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ABSTRACT 

 

 In the wind industry, the current trend is towards building larger and larger 

turbines. This presents additional structural challenges and requires blade materials that 

are both lighter and stiffer than the ones presently used. [1] This work is aimed to aid the 

work of designing new wind turbine blades by providing a comparative study of different 

composite materials.  

 

A coupled Finite-Element-Method (FEM) - Blade Element Momentum (BEM) code was 

used to simulate the aerodynamic forces subjected on the blade. The developed BEM 

code was written using LabView allowing an iterative numerical approach solver taking 

into the consideration the unsteady aerodynamic effects and off –design performance 

issues such as Tip Loss, Hub Loss and Turbulent Wake State therefore developing a more 

rational aerodynamic model. For this thesis, the finite element study was conducted on 

the Static Structural Workbench of ANSYS, as for the geometry of the blade it was 

imported from a previous study prepared by Cornell University [2]. Confirmation of the 

performance analysis of the chosen wind turbine blade are presented and discussed blade 

including the generated power, tip deflection, thrust and tangential force for a steady flow 

of 8m/s. 

 

The elastic and ultimate strength properties were provided by Hallal et al [3]. The Tsai-

Hill and Hoffman failure criterions were both conducted to the resulting stresses and 

shears for each blade composite material structure to determine the presence of static 

rupture. A progressive fatigue damage model was conducted to simulate the fatigue 

behavior of laminated composite materials, an algorithm developed by Shokrieh [4].  

 

It is concluded that with respect to a material blade design cycle, the coupling between a 

finite element package and blade element and momentum code under steady and static 

conditions can be useful. Especially when an integration between this coupled approach 

and a dynamic simulation tool could be established, a more advanced flexible blade 

design can be then analyzed for a novel generation of more flexible wind turbine blades. 

 

Keywords: wind turbine blade – BEM – FEM – aerodynamic – orthotropic – static – 

fatigue   
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NOMENCLATURE  

 

Latin Symbols 

 

a                         - Induction factor                                               [-] 

a’                         - Tangential induction factor                                                     [-] 

A    - Area                      [m2] 

c    - Chord                      [m] 

CD    - 2-D Drag coefficient          [-] 

CL    - 2-D Lift coefficient           [-] 

CN    - 2-D normal direction coefficient             [-] 

CTang    - 2-D tangential direction coefficient        [-] 

CT    - Coefficient of thrust                         [-] 

D    - Drag force            [N] 

E    - Stiffness                     [N/m2] 

f    - Glauert correction            [-] 

Ftip    - Tip loss correction factor           [-] 

Fhub    - Hub loss correction factor           [-] 

H    - Total head                                                                            [N/m2] 

L              - Lift force                                                                                 [N] 

m                         - Mass                                               [kg] 

maero                         - Aerodynamic moment per unit of length        [N] 

Mcorr                         - Correction moment per unit of length         [N] 

M              - Induced moment           [N.m] 

n              - Number of cycles            [-] 

N              - Number of blades             [-] 

P                                - Pressure                     [N/m2] 

PN                              - Resultant in the normal direction         [N] 

PT                              - Resultant in the tangential direction                                         [N] 

r                       - Local radius position                                   [m] 

R                       - Tip blade radius position                                   [m] 

R            - Stress ratio             [-] 

R            - Residual strength                               [N/m2] 

Rhub                       - Hub position                                    [m] 
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T            - Thrust             [N] 

V0            - Undisturbed  air stream              [m/s] 

v                      - Velocity                                               [m/s] 

vf              - Fiber content                         [-] 

 

Greek Symbols 

α                               - Angle of attack                                                                  [rd] 

β                              - Comparative parameter                                                                 [-] 

δ          - Material nonlinearity parameter                      [-] 

θ                              - Pitch angle             [rd] 

ρ                              - Air density                                                                            [kg.m3] 

σ                             - Stress                                                                                         [N/m2] 

σ ‘                           - Local solidity                                                                               [-] 

χ                             - Average of f(σ)                                                                               [-] 

Ø                            - Relative flow angle                                                                  [rd] 

ω         - Rotational velocity                                  [rd/s] 

Ω         - Rotation of the wind near the blade                                              [rd/s] 

ϑ                            - Standard deviation                                                                           [-] 

 

 

 

Abbreviations 

 

ADAMS/WT  - Automatic Dynamic Analysis of Mechanical Systems - Wind  

   Turbine 

BEM   - Blade Element Momentum Theory 

CFD   - Computational Fluid Dynamics 

FAST   - Fatigue, Aerodynamics, Structures, and Turbulence 

FEM   - Finite Element Method  

HAWC  - Horizontal Axis Wind Turbine Code 

NACA   - National Advisory Committee for Aeronautics 

NREL   - National Renewable Energy Laboratory  

REV   - Representative Elementary Volume  
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 CHAPTER I: LITERATURE REVIEW  

 

1.1 Background 

 

 Until recently, wind turbine blades had a relative high rigidity and small 

deformations. This allowed for modeling techniques which assumed a simplified 

aeroelastic response. Recent reports have shown that an aeroelastic optimized flexible 

blade can offer a number of advantages over the more rigid variant: higher energy yield 

and/or shedding loads (increasing fatigue life) [5]. Consequently, there is a trend towards 

lighter and more flexible wind turbines, which makes design and dimensioning even 

more demanding and important [6]. 

 

Wind turbines operate in a hostile environment where strong flow fluctuations, due to the 

nature of the wind, can excite high loads. The varying loads, together with an elastic 

structure, create a perfect breeding ground for induced vibration and resonance problems 

[6]. Many manufactured items are designed to a reference “design point”. This 

corresponds to an operating condition such that, if met it will perform adequately to any 

other set of conditions. A single design point is not adequate, but rather the wind turbine 

must be able to withstand other unusual conditions with no significant damage. The most 

important considerations are [7]: 

 

1. Expect event during normal operation 

2. Extreme events 

3. Fatigue 

 

As is commonly used in mechanics, the loads are the externally applied forces or 

moments to the entire turbine or to any of the components considered separately. Wind 

turbines are usually designed for two types of loads (1) ultimate loads and (2) fatigue 

loads. Ultimate loads refer to likely maximum loads, multiplied by a safety factor. 

Fatigue loads refer to the component’s ability to withstand an expected number of cycles 

of possibly varying magnitude [7]. Most Materials can withstand a load of a certain 

magnitude when applied once, but cannot withstand the same load when applied in a 

cyclic pattern. The decreasing ability to survive repeated loads is called fatigue.  

1.2 Scopes and Aims 
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 The goal of this project is to develop a comparative study of different composite 

material structures, a study that will be based on their quasi- static and fatigue behavior 

subjected to the same aerodynamic load. The majority of the aeroelasticity models are 

based on a modal formulation or finite element (FE) representation. However a coupled 

FEM-BEM method was used in this work to calculate the aeroelastic response and 

compare the static failure performance knowing the ultimate strengths of each material. 

The use of computation fluid dynamics (CFD) rather than BEM is due to the fact that a 

computational fluid dynamic simulation is time consuming and hence considered to be 

impractical for the purpose of our study (see figure 1.1). The BEM offers the advantage 

of having short computation time and the model can be simulated without difficulty.    

 -

 

Figure 9.1: Comparison between two method solving strategies; FEM-BEM and FEM-BEM 

 

A number of design codes have been used over to model the wind turbines dynamic 

behavior, or to carry out design calculations. Listed below are some of the most common 

design codes: 

 

 ADAMS/WT (Automatic Dynamic Analysis of Mehhhhhhhchanical Systems – 

Wind Turbine). ADAMS/WT is designed as an application-specific add-on to 

ADAMS/SOLVER and ADAMS/View and it is a toolkit for analyzing wind-

turbine aeromechanics [8].  
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 FAST (Fatigue, Aerodynamics, Structures, and Turbulence). The FAST code is 

being developed through a subcontract between National Renewable Energy 

Laboratory (NREL) and Oregon State University. NREL has modified FAST to 

use the AeroDyn subroutine package developed at the University of Utah to 

generate aerodynamic forces along the blade [9]. 

 

 HAWC (Horizontal Axis Wind Turbine Code). HAWC is developed at Risø in 

Denmark. The model is based on the FE method using the substructure approach. 

The code predicts the response of horizontal axis two- or three bladed machines in 

time domain [10] 

 

 YawDyn. YawDyn is developed at the Mechanical Engineering Department 

University of Utah, with support of the National Renewable Energy Laboratory 

(NREL), National Wind Technology Center. YawDyn simulates e.g. the yaw 

motions or loads of a horizontal axis wind turbine, with a rigid or teetering hub 

[11]. 

 

Finally, this thesis will serve as an aid and a step towards the design of a more 

lightweight blade and hope that it will serve as a tool that will aid the design of new wind 

turbine blade composite material. This tool can be used to evaluate the pros and cons of 

using more lightweight material and their behavior for different operating condition 
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CHAPTER II: AERODYNAMIC MODELINGh 

 

2.1 Methods for Calculating the Aerodynamic Forces  

 

 As mentioned earlier the aerodynamic forces used in this thesis are calculated 

using the Blade Element Momentum (BEM) method, which is described in this chapter. 

