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Inferences we make about underlying cognitive processes can be jeopardized in two ways
due to problematic forms of aggregation. First, averaging across individuals is typically
considered a very useful tool for removing random variability. The threat is that averaging
across subjects leads to averaging across different cognitive strategies, thus harming
our inferences. The second threat comes from the construction of inadequate research
designs possessing a low diagnostic accuracy of cognitive processes. For that reason we
introduced the systems factorial technology (SFT), which has primarily been designed to
make inferences about underlying processing order (serial, parallel, coactive), stopping
rule (terminating, exhaustive), and process dependency. SFT proposes that the minimal
research design complexity to learn about n number of cognitive processes should be
equal to 2n. In addition, SFT proposes that (a) each cognitive process should be controlled
by a separate experimental factor, and (b) The saliency levels of all factors should be
combined in a full factorial design. In the current study, the author cross combined the
levels of jeopardies in a 2 × 2 analysis, leading to four different analysis conditions. The
results indicate a decline in the diagnostic accuracy of inferences made about cognitive
processes due to the presence of each jeopardy in isolation and when combined. The
results warrant the development of more individual subject analyses and the utilization of
full-factorial (SFT) experimental designs.

Keywords: individual differences, averaging across subjects, factorial design, inferring cognitive processes, SFT

INTRODUCTION
The central goal of cognitive modeling is to learn the underly-
ing structure of mental processes, which essentially take place in a
black box. Learning about cognitive mechanisms inside the box is
challenging, as many mental processes are not consciously acces-
sible. Therefore, a reverse engineering procedure has been used
to learn about these cognitive processes: an input in the form of
stimuli variations is carefully selected and fed to a black box, and
an output in the form of response behavior is observed. Knowing
a device’s blueprint, a good engineer can control input, examine
output, and identify the organization of the device’s subsystems.

Unlike engineers, cognitive psychologists have to infer a
blueprint from the input-output relationship. Take for example
two proposed models of short-term-memory (STM) search. In a
serial system the memory items are scanned in a sequential fash-
ion. In a parallel system items are scanned simultaneously. To
differentiate between these two models scientists have used mem-
ory load (number of memorized items 1–6) as the input and the
response time (RT) as the output. In theory, the serial and paral-
lel systems would make different predictions for the relationship
between memory load and RT. A serial system (of limited capac-
ity) would predict linearly increasing RT as a function of memory
load size. A parallel system (but of unlimited capacity) would
predict a flat RT as a function of memory load size. Thus, to
learn the blueprint of the STM black box a scientist would use an
input consisting of a varying number of items to be memorized,
then would record the output response times. Then she would
compare the results with the predictions of the serial and parallel

systems and decide which is the most likely model supported by
the results.

However, it is not quite that simple. One of the main obsta-
cles to unveiling the content of a black box is noisy output. A
novice scientist would be (unpleasantly) surprised to learn that
hardly any two human response times are of a similar value,
even when the exact same task is repeated. To illustrate, here are
four recorded responses times belonging to a single subject who
repeated the same STM task: 455, 245, 300, and 801 ms. The out-
put response measures varied widely although the input to the
black box had a fixed memory load size (one memorized item).
The question is: Why would the same set of processes used to pro-
cess one item show variability when repeated? One answer, is that
RTs may vary so much because the cognitive processes, operat-
ing in a black box, are not deterministic and can naturally vary in
their duration over time. Another source of measurement error
can arise from individual subject differences. RT measures will
vary across different subjects even when the same task is used.
Although subjects might employ the same set of processes in a
task, their responses will vary because the processes of interest
may rely on cognitive components that process at different rates.

All of these random response fluctuations are known as mea-
surement errors, in which each observation is considered a ran-
dom departure of the response from the true value associated with
the process of interest.

The question remains: Is it possible to remove the measure-
ment error from the output variable? The most robust method for
doing so is the averaging tool (data aggregation) on an increased
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sample size. Scientists of all different disciplines have used the
averaging tool to calculate precise distances between stellar bod-
ies, plot brain activity, compare smokers with non-smokers or
simply to determine the longevity of a 9-volt battery. Fueled by
the central limit theorem and the law of large numbers, the sam-
ple’s average value converges to the true (expected) value. The
averaging tool would replace the aforementioned noisy data set
with a single sample mean RT value. The simplicity and effec-
tiveness of the averaging tool has justified its widespread use in
research. However, this simplicity does not guarantee that the data
averaging tool is free of conditional assumptions.

