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Spurious Acceleration Noise on the LISA Spacecraft Due to Solar
Irradiance

Brandon Piotrzkowski1, ∗

1Department of Physics, Grand Valley State University, Allendale, MI 49504

Abstract
The Laser Interferometer Space Antenna (LISA) is a configuration of three satellites that will

very precisely measure the distance between each satellite in order to detect gravitational waves,

small undulations in spacetime.[1] Therefore, the stability of LISA satellite configuration will be

crucial to its ability to measure gravitational waves, as will understanding the noise introduced in

the measured gravitational wave signal from various environmental accelerations. Although solar

irradiance will most definitely be a great source of noise in the desired frequency band and will

greatly attempt to disrupt the satellite configuration, previous research has only considered zeroth

order calculations of force on the satellites by irradiance in static systems. To remedy this, we used

a geometric and material based approach to calculate the force on the satellites solar arrays, the

only component facing the sun. Running our simulation of LISA based on irradiance data from

the VIRGO (Variability of solar IRadiance and Gravity Oscillations) experiment, we examined the

Fourier transform of force to find the associated acceleration noise expected in the LISA frequency

band due to solar irradiance.[2] This research will help engineers in the construction of the solar

array as well as help isolate the gravitational wave signal when LISA is flown.

∗Electronic address: piotrzkb@mail.gvsu.edu
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I. INTRODUCTION

Gravitational waves are essentially small undulations in spacetime, manifesting them-
selves by increasing and decreasing the distance between objects in a periodic fashion
(see figure 1.) Gravitational waves are created whenever the third time derivative of the
quadrople moment of the stress-energy tensor of a system is non-zero. In other words, if the
system is accelrating without spherical symmetry it will emit gravitational waves.[3] Com-
mon astrophysical examples of this are binary systems, spinning non-spherical objects, and
supernovae. Mathematically, the form of gravitational waves can be shown by linearizing
the metric equation so that the metric is flat (ηµν) with a very small pertubation (hµν) such
that

gµν = ηµν + hµν

where |hµν | � 1. This assumption is valid if we are far from the source creating the gravi-
tational waves. Since the focus of this paper is on noise characterization on a gravitational
wave detector and not on gravitationals themselves, we will give only a brief overview of this
derivation. Using this metric in the Einstein equation and invoking various guage conditions
while assuming we are in a vacuum, the Einstein equation becomes

�2Hµν = 0

where Hµν is the trace-reversed metric perturbation. This has solutions of

Hµν(t, x, y, z) = Aµν cos(~k · ~r − ωt)

where ~k is a wave-number vector, ω is the frequency, and Aµν is a contant matrix.[3] Aµν

can be shown to have only two polarizations by invoking the transverse-traceless guage and
forcing the wave to move down an axis (z-axis in this example) such that

Aµν = A+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+ A×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


where A+ and A× are the amplitudes of each respective polarization. A visualization of
these polarizations can be found in figure 1.

Although a necessary consequence of general relativity, they have only recently been
directly measured by the LIGO (Laser Interferometer Gravitational-Wave Observatory) de-
tector. The GW150914 detecton not only showed that gravitational waves are diretely
measurable but we can obtain additional astrophysical information that optical telescopes
alone cannot give, such as mass and separation distance in binary systems.[4] Gravitational
wave detection is currently a huge focus for today’s general relativists, as existing detectors
such as LIGO and builders of future proposed detectors such as LISA (Laser Interferometer
Space Attenna) now want use gravitational waves detection as an astrophysical tool to probe
the cosmos. However, different projects like LISA and LIGO will not be sensitive to the
same frequency spectrum, and therefore will not measure the same astrophysical sources.
Since LISA will be focusing on the lower frequencies (10−4 − 1 Hz), its targeted sources
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FIG. 1: Visual of the effect of both polarizations of a passing gravitational wave on test masses in

space. Credit: Scientific American.

