AR/AtB

Average
of the
running
time

1 - e g e e s B 9 1 3 7 2 6 1 5 9

1*0000005506825758 !

�
77.613

Table 5.5.3: Simulation of both heuristics where processing times are in [10,100]

Processing time is
between 50-100

The sizes of subsets
(tfiXAfe)

75X25

50X50

180X20

120X80

400X100

300X200

Heuristic
based on Johnson's
rule

Number of optimal
solutions

99886

99894

180000

100000

100000

Processing time is
between 10-100

The si2es of subsets

75X25

50X50

180X20

120X80

400X100

300X200

Heuristic
based on Johnson's
rule

Number of optimal
solutions

99707

99712

99830

99949

100000

100000

Table 5.5.4: Simulation on the heuristic based on Johnson's rule

69

Chapter 6

Meta-heuristic approach

6.1 Introduction

As introduced in Section 3.6.2, meta-heuristic is a kind of iterative optimization

algorithm process. It starts from one or several initial solutions, and evaluates the

quality of a solution, based on the value of the objective function. Then, according to

certain optimization strategies, it updates the solution as the initial solution for the next

iteration, until fulfilling the termination conditions.

In this chapter, we study and use two meta-heuristic algorithms viz. Tabu Search (TS)

and Particle Swarm Optimization (PSO). The goal is to improve PSO, through

hybridization with TS, to make it more efficient for solving F3\M± -> M 2 ; Mx -» M3\Cmax.

6.2 Tabu Search (TS)

Glover created Tabu search (TS) in 1986 and formalized in 1989 [Glover, 1989]

[Glover, 1990]. TS is a local search method which simulates the model of human

memory, and uses a tabu table to shield the area that was just searched, to avoid

circuitous searching, at the same time, through pardon some good solutions in tabu list,

ensure the diversity of the search, so as to achieve global optimization. In this section,

we will present the principles, characteristics and processes of TS.

70

6.2.1 Neighbourhood search

Neighbourhood search, also known as a hill-climbing algorithm that is based on

greedy principle, is the basis of TS. Neighbourhood search continues to search until

there is no better solution in the current neighbourhood. In topology and related areas

of mathematics, a neighbourhood is one of the basic concepts in a topological space.

Intuitively speaking, a neighbourhood of a point is a set containing the point where you

can move that point some amount without leaving the set.

Consider the following optimization problem: minc(x) :x G X. Here, the objective

function c(x) could be linear or non-linear; the solution spaced is constructed by a

finite number of discrete points in the n-dimensional real-value space. The process of

neighbourhood search is to move from one solution to another solution. Parameters

expresses a move; s{x) is the solution obtained after the move and S(x) is the

neighbourhood of current solution. The neighbourhood search algorithm can be simply

described as follows.

Step 1: Choose an initial solution x E X

Step 2: Choose the best solution s(x) in the neighbourhood 5(x) of the current

solution.

Step 3: If c(s(x)) > c(x), move x to s(x) and return to Step 2. Otherwise, the

algorithm terminates.

Following is a simple example to illustrate the neighbourhood search.

71

Example 6.1: We are given a two-stage flow-shop problem, 4 jobs to execute, and we

seek to minimize the makespan. The processing times of each job in the two centres are

shown in Table 6.1.

Job |

1
2

3 , I
4

Centre 1 j

4

8

12

6

Centre 2

5

3
7

9

Table 6.1: Processing times of jobs for Example 6.1

We randomly assign an initial solution: x = (3,4,2,1). This solution represents the

processing sequence as 3->4->2->l. The makespan of this solution is Cx = 36.

We require that the neighbourhood of the current solution is constructed by the

solutions that are obtained by exchanging the position of the two jobs, so the

neighbourhood of x = (3,4,2,1) is as shown in Table 5.2.

Schedule

(4,3,2,1)
(2,4,3,1)

(1,4,2,3)

(3,2,4,1)

(3,1,2,4)

(3,4,1,2) I

Makespan

35

35

37
39

39
36

Table 6.2: Neighbourhood of solution x = (3,4,2,1)

We move the solution to s(x) = (4,3,2,1). The neighbourhood of x = (4,3,2,1) is

as shown in Table 6.3.