When using the averaging tool to make correct inferences
about the organization of cognitive processes1, researchers must
be aware of an unfortunate double jeopardy.

DOUBLE JEOPARDY
Thefirstwaycorrect inferencescanbe jeopardizediswhenobserved
data is averaged across subjects. Free of random variability, the
averaged data should show the true results pertaining to the
underlying processes. But before choosing to average data a
scientist should be aware of the necessary conditional assumption:
that all subjects use an identical set of cognitive operations2 .
The validity of the data averaging tool depends heavily on this
assumption. Take for example a group of subjects who are all serial
STM processors but each subject scans an item with a different
processing rate (that is constant across different memory loads).
The individual results would show a set of linearly increasing
response times (RTs) as a function of memory load size, each
with a different slope value. Such a slope value would indicate
a measure of processing rate per one item in a serial system
(Sternberg, 1966). When the averaging tool is used across subjects,
the resulting function would also be linearly increasing with a
slope value that is the average of the individual slope values. Thus,
that averaged result is an unbiased indicator of the underlying
processes, presumably showing the true parameter value of an
item’s serial processing rate, and not a value of random individual
variations.

Several major cognitive theories have advocated the idea that
humans use identical cognitive operations. Such theories include
the conventionally adopted ideal observer approach, or the con-
cept of a rational decision maker. However, that hypothesis is not
tenable, and it is likely false. Consider the following case in which
researchers aim to explore the cognitive processes engaged in the
multiplication of numbers. Suppose that they randomly sampled
half of the subjects from a Western Caucasian population and
another half from an East Asian population. Westerners are more
likely to use their known method of long multiplication; one mul-
tiplies the multiplicand by each digit of the multiplier and then

1In this study the terms cognitive strategies and cognitive operations are used
interchangeably to refer to a set of mental processes organized in an iden-
tifiable mental network used in a specific task. In relevant literature these
networks are also defined as mental architectures. In contrast, a cognitive
process is subordinate term and indicates a single mental operation or a
component of more complex cognitive system (mental architecture).
2Even this is not sufficient, e.g., every subject is exponential but their average
appears to be from a different type of process (e.g., Brown and Heathcote,
2003).

adds up all the appropriately shifted results. Easterners may use
the traditional Asian stick method (sometimes referred to as the
Chinese or Japanese stick multiplication method), a more visual
way of using drawn lines to find the result. The average of such
data would describe a non-existing method for multiplication, as
the average result placed the expectations between two very dif-
ferent cognitive strategies. Averaging across subjects could have
a clearly detrimental effect on inferences about the processes of
interest and would lead to false conclusions.

In the last decade many researchers have voiced concerns
about the futility of the averaging tool in learning about the true
values associated with specific cognitive operations (e.g., Estes,
1956; Maddox, 1999; Gallistel, 2009; Fific et al., 2010; Fitousi and
Wenger, 2011; Koop and Johnson, 2011; Hills and Hertwig, 2012;
Benjamin, 2013; Pachur et al., 2014). There is a rapidly increasing
trend toward accounting for individual-specific cognitive opera-
tions in contrast to testing models based on universal cognitive
operations. Accounting for individual differences is essential to
assessing which model provides the best fit to experimental data
(Broder and Schutz, 2009; Dube and Rotello, 2012; Kellen et al.,
2013a,b; Turner et al., 2013). Evidence for individual differences
has been reported in judgment strategies (e.g., Hilbig, 2008;
Regenwetter et al., 2009), and the analyses of individual data
have been called for repeatedly when investigating fast and frugal
heuristics (Gigerenzer and Brighton, 2009; Marewski et al., 2010).
On the other hand there are good reasons why aggregate data
should be considered under some circumstances (Cohen et al.,
2008; Chechile, 2009).