The BEM theory is the most commonly used method for calculating aerodynamic loads 

in the wind-power industry [1]. 

 

Other methods such as the Helical Vortex Method (HVM) and the Free Vortex Method 

(FVM) are not much used for wind turbines yet, but find great application in the 

helicopter industry and in the propeller industry. The most advanced ones are numerical 

methods solving the Navier-Stokes equations for the global compressible flow as well as 

the flow near the blades [6]. These methods may see increasing use in the wind-power 

industry as well. 

 

2.2 BEM Model 

 

2.2.1 Introduction 

 

BEM is a very common tool for wind turbine applications; it offers the advantage of 

having a very short computational time and good accuracy, at least for the cases for 

which BEM is suitable for. In short, the benefits of BEM are: 

 Very fast. 

 Accurate. 

 

The disadvantages are: 

 No way to define the geometry in flap or edge wise direction, (for example pre-

bend or a curved blade). 

 Engineering models needed. 

 

BEM can accurately be used when the blade is straight (no complicated shapes in either 

direction), and the analysis is done assuming a steady state. The actuator disc model used 

to derive the momentum equations assumes an infinite number of blades but in reality 
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wind turbines will have only two or three blades, therefore not every air particle passing 

through the rotor swept area will be strongly affected by the pressure fields of the blades 

of the wind turbine. To compensate for this fact, so-called tip-loss corrections can be 

used. These corrections will reduce the induction factor in the outer annuli and therefore 

the aerodynamic forces acting near the tip [12]. 

 

2.2.2 BEM Theory 

 

 The Blade Element Momentum (BEM) theory1 is a very widely used method for 

calculating the forces on a wind turbine [1]. It is actually the combination of blade 

element theory (also known as strip theory) and momentum theory. 

 

 Blade element theory divides the blade into discrete 2D sections, for which the 

aerodynamic lift and drag forces per unit length are calculated based on local values of 

pitch angle, angle of attack, chord length, airfoil section lift/drag coefficients, induction 

and wind speed. Note that the wind speed is the vectorial sum of the free stream velocity 

and the rotational induced velocity. Further, the aerodynamic coefficients of the 2D 

airfoil section have to be known as function of angle of attack. See figure 2.1. 

 

Figure 10.1: Schematic of blade elements; c, airfoil chord length; dr, radial length of element; r,  

radius; R, rotor radius; Ω, angular velocity of rotor  

  

The momentum theory relates rotor thrust to the induction over the rotor plane. The 

induction could be interpreted as the change in wind speed conditions due to the presence 

of the lift and drag generating rotor blades [5]. 

By using the actuator disk theory where the disk changes the pressure and the rotation of 

the fluid, and couple it with blade theory a 

1The derivations shown in this chapter have been extracted from [9] and [10] 
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 very fast tool can be created [1]. The actuator disk theory assumes that the blade is 

replaced by a circular plane that changes the pressure, and creates a rotational force on 

the fluid, see figure 2.2. 

 

Figure 2.2: Actuator disk model 

 

By the actuator disk theory the thrust can be calculated as the pressure drop over the disk. 

                                                                       𝑇 = ∆𝑝. 𝐴                                                 (2.1) 

and the induced moment can be calculated as: 

                                                                          𝑑𝑀 = 𝜌𝑢𝜔𝑟2𝑑𝐴                          (2.2) 

where Δp is the pressure drop and A is the area of the disk i.e. 

                                                                             ∆𝑝 = 𝑝2 − 𝑝3                                              (2.3) 

                                                                                    𝐴 = 𝜋𝑟2                                                  (2.4) 

assuming that the flow is incompressible and stationary Bernoulli's equation can be used 

to calculate p2 and p3. This is done by calculating the state far upstream of the blade, and 

just before it (between 1 and 2) and calculating the state for far downstream of the blade 

and just after it (between 4 and 3). 

                                                    𝐻1 = 𝑝1 +
𝜌𝑢1

2

2
= 𝑝2 +

𝜌𝑢2
2

2
                                                (2.5) 

                                      𝐻2 = 𝑝3 +
𝜌(𝑢3

2+(𝜔3𝑟)2)

2
=  𝑝4 +

𝜌(𝑢4
2+(𝜔4𝑟)2)

2
                                (2.6) 

where: 

                                                                ∆𝑝 = 𝑝2 − 𝑝3 ⇒  𝑝3 =  𝑝2 − ∆𝑝                                             

also            

                      ∆𝑣 = 0 = 𝑣2 − 𝑣3 ⇒ 𝑣2 = 𝑣3                          (2.7) 
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and                                      𝑝1 = 𝑝4                                       (2.8) 

adding equations these equations and you get: 

                                                                 𝐻1 = 𝑝1 +
𝜌𝑢1

2

2
= 𝑝2 +

𝜌𝑢2
2

2
         (2.9) 

                                        𝐻2 = 𝑝2 − ∆𝑝 +
𝜌(𝑢3

2+(𝜔3𝑟)2)

2
=  𝑝1 +

𝜌(𝑢4
2+(𝜔4𝑟)2)

2
             (2.10) 

by combining these equations the head drop can be calculated as: 

                                                        ∆𝐻 = −∆𝑝 + 𝜌𝜔3
2𝑟3

2/2                                        (2.11) 

where the total pressure head also can be calculated as: 

                                       0 = 𝑝1 − 𝑝4 =
𝜌(𝑢4

2−𝑢1
2)

2
+

𝜌(𝜔4
2𝑟4

2−𝜔3
2𝑟3

2)

2
+ ∆𝑝                      (2.12)       

due to the fact that ΔH = 0, the pressure drop over the blade can be written as:  

                                                           ∆𝑝 = 𝜌(Ω +
𝜔

2
)𝜔𝑟3

2                                          (2.13) 

where  Ω  is the rotation of the wind close to the blade. 

By combining these equations the total pressure drop can be calculated as: 

                                                0 =
𝜌(𝑢4

2−𝑢1
2)

2
+ 𝜌𝜔4

2𝑟4
2(Ω +

𝜔

2
)                                    (2.14) 

since the angular velocity omega is supposed to be small, the term ω2 can be neglected. 

By applying these assumptions, on the actuator disk model the thrust and the moment can 

be calculated as: 

                                                𝑑𝑇 = (𝑢1 − 𝑢4)𝑑𝑚 = 2𝜋𝑟𝜌𝑟3𝑢1(𝑢1 − 𝑢4)𝑑𝑟                  (2.15) 

Similarly the momentum can be calculated as 

                                                𝑑𝑀 = 𝑟𝜔𝑑𝑚 = 2𝜋𝜌𝑢1𝑟3
2𝜔𝑑𝑟                                     (2.16) 

where m is the mass of the fluid. 

By substituting some variables, these equations can be written as: 

                                             𝑑𝑇 = (𝑉0 − 𝑢1)𝑑�̇� = 2𝜋𝜌𝑢(𝑉0 − 𝑢1)𝑑𝑟                       (2.17) 

                                                   𝑑𝑀 = 𝑟𝐶𝜃𝑑�̇� = 2𝜋𝑟2𝜌𝑢𝐶𝜃𝑑𝑟                                 (2.18) 

By expressing u as 𝑢 = (1 − 2𝑎)𝑉0 these two equations can be written as: 

 

                                                   𝑑𝑇 = 4𝜋𝑟𝜌𝑉0
2𝑎(1 − 𝑎)𝑑𝑟                                        (2.19) 

                                               𝑑𝑀 = 4𝜋𝑟3𝜌𝑉0𝜔(1 − 𝑎)𝑎′𝑑𝑟                                      (2.20) 

The axial induction factor and the tangential induction factor can be defined respectively 

by:                                                𝑎 =
𝑢1−𝑢2

𝑢1
     𝑎′ =

Ω

2𝜔
 

and the angle of attack can be calculated as: 

                                                         𝛼 = 𝜙 − Θ                                                           (2.21) 

where:   𝜙 is the relative flow angle   
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  Θ  is the pitch angle (see figure 2.3) 

 

Figure 2.3: Velocities at the rotorplane 

 

where:       tan(𝜙) =
(1−𝑎)𝑉0

(1+𝑎′)𝜔𝑟
                                            

(2.22) 

which makes it possible to calculated the lift and the drag: 

                                                                 𝐿 = 1/2𝜌𝑉𝑟𝑒𝑙
2 𝑐𝐶𝐿                                         (2.23) 

                                                                  𝐷 = 1/2𝜌𝑉𝑟𝑒𝑙
2 𝑐𝐶𝐷                                        (2.24) 

where CL and CD can be gathered from tabulated data (see figure 2.4).  

 

Figure 2.4: The local forces on a cross section of a blade 
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The lift and drag is calculated in the same direction as the flow. However a better way of 

dividing the forces is in the normal and tangential direction, compared to the rotor plane. 