will be the merger of massive black hole binaries with masses 102 to 107 M� (solar mass),
compact stellar objects spiralling into large black holes (with masses ≥ 105 M�), and close
compact stellar binaries.[5] Meanwhile LIGO, looking at frequencies (1−1000 Hz), will look
at neutron star (≈ 1.4 M�) and black hole binaries (near 10 M�) during their inspiral,
spinning neutron stars, and Type-II supernovae.[6] Figure 2 shows the many gravitatational
wave sources and which detectors will be able to see them. Therefore both experiments will
be necessary to see more of the spectrum that gravitational waves offers. However, both of
these experiments are incredibly delicate and require measuring the changes of distance in
range of 10−15 − 10−12 m. This means that isolating gravitational wave signal from noise
introduced by its surrounding enviroment, a tactic that will give more precision and con-
sequently give greater resolution of sources to the signal, is of great importance for when
these signals are available and applied for research.

Solar irradiance will be the largest source of enviromental noise on LISA by a large mar-
gin and will consequently disrupt the relative orbits of the three spacecraft that comprise
LISA, making onboard ion thrusters a necessity. Therefore we are motived to answer the
following questions:What effect does solar irradiance have scross the LISA frequency band
and what is its characterization/frequency dependence? Is the force ever great enough dur-
ing solar maximum or minimum so that LISA must be flown at certain periods of the solar
cycle?

In this paper we will discuss properties of an individual LISA spacecraft, how the three
satellites measure gravitational waves, and the relevant instrumentation (solar array). We
will discuss briefly how we calculate force by irradiance on a LISA satellite starting from
general radiation pressure and then incorporating geometry as well as blackbody constants
of the materials. Next we will discuss the dataset we used and how we handled the data
and the fourier transform. Lastly we will discuss the results of the study.

II. CHARACTERISTICS OF THE LISA SPACECRAFT

Each LISA spacecraft orbits in its own Keplerian orbit, forming a triangular formation
(constellation) around the sun about 20◦ behind the earth with approximate distance of
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FIG. 2: Characteris strains and frequecies of various astrophysical sources and detectors. Credit:

University of Cambridge.

FIG. 3: Diagram of LISA position and formation. Credit: NASA.

5 million km between each craft. LISA will detect gravitational waves by calculating the
distance between each spacecraft, done essentially by measuring the intensity of laser signals
sent from a one craft to another. When a signal is received the spacecraft references the
position of a test mass, free floating and located inside, and measures the phase difference
between the signal is sending out and the one it received. Combining this information from
the three arms comprises the gravitational wave signal. This process can only function if
the test mass inside each spacecraft is free floating. Essentially the outer sections of the
satellite are created to protect and house the test mass in order to prevent any external
enviromental accelerations. Each spacecraft can compensate for constant accelerations by
firing thrusters to keep itself centered on the test mass but even changing the center of mass
will cause the test mass to accelerate, creating noise in the signal. Therefore it is crucial to
understand all external force in general, although we will focus on irradiance since it will be
the largest force and whether this force by irradiance will have any periodicities within the
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LISA frequency band.

FIG. 4: Diagram of LISA position and formation. Credit: NASA.

Each spacecraft basically consists of a flat solar panel and a housing which contains the
instruments (see Figure 5).[5] The solar panels not only function to provide power but also
shield the instrument from the harmful solar winds and particles, as well as reduce thermal
gradients across the equipment. This means that all force calculations of irradiance on the
spacecraft will simply be the force on the solar array. Since each spacecraft turns while
orbiting so that the solar array normal is about 30◦ above the solar plane, our calculations
of force by irradiation will be fairly geometrically simple.