The second way correct inferences about underlying cogni-
tive processes can be jeopardized occurs when researchers fail
to create the appropriate input—that is—fail to create a mini-
mally complex research design that is sufficient and necessary to
obtain diagnostic response outputs. A non-diagnostic design does
not permit differentiation between tested cognitive models as the
models can mimic each other in the output. It logically follows
then that the input (namely a research design), should be com-
plex enough to allow for confident model differentiation in the
output. But a more complex design is more expensive. Then the
question becomes: What is the “price” one has to pay in the com-
plexity of a design so that one can make correct inferences, and
when do we start to see diminishing returns?

As in real life, the price of learning complex relations is some-
times underpaid. Take for example the above STM task research
design used to make inferences about underlying serial/parallel
STM processing. The design has only one independent variable
of memory load and a dependent variable of response time. A
researcher might believe that using say six memorized items in the
input is the necessary and sufficient “price” to pay to learn about
how six mental processes are organized. Here is the supposed bill:
the sufficient and necessary price to pay to learn about the mental
organization of a total of n cognitive processes (say six item com-
parisons) is a research design that has one independent variable
with n number of levels. The price for one learned process is paid
by one stimulus condition.

Unfortunately, using such a research design is likely to under-
estimate the true costs of diagnosing serial and parallel process-
ing. This is because the serial and parallel cognitive models can
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easily mimic each other when only a memory load variable is used
(Townsend, 1969, 1971, 1990; Townsend and Ashby, 1983).

Without a rigorous theory of how to define and measure the
fundamental cognitive operations involved, minimal criteria for
design complexity cannot be specified. In the absence of these cri-
teria researchers will usually seek to increase the complexity of the
research design. This is the case when cognitive models are tested
by how well they can account for data across various tasks, that
is, by seeking generalizability. In general it is advisable to chal-
lenge a cognitive model to account for as many possible findings
when different inputs are manipulated. Only the model that can
provide a good fit to as many different research conditions as pos-
sible is considered the most likely model, and those that fail to
account for anything less than that are falsified3 . So for example,
the likely STM model should be able to account for all (various)
observed effects (memory load, target serial position, stimulus
modality, etc. ) and should also be able to generalize easily to other
conditions (e.g., Nosofsky et al., 2011). Although useful, general-
izability doesn’t precisely quantify the research design complexity
value that is sufficient and necessary to diagnose the underlying
cognitive structure of mental processes.

THE MINIMAL CRITERIA FOR THE COMPLEXITY OF A RESEARCH
DESIGN
A recently proposed approach—the systems factorial technol-
ogy (SFT)—sets the precise minimum required criteria for how
complex a research design should be in order to be both suf-
ficient and necessary to differentiate between several known
properties of cognitive systems. The proposed SFT approach was
designed to explore conditions under which the fundamental
properties of mental processes, such as the order of processing
(serial, parallel, coactive), stopping rule (terminating, exhaus-
tive), process independence and capacity, could be inferred from
data (e.g., Townsend and Ashby, 1983; Schweickert, 1985; Egeth
and Dagenbach, 1991; Townsend and Nozawa, 1995; Schweickert
et al., 2000). The SFT has been used in the context of vari-
ous cognitive tasks: For perceptual processes (e.g., Townsend and
Nozawa, 1995; Eidels et al., 2008; Fific et al., 2008a; Johnson
et al., 2010; Yang, 2011; Yang et al., 2013), for visual and mem-
ory search tasks (e.g., Egeth and Dagenbach, 1991; Wenger and
Townsend, 2001, 2006; Townsend and Fific, 2004; Fific et al.,
2008b; Sung, 2008), for face perception tasks (Ingvalson and
Wenger, 2005; Fific and Townsend, 2010), and for classification
and categorization (e.g., Fific et al., 2010; Little et al., 2011, 2013).

3The current study doesn’t evaluate model complexity as a quantitative cri-
terion for model selection and falsification. The reasons are two-fold: (a)
Current instantiation of SFT doesn’t depend on model complexity to diag-
nose underlying cognitive models, it rather relies on recognition of qualitative
patterns of RT and is completely non-parametric (for the parametric SFT
approach see Fific et al., 2010). Nevertheless, one can argue that in the cur-
rent paper the quantitative model comparison is possible as hypothesis testing
is used to falsify certain classes of cognitive models. For example, in this
paper the linear regression design is compared to the full factorial 2 × 2
ANOVA. (b) However, model selection is not necessary in this study: The
linear regression model although a simpler model than the comparable full-
factorial SFT design, makes logically incorrect inferences (as demonstrated in
Supplementary Material). In such a case model complexity is a less important
criterion to consider as one of the models is logically flawed.