By calculating the forces as: 

                                                        𝑃𝑁 = 𝐿. cos(𝜙) + 𝐷. sin (𝜙)                                (2.25) 

                                                        𝑃𝑇 = 𝐿. sin(𝜙) − 𝐷. cos (𝜙)                                (2.26) 

 

or doing it already for the coefficients :  

                                                       𝐶𝑁 = 𝐶𝐿 . cos(𝜙) + 𝐶𝐷 . sin (𝜙)                             (2.27)    

                                                    𝐶𝑇𝑎𝑛𝑔 = 𝐶𝐿 . sin(𝜙) − 𝐶𝐷 . cos (𝜙)                           (2.28) 

 

they can therefore be expressed as this: 

                                                                  𝐶𝑁 =
𝑃𝑁

1/2𝜌𝑉𝑟𝑒𝑙
2 𝑐

                                              (2.29) 

         𝐶𝑇𝑎𝑛𝑔 =
𝑃𝑇

1/2𝜌𝑉𝑟𝑒𝑙
2 𝑐

                                           (2.30)         

 

when using the formulation as above the thrust and moment can be calculated as: 

                                                                  𝑑𝑇 = 𝑁𝐵𝑃𝑁𝑑𝑟                                            (2.31) 

                                                                 𝑑𝑀 = 𝑟𝑁𝐵𝑃𝑇𝑑𝑟                                          (2.32) 

 

inserting these equation into equations 2.19 and 2.20 the thrust can be calculated as: 

                                                       𝑑𝑇 = 1/2𝜌𝑁𝐵
𝑉0

2(1−𝑎)2

𝑠𝑖𝑛2(𝜙)
𝑐𝐶𝑁𝑑𝑟                               (2.33) 

                                               𝑑𝑀 = 1/2𝜌𝑁𝐵
𝑉0(1−𝑎)𝜔𝑟(1+𝑎′)

𝑠𝑖𝑛(𝜙).cos (𝜙)
𝑐𝐶𝑇𝑎𝑛𝑔𝑟𝑑𝑟                    (2.34)             

 

which means that the indical functions a and a' can be calculated as: 

                                                                𝑎 =
1

1+ 
4𝑠𝑖𝑛2(𝜙)

𝜎𝐶𝑁

                                                (2.35) 

                                                             𝑎′ =
1

1+ 
4 sin(𝜙)cos (𝜙)

𝜎𝐶𝑁

                                           (2.36) 

where σ, the local solidity can be calculated as: 

                                                                  𝜎(𝑟) =
𝑐(𝑟)𝑁𝐵

2𝜋𝑟
                                              (2.37) 

 

Using these equations and following the numerical procedure seen in figure 2.5 the forces 

on the blade can be easily calculated. Most of the loads and the directions are illustrated 

in figure 2.6. 
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A preliminary code was developed that allowed the convergence of the two induction 

factors and hence giving the loads on each element of the blade.  Despite its simplicity, 

the BEM theory provides relatively accurate results. There are other aerodynamic effects 

on a real turbine, which cannot be directly modeled by the BEM code because of the 

assumptions made in the theory. These are effects due to heavy loaded rotors with high 

induction factors, blade tip loss and hub loss, mainly due to a limited number of blades 

and skewed inflow which is not perpendicular to the rotor plane [15]. 

 

     Figure 2.5: The numerical approach when using BEM 
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Figure 2.6: Terms used for representing displacements, loads and stresses on the rotor. Reproduced from [16] 

 

 

2.2.3 Correction Models 

 

I. Prandtl's Tip Loss factor 

Because the pressure on the suction side of a blade is lower than that on the pressure side, 

air tends to flow around the tip from the lower to upper surface, reducing lift and hence 

power production near the tip. This effect is most noticeable with fewer, wider blades [7].  

 

A number of methods have been suggested for including the effect of the tip loss but the 

most straightforward approach in use is the one developed by Prandtl. According to this 

method, a correction factor, F, must be introduced into the previously discussed 

equations. This correction factor is a function of the number of blades, relative wind 

angle, and the position on the blade. Based on Prandtl’s method [7]: 
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                                                  𝐹𝑡𝑖𝑝 =
2

𝜋
𝑐𝑜𝑠−1{𝑒𝑥𝑝(−𝑓)}                                          (2.38) 

f is a part in the so-called Glauert correction factor which can be calculated as: 

𝑓 =
𝑁(𝑅 − 𝑟)

2𝑟𝑠𝑖𝑛(𝜑)
 

 

where the angle resulting from the inverse cosine function is assumed to in radians. Note, 

also that F is always between 0 and 1. This tip loss correction factor characterizes the 

reduction in the forces at a radius r along the blade.   

 

The tip loss correction factor affects the forces derived from momentum theory. Thus 

equations 2.19 and 2.20 become: 

                                                   𝑑𝑇 = 𝐹𝜋𝑟𝜌𝑉0
24𝑎(1 − 𝑎)𝑑𝑟                                      (2.39) 

                                               𝑑𝑀 = 4𝐹𝑎′(1 − 𝑎)𝜌𝑉0𝜋𝑟3𝜔𝑑𝑟                                    

(2.40) 

 

This modification in the momentum affects the values of a and a’. So instead of the 

equations 2.35 and 2.36, with Prantl's tip loss factor the equations 2.41 and 2.41 should 

be used. [14] 

                                                           𝑎 =
1

1+ 
4𝐹𝑠𝑖𝑛2(𝜙)

𝜎𝐶𝑁

                                                   (2.41) 

                                                      𝑎′ =
1

1+ 
4𝐹 sin(𝜙)cos (𝜙)

𝜎𝐶𝑁

                                                (2.42) 

 

II. Prandtl's Hub Loss factor 

Similarly to the tip loss, a correction for the induced velocity resulting from a vortex 

being shed near the hub of the rotor is also taken into consideration. The hub-loss model 

uses a nearly identical implementation of the Prandtl tip-loss model to describe the effect 

of this vortex, replacing Equation 2.38 with the following: 

                                                                 𝑓 =
𝑁(𝑟−𝑅ℎ𝑢𝑏)

2𝑟𝑠𝑖𝑛(𝜑)
                                               (2.43) 

 

For a given element, the local aerodynamics may be affected by both the tip loss and hub 

loss, in which case the tip-loss and hub-loss correction factors are multiplied to create the 

total loss factor used in Equations 2.39 and 2.40. [16] 

                                                                 𝐹 = 𝐹ℎ𝑢𝑏 . 𝐹𝑡𝑖𝑝                                              (2.44) 
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III. Glauert Correction  

Another limitation of the BEM theory is that when the induction factor is greater than 

about 0.4, the basic theory becomes invalid. This occurs with turbines operating at high 

tip speed ratios (e.g. constant speed turbine at low wind speeds), as the rotor enters what 

is known as the turbulent wake state (a > 0.5). According to momentum theory, this 

operating state result from some of the flow in the far wakes starts to propagate upstream, 

which is a violation of the basic assumptions of BEM theory. Physically, this flow 

reversal cannot occur, and what actually happens is more flow entrains from outside the 

wake and the turbulence increases. The flow behind the rotor slows down, but the thrust 

on the rotor disk continues to increase. To compensate for this effect, Glauert (1926) 

developed a correction to the rotor thrust coefficient based on experimental 

measurements of helicopter rotors with large induced velocities [16].  

 

While this model was originally developed as a correction to the thrust coefficient of an 

entire rotor, it has also been used to correct the local coefficient of the individual blade 

elements when used with BEM theory. When the losses near the tip are high, the induced 

velocities are large; therefore, the possibility of a turbulent wake near the tips increases. 

Thus, for each element the total induced velocity calculation must use a combination of 

the tip-loss and Glauert corrections. Buhl (2004) derived a modification to the Glauert 

empirical relation that included the tip-loss correction as follows [16]: 

                                            𝐶𝑇 =
8

9
+ (4𝐹 −

40

90
) 𝑎 + (

50

9
− 3𝐹) 𝑎2                            (2.45) 

 

And when for solving for a, we find the following expression:  

                                         𝑎 =
18𝐹−20−3√𝐶𝑇(50−36𝐹)+12𝐹(3𝐹−4)

36𝐹−50
                                    (2.46) 

 

Key assumptions for BEM 

 Wind is steady, and normal to the rotor plane. 

 A radial element of the blade is not affected by other close-by 

elements. 

 CL, CD and CM data are used from static measurements for different 

angle of attacks. 
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Now that all of the equations for BEM theory have been established, we will identify the 

iteration procedure. This process was written using LabView, allowing a user friendly 

interface and rapid simulation results 

(fig 2.7). Annex A 

 

1. Initial estimate of the axial induction 

factor 

2. Inflow angle ϕ is small (sinϕ ≈ ϕ) 

3. Thrust coefficient for the element is 

calculated 

4. The tip- and hub-loss corrections are 

calculated 

5. Now, if CT > 0.96F, the element is 

highly loaded and the modified 

Glauert correction will be used to 

determine the new axial induction 

factor 

6. If CT ≤ 0.96F, the standard BEM 

theory is used to calculate the axial 

induction 

7. The tangential induction factor is 

found  

8. This process is then repeated for 

each element, starting again and 

iterated until the values of induction 

factors and inflow angle reach 

convergence. 