We will then primarily concern ourselves with the force on the solar array, both the direct
force by radiation and the force by re-reradiation of the solar panel. To note, there are two
different materials that make up the solar array: solar cells and optical solar reflectors
(see Figure 5). The solar cells are used to generate electrical power for the rest of the
components, and since several layers of cells are used in modern designs, we should be able
to treat the solar cells as blackbodies since they absorb light efficiently across the frequency
spectrum emitted by the sun. The optical solar reflectors are meant to relflect light for the
purpose of reducing the overall temperature, placed wherever solar cells would not fit. Since
each of these materials will have difference optical properties (absorbitivity, emissivity), we
must consider the properties of both materials when performing force calculations. Lastly,
we should note that solar arrays are typically manufactured with a coverglass that rejects
frequencies of light that lie outside of the effective range of the solar cells (wavelengths from
smaller than 300 nm and larger than 1350 nm.) We compensate for this effect by using
Planck’s Law (this is discussed in the Appendix). In addition, we can assume that the solar
array is being manufactured so that is is thermally isolated from the rest of the components.
Otherwise, the solar array would create temperature gradients within the equipment that
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FIG. 5: Artist’s rendition of LISA Pathfinder. Credit: NASA.

would certainly affect the test mass. So we need only consider the top side when calculating
the force by re-radiation.

III. FORCE CALCULATIONS

We will derive the force in two parts, first force by direct solar irradiation and then force
by reradiation. Although the details are shown in the Appendix, to calculate force we can
expand from a simple case to one more general that pertains to our particular scenario. Note
that will be using GSE (Geocentric Solar Ecliptic) coordinates visualized in Figure 3.

A. Force by Solar Irradiance

A zeroth order calculation of force by solar irradiance is given as

~FI = −EfA
c
x̂ (3.1)

where Ef is the solar energy flux or irradiance at 1 AU (W/m2), A is area (A = πr2 cos a,
where a is the angle between the normal and sun), and c is the speed of light.[7] Here we
have a negative sign because we are using GSE coordinates; the x-axis points towards the
sun. Expanding this for a rotated surface, remembering the that normal vector of LISA will
be 30◦ from the plane of the solar system, with two materials gives us

~FI =

[
FI,x
FI,z

]
= −Ef

c

(
Asc

[
1 + (1− δαsc) cos 2a

(1− δαsc) sin 2a

]
+ Aosr

[
1 + (1− δαosr) cos 2a

(1− δαosr) sin 2a

])
. (3.2)

Here αsc and αosr are the absorbances of the solar cells and the optical solar reflectors
respectively, Asc and Aosr are the areas of the solar cells and the optical solar reflectors, and
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FIG. 6: A visual rendition of GSE coordinates. Here ~x points towards the sun, ~z points towards

the ecliptic north pole, and ~y = ~z × ~x.

δ is the fractional power from irradiance delivered to the solar array, through the coverglass.
Note that 2a is used instead of a since by rotating 45◦ all reflected irradiance should go
entirely in the z-direction.

B. Force by Re-radiation

Again, note that this discussion is an abbreviation. Full details can be found in the
Appendix A. We can first find the steady-state temperature of the solar array by finding
when the power absorbed and reemitted are equal

(αscAsc + αosrAosr) δEF = (εscAsc + εosrAosr)σT
4
sat

where εsc and εosr are the emissivities of the solar cells and optical solar reflectors and σ is
the Stephan-Boltzman constant. Solving for T and letting Ar = Aosr/(Aosr + Asc) we have

Tsat =

(
δ
αsc(1− Ar) + αosrAr
εsc(1− Ar) + εosrAr

Ef
σ

)1/4

. (3.3)

Solving for (3.1) by letting Ef = εσT 4 and applying our specific conditions again, we have[
Fx
Fz

]
= − 1

π
(εsc(1− Ar) + εosrAr)

σT 4
sat

c

[
cos a
sin a

]
. (3.4)

We can calculate force using (3.2) and (3.4) but this will inevitably be a time-dependent
quantity. Of course, we aren’t interested in the general force but simply forces with frequecies
within the LISA sensitivity range (10−4−1 Hz). This means that we must examine a Fourier
transform of force.
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IV. DATA