To correctly diagnose an n number of cognitive processes,
of an unknown cognitive system that is organized with respect
to processing order, stopping rule and process dependency, SFT
prescribes the following minimal criteria for a research design’s
complexity:

(a) The number independent variables used should be equal to
the number of processes under examination, n.

(b) Each independent variable should vary between (at least)
binary values of saliency. The saliency is operationally
defined as a manipulation that selectively influences a sin-
gle process of interest, such that the process is speeded up
(H = high saliency) or slowed down (L = low saliency).

(c) The levels of all independent variables should be factorially
combined, that is, orthogonally crossed with all other levels
of the other variables. Thus, the total number of experimental
conditions is equal to 2n.

So, if a cognitive system under investigation consists of two pro-
cesses that could be organized in either a serial or a parallel
fashion, then the design should include two independent vari-
ables with two levels each, factorially combined, resulting in
22 = 4 conditions. If a cognitive system consists of four pro-
cesses, the design should include four factors, factorially com-
bined with at least two levels of each factor, thus resulting in
24 = 32 experimental conditions.

The required research design’s complexity increases exponen-
tially with research aspirations. In practice as the number of
conditions increases this means that the SFT minimal crite-
ria for differentiating between cognitive models could require
lots of conditions and trials. So it is quite understandable that
researchers usually use generalizability as criteria for model test-
ing instead. The truth is that many of these research designs do
not meet the minimal SFT criteria for testing different cognitive
models, leading to conclusions that could be flawed.

In studies of the optimal research design, the SFT approach
utilizes a so-called full-factorial design enabling a detailed pro-
cessing structure analysis. If only a fraction of the full factorial
design is used then this is broadly defined as a fractional-factorial
design (FFD). In general FFD designs are useful as they can
provide some important insights about the processes under con-
sideration while saving on the complexity of a research design and
thus saving time and effort. However, they may fail to identify
important interactions between factors. As will be detailed in the
next section, it is exactly the interaction information that provides
the critical insights necessary to differentiate between cognitive
processes. Although there is a great deal of published research
about cognitive properties that can’t be characterized as utiliz-
ing the FFD research design (e.g., Sternberg, 1966; Bradshaw and
Wallace, 1971; Lachmann and van Leeuwen, 2004) this study will
not analyze it in detail. For simplicity sake, this paper will refer to
any incomplete SFT full-factorial design as an FFD design.

The second way correct inferences can be jeopardized is when
using an FFD research design a researcher acts as if he/she has
reduced the dimensionality of a full-factorial design. As such
the important critical information about how to differentiate
between cognitive systems is lost. So for example, the full-factorial

www.frontiersin.org October 2014 | Volume 5 | Article 1130 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Fific Inferences and problematic forms of aggregation

SFT design prescribes six variables and 26 = 64 conditions to
learn about six STM processes. Such could be a design in which
each memory item’s saliency (high-low) is factorially combined
with all other memory items’ saliencies (for n = 2 see Townsend
and Fific, 2004; for up to n = 4 see Yang et al., 2014). If instead
a researcher collapses the load variable across saliency, then the
resulting design is a FFD design having only the memory load
variable in the input. By collapsing across the input variables
the critical test conditions are dropped out, and the minimal
SFT diagnostic criteria have not been reached. Thus, the likeli-
hood of making correct inferences about any underlying cognitive
processes decreases dramatically.

The remainder of this paper will outline the basic SFT tools
applied on cognitive systems with two processes. Then the author
will proceed with the empirical evidence showing how SFT com-
bined with individual subject analysis can be used to improve
inferences rendered unreliable by the two jeopardies.