 

 

 

 

 

 

 

 

                    Figure 2.7: Flowchart BEM code 
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CHAPTER III: STRUCTURAL MODELING 

 

3.1 Blade Design 

 

 The cross section of the wind turbine blade is shown in figure 3.1 imported from a 

previous study from the Cornell University [2]. Throughout this thesis, we have kept 

constant the used geometry for all the composite materials allowing a comparative study 

of the static and fatigue behavior. In other words, it is not the purpose of this work to 

pursue an optimization of the profile but rather a comparison between different blade 

materials. The original outer surface and spar were prepared using aluminum with a 

thickness of 0.2 m for the spar in 

[2].  

A variable thickness for the 

outer surface was used, 

beginning with an initial 

thickness at the hub of 3cm 

varying along the blade length 

according to the following 

equation: 0.03 - 0.00048485*x, 

x being the blade radius 

measured in meters from the hub. 

 

The cross section of the wind turbine blade was assumed to be the same along the blade, 

with a NACA S821 airfoil and the corresponding aerodynamic coefficients such as the 

lift, drag and moment coefficients were imported from Xfoil [17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2  

3.3 B 

Figure 3.1: Cross section of the blade 

Figure 11.2: Geometry of the blade 
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3.2 Blade Model 

 

 To create the structural model of the blade, a finite element approach using the 

static structural workbench of ANSYS was used. A hexahedral element meshing with a 

0.1 m size allowed the decomposition of the blade into 14770 nodes and 15103 elements. 

A zero total deformation at the hub was assumed as a constraint and hence the blade is 

assumed a cantilever beam attached to a rotating ring (see figure 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Load Application 

 

 The BEM code only delivers 2-dimensional loads (lift, drag and aerodynamic 

moment) acting at the aerodynamic centre of a certain profile section. In [18] the 

comparison was made between the results of a FEM blade model loaded by a pressure 

distribution (pressure applied per element of the FE model) and a discrete sectional BEM 

loading. The concluding remarks stated that for detailed stress/strain analysis the pressure 

distribution delivers much better results. However, almost no difference was noted with 

regard to the general deflections [5].  

 

 
 

 

 

 

 

 

Figure 3.3: A zero total displacement constraint at the ring 

Figure 3.12: Actual and discretized system of BEM loading on profile [19] 



Adam Chehouri Page 27 
 

In [19] all the nodal points of the selected profile are loaded, based on the actual and 

known pressure distribution, as can be seen in figure 3.4. The approach discretizes the 

pressure distributions over the available nodes of the profile section, in which the original 

2D lift and drag forces remain equal to the summed discretized ones. The resultant 

aerodynamic moment is not necessary the same in both cases, so the difference is then 

distributed over the available nodes in order to assure a correct loading. 

 

3.3.1 Chord Length, Aerodynamic Centre and Twist Angle 

 

 In ANSYS, the section parameters, chord length and twist angle, are calculated 

based on coordinates of the leading and trailing edge of specific section (see figure 3.5) 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Load Application and Moment Correction 

 

Since the aerodynamic centre is not a real loading point in the ANSYS model  (hollow 

blade section), the following translating strategy is considered in the  program: 

 

 One loading point per section (above the sparweb) for the axial and tangential 

forces. Since the aerodynamic forces are now translated from the aerodynamic 

centre to the loading point, a correction moment has to be applied in order 

compensate for the changed aerodynamic moment around the aerodynamic 

centre (see figure 3.6). The correction moment is then defined as:  

                                 𝑀𝑐𝑜𝑟𝑟 =  (𝐹𝑎𝑥. 𝛥𝑦 – 𝐹𝑡𝑎𝑛. 𝛥𝑧) ∗ (−1)                         (3.1) 

Figure 3.13: Determining aerodynamic centre, chord length and twist angle for the ANSYS model 



Adam Chehouri Page 28 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where the aerodynamic moment per unit of length is defined as: 

                              𝑚𝑎𝑒𝑟𝑜 = 1/2𝜌𝑉𝑟𝑒𝑠
2 𝑐2𝐶𝑚     [N]                                      (3.2) 

With Cm being the coefficient of moment also available that is function of the angle of 

attack. 

 The aerodynamic moment is in both cases distributed over all available 

section nodes. The correction moment is added to the aerodynamic moment 

and distributed over all section nodes. The aerodynamic moment is defined 

positive in the pitch up direction, which coincides with the positive moment 

direction around the spanwise x-axis in the ANSYS model. The calculated 

moments are shown in Table 3.1. 

 

F 

 

dy dz fax faz maero mcorr m 

radius 1 0.1195 0.352 22048 2262 1130 -1838.51 -177.128 

radius 2 0.0384 0.3269 -22453 -2052 6996 191.3964 1796.849 

radius 3 0.01322 0.2086 -30305 -2208 6439 -59.9567 1594.761 

radius 4 0.0005 0.15717 -70883 -3621 7013 -533.671 1619.832 

Figure 3.14: Aerodynamic loading in ANSYS (loading point) and its relation with the aerodynamic centre 

Table 3.1: Calculated aerodynamic moment for respective blade cross section 
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Figure 3.7 illustrates the correct aerodynamic loadings of the blade including both 

moments and the forces (tangential and normal) for 4 distinct blade cross sections. This 

approach allowed for a better modeling of the aerodynamic forces giving a more rational 

stress distribution.  

 

Figure 3.15: Modeling of the aerodynamic loads 
 

 
 

3.4 Material Elastic Properties 

 

 The aerodynamic modeling is quite rapid and does not require much 

computational effort. On the other hand, material definition requires much work and is 

still a major field of research. For instance, the innovations and developments in the field 

of material science in general and in composite materials specifically since a quarter 

century ago are extraordinary.  

Many types of materials are used in wind turbines. Two of the most important of these 

are steel and composites. The composites are typically comprised of fiberglass or wood 

together with a matrix of polyester or epoxy. Other common materials include copper and 

concrete [20].  
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Composites are materials comprising at least two dissimilar materials, most commonly 

fibers held in place by a binder matrix. Composites used in wind turbine applications 

include those based on fiberglass, carbon fiber, and wood. The main advantage of 

composites is that they have a high strength and high stiffness to weight ratio. They are 

also corrosion resistant, are electrical insulators, and lend themselves to a variety of 

fabrication methods [20].  

It is not the interest of this thesis to define the optimum composite structure that will have 

the best cost to performance ratio or cost to endurance ratio but rather to perform a 

comparative study for defined composite materials. With the help of Hallal [3] [25], 

analysis of six previously derived composites was performed in a way to match a density 

of 1450 kg/m3  and having a fiber content vf = 40 % (see Table 3.2 and Table 3.3). Table 

3.3 lists the orthotropic properties  

 
Table 3.2: Fiber and matrix properties 

 
 

Composites 
Ex 

(GPa) 

Ey 

(GPa) 

Ez 

(GPa) 
Nuxy 

Nuxz 

 

Nuyz 

 

Gxy 

(GPa) 

Gxz 

(GPa) 

Gyz 

(GPa) 

Interlock-71 56.94 39.03 9.51 0.057 0.389 0.349 4.33 4.22 3.54 

Interlock-H2 35.25 68.97 11.63 0.043 0.349 0.337 5.93 5.34 5.16 

LTL1 53.98 67.54 8.34 0.031 0.342 0.345 4.16 3.65 3.51 

[0,90] 49.99 49.99 6.39 0.035 0.362 0.362 2.69 2.43 2.43 

[0,90,0] 64.70 35.27 6.37 0.05 0.36 0.35 2.69 2.52 2.34 

[90,0,90] 35.27 64.70 6.37 0.027 0.35 0.36 2.69 2.34 2.52 

Br35 45.9 6.93 5.55 1.03 0.12 0.202 9.9 2.68 2.36 

Br45a 31.8 14.669 6.25 0.74 0.11 0.239 15.7 2.50 2.37 

Br60 23.5 31.8 6.24 0.31 0.24 0.245 12.5 2.38 2.50 

 

Table 3.3: Composite Elastic Properties 
 

Now that we have derived the materials properties, it is possible to conduct our finite 

element analysis. In the solution toolbar in the static structural workbench, ANSYS 

allows the display of the total deformation showing the rigidity and flexibility of the 

blade under static conditions (figure 3.8).  

The general procedure of work that is repeated for each material type can be illustrated in 

figure 3.9.   