We used the 60 second averaged total solar irradiance data, from 1996-2014, measured
by the VIRGO (Variability of solar IRradiance and Gravity Oscillations) experiment aboard
the SOHO (Solar and Heliospheric Observatory) spacecraft, which measures solar irradiance
at the L1 (first Lagrangian) point. The 1/60 Hz sampling rate was chosen to allow us to see
as much of the LISA frequency spectrum as possible (recall that LISA’s frequency spectrum
is10−4−1 Hz while the Nyquist frequency of this sampling rate is 1/120 ≈ .0833 Hz,allowing
us to see any frequencies smaller than the Nyquist frequency). This data is normally used for
helioseismology, which requires detection of high frequency phenomena, similar to our needs.
The 60 second data points give us enough resolution to detect noise in the majority of the
LISA frequency band. Using equations (3.2) and (3.4), along with absorbance/emissivity
constants from modern solar array manufacturers, we calculated force on a LISA satellite
over one and a half solar cycles (FIG. 4).[8]

V. METHODS OF FOURIER TRANSFORMATION

A. Basics of a Fourier Transform

To perform the Fourier transform we used the internal fast fourier transform (fft) com-
mand within NumPy, a common Python package. Mathematically this means we creating
a frequency-dependent form of our force function, which is dependent on time, given by

F [F (fm)] =
N−1∑
n=0

F (t)e−2πifmtn (5.1)

where fm is a frequency (where m is an integer 0 ≤ m ≤ N − 1 ), N is the total number
of points, tn is a time, and F (t) is the time function (force(t) in our case).[9] This sum will
only give us the fourier transform of the particular frequency fm, so this operation must be
formed for all m, giving us a total number of N2 calculations (note that modern algorithms
only requre N log2(N) so the model proposed here is simplified). We then plot F [F (f)] vs
f to get our fourier transform. We also windowed our data with the tukey window, a mix
between a hanning and rectange window, with an α = .5 (the α values indicates whether
the window is more like a rectangular window (α = 0) or a hanning window (α = 1)) (see
Figure 7). Windowing used to accomodate the fact that discrete Fourier transforms occur
over a finite region and to minimize the dropoff at each end.

Our first contention with the data is that the 60 second sampling rate will inevitably
limit the frequencies. Nyquist theorem states that the highest frequency we can see in the
Fourier transform is

fN =
1

2 · 60
= .08333Hz (5.2)

Unfortunately we will not be able to discuss any noise introduced by solar irradiance in the
range .083− 1 Hz.
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FIG. 7: Visual representation of the tukey window with α = .5

B. The Gap Situation and Filling Methods

The major problem with our data is the fact is that there is many missing data points,
or ‘gaps’, that must be dealt with since a fourier transform requires a complete data set.
These gaps come from periods where the instruments were not taking data, due to failure,
or the data was considered to be unreliable by the VIRGO research team. To examine the
extent of data lost, we plotted the number of occurrences vs gap length as well as number
of occurrences vs data length. These graphs are located in Appendix B.

There are a few conclusions that we can draw: the vast majority of gaps are very small
and most of our data is continuous (around 300-700 data points in length before hitting a
gap, refer to figures 14 through 17). This means that we only need to focus local filling
techniques, since more gaps are small and large gaps are few in number, so filling them
should have a neglible effect on the final fourier transform. In general, since most of the
data is intact, our data should be fairly resistant to filling methods.

After and exhaustive study, we chose to use the averaging filling method. This means
that we took the first value from either side of the gap and set every value in the gap to the
average. Visually this looks like figure 8.

The reason we used this technique as opposed to something more complicated is because
we found no real benefit to doing so. Take for example a linear filling technique, where you
draw a line from one value to another as shown in figure 8.

We compared both techniques against a dataset that had no gaps, so we know what the
ideal fourier transform looks like, we took out gaps, and then filled the gaps two ways, one
with averaging and one with linear filling, and we took a fourier transfrom of each respective
filled dataset. This result is shown in figure 9. Also we also tried the same comparrison
method using the VIRGO dataset

As shown in figure 9 and 10, there is not a significant enough difference between the
techniques to warrant switching to the the linear technique. Since switching to linear filling

9



FIG. 8: Visual demonstration of the averaging and linear gap filling techniques.

FIG. 9: Visual comparison of both averaging and linear gap filling techniques.

should’ve been the largest correction to averaging, any higher order interpolations should
even have less correction so they can be neglected.