A GENERIC COGNITIVE TASK
Take for example a generic short-term memory/visual memory
search task: the search set consists of two items (n = 2) and the
task is to decide whether a target item was in the search set.
For simplicity the author limits the analysis to target-absent tri-
als only, in which a subject has to search an entire search set.
This is the case of an exhaustive search. The question is whether
processing is serial, parallel, coactive, or none of the above. In
general, limiting the analysis only on target-absent responses
potentially can harm diagnostic accuracy as it neglects a possi-
ble decision criteria trade-off between target-present and target
absent responses. The analysis of target-absent responses only
would still be sufficient for the current illustration purposes.

THE SFT FULL-FACTORIAL DESIGN
The adequate minimal SFT research design of the above task
should include two factors with at least two levels, thus the total
number of conditions should be 22 = 4.

The first factor is operationally defined as the saliency of the
first item in the search set, and the second factor is defined as
the saliency of the second item in the search set. The saliency
has binary values which allow for speeding up or slowing down
of a particular process. (In what follows, H indicates a fast pro-
cess, or high item-to target dissimilarity, and L a slow process, or
low item-to-target dissimilarity). The idea here is that the memo-
rized item with high saliency is processed faster than the item with
low saliency, as the H item is more dissimilar to the target. In the
generic task described above the cognitive operation of item scan-
ning requires less processing time to determine that an H item is
not a target, and can reject it quicker than an L item.

In each trial two items make a search set, and thus the factorial
combination of items’ saliencies will result in four experimental
conditions: HH, HL, LH, and LL—the so-called double factorial
design (2 × 2, as employed in an analysis of variance). For exam-
ple, HLindicates a condition where the first factor (processing the
first item) is of high saliency and the second factor (processing of
the second item) is of low saliency (see Figure 1A).

It is important to note that using the double factorial design,
the different cognitive processing orders will exhibit different data

FIGURE 1 | (A) A schematic representation of the full-factorial design. (B) A
schematic representation of the FFD, which is obtained by collapsing the
full-factorial design to a one-dimensional design across the item position
factors.

patterns of mean reaction times, which brings us to the main
statistical tests used in SFT.

Mean Interaction Contrast (MIC): The MIC statistic calculates
the interaction between the factors, similarly as in an interac-
tive analysis of variance (ANOVA) (Sternberg, 1969; see also
Schweickert, 1978; Schweickert and Townsend, 1989):

MIC = (RTLL − RTLH) − (RTHL − RTHH) = RTLL

−RTLH − RTHL + RTHH (1)

where RT is response time. This statistic is obtained by taking
the double difference of mean RTs associated with each level of
separate experimental factors (in this case, 2 × 2 factorial condi-
tions). So, for example, mean RTHL indicates mean response time
for the condition where the first factor (processing the first item)
is of high saliency and the second factor (processing the second
item) is of low saliency. Figure 2 shows typical patterns of MIC
tests that are expected for different processing orders, for the fixed
exhaustive stopping rule.

MIC is considered a valid test providing that the following con-
ditional assumptions hold: (a) Processing rate for any position L
is always slower than H, (b) The single factors selectively influ-
ence only single sub-processes (position one and two), and (c)
The independence between processes hold. Violation of any or all
assumptions leads to a violation of the mean RT orderings of the
experimental situations RTLL > RTLH, RTHL > RTHH, which is
considered a quick test of the conditional assumptions.

The pattern of “additivity” is reflected by an MIC value of 0
(Figure 2). In an ANOVA, additivity is indicated by an absence of
interaction between factors, thus implying that the effects of indi-
vidual factors simply “add” together. This finding supports serial
processing, in which the total response time is the sum of individ-
ual times stemming from each factor. Likewise, “overadditivity”
is reflected by an MIC > 0 (a positive MIC), and “underadditiv-
ity” is reflected by an MIC < 0 (a negative MIC). Formal proofs
of the results expressed below are provided by Townsend (1984),
Townsend and Nozawa (1995) for parallel and serial systems, and
for a wide variety of stochastic mental networks by Schweickert
and Townsend (1989). Townsend and Thomas (1994, also see
Dzhafarov et al., 2004) showed the consequences of the failure
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FIGURE 2 | Schematic illustration of three main patterns of mean RTs,

mean interaction contrasts (MICs), and the corresponding underlying

cognitive processes when the stopping rule is fixed to be exhaustive.

of selective influence when channels (items, features, etc.) are
correlated.