Material 
𝑬𝟏 

(GPa) 

𝑬𝟐 

(GPa) 

𝑮𝟏𝟐 

(GPa) 
𝒗𝟏𝟐 𝒗𝟐𝟑 

X+ 

(MPa) 

X- 

(MPa) 

S 

(MPa) 

 

T300J 

carbon 

230 14 23 0.23 0.3 3530 2617  

RTM6 2.89 2.89 1.07 0.35 0.35 75 160 50 
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Figure 3.8: Total deformation for Interlock 71 

Figure 3.9 : The General work procedure 
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3.5 Static Failure Criteria’s  

 

The failure criteria proposed to predict lamina failure could be divided in two main 

groups:  

 

1. Failure criteria not associated with failure modes 

2. Failure criteria associated with failure modes 

 

The concern of this work is focused around the first category. This group includes all 

polynomial and tensorial criteria, using mathematical expressions to describe the failure 

surface as a function of the material strengths. Generally, these expressions are based on 

the process of adjusting an expression to a curve obtained by experimental tests. The 

most general polynomial failure criterion for composite materials is Tensor Polynomial 

Criterion proposed by Tsai and Wu [22]. This criterion may be expressed in tensor 

notation as [21]: 

  

                                                        𝐹𝑖𝜎𝑖 + 𝐹𝑖𝑗𝜎𝑖𝜎𝑗 + 𝐹𝑖𝑗𝑘𝜎𝑖𝜎𝑗𝜎𝑘 ≥ 1                                   (3.3)  

 

where i, j, k = 1, ... , 6 for a 3-D case. The parameters Fi, Fij and Fijk are related to the 

lamina strengths in the principal directions. For practical proposes, and due to the large 

number of material constants required, the third-order tensor Fijk is usually neglected 

[23]. Therefore, the general polynomial criterion reduces to a general quadratic 

expression given by [21]:    

                                                                𝐹𝑖𝜎𝑖 + 𝐹𝑖𝑗𝜎𝑖𝜎𝑗 ≥ 1                                                (3.4) 

    

where i, j = 1, ... , 6. Considering that the failure of the material is insensitive to a change 

of sign in shear stresses, all terms containing a shear stress to first power must vanish: F4 

= F5 =F6 = 0. Then, the explicit form of the general expression is: 

 

𝐹1𝜎1 + 𝐹2𝜎2 + 𝐹3𝜎3 + 2𝐹12𝜎1𝜎2 + 2𝐹13𝜎1𝜎3 + 2𝐹23𝜎2𝜎3 + 𝐹11𝜎1
2 + 𝐹22𝜎2

2 +

𝐹33𝜎3
2 + 𝐹44𝜎4

2 + 𝐹55𝜎5
2 + 𝐹66𝜎6

2 ≥ 1                                                                      (3.5) 

 

After transferring the shear and normal stresses to an excel sheet, the static rupture 

criteria can be applied to each nodal element. In this thesis, two failure criteria were 

applied; Tsai- Hill and the Hoffman criteria’s. 
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The criterion of Hill written in expression 3.6 is an interactive failure criterion. It is 

among the first to be applicable to anisotropic materials. It is a quadratic test, not taking 

into account the difference in the behavior of materials in tension and compression [24]. 

This criterion is very compatible in our case of study due to the absence of the elastic and 

strength properties in the compression mode.  

 

(
𝜎𝐿

𝑋
)2 + (

𝜎𝑇

𝑌
)2 + (

𝜎𝑇′

𝑍
)2 − (

1

𝑋2 +
1

𝑌2 −
1

𝑍2) 𝜎𝐿𝜎𝑇 − (
1

𝑋2 +
1

𝑍2 −
1

𝑌2) 𝜎𝐿𝜎𝑇′ − (
1

𝑌2 +
1

𝑍2 −

1

𝑋2) 𝜎𝑇′𝜎𝑇 + (
𝜎𝐿𝑇

𝑆
)2 + (

𝜎𝐿𝑇′

𝑅
)2 + (

𝜎𝑇𝑇′

𝑄
)2 = 1                                                                    (3.6) 

 

The Hoffman criterion expressed by equation 3.7 generalizes the criterion of Tsai-Hill to 

take account of the difference between the tensile behavior and compression. 

 𝐶1(𝜎𝑇 − 𝜎𝑇′)2 + 𝐶2(𝜎𝑇′ − 𝜎𝐿)2 + 𝐶3(𝜎𝐿 − 𝜎𝑇)2 + 𝐶4𝜎𝐿 + 𝐶5𝜎𝑇 + 𝐶6𝜎𝑇′ + 𝐶7𝜎𝑇𝑇′
2 +

𝐶8𝜎𝐿𝑇′
2 + 𝐶9𝜎𝐿𝑇

2 = 1                                                                                                    (3.7) 

Ci being characteristic constants that depend on the strength of the material. They can be 

expressed in expression 3.8, with + signifying the behavior in tension and – in 

compression.   

𝐶1 =
1

2
[

1

𝑌+𝑌− +
1

𝑍+𝑍− −
1

𝑋+𝑋−] ,   𝐶2 =
1

2
[

1

𝑍+𝑍− +
1

𝑋+𝑋− −
1

𝑌+𝑌−] ,   𝐶3 =
1

2
[

1

𝑋+𝑋− +
1

𝑌+𝑌− −

1

𝑍+𝑍−] ,   𝐶4 =
1

𝑋+ −
1

𝑋− ,   𝐶5 =
1

𝑌+ −
1

𝑌− ,   𝐶6 =
1

𝑍+ −
1

𝑍− ,   𝐶7 =
1

𝑄2 ,   𝐶8 =
1

𝑅2 ,   𝐶9 =
1

𝑆2,                 

(3.8)                        

Since the analytical model used for the prediction of the elastic properties is only valid 

for tensional mode, an assumption that the compression and tension behaviors are the 

same was made. With the help of the work of Hallal [3] and [25], the strength properties 

in tension for the previously defined composites are described in Table 3.4 

 

Composites 
X 

(MPa) 

Y 

(MPa) 

Z 

(MPa) 

S 

(MPa) 

R 

 (MPa) 

Q 

(MPa) 

Interlock-71 672* 238* 80 35 55 55 

Interlock-H2 392* 478* 80 25 55 55 

LTL1 848* 596* 80 195 55 55 

[0,90] 600 600 70 45 45 40 

[0,90,0] 820 390 70 45 45 40 

[90,0,90] 390 820 70 45 45 40 

Br30 500 90 75 135 50 50 

Br45a 380 135 75 170 50 50 

Br60 250 300 75 170 50 50 
*values are experimental 

Table 3.4: Strength properties for the composite materials 
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CHAPTER IV: RESULTS 

 

 In this chapter, the static failure results are presented by applying to each node 

(15103 in total) both Tsai-Hill and the Hoffman criteria’s. This process is achieved by 

exporting the normal and shear forces from the ANSYS Workbench to an excel sheet. 

The corresponding f(σ) is applied to each tensor of forces giving an entity that is smaller 

or larger than one, indicating the absence or presence of static rupture.  

A graphical display of the excel sheet is traced, representing the percentage for each 

range of f(σ) allowing for a much better comparative study between the textures and 

identifying possible rupture.  

 

4.1 Static Failure: Interlock Textures   

 

 Three interlock textures were chosen for this study; interlock 71, interlock H2, 

LTL1. In the previous chapter, the corresponding strength and elastic properties were 

derived for tension mode. Simulation results for the interlock textures show an advantage 

for the interlock 71& LTL1 over the interlock H2, since possible rupture in the interlock 

H2 was observed (figure 4.1 - 4.4). 

 

<0 0--0.001 0.001--0.005 0.005--0.02 0.02--0.08 0.08--1 1>

Hoffman 0.079454413 10.32907369 23.61120307 36.66159041 18.59895385 10.71972456 0
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Figure 4.1: Hoffman vs. Hill: Interlock 71 
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Figure 4.3: Comparison between interlock 71 & H2 under the Tsai Hill criteria 
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From Fig 4.3 and 4.4, the advantage in interlock 71 can be seen due to the presence of 

rupture in the interlock h2 texture (that is marked in red). Additional statistical study of 

the data justifies our conclusion for the interlock textures.  

If we define χ as the average f(σ) and ϑ as the corresponding standard deviation, we can 

interpret a comparative expression expressed by the ratio of the product β = 1/ (χ* ϑ) . If 

the texture has a high safety factor, then it will have a fairly low average and standard 

deviation (near zero), hence β allows for further justification of the graphical 

interpretation. Defining β as the ratio of either the two is not significant in the purpose of 

this study since the interest is to identify a composite with a high safety factor (low 

average) and a superior confidence (low standard deviation)  

Between the laminates and the interlock composite materials that were tested, it is the 

LTL1 that demonstrated the best performance. No static rupture was detected and the 

obtained value of β is the highest, meaning a greater safety factor.   
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Figure 4.4: Comparison between interlock 71 & H2 under the Hoffman criteria 
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 Figure 4.5: Tsai-Hill for LTL1 

 

 
 

Figure 4.6: Hoffman for LTL1 
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Figure 4.7: Comparison between Tsai Hill and Hoffman for LTL1 

 

 

Figure 4.16: Comparison for the interlocks under the Hoffman criteria 
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Figure 4.9: Comparison for the interlocks under the Tsai-Hill criteria 

 

 

As for the statistical study that was performed on the interlock textures, the values for the 

LTL1, interlock 71 and interlock H2, as said are an additional tool that permit a 

comparison between the composite materials. As the graphs appear to show that in terms 

of behavior in static mode, the LTL1 is the most performing. Equally are the values of 

beta which demonstrate that the LTL1 possess the highest value, secondly followed by 

the interlock 71 and lastly the interlock H2 which indicated rupture.  