72

WPBPSIPJ

���
ijiplpipi

Table 6.3: Tabu list after the first iteration

We move the solution to s(x) = (4,3,1,2). The neighbourhood of x = (4,3,1,2) is

as shown in Table 6.4.

Schedule
(3,4,1,2) !
(13,4,2)
(2,3,1,4)
(4,1,3,2) |

(4,2,1,3)
(4,3,2,1)

Makespan j

36
34
40
33
37
35

Table 6.4: Tabu list after the second iteration

In the neighbourhood, there is no solution better than x = (4,3,1,2). So the

algorithm terminates, and returns the optimal schedule x = (4,3,1,2).

6.2.2 Principles of Tabu search

TS algorithm uses neighbourhood search to iteratively move from the current

solution to another solution in the neighbourhood of current solution, until reaching the

terminal conditions. However, the major disadvantage of the neighbourhood search is

that it is easy to fall into local optimal solutions. To circumvent this problem, TS accepts

an inferior solution, which means that the obtained solution is not necessarily the best

in the neighbourhood.

73

On the other hand, once the inferior solution is accepted, the algorithm may fall into

an infinite loop. To avoid this, the algorithm puts the moves recently accepted into the

tabu list and this move cannot be accepted as the initial solution of the next iteration. In

its simplest form, a tabu list contains the solutions that have been visited in the recent

past. In certain iterations, first, the algorithm will list all the solutions in the

neighbourhood and check each solution in turn from best to worst. Then, the algorithm

will accept the first best solution, which is not in the tabu list, as the initial solution of

the next iteration.

The last important rule of TS is the "pardoned" feature. At the start of the algorithm,

we define the size of the tabu list. During the running of the algorithm, more and more

visited solutions are put into the tabu list, until it fills up. At this point, when there is a

new solution into the tabu list, the solution, which was first put into the tabu list, will be

remove, and this solution can be accepted again as the initial solution in the next

iterations.

The algorithm that can be derived from above can be summarized as follows:

Step 1: Get an initial solution, and set the tabu list to empty and set the maximal

number of iterations.

Step 2: Construct the neighbourhood of the current solution.

Step 3: Choose the best solution in the neighbourhood of the current solution that

is not in the tabu list as the current solution.

74

Step 4: Update the tabu list (add the solution most recently visited and pardon if

needed).

Step 5: If algorithm reaches the maximal number of iteration, then stop and output the

solution. Otherwise go to Step 2.

6.3 Particle Swarm Optimization (PSO)

In a group of organisms, cooperation and competition between individuals develop

the swarm intelligence. Inspired by these, [Kennedy and Eberhart, 1995] proposed a

new method called Particle Swarm Optimization. The algorithm is based on simulating

the simplified social model and swarm intelligence theory. Through cooperation and

competition between individuals, every particle updates its own position. Finally the

algorithm returns the swarm-best-position as the optimal solution. In this section, we

present the principles and the process of building PSO.

6.3.1 Principles of PSO

A swarm, consisting of m particles, fly in the space of solutions at certain speeds

and direction. First, PSO randomly selects several initial positions (called particles) to

form a swarm in the space of solution, with an associated initial velocity for each of

them. Then, PSO records these initial positions as the self-best-positions of each particle.

By comparing the value of the objective function of each particle's self-best position, the

best one is retained as the swarm-best-position (as competition). The model of a swarm

is described by Figure 6.1. At each iteration, according to the "self-best-position" and

the "swarm-best-position", PSO first calculates the new velocity of each particle, and

75

then uses the new velocity to update each particle's position (as cooperation); and then

evaluates every new position. If the new one is better, it updates the self-best-position.

Furthermore, if the best of the new positions is better than the current swarm-best-

position, it updates the swarm-best-position. When the algorithm terminates, swarm-

best-position is returned as the optimal solution.

A swarm

Partiel

Partiel # ^ P a r t i c l

Partiel

Particl
Particl

Particl

Swarm-best-position

Current position

Current velocity

Self-best-

Figure 6.1: Model of the swarm of PSO

In d-dimensional search space, the position and velocity of particle i are

%i = [xi,l>xi,2> �>xi,d\>

vt = Ki^u^y.