If processing is strictly serial, then the MIC value will equal
zero; that is, the pattern of mean RTs will show additivity. For
instance, if processing is serial exhaustive, then the increase in
mean RTs for LL trials relative to HH trials will simply be the
result of the two individual processes slowing down, giving us
the pattern of additivity illustrated in Figure 2, top panel. Parallel
exhaustive processing results in a mean RT pattern of under-
additivity (MIC < 0) (Figure 2, middle panel). Finally, coactive
processing will lead to a pattern of overadditivity of the mean RTs
(MIC > 0), as illustrated in Figure 2 bottom panel. Coactive pro-
cessing is a form of parallel processing in which information from
parallel processing units are pooled together into one unit, by the
virtue of summation of signals from the two units. Coactivation
gives rise to perceptual unitization, forming perceptual objects
whose features are not analytically separable.

The SFT provides strong grounds for model comparison and
model falsification, in both the non-parametric and paramet-
ric treatments of the theoretical processes. Useful statistical tools
are described in several publications and are available online
(Townsend et al., 2007; Houpt et al., 2014).

THE FRACTIONAL-FACTORIAL DESIGN (FFD)
To get an FFD the author reduces the dimensionality of the above
full-factorial design (Figures 1A,B). The resulting FFD design

uses only 3 conditions from the original full-factorial design. The
collapse of the full factorial design across the item position factors
could be visualized as a projection of the conditions to a new sin-
gle dimension (Figure 1B). I define this dimension as the number
of items in a search set that are dissimilar to the target. In the HH
condition, both items are dissimilar. Thus, the value is two. In the
HL and LH conditions, only one item is dissimilar thus the value
is one; and in the LL condition both items are similar, and thus the
number of dissimilar items is zero. The observed mean RT can be
plotted as a function of the number of dissimilar items, defining
the RT-dissimilarity function.

Surprisingly this particular FFD design has been used in sev-
eral studies to explore cognitive processes. The RT-dissimilarity
function has been employed previously in the same-different
judgment task (Nickerson, 1965, 1969; Egeth, 1966; Miller, 1978;
Proctor, 1981; Farell, 1985; see Sternberg, 1998 for review).The
general finding was that RT decreased as a number of differ-
ing dimensions between the items (Goldstone and Medin, 1994),
number of dissimilar items in search set, or as a function of the
structural complexity (Checkosky and Whitlock, 1973; Schmidt
and Ackermann, 1990; Lachmann and van Leeuwen, 2004).

The important diagnostic feature here is the shape of the
RT-dissimilarity function: if the function is strictly linear it indi-
cates serial processing (Egeth, 1966; Posner and Mitchell, 1967;
Lachmann and van Leeuwen, 2004), and if the function is non-
linear it indicates parallel processing (Posner, 1978). The property
of linearity can be assessed by conducting a linear regression
analysis and would be shown in the coefficient of determination
R2-value (e.g., Lachmann and Geissler, 2002; Lachmann and van
Leeuwen, 2004, p. 11, inferred serial processing by showing linear
functions, 0.98 ≤ R2 ≤ 0.99).

Indeed different cognitive models predict the characteristic
change in RT-dissimilarity function shape. Serial exhaustive mod-
els predict that the mean RT would linearly decline as a function
of item-to-target dissimilarity. Provided that a low-dissimilar
item is processed slower than a high-dissimilar item, and that pro-
cessing is conducted in the item-to-item fashion, the mean RT
should decline with the same rate as the number of dissimilar
items increases in the search set. Parallel exhaustive models pre-
dict a convex non-linear RT-dissimilarity function. In contrast,
the coactive model predicts a concave non-linear RT as a func-
tion of target-to-item dissimilarity (see Supplementary Material
for the derivations).

It is important to note that even though the mean RT-
dissimilarity function is FFD, some diagnostic cues enable
differentiation between cognitive processing strategies.

The robustness of the SFT and FFD designs to the first jeop-
ardy: Averaging across subjects’ mixed cognitive strategies and
predictions of the two designs.