VI. RESULTS

Inspection of the force vs time graph (figure 11) reveals that the force stays within a
narrow range and is nowhere near the 150µN limit of the combined four thrusters, a limit
given to us after a conversation with NASA scientists Curt Cuttler and Guido Miller.[1] Of
interest would be the combination of irradiance, solar wind, and perhaps acceleration from
a passing asteroid, but otherwise irradiance will not push a satellite out of orbit by itself.
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FIG. 10: Visual comparison of both averaging and linear gap filling techniques using the VIRGO

dataset.

Now examing the fourier transform of force in figure 12 we can see a bumb around .00300
Hz. Figure 13 provides a closer look. The physical sources of these spikes are from different
pressure modes of the sun. With periods 5 minutes, parts of the surface of the sun will move
up and down which increases and decreases solar irradiance accordingly. Our results for this
section match with scholars who have examined the VIRGO dataset much more closely.[11]
We can also clearly see three large spikes within the desired frequency range. This first is
right around .00278Hz which is inside the “5-mintue oscillation” frequencies. The other two
higher frequencies are .00556 Hz and .00833 Hz. We are sure that these spikes are artificial
since they can all be found by

f =
1

n · 60sec

where n is the order of harmonic. This means that all of these spikes are have integer
periods (2,3, and 6 times respectively) of the sampling period (60 sec) and we should be
skeptical that these are physical frequencies. Assuredly enough, other scholars’ results do
not contain these spikes so we assumed that aren’t physical but some artifact left in the
data or introduced by our filling method.[11] This discrepency has not yet been resolved
and made more confusing when we produced fourier transforms of known functions and got
the correct frequencies. This problem must be settled before publication.
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FIG. 11: Total force by solar irradiation on LISA spacecraft calculated from VIRGO data from

the period of 1996 to 2014.

FIG. 12: Fourier transform of the force of year 2000, scaled logarithmically
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FIG. 13: Fourier transform of the entire VIRGO data set, centered around the “5-minute” solar

p-mode oscillations.
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APPENDIX A: DERIVATION OF FORCE

1. Force from Irradiation - Firstly we should note that unlike solar wind, photons are
not bent by magnetic fields and simply travel nearly straight from the sun (otherwise
we would see the sun in a ‘haze,’ moving around as wisps or be bent into strange
shapes.) Therefore we can assume that the irradiation will be comely solely from the
x-direction traveling in the -x-directions. For a perfectly absorbing surface, the force
by solar pressure would be

~FI = −EfA
c
x̂ (A1)

where Ef is the energy flux or irradiance (W/m2), A is area (A = πr2 cos a, where a is
again the angle between the normal and sun, in this case.) However we must assume
that some amount of radiation will instead reflect. Taking r to be our reflectivity
constant, we have

[
Fx
Fz

]
= −

[
EfA

c
+ r

EfA

c
cos 2a

r
(
EfA

c

)
sin 2a

]

= −EfA
c

[
1 + r cos 2a

r sin 2a

]
Note that the rotating terms include 2a because light is being reflected, not just
rotated. For example, when a = 45◦ we should the reflected directly upwards so
Fy ∝ sin(2 · 45◦) = 1 and the reflected term in the x-direction goes to zero since
Fx reflective ∝ cos(2 · 45◦) = 0.

2. Cutoff Frequencies of Coverglass - To accomidate for the coverglass rejecting
certain frequencies, we must consider the blackbody radiation specturm u(T, f) of the
satellite using Planck’s Law

u(T, f)df =
8πk4T 4

c3h3
η3dη

eη − 1
(A2)

where u(T, f)df is the energy density in the interval [f, f + df ] and η = hf/kT .
The rest of the constants are standard: h is Planck’s constant (≈ 6.6 · 10−34Js), c
is the speed of light (≈ 3.0 · 108m/s), and k is the Boltzman’s constant (≈ 1.4 ·
10−23J/K). Since we wouldn’t want our satellite to get incredibly hot, we will assume
that the surface is made of a material that reflects wavelengths smaller than our
smallest allowed and larger than our largest allowed. We will consider two cases of these
limits: one with (lower wavelength 300nm and upper wavelength 1350nm based on
modern coverglass specifications) and a more extreme case (lower wavelength 300nm
and upper wavelength 1100nm that represent a more ideal coverglass.)
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The general fraction of power is then

δ =

∫ ηir

ηuv

η3dη

eη − 1
/

∫ ∞
0

η3dη

eη − 1

=

∫ ηir

ηuv

η3dη

eη − 1
/
π4

15
(A3)

≈ .81 (modern coverglass case)

≈ .66 (more ideal case)

The functional purpose of δ will be to reduce the absorption constant so our materials
act is if they were more reflective (i.e.αnew = δαold ).