As the object ive func t ion evaluates each part icle's posi t ion P = \pttxtPi& ���.Vi,d\<'*

f inds the sel f -best-posi t ion o f each part ic le pb = \Pb,i,Vb,2> ���>Pb,d] a n c ' t n e swa rm-

best-posi t ion Vg=\Pg,i'Vg,2> ���>Pg,d]- Then, the fo l low ing are the formulas we used to

update t he posi t ion and veloci ty for each part ic le:

76

vtJ(t c2r2[pgJ - xu(t)],

1) < Vmax,

Xy(t + 1) = x w (0 + »y(t + D.herej = l,...,d.

Here, at is the inertia factor, c1 and c2 denote the constant acceleration, rx and r2

are random numbers, in the uniform distribution between 0 and 1. To avoid particles

flying out of the search space, we need to define a velocity range \ymin,vmax\. The

method of updating is described by Figure 6.2.

The effect of current velocity

The effect of self-
best-position

The effect of swarm-
best-position

Figure 6.2: Updating the particle

However, in practice, we often have difficulty to determine the maximum velocity

and minimum velocity. And, even if we can, after each update, it is not easy to find a

reasonable way to handle the situation of the velocity cross-border.

To solve this problem, [Clerc and Kennedy, 2002] proposed the following new

formula to update the velocity:

77

Vijit + 1) = *{vy(t) + cxrx\pb4 - Xij(t)J + c2r2[pgJ - xu

X-

Where x is the compression factor; it ensures the convergence of the algorithm, and

cancels the velocity limit. In the following, we will use this new formula.

6.3.2 Process of PSO algorithm

The algorithm that can be derived for PSO can be described as follows:

Step 1: Initialize the initial position and initial velocity of each particle.

Step 2: In the evaluation of each particle:

2.1 store the position and value of the objective function of this position as "self-

best-solution";

2.2 Store the best one of "self-best-position" as "swarm-best-position".

Step 3: Use the "self-best-position" and "swarm-best-position" to update the

velocity and position of each particle.

Step 4: Use new velocity to update the position of each particle.

Step 5: Compare the value of the objective function of the new position with value

of the "self-best-position" for each particle. If the first is better, then

update "self-best-position".

Step 6: Compare the best of all new "self-best-positions" with "swarm-best-

position". If the first is better, then update "swarm-best-position".

Step 7: If the termination conditions are fulfilled, then return the "swarm-best-

solution". Otherwise, go to Step 3.

78

6.4 Encoding

Depending on the type of the solution space, the combinatorial optimization

problem can be divided into two kinds: continuous problem and discrete problem. In

the literature, for the FSP, we usually use the order of the jobs as the encoding of the

problem. Obviously, this approach makes discrete the solution space. However, for PSO,

the location of the particles is a continuous-valued vector. The major difficulty in

applying any version of PSO to combinatorial optimization problems is its continuous

nature. The standard PSO algorithm cannot update the order of the jobs, although

[Kennedy and Eberhart, 1995] designed the other two versions of the PSO using binary

encoding and sequence encoding. However, according to my tests, the practical effect

of these two versions is not ideal. To remedy this disadvantage, ranked-order-value

(ROV) is usually utilized in PSO to convert the continuous position values into a discrete

job permutation. The continuous position vector of the particle is transformed to the

order of processing of the jobs, and then we calculate the makespan of the schedule,

which is expressed by the position of the particles. In this way, there is no need to

modify the operation of the update of the position of particles of the PSO algorithm, and

we can ensure the feasibility of the schedule.

The ROV rules are as follows:

For a particle vector position, we first assign ROV value 1 to the smallest component

of position vector. Then, the second smallest component is assigned as 2, and so on,

until every component is given one unique ROV value. Thus, based on the ROV value, we

construct an order of jobs. Let us note that we take into account the fact that there may

79

be multiple components that might have the same value in the position vector of a

particle. If it is the case, then we add a sufficiently small positive number to the value of

these locations, make them to be different from each other and do not affect the

original job order. It is worth mentioning that in the simulation experiment as presented

in Section 6.5.3, if the value of the component is a double-precision real number, when

tracking for multiple tests, there have been no cases where multiple components have

the same value.

In Table 6.5, we use a sample example to explain the principle and process of the

ROV rule. Thinking about a standard FSP with 6 jobs, the position of the particles is a 6-

dimensional vector. Suppose that the position vector is

^ = [2.78,0.04,1.56,1.87,4.92,0.45].