Neither of the two approaches is immune to the first jeopardy.
When we average results of subjects who used different cognitive
strategies, the resulting MIC signature and RT-dissimilarity func-
tion could reveal the most dominant cognitive system or could
indicate a ghost cognitive system—a non-existing one.

Consider the generic task in which the stopping rule was set
to be exhaustive. In order to make a correct decision all memo-
rized items in the search set have to be processed. Each cognitive
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strategy (serial, parallel, and coactive) could be used to search
the search set, but some strategies may be more preferable under
certain conditions. Serial processing could be employed when
it is advantageous to invest all attention to one unit at a time
with a possibility for early termination. Parallel processing may
be employed when all information is available and the cogni-
tive system does not see possible limitations due to capacity
sharing between multiple concurrently processed items. Coactive
processing may be involved with processes that have historically
occurred together and thus built a joint path in the cognitive sys-
tem (perhaps a neural unit). More importantly, what is unknown
to researchers is whether or not each of these cognitive processing
strategies may be individual subject specific. It could be expected
that some human subjects have developed more reliance on some
of these strategies than on the others.

In the SFT design the following three MIC signatures could be
observed. Subjects could either exhibit a parallel search, showing
the underadditive MIC pattern (Figure 2 middle), a serial search
showing the additive MIC (Figure 2, top), or a coactive search
(parallel but not independent processes) showing the overadditive
MIC pattern (Figure 2 bottom). Provided that the base rate for
each processing strategy is the same, the results of averaging across
subjects would predict convergence to the MIC additive signature.

Similarly in the FFD design, the subjects would show all three
types of curving in the RT-dissimilarity function, concave, convex
and linear. The average outcome RT-dissimilarity function would
tend to converge to the linear function.

A surprising result will occur when sampled subjects are only
parallel and coactive processors: a ghost cognitive strategy will be
inferred. Both the averaged MIC and the RT-dissimilarity would
indicate serial processing (additive MIC and linear RT function),
despite that not a single subject could be characterized as such.

THE COMPARISON TEST
The main goal of the current paper is to explore how effective the
mean RT analysis methods are in inferring the organization of
cognitive processes when both jeopardies are in place. Thus, this
study cross combined the two jeopardies and compared the four
resulting conditions (Table 1).

As a reference point the author will analyze the data from
Condition 0 which both adheres to the SFT minimal criteria for

Table 1 | Cross combination of the levels of the two jeopardies in a

2 × 2 analysis, leading to four different analysis conditions.

Analysis level

Individual Group

RESEARCH DESIGN

Full factorial (MIC) 0 1

Fractional factorial (regression) 2 3

The first jeopardy is defined as the difference between the individual and group

subject analyses with regard to inferring the details associated with the cog-

nitive processes of interest. The second jeopardy is defined as the difference

between the full- and fractional-research designs with regard to inferring those

same details.

the correct diagnosing of cognitive processes, and is based on
individual subjects analyses (Table 1). Condition 0 uses the previ-
ously published MIC results of individual subject data on a large
number of trials possessing lots of statistical power (Townsend
and Fific, 2004; Fific et al., 2008b).

In Condition 1, the author tests the effect of the across-subject
averaging on MIC test accuracy in identifying cognitive pro-
cesses. In Condition 2 the author tests the effect of using an FFD
design on making inferences regarding the individual subjects’
data, using a regression analysis of the RT-dissimilarity function.
Finally, in Condition 3 the data will be exposed to both jeopar-
dies: the averaging across subjects and the design marginalization
using FFD. In this condition the author analyzes the group mean
RT-dissimilarity functions using linear regression analysis.

The expectation is that when compared to Condition 0 the
three conditions will show deterioration in their ability to cor-
rectly diagnose cognitive processes. Most of the misdiagnoses
should be observed in Condition 3. Although the current expecta-
tions could be logically derived from earlier works, such system-
atic evidence is sparse. The author hopes that the current study
will illuminate both the role of individual subject analysis and the
application of SFT in learning about cognitive processes.

METHODS
The results reported in this section are based on the reanalysis of
data collected in previous studies (Townsend and Fific, 2004; Fific
et al., 2008b). Specific details about the participants and stim-
uli are presented in the original papers. Here I outline the details
which are pertinent to the current investigation.