 

LTL1   χ = 0.002813  ϑ = 0.005525  β = 64342.45 

Interlock 71  χ = 0.032138  ϑ = 0.06537  β = 475.99 

Interlock H2  χ = 0.082805  ϑ = 0.207279  β = 58.26 
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4.2 Static Failure: Orthogonal Laminates   

 

 Three orthogonal laminates were chosen for the purpose of this study: 0-90, 0-90-

0 and 90-0-90 laminates. In theory, the behavior of the previously mentioned laminates 

should be similar, since only the order in which the laminate are distributed in varied but 

orthogonality is kept.  

 

Figure 4.10: Tsai-Hill for the 0-90 laminate texture 

 

Figure 4.11: Hoffman for the 0-90 laminate texture 
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Figure 4.12: Comparison between Tsai-Hill and Hoffman criteria’s for 0-90 

 

 
 

Figure 4.13: Tsai-Hill for the 0-90-0 laminate texture 
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Figure 4.14: Hoffman criteria for the 0-90-0 laminate texture 

 

 
Figure 4.15: Comparison between Tsai-Hill and Hoffman criteria for the 0-90-0 texture 
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Figure 4.16: Tsai-Hill for the 90-0-90 laminate texture 

 

 
Figure 4.17: Hoffman criteria for the 90-0-90 laminate texture 
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Figure 4.18: Comparison between Tsai-Hill and Hoffman criteria for the 90-0-90 texture 

 

 
Figure 4.19: Comparison between all three laminates under Tsai-Hill 
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Figure 4.20: Comparison between all three laminates under Hoffman 

 

 

 

0-90  χ = 0.016626  ϑ = 0.030134  β = 1995.935 

0-90-0  χ = 0.015299  ϑ = 0.022855  β = 2860.05 

90-0-90 χ = 0.01953  ϑ = 0.036978  β = 1384.704 

 

The resemblance between the three laminates that is expressed in figures 4.19 and 4.20 is 

demonstrated by the values of β. Clearly the 0-90 and 90-0-90 offer similar performance 

having almost identical β parameters, but a slight advantage is noticed by the 0-90-0 

texture, that possible justification is observed in fig. 4.19 and 4.20 where the 0-90-0 has 

the least percentage for a range near unity. In general, it is uncertain to make an absolute 

judgment between the laminates but rather to conclude that the performance of all three is 

quite similar till the conduction of further study to validate otherwise.  
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4.3 Static Failure: Braided Textures 

 

 

 Three braided composite textures were chosen for the purpose of this study: Br 

30, Br 45a and Br 60.  

 

Figure 4.21: Tsai-Hill for the Br30 braded texture 

 

 

Figure 4.22: Hoffman for the Br30 braded texture 
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Figure 4.23: Tsai Hill vs. Hoffman: Br 30 

 

 

Figure 4.24: Tsai-Hill for the Br45a braded texture 
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Figure 4.25: Hoffman for the Br45a braded texture 

 

Figure 4.26: Tsai Hill vs. Hoffman: Br 45a 
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Figure 4.27: Tsai-Hill for the Br 60 braded texture 

 

 

Figure 4.28: Hoffman for the Br 60 braded texture 
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Figure 4.29: Tsai-Hill vs. Hoffman: Br 60 

 

 

Figure 4.30: Comparison between Br 30, Br 60 and Br 45a; Tsai-Hill  
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Figure 4.31: Comparison between Br 30, Br 60 and Br 45a; Hoffman 

 

As for the statistical study that was performed on the interlock textures and from a direct 

comparison with the graphs, it is apparent that in terms of behavior in static mode, the Br 

60 is the most performing. 

Br 30  χ = 0.016409  ϑ = 0.020476  β = 2976.247 

Br 45a  χ = 0.007133  ϑ = 0.011366  β = 12334.89 

Br 60  χ = 0.005894  ϑ = 0.010673  β = 15896.02 

 

Figure 4.32: Comparison between Beta values of all composite textures 

<0 0-0.001 0.001--0.005 0.005--0.02 0.02--0.08 0.08--1 1>

Br 30 0 17.45348606 19.40674038 34.47659405 26.67019797 1.992981527 0

Br 45a 0 31.79500761 29.04058796 29.59014765 9.282923922 0.291332848 0

Br 60 0.284711647 39.46897967 31.97378004 19.72455803 8.541349401 0.006621201 0

0

5

10

15

20

25

30

35

40

45
%

Range of  f(σ)

Br 30, Br 45a, Br 60 : Hoffman

Br 30

Br 45a

Br 60

0

10000

20000

30000

40000

50000

60000

70000

LTL1 Br 60 Br 45a Br 30 0-90-0 0-90 90-0-90 Interlock
71

Interlock
H2

B
e

ta



Adam Chehouri Page 52 
 

CHAPTER V: Fatigue Model 

 

5.1 Overview  

 

 Even though composite materials are designated as being fatigue-insensitive, 

especially when compared to metallic ones, they also suffer from fatigue loads. The use 

of composite materials in a wide range of applications obliged researchers to consider 

fatigue when investigating a composite material and engineers to realize that fatigue is an 

important parameter that must be considered in calculations during design processes, 

even for structures where fatigue was not traditionally considered an issue. Although 

composites were initially used as replacements for ‘‘conventional’’ materials such as 

steel, aluminum or wood, and later as ‘‘advanced’’ materials allowing engineers to adopt 

a different approach to design problems, the fatigue behavior of composite materials is 

different from that of metallic materials. Therefore, the already developed and validated 

methods for the fatigue life modeling and prediction of ‘‘conventional’’ materials cannot 

be directly applied to composite materials [26].  

 

Mathematical models have been developed to describe fatigue damage analytically and 

eventually predict the fatigue lifetime of FRP composite materials. The ideal fatigue 

theory is described by Sendeckyj in [27] as one based on a damage metric hat accurately 

models the experimentally observed damage accumulation process, considers all 

pertinent material, test and environmental variables, correlates the data for a large class of 

materials, permits the accurate prediction of laminate fatigue behavior from lamina 

fatigue data, is readily extendable to two-stage and spectrum fatigue loading and takes 

data scatter into account. These requirements cannot be met simultaneously for many 

reasons [27] and theoretical models that address only some of them have been 

introduced. For predicting the fatigue life of structural components made of composites, 

at least two alternative design concepts could be used: the damage-tolerant (or fail-safe) 

and the safe-life design concepts [26]. 

 

In the former it is assumed that a damage metric, such as crack length, delamination area, 

residual strength or stiffness, can be correlated to fatigue life via a valid criterion. The 

presence of damage is permitted as long as it is not critical i.e., it cannot lead to sudden 

failure. In the latter safe-life design situations cyclic stress or strain is directly associated 
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to operational life via the S–N or e-N curves. The structure is allowed to operate since no 

damage is observed, e.g., before the initiation of any measurable cracks. Although this 

design approach ensures the use of safe structures, it considerably increases their cost 

since it requires very low design values, below the estimated fatigue threshold observed 

in fracture mechanics experiments on FRP materials [26]. 

One of the broadest groups of theoretical models, representing damage-tolerant design 

concepts, comprises the ‘‘phenomenological fatigue failure theories’’, also referred to as 

‘‘empirical fatigue theories’’. Models of this type are based on the definition of reliable 

S–N curves and constant life diagram formulations that are used to estimate allowable 

numbers of cycles to failure under any given loading pattern from constant to variable 

amplitude. For most practical cases however, designers require models of behavior that 

can predict failure under realistic load combinations that yield realistic combinations of 

stresses, rather than under the uniaxial stress states that usually develop during laboratory 

experiments [26]. Multiaxial fatigue failure criteria have been developed to take 

multiaxial fatigue into account [28, 29]. Most of the aforementioned examples in the 

literature concentrate mainly on the introduction and validation of fatigue failure criteria 

suitable for constant amplitude multiaxial proportional stress fields without addressing 

the problem of life prediction under irregular load spectra [26]. 

The fatigue design of a structural application is generally based on full-scale fatigue test 

results. However, due to time and cost constraints, the replication of this kind of 

experiment is always limited. Therefore, in order to increase design reliability, 

experimental programs are performed on specimens in parallel and the supplemented 

experimental results are analyzed. The behavior of the examined material must be 

modeled. However, mathematical models expressed by deterministic equations, which 

can describe the behavior of any material system, cannot easily be developed due to 

uncertainty regarding several factors such as the scatter of the examined population and 

the unpredictable parameter relationship. The objective is to derive S–N curves (such as 

the form of equation 5.1) that correspond to high reliability levels in the range above 90% 

and conform with design codes. The derivation of models for the description of the 

material’s fatigue behavior with some statistical significance requires the production of a 

large number of fatigue data per stress level in order to measure the distribution of the 

time to failure. However, several models have been presented in the past to overcome this 

problem and provide reliability-based S–N curves derived from limited datasets [26]. 