First, giving a ROV value 1 to the minimal component xi2, we next give a ROV value

2 to xie. Then, respectively, we assign the ROV values to xilf xi3, xiA, xi5, Finally, we

get the order of processing of jobs as 5 = (1 ,5 ,3 ,6 ,4 ,2) .

Position of component

Component value

ROV value

1

2,78

5

2

&04

1

3

L56

3

4

L87

4 � :

5

4.92

6

6

0.45

2

Table 6.5: Position of the particle and the corresponding ROV value

In this section, our goal is to design a hybrid meta-heuristic with PSO and TS. So, not

only we need to see how to apply ROV for PSO, but also to see whether it is appropriate

for TS. As presented above, the main use of neighbourhood search techniques in TS

differs from the PSO, as these operations do not directly affect the particle's position

vector but act on the order of jobs. Therefore, each time we perform a neighbourhood

search operation, the position component of the particles should be adjusted

accordingly to ensure the uniqueness of each position's ROV value. Here, we define the

neighbourhood of one solution as follows:

The neighbourhood of a solution is a in which all the solutions can be obtained by

exchanging once the positions of any two jobs. For a problem with three jobs, one

solution is (1, 2, 3) and its neighbourhoods are (2, 1, 3), (3, 2, 1) and (1, 3, 2). If we have

four jobs, the size of the neighbourhood of one solution is 6, and if we have n jobs, the

size of the neighbourhood of one solution is -�- .

However, the tabu list will reduce the size of neighbourhood, so in fact the size of

the neighbourhood will be smaller than . Under the ROV rule, after a

neighbourhood search, the adjustment of the particle position vector is very simple.

Table 6.6 shows an example. Suppose, before the neighbourhood search, the

position vector of the particle is Xt = [2.78,0.04,1.56,1.87,4.92,0.45]. The order of

jobs based on the ROV rules is S = (1 ,5 ,3 ,6 ,4 ,2) . The neighbourhood search operation

exchanges the position of component xi>3, xiA. Then the new order of jobs is

5' = (1 ,5 ,6 ,3 ,4 ,2) .

Obviously, in order to make the position vector of the particle correspond to a new

order of jobs, we need to swap the position components 1.56 and 1.87.

81

Position of component

Component value

ROV value

Position of component

Component value

ROV value

1

2/78

5

1

2J8

5

2

0.04

1

2

0.04

1

3

1.56

3

3 I

1.87

4

1.87

4

1.56

m
i

5

4.92

6

5

4,92

6

6

0.45

2

6

0.45

2

Table 6.6: After SWAP operations, the particle component position is adjusted

6.5 Hybridization

The hybrid PSO is the main.contribution of this chapter. As it is well known, every

meta-heuristic has its own advantages and disadvantages. The reason for combination is

to introduce the operation of another algorithm into the modified algorithm as this is

expected to improve performance. In this chapter, we will use the PSO algorithm as the

basic one, and we will introduce some characteristics of TS to improve the performance

of the PSO algorithm. This chapter is divided into two parts: in the first part, we will be

comparing the advantages and disadvantages of PSO and TS, and then try to find a

correspondence between them, which we can use as the basis of our combined

operation. In the second part, we will illustrate the details of the combined steps and

finally put forward a kind of framework and ideas on improving PSO.

6.5.1 Features of TS and PSO

Before we mix the two meta-heuristics, first of all, we need to look at their

characteristics and analyse their strengths and weaknesses. In doing so, we will discover

that TS and PSO have complementarities. This is why we combined these two. In Table

82

6.7, we can clearly see the characteristics of the two algorithms. By comparing these

characteristics, we may easily see the theoretical basis for mixing the two algorithms.

Points

Complexity

Local search

Global search

Parameter-
dependent

Dependence
on the Initial
solution
solution

Local optimal
solution

Redundant
operations

Parallelism

TS

In each iteration, the algorithm must
update the tabu list and every time
the search of the current solution
neighbourhood is needed. So, the
algorithm is more complex.

The neighbourhood of the current
solution is searched in each iteration,
so the TS algorithm has a good local
search ability.

Every time, only one solution is
operated, so the global search ability
of TS is weak.

Performance of the algorithm is |
dependent on the length of the tabu
list.

The performance of the algorithm
does not heavily depend on the
quality of the initial solution**.