3. Force from Irradiation (With Materials) - Since many sources use a constant of
absorbance instead of reflectivity, and α is reserved for this end, we will from now on
use a for angle and α for absorbance. Letting r ≈ 1 − α, assuming minimal diffuse
reflection (our material are all glass so this assumption is well founded), our generalized
force is now

~FI = −EfA
c

[
1 + (1− α) cos 2a

(1− α) sin 2a

]
.

However, the solar array is composed of two components: the solar cells and reflective
mirrors (OSRs) with different emissivities and absorbances. So we now have

FI = Fsc + Fosr.

Letting αsc and αosr be the respective absorbances of the solar cells and the optical
solar reflectors, as well as Asc and Aosr be the respective areas of the solar cells and
the optical solar reflectors, we have

~FI = −Ef
c

(
Asc

[
1 + (1− δαsc) cos 2a

(1− δαsc) sin 2a

]
+ Aosr

[
1 + (1− δαosr) cos 2a

(1− δαosr) sin 2a

])
(A4)

4. Considerations with Re-radiation Once the photon is absorbed it will be re-
radiated via blackbody radiation in an isotropic fashion with a power determined via
the Stefan-Boltzmann law modified by the emissivity ε

Ef = εσT 4 .

By simply considering the fact that the radiation is isotropic over a hemisphere we
can see that the net force must be reduced by a factor of∫ 2π

0

∫ π

0

cos θ sin θdθdφ = π.
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5. Re-radiation via blackbody - Before we can calculate the force reradiated from the
solar array, we must first find the steady-state temperature of the solar array. When
our solar array reaches thermal equilibrium, the amount of power entering the array
will equal the power being reradiated so we have

0 = αscAfrontEF − AεscσT 4
sat

where εsc and εosr are the respective emissivities of the solar cells and the optical solar
reflectors, and Afront is the area exposed to radiation. Since Afront = A in our case
(front area is the only area allowed to reradiate), we solve for T

Tsat =

(
αscEf
εscσ

)1/4

.

Considering the case where we have a cutoff frequency and have two different materials
(solar cells and OSR), our starting equation would be

0 = δαscAscEF+δαosrAosrEF − AscεscσT 4
sat − AosrεosrσT 4

sat

Letting Ar = Aosr/(Aosr + Asc) and solving for T, we have now

Tsat =

(
δ
αsc(1− Ar) + αosrAr
εsc(1− Ar) + εosrAr

Ef
σ

)1/4

.

We note again that since every blackbody will reradiate isotropically, this force will
be reduced by a factor of 1/π. Following the Stephan-Boltzman Law we have[

Fx
Fz

]
= − 1

π

εscσT
4
sat

c

[
cos a
sin a

]
Again if we consider both materials, we have[

Fx
Fz

]
= − 1

π
(εsc(1− Ar) + εosrAr)

σT 4
sat

c

[
cos a
sin a

]
(A5)
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APPENDIX B: GAP LENGTH GRAPHS

FIG. 14: The number of occurrences per gap length, specifically gaps with lengths of 1-15, in the

VIRGO dataset

FIG. 15: The number of occurrences per gap length, specifically gaps with lengths of 15-100, in

the VIRGO dataset
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FIG. 16: The number of occurrences per gap length, specifically gaps with lengths of 100-1000, in

the VIRGO dataset

FIG. 17: The number of occurrences per continuous uninterupted data length, specifically data

with lengths of 1-1000, in the VIRGO dataset
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