                                          log(𝑁) = 𝐴 + 𝐵𝜎   𝑜𝑟    𝜎 = 𝜎0𝑁(−
1

𝐾
)                                 (5.1) 
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5.1 Progressive Fatigue Damage Model 

 

 In this research, a new model is approached, based on progressive fatigue damage 

and critical element models to simulate fatigue behavior and predict the fatigue life of 

composite laminates with stress concentration. This model, called the “regional 

elements” model, has three major parts: stress analysis, failure analysis, and material 

property degradation. A critical region of the analyzed composite laminate is considered 

and the elements of this region are divided into critical and sub-critical layers. Using 2-

dimensional stress analysis, failure modes of these regional elements are investigated and 

material properties in the critical and sub-critical layers are changed according to sudden 

and gradual material property degradation rules. Gradual material property degradation is 

performed on the longitudinal tensile strength of critical layers and the longitudinal 

tensile stiffness of sub-critical layers. By the iteration of the aforementioned loop, fatigue 

damage modeling is completed and an estimate of the fatigue life of a composite laminate 

is obtained. The finite element method is used to assess the capabilities of the current 

model through a user-friendly computer program. The model predicts initial and final 

failure loads to within 20% of experimental results for the case of static failure analysis. 

However, 3-dimensional stress 

and failure analyses are 

required to improve the model 

for fatigue failure analysis for 

all the configurations [30].  

 

In order to apply the model, a 

critical region must be chosen, 

and it is only logic to apply the 

progressive fatigue damage 

model to the weakest point of 

the blade. In other words, the 

nodal point that showed the 

highest value of rupture of 

maximum f(σ). The flowchart 

of the work is represented in 

figure 5.1.  

 

Figure 5.1: Flowchart of the progressive model 
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Stress Analysis is performed numerically by means of a finite element software such as 

ANSYS with initial model preparation that include load distribution, support fixing, 

initial elastic properties. 

 

Fatigue Failure  

 

As for the fatigue failure test, they are a set of quadratic polynomial fatigue failure 

criteria, capable of distinguishing between different modes of failure of a unidirectional 

ply under multi-axial fatigue loading conditions, were established by Shokrieh et al. In 

this model, only three failures were assumed possible: fiber tension, matrix tension and 

normal tension failure mode which are elaborated by equations 5.2, 5.3 and 5.4 

respectively [4]: 

 (
𝜎𝑥𝑥

𝑋𝑡(𝑛, 𝜎, 𝑅)
)2 +

𝜎𝑥𝑦
2

2𝐸𝑥𝑦(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑦

4

𝑆𝑥𝑦
2(𝑛, 𝜎, 𝑅)

2𝐸𝑥𝑦(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑦

4(𝑛, 𝜎, 𝑅)

+

𝜎𝑥𝑧
2

2𝐸𝑥𝑧(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑧

4

𝑆𝑥𝑧
2(𝑛, 𝜎, 𝑅)

2𝐸𝑥𝑧(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑧

4(𝑛, 𝜎, 𝑅)

= 𝑔𝑓+
2 

(5.2) 

 

 (
𝜎𝑦𝑦

𝑌𝑡(𝑛, 𝜎, 𝑅)
)2 +

𝜎𝑥𝑦
2

2𝐸𝑥𝑦(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑦

4

𝑆𝑥𝑦
2(𝑛, 𝜎, 𝑅)

2𝐸𝑥𝑦(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑦

4(𝑛, 𝜎, 𝑅)

+  (
𝜎𝑦𝑧

𝑆𝑦𝑧(𝑛, 𝜎, 𝑅)
)2 = 𝑔𝑀+

2 

(5.3) 

 (
𝜎𝑧𝑧

𝑍𝑡(𝑛, 𝜎, 𝑅)
)2 +

𝜎𝑥𝑧
2

2𝐸𝑥𝑧(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑧

4

𝑆𝑥𝑧
2(𝑛, 𝜎, 𝑅)

2𝐸𝑥𝑧(𝑛, 𝜎, 𝑅)
+ 3/4𝛿𝜎𝑥𝑧

4(𝑛, 𝜎, 𝑅)

+  (
𝜎𝑦𝑧

𝑆𝑦𝑧(𝑛, 𝜎, 𝑅)
)2 = 𝑔𝑁+

2 

(5.4) 

 

n, σ, κ and δ are the number of cycles, stress state, stress ratio and parameter of material 

nonlinearity, respectively.  
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If 𝑔𝑓+ >1 then the failure is considered to be catastrophic but if either 𝑔𝑁+ or 𝑔𝑀+ are 

greater than one, in this case normal failure is detected.  

                

Material Property Degradation  

 

In the previous section, suitable failure criteria were established to detect the sudden 

fatigue failure modes of a unidirectional ply under biaxial state of stress. As failure 

occurs in a ply of a laminate, material properties of that failed ply are changed by a set of 

sudden material property degradation rules. Some of the failure modes are catastrophic 

and some of them are not. 

 

Therefore, for a unidirectional ply failed under each mode of fatigue failure, there exists 

an appropriate sudden material property degradation rule [30]. 

 

Sudden Material Property Degradation Rules 

 

The sudden material property degradation rules for some failure modes of a 

unidirectional ply under a bi-axial state of stress are available in literature. A complete set 

of sudden material property degradation rules for all the various failure modes of a 

unidirectional ply under a multi-axial state of static and fatigue stress was developed by 

Shokrieh et al. [4]. Sudden material degradation rules of a unidirectional ply under a 

biaxial state of fatigue stress are explained in the following sections. 

 

1. Fiber tension failure degradation 

  

Fibre Tension or Compression Property Degradation Fibre tension or fibre compression 

failure modes of a unidirectional ply are catastrophic modes of failure, and when one of 

them occurs the failed material cannot sustain any type of stress. Thus, all material 

properties of the failed ply were reduced to zero, as follows: 

 

Stiffness and Poisson’s ratios:  

[𝐸𝑥𝑥, 𝐸𝑦𝑦, 𝐸𝑧𝑧, 𝐸𝑥𝑦, 𝐸𝑥𝑧 , 𝐸𝑦𝑧 , 𝜐𝑥𝑦, 𝜐𝑥𝑧, 𝜐𝑦𝑧 , 𝜐𝑦𝑥, 𝜐𝑧𝑥, 𝜐𝑧𝑦]  [0,0,0,0,0,0,0,0,0,0,0,0] 

 

Strengths: 

[𝑋𝑡, 𝑌𝑡, 𝑍𝑡, 𝑋𝑐, 𝑌𝑐, 𝑍𝑐 , 𝑆𝑥𝑦, 𝑆𝑥𝑧 , 𝑆𝑦𝑧]  [0,0,0,0,0,0,0,0,0] 
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2. Matrix tension failure degradation 

 

Stiffness and Poisson’s ratios:  

[𝐸𝑥𝑥, 𝐸𝑦𝑦, 𝐸𝑧𝑧, 𝐸𝑥𝑦, 𝐸𝑥𝑧 , 𝐸𝑦𝑧 , 𝜐𝑥𝑦, 𝜐𝑥𝑧, 𝜐𝑦𝑧 , 𝜐𝑦𝑥, 𝜐𝑧𝑥, 𝜐𝑧𝑦]  

[𝐸𝑥𝑥 , 0, 𝐸𝑧𝑧, 𝐸𝑥𝑦 , 𝐸𝑥𝑧, 𝐸𝑦𝑧, 𝜐𝑥𝑦 , 𝜐𝑥𝑧, 0,0, 𝜐𝑧𝑥, 𝜐𝑧𝑦] 

Strengths: 

[𝑋𝑡, 𝑌𝑡, 𝑍𝑡, 𝑋𝑐, 𝑌𝑐, 𝑍𝑐 , 𝑆𝑥𝑦, 𝑆𝑥𝑧 , 𝑆𝑦𝑧]  [𝑋𝑡, 0, 𝑍𝑡, 𝑋𝑐, 𝑌𝑐, 𝑍𝑐 , 𝑆𝑥𝑦, 𝑆𝑥𝑧, 𝑆𝑦𝑧] 

 

After detecting this mode of failure which is not catastrophic, the other modes of failure 

must be verified.  