The algorithm has the ability to
escape from the local optimum.

To a large extent due to the existence
of the tabu table, TS avoids repeatedly
solving th e sa me case

No

PSO

The algorithm operation is relatively
simple; There is only a need to change
the position of the particle according
to the velocity and record the best
solution.

Does not have the local search
capabilities.

There are more particles cooperating
in the search of the solution space. So,
PSO has a strong global search
capability.

Algorithm performance is dependent
on the number of particles; The
greater number is, the better is the
performance of the algorithm.

High dependence on the initial
solution

Since each particle running direction
tends to the current optimal solution,
the algorithm will easily fall Into a
local optimal solution

The algorithm has no mechanism for
avoiding redundant operations; it is
possible to repeatedly solve the same

good parallelism

**For more details, see e.g. [Dingwei et ai, 2007]

Table 6.7: Characteristics of TS and PSO approaches

83

6.5.2 Design of the hybrid algorithm

Let us recall that the two most important capabilities of meta-heuristic are their

ability to do a global search and escape local optimal solutions. Through its tabu list, TS

has a good capability to fall into the local optimal solution. However, its global search is

not that effective compared to other meta-heuristic algorithms (for more details, see for

e.g. [Wenxun and Jinxing, 2005]). PSO, on the other hand, randomly distributes the

initial positions of the particles in the space of solution. This enables it to do an effective

global search. However, its strength is not on escaping local optimal solution. The main

ideas of mixing TS and PSO are as follows:

1. Use a heuristic algorithm to produce an initial solution.

2. After updating a position, each particle should search the neighbourhood of the

new position. This makes that every particle has broader search range.

3. After the neighbourhood searching, every particle accepts an inferior solution.

This means that the particles will not prematurely converge to the swarm-best-

position.

4. To avoid falling into an infinite loop, the algorithm puts recent passing positions

into the tabu list.

In this chapter, we let all the particles share one tabu list named "Public Tabu List".

Here, we define the size of the tabu list as a multiple of the number of particles, and the

tabu list will follow the "Unified Pardon Rule". This means that the positions, which

were first put into the tabu list, are first pardoned. Let us mention that there is another

rule of pardon, called "Prioritized Pardon Rule". In this case, if a position, in the tabu list,

84

is used to be a "swarm-best-position", it should have the priority pardon, regardless of

which particle was first added into the tabu list. Example 6.2 illustrates these two rules

of pardon. However, in the simulation we undertook in Section 6.5.3, we used the

"Unified Pardon Rule". Our choice for this rule is its simplicity in the implementation.

Example 6.2: In the swarm, we have three particles a, b and c, and the initial positions

of these particles are pa,i>Pb,i> and Pc,i- W e assume that p a l is the best one as the

swarm-best-position. Table 6.8 shows the tabu list and swarm.

null null null 1 null null null

The current positions of pal,pbl, and p c l .

Swarm-best-position: pal

Table 6.8: Initial tabu list and swarm

After the first iteration, three particles move to their next positions pa,2,Pf>/2 and

pc 2 , here, we support tha tp c 2 i s better t h a n p a l , so the swarm-best-position is

replaced by pc 2 , and then the positions pa,i>Pb,i and Pc,i a r e added into the tabu list as

Table 6.9.

Va.,1 i Vb.X Pel null null null

The current positions ofpat2,Pb,2>anc' Pc,2-

Swarm-best-position: pc2

Table 6.9: The tabu list and swarm after first iteration

After the second iteration, three particles move to their next positions Va,?>>Pbt?> and

pc3 , and let us assume thatp ù 3 i s better thanp c 2 . So the swarm-best-position is

replaced by pb3/ and then the positions pa,2>Pb,2 and p c 2 are added into the tabu list as

shown in Table 6.10.

85

Illllll i l l �111
The current positions of pa3lpb3, and pc3.

Swarm-best-position: pb 3

Table 6.10: The tabu list and swarm after second iteration

After the third iteration, three particles move to their next positions pa>4>PbA a n c l

pc 4 . Any new position is better than pb3, so the swarm-best-position is still pb/3. Next,

we need to add the positions Pa&Pbz a n d pc,3 ' n t 0 the tabu list, but it is full now. So,

three positions should be pardoned.

If we use the "Unified Pardon Rule", the positions pa,\>Pb,\ a n c l Pc,\ w ' " be

pardoned since they were first added into the tabu list as shown in Table 6.11.

BMW Illllllll 111111
The current positions of paA,pbA and pc4.

Swarm-best-position: pb3

Table 6.11: The tabu list and swarm (Unified Pardon Rule)

But, if we used the "Prioritized Pardon Rule", the positions p a l , p c 2 and p c l are

those which are pardoned, since pal,pc2 were used to be the swarm-best-positions.

Thus, they should preferentially be pardoned, and pcl is first added into the tabu list as

shown in Table 6.12.

PaS Pb,3 Pc.3 Pa,2 Pb.2 PbX
The current positions of pa4,pb4 and pc4.

The Swarm-best-position:pb3

Table 6.12: The tabu list and swarm (Prioritized Pardon Rule)

Following are the different steps of the Hybrid Algorithm.

Step 1: Initialization

Step 1.1: Initialize the two special particles by the heuristics we designed before.

Step 1.2: Randomly initialize the m-2 particles and form a swarm with m particles.

Step 1.3: Calculate the objective value of each particle

Step 1.4: Each particle's "self-best-position" equals its current objective value, so

the "swarm-best-position" equals to the best of all objective values of

particles.

Step 1.5: Deposit the current position of all particles into the tabu list.

Step 2: Updating

Step 2.1: According to the velocity of the particle, update the particle position.

Step 2.2: Search the neighbourhood of the particle; update the position of the

particle again by the best position in the neighbourhood, and not in the

tabu list.

Step 2.3: Update the "self-best-position" and "swarm-best-position", and deposit

the current position of all particles into the tabu list.

Step 2.4: If the tabu list is full, then pardon m positions by the "Unified Pardon

Rule".

Step 3: Termination

If the algorithm termination conditions are met, then return the "group-best

position" and its objective value. Otherwise, go to Step 2.

87

6.5.3 Experimental study

The simulation runs in Apple's iMac with Core i3 and 4GB memory and be

programmed by Java. We used three different sizes of the input: 50, 100 and 200, for

the simulation. For each size, we also designed different sizes of the subsets. For

different sizes of the problem and different of subsets, we randomly generated 10000

different sets of jobs. We calculated their makespan values with the standard PSO and

the hybrid PSO, and take the averages of makespan values, respectively.

In the simulation presented below, for both standard PSO and hybrid PSO, the sizes

of swarm are 20. Tables 6.13.1 to 6.13.3 show the results generated by the

experimental study we performed. In Table 6.13.1, the processing times of each job are

random positive integers drawn from [50,100}, [20,100], [10,100], respectively, in Table

6.13.1, 6.13.2, and 6.13.3. The first column of each table shows the scale of the problem

and the size of the subsets; the second column is the average of the lower bound on the

values of the makespan; the third column is the average of the makespan values

obtained by the standard PSO, and the last column is the average of the makespan

values obtained by the hybrid PSO.

As mentioned Section 6.5.3, after using the neighbourhood search, hybrid PSO can

search a wider range of the solution space. As we can see in the different tables, the

different values of the makespan obtained by the hybrid PSO are closer to the lower

bound than the standard PSO.

Processing time
between SO-100

The sizes of subsets

35x15

25X25

70X30

60X40

50X50

150X50

120X80

100X100

i

Average of lower bound

3�
^ � 6 6 7

� � �
SlillliiiiiilPIllliiiilillilli

14942.952

14939.785

14944354

Standard PSO

Average of the results} AR)

-^�^

14955,651

14945,959

14960,267 |

Hybrid PSO

Average of the results(AR) |

7 5 0 0 J 5 2 ; � ; : : ; :

� � � � � � � � � �
14943.055

14939.951

14944.637

Table 6.13.1: Simulation of hybrid PSO where processing times are in [50,100]

Processing-.. .v, tinner.
between 20*100

The sizes of subsets

35x15

25X25

70x30

60X40

50X50

150X50

120x80

100X100

Average of lower bound

� H H H H H H H H H H

11920,188

11923.995

11919,484

Standard PSO

Average of the results(AR)

3B25.52!

- ^ � ^

11925,802

11930.S9

11922*19B

Hybrid PSO

Average of the resultsf AR)

30,33.!