 

3. Normal tension failure degradation 

 

Stiffness and Poisson’s ratios:  

[𝐸𝑥𝑥, 𝐸𝑦𝑦, 𝐸𝑧𝑧, 𝐸𝑥𝑦, 𝐸𝑥𝑧 , 𝐸𝑦𝑧 , 𝜐𝑥𝑦, 𝜐𝑥𝑧, 𝜐𝑦𝑧 , 𝜐𝑦𝑥, 𝜐𝑧𝑥, 𝜐𝑧𝑦]  

[𝐸𝑥𝑥 , 𝐸𝑦𝑦 , 0, 𝐸𝑥𝑦 , 𝐸𝑥𝑧 , 𝐸𝑦𝑧 , 𝜐𝑥𝑦 , 𝜐𝑥𝑧 , 𝜐𝑦𝑧 , 𝜐𝑦𝑥, 0,0] 

Strengths: 

[𝑋𝑡, 𝑌𝑡, 𝑍𝑡, 𝑋𝑐, 𝑌𝑐, 𝑍𝑐 , 𝑆𝑥𝑦, 𝑆𝑥𝑧 , 𝑆𝑦𝑧]  [𝑋𝑡, 𝑌𝑡, 0, 𝑋𝑐, 𝑌𝑐 , 𝑍𝑐, 𝑆𝑥𝑦, 𝑆𝑥𝑧, 𝑆𝑦𝑧]  

 

Gradual Material Property Degradation Rules 

 

To simulate the behavior of a unidirectional ply under multi-axial fatigue loading a 

technique called the generalized residual material property degradation technique was 

established by Shokrieh et al. [4]. This technique consists of a normalized strength, a 

normalized residual stiffness and a normalized fatigue life model. A modified version of 

this technique was used in this research. For the residual strength of a unidirectional ply 

under arbitrary uni-axial state of stress ratio, an equation is presented by Shokrieh et al. 

[4] as follows eq.5.5: 

                       𝑅(𝑛, 𝜎, 𝑅) = [1 − (
log(𝑛)−log 0.25

log(𝑁𝑓)−𝑙𝑜𝑔0.25
)

𝛽

]

1

𝛼

(𝑅𝑠 − 𝜎) +  𝜎                           (5.5)     

  

where R(n,σ,κ), Rs, n, σ, Nf, and R represent residual strength, static strength, number of 

cycles, magnitude of applied maximum stress, fatigue life at σ, and stress ratio, 

respectively. Parameters α and β are experimental curve fitting parameters. 
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In this thesis, the modeling of the gradual degradation of the stiffness and the strength 

was assumed to follow a normalized polynomial form where:  

                                                         𝐸(𝑛) = [𝐴 (
𝑛

𝑁𝑓
) + 1]𝐸𝑠                                         (5.6) 

Where E and Es are the residual and static stiffness, respectively, n the number of cycle, 

𝑁𝑓 the number of cycles to failure and A an experimental fitting parameter. It is assumed 

that this degradation applies to all the directions of the laminates [31]. 

 

In the same way to stiffness, the gradual degradation of strength was modeled by fitting 

experimental data. The general form of the polynomials in terms of residual strength and 

normalized number of cycles is: 

                                           𝑇(𝑛) = [𝐵 (
𝑛

𝑁𝑓
)

2

+ 𝐶 (
𝑛

𝑁𝑓
) + 1]𝑇𝑠                                      (5.7) 

Where T and Ts are the residual and static strengths respectively, n the number of cycles, 

𝑁𝑓 the number of cycles to failure, and B, C are experimental fitting parameters. Equation 

5.7 is used in order to model the degradation of all strength components.   

Another LabView code was written to translate the flowchart explained in figure 5.1. 

Refer to Annex C.  
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CONCLUSION & FUTURE WORK 

 

From the current results, following conclusions can be drawn: 

 

 The BEM method for aerodynamic modeling offered great simplicity and 

accuracy. In Annex B, some of the performance validations of a wind turbine 

are made. Also, reference [5] and [6] regarded a similar subject displaying the 

deflection along the blade length, tip deflection, power curves and 

force/moment curves; these results confirm the correctness of our BEM code.  

 The effectiveness of the finite-element method using the ANSYS software 

permitting an integrated approach with the BEM method. 

 The similarity with the results of each static failure criteria which is 

predictable mainly due to the assumptions made in regards to the compression 

mode.  

 Between all the tested composite materials, the LTL1 gave the highest degree 

of safety. As for the interlocks, the interlock 71 had an advantage over the 

interlock h2, the last showed signs of possible rupture and hence weaker 

fatigue behavior. The laminates had almost alike performance, but some signs 

that the 0-90-0 texture has some lead to be justified.  

 

Many issues remain unanswered. Some of the following points can be considered  

 

 The fatigue model requires more elaboration especially in terms of the proper 

definition of a REV or Representative Elementary Volume to which 

continuous degradation of a critical REV will be made. 

 Experimental validation for the derivation of the experimental fitting 

parameters for the fatigue model. 

 Airfoil data were extracted from Xfoil and a unique airfoil was assumed for 

the whole blade. Further research could detail further the study by 

decomposing the blade into different airfoils for various blade regions as it is 

in reality.  

 Proper layer modeling of the blade should be made rather than introducing a 

thickness. This makes for a more rational finite-element modeling but as a 

result a longer computational time   
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 It would be interesting to verify the results by means of a CFD-FEM coupling, 

such as the use of COMSOL to determine the pressure distribution over a 2D 

airfoil or model the entire blade.  

 Investigate the dynamic behavior of the wind turbine to include all the loads 

other than the static loadings, these loads contribute to fatigue and blade 

deterioration of both material properties and performance loss. A way must be 

found to model and transfer these loads to the FEM solver.  

  

It is concluded that with respect to a material blade design cycle, the coupling between a 

finite element package and blade element and momentum code under steady and static 

conditions can be useful. Especially when an integration between this coupled approach 

and a dynamic simulation tool could be established, a more advanced flexible blade 

design can be then analyzed for a novel generation of more flexible wind turbine blades. 
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ANNEX 

 

A. Aerodynamic Blade Data  

 

 The geometry that was used in the finite element analysis is a 41 m blade having 

an S821 airfoil profile. During the aerodynamic analysis, it was possible to decompose 

the blade into multiple sections but it was regarded that for the intention of a comparative 

study between composite textures, dividing the blade into 4 sections is reasonable. Table 

A.1 shows all the geometric and physical parameters of the cross sections and figure A.1-

A.2-A.3 include the airfoil aerodynamic data.  

Radius [m] Chord [m] 
Angle of Incidence  

[deg] 

8.25 3.16 18.8 

16.5 2.74 5.8 

24.75 2.14 3.95 

33 1.57 0 

41.25 1.1 0 

 

Table A.4: Blade properties 

 

 

Figure A.1: Lift coefficient for NACA S821 
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Figure A.5: Drag coefficient for NACA S821 

 

Figure A. 6: Moment coefficient for NACA S821 
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B. BEM Model Verification  

 

 To verify the output of the BEM code, a 1.5 MW wind turbine was chosen. The 

main configurations are explained in Table B.1 and the structural descriptions can be 

found in Table B.2. The wind turbine blade structure used in this work is based on the 

WindPACT 1.5 MW Baseline 3-Bladed Turbine (WP1.5MW) described in the 

WindPACT Turbine Rotor Design Study [32]. Validation of the performance of the wind 

turbine is shown in Fig B.3. The block diagram of the BEM code appears in Fig B.4. 

 

Rating 1.5 MW 

Configuration 3 blades, upwind 

Drive train High speed, multiple-stage gearbox 

Control Variable speed and pitch control 

Max. rotor speed 20.5 rpm 

Blade coning 0° 

Rated wind speed 11.8 m/s 

Cut-out wind speed 27.5 m/s 

Rotor diameter 70 m 

Hub height 84 m 

Rotor mass 32.02 tons 

Nacelle mass 52.84 tons 

Tower mass 122.52 tons 

 

Table B.1: Parameters of the WP1.5MW machine 

 

r/R Twist 

Mass 

density Flap Stiff Edge Stiff Torsonial Stiff 

 

[deg] [kg/m] [N.m^2x10^6] [N.m^2x10^6] [N.m^2x10^6] 

0 11.1 1447.607 7681.46 7681.46 2655.23 

0.052 11.1 181.672 1020.62 1092.28 343.81 

0.157 11.1 186.138 523.14 833.66 127.19 

0.263 9.5 178.321 234.57 614.65 16.8 

0.368 6.3 158.222 154.9 435.26 12.64 

0.473 3.1 138.123 75.23 255.87 8.48 

0.578 2.1 107.669 49.75 179.86 5.76 

0.684 1.1 77.215 24.27 103.85 3.04 

0.789 0.48 51.861 9.27 54.25 1.38 

0.894 0.24 31.607 4.75 31.06 0.78 

1 0 11.353 0.23 7.87 0.18 
 

Table B.2: WP1.5MW Structural Blade Definition 
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Figure B.3: BEM performance results using LabView 

 

 

Figure B.4: Block diagram of the BEM code 
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C. Progressive Fatigue Damage Model  

  

 The flowchart that was presented in figure 5.1 along with the degradation rules for the 

strengths and the stiffness that must be repeated till failure is reached was also modeled using 

LabView. The user interface of this model is shown in fig C.1 and some of the block diagrams 

appear in fig C.2.  

 

Figure C.1: The user interface for the progressive fatigue damage model 

 

 

Figure C.2: Block diagram of the progressive damage model 
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