11920.914

11924.415

11919.517

Table 6.13.2: Simulation of hybrid PSO where processing times are in [20,100]

Processing time
between 10*100

The sizes of subsets

35X15

25X25

70X30

60x40

50X50

150X50

120X80

100X100

Average of lower bound

10910*897

10896-523

10904.006

Standard PSO

Average of the results(AR)

10925.256

10929.457

10909*854

Hybrid PSO

Average of the results(AR)

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

10911*592

10896*833

10904,318

Table 6.13.3: Simulation of hybrid PSO where processing times are in [10,100]

89

Conclusion

This dissertation addresses the Two-Stage flow-shop scheduling problem with a

shared machine denoted by F3|M 1 ; 1 -> M21;Mlfl -» M22\Cmax. In this model, the set /

of n independent jobs is partitioned into two disjoint subsets^ and / 2 . The jobs in the

first subset^ must be processed first on machine Mlt, then on machine M21; whereas

the second subset J2 must be processed on machine Mltl and then on machine M 2 2

Machines M2tl and M21 operate somehow in parallel; they constitute the second stage

of the model, whereas machine Mltl constitutes the first stage and shared by/x and / 2 .

Although, the standard model is NP-Hard, the problem becomes may be

polynomially solvable when we relax some constraints. Within this context, we have

looked at several special cases: constant processing times, large processing times in

Stage one, large processing times in Stage two.

In the heuristic front, we have designed two new heuristic: one is based on John's

rule, and the other one is based on Nawaz-Enscore-Ham algorithm. According to the

simulation experiment we performed, we observed that the performance of the two

heuristic algorithms is good, as most of the time both algorithms produce an optimal

solution. It is noteworthy to observe that, as the input size of the problem gets larger,

the performance of the two algorithms steadily gets much better when the size of the

problem is over 200.

Regarding the meta-heuristic approach, we studied two kinds of meta-heuristic

algorithms namely the tabu search method (TS) and the particle swarm optimization

90

(PSO) method. By comparing the characteristics of the two algorithms, we designed a

hybrid meta-heuristic to improve the performance of PSO, According to the simulation

experiment we performed we found out that the performance of the hybrid PSO is by

far better than the standard PSO and TS approaches.

For future research, it would be interesting to search for other pertinent conditions

that make the standard model polynomially solvable. For the hybrid meta-heuristic

algorithm, we still have room for improvement. For instance, we could try to test

whether the "Prioritized Pardon Rule" and "Private Tabu List" are more efficient than

the one we used in this dissertation. We could also consider the question of using the

"Unified Pardon Rule" within the "Private Tabu List".

91

References

[Balas and Toth, 1985] Balas, E., and Toth, P. Branch and bound methods, chapter 10, in

Lawler, E.L. et al. (eds): The traveling salesman problems: a guided tour of combinatorial

optimization, John Wiley, 1985.

[Cook, 1971] Cook, S. The complexity of theorem proving procedures, Proceedings of

the3rd Annual ACM Symposium on Theory of Computing, pp. 151-158.1971.

[Dasgupta et al., 2007] Dasguna, S., Papadimitriou, CH., Vazirani, UV. Algorithms,

Chapter 6, John Wiley.

[Campbell, Dudek and Smith, 1970] Campbell, H., Dudekp, R., Smith, M. A heuristic

algorithm for the n-job m-machine sequencing problem, Management Science, vol. 16

(10), pp. 630-637, June 1970.

[Dannenbring, 1977] Dannenbring, D.An evaluation of flow-shop sequencing heuristics,

Management Science, vol. 23(11), pp. 1174-1182, 1977.

[Dingwei et al., 2007] Dingwei, W., Junwei, W., Hongfeng, W., Ruiyou, Z., Intelligent

Optimization Methods, Higher Education Press, pp.81-84, 2007

[Dorigo, 1992] Dorigo, M., Optimization, Learning, and Natural Algorithms, Phd Thesis,

Politecnico di Milano, Italy, 1992.

[Fatos and Ajith, 2008] Fatos, X., Ajith, A. Metaheuristics for Scheduling in Industrial and

Manufacturing Applications, vol. 128, Studies in computational intelligence, 2008.

[Fisher, 1982] Fisher, M.L. Worst case analysis of heuristic algorithms for scheduling

and packing, in Dempster et al. (eds): Deterministic and stochastic scheduling, D. Reidel

92

Publishing Co, 1982.

[Gantt, 1910] Gantt, HL. Work, Wages and Profit, The Engineering Magazine, 1910.

[Garey and Johnson, 1979] Garey, MR., Johnson, DS. Computers and Intractability: A

Guide to the Theory of NP-Completeness, Computer Press, 1979.

[Glover, 1990] Glover, F. Tabu Search - Part 2. ORSA Journal on Computing, pp. 4-32,

1990.

[Glover, 1989] Glover, F. Tabu Search - Part 1. ORSA Journal on Computing, pp. 190-206,

1989.

[Glover, 1986] Glover, F. Future Paths for Integer Programming and Links to Artificial

Intelligence, Computers and Operations Research, vol. 13 (5), pp. 533-549,1986.

[Glover, 1977] Glover, F. Heuristics for Integer programming: Using Surrogate

Constraints, Decision Sciences, vol. 8 (1), pp. 156-166,1977.

[Graham et al., 1979] Graham RL., Lawler EL., Lenstra JK., Rinnooy Kan, AHG.

Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey,

Annals of Discrete Mathematics, vol. 5, pp. 287-326,1979.

[Gupta, 1971] Gupta, J. A functional heuristic algorithm for the Flow-shop scheduling

problem, Operations Research Quarterly, pp. 39-47,1971.

[Holland, 1975] Holland, JH. Adaptation in Natural and Artificial Systems, 1975.

[Johnson, 1954] Johnson, SM. Optimal Two-and-Three-Stage Production wi th Setup

Times Included, Naval Research Quarterly, pp. 1-5,1954.

[Karp, 1972] Karp, R. Reducibility among combinatorial problems, in R.E. Mil ler and J.W.

Thatcher (eds): Complexity of Computer Computations, Plenum Press, New York.

93

[Kennedy and Eberhart, 1995] Kennedy, J., Eberhart, R. Particle Swarm Optimization,

Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948,1995.

[Kirkpatrick Gelatt and Vecchi, 1983] Kirkpatrick, S., Gelatt JR., Vecchi, MP.

Optimization by Simulated Annealing, Science, vol. 220 (4598), pp. 671-680,1983.

[Levitin, 2003] Levitin, A. The design and analysis of algorithms, Addison Wesley, 2003.

[Mellor, 1966] Mellor, P. A review of job shop scheduling, Operational Research

Quaterly, vol. 17, pp. 161-171, 1966.

[Nawaz Enscore and Ham, 1983] Nawaz, M., Enscore Jr., E.E., Ham, I., A heuristic

algorithm for the m-machine n-job flow-shop sequencing problem, Omega-International

Journal of Management Science, vol. 11(1), pp. 91-95,1983.

[Palmer, 1965] Palmer, D. Sequencing jobs through a multi-stage process in the

minimum total time: a quick method of obtaining a near optimum, Operations Research

Quarterly, pp. 101-105, 1965.

[Raghavachari, 1988] Raghavachari, M. Scheduling with non-regular penalty functions: a

review, Operations Research, vol. 25, pp. 144-164,1988.

[Rinnooy Kan, 1986] Rinnooy Kan, AHG. Probabilistic analysis of approximation

algorithms, Annals of Discrete Mathematics, vol. 31, pp. 153-162,1986.

[Serope and Steven, 2006] Serope, K., Steven, S. Manufacturing Engineering and

Technology (5th éd.), Prentice Hall, 2006.

[Tuong Soukhal and Miscopein, 2009] Tuong, NH. Soukhal, A. and Miscopein, L

Interfering job set scheduling on three-stage flow-shop with a common stage machine,

MISTA, pp. 10-12, 2009.

94

[Toni and Tonchia, 1998] Toni, A. and Tonchia, S., Manufacturing Flexibility: a literature

review, InternationalJournal of Production Research, 1998, vol. 36(6), pp. 587-617,1998.

[Wenxun and Jinxing, 2005] Wenxun, X., Jinxing, Xv Modern optimization methods,

Tsinghua University Press, 2005.

[Yagiura and Ibaraki, 2001] Yagiura, M., Ibaraki, T. On meta-heuristic algorithms for

combinatorial optimization problems, Systems and Computers in Japan, Vol. 32(3), pp.

33-55, 2001.

95