PARTICIPANTS
Five participants, 2 females and 3 males participated in a short-
term memory search study (Townsend and Fific, 2004). Four
participants, two females, and two males participated in a visual
search study (Fific et al., 2008b); four participants, three females,
and one male participated in the visual search study on pat-
terns (Fific et al., 2008b). All participants were paid for their
participation.

STIMULI
Short-term memory study (Townsend and Fific, 2004)
Stimuli were pseudo-words in consonant-vowel-consonant
(CVC) form. Two items made a search set, presented on different
search-set positions (first, second). To produce the saliency effect,
we manipulated phonemic dissimilarity of a search set-item to
the target item. The items were drawn from two sets of phonolog-
ically confusable Serbian language consonants: fricatives (F, S, V)
and semi-vocals (L, M, N). We generated different dissimilarity
of search-set items to the target item by constructing the target
and test items from letters drawn either from the same group or
from different groups.

Visual search on pseudowords (Experiment 1, Fific et al., 2008b)
Stimuli were Cyrillic letter-strings constructed from letters of
the Serbian alphabet. The visual complexity of the letter-string
stimuli was manipulated by varying the number of letters that
made up a single item (1, 2, or 3 consonants). The saliency effect
was produced by manipulating the degree of visual dissimilarity
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between the item and the target items. We employed two sets of
letters: letters with curved features and letters with straight-line
features. We generated different dissimilarity of search-set items
to the target item using the same principles as in the above study.

Visual search on visual patterns (Experiment 2: Fific et al., 2008b)
As stimuli, we used meaningless visual patterns taken from
Microsoft’s Windows standard fonts.

DESIGN AND PROCEDURE
Short-term memory search (Townsend and Fific, 2004)
Each trial consisted of a fixation point and warning low-pitch tone
for 1 s, successive presentation of two items in the search set for
1200 ms, an inter-stimuli interval (ISI), and a target. The ISI was
defined as the interval between the offset of a search set and the
onset of the target. The ISI period started with a fixation point
and a second warning high-pitch tone which lasted for 700 ms.
Onset of this second warning signal was activated so that its end
coincided with the end of the ISI period.

The task was to decide whether a target was presented in
a search set. The target was randomly chosen to be present in
one-half of the memory set trials and absent in the other half
Participants signified their answer, “yes” with one index finger
and “no” with the other. Only target-absent trials were analyzed.

The analyzed research design consisted of the three within-
subject factors: Inter-stimulus interval (ISI, 700 and 2000 ms) ×
Dissimilarity of item in position one (H,L) × Dissimilarity of
item in position two (H, L). The last two factors constituted the
full factorial SFT design permitting the assessment of processing
order.

Participants ran around 44 blocks of 128 trials each. Each block
was divided into 6 sub-blocks of 20 trials (except the last one
which had 28 trials). The participants were requested to achieve
very high accuracy, and usually only one block was completed on
a particular test day. Thus, each mean RT in a specific ISI con-
dition and particular factorial combination possessed between
300 and 400 trials per participant (depending on duration of
participation). Brief rest periods were allowed every 24 trials.

The ISI was manipulated between blocks, whereas factorial
combinations (HH, HL, LH, LL) varied within blocks.

Visual search on pseudowords (Experiment 1, Fific et al., 2008b)
Each trial started with a fixation point that appeared for 700 ms
and a low-pitch warning tone of 1000 ms, followed by the presen-
tation of the target item for 400 ms. Then, a mask was presented
for 130 ms, followed by two crosshairs that indicated the positions
of the two upcoming test items that made the search set. A high
pitch warning tone was then played for 700 ms, followed by the
presentation of the two items in the search set.

The task was to decide whether or not the target was presented
in the search set. Half of the trials were target present and half
were target absent. On each trial, the participant had to indi-
cate whether or not the target item appeared on the search set
by pressing either the left or the right mouse key with his or her
corresponding index finger. RTs were recorded from the onset of
the test display, up to the time of the response. Participants were

asked to respond both quickly and accurately. Only target-absent
trials were analyzed.

The analyzed research design consisted of three within-subject
factors: Stimulus complexity (C = 1, 2, or 3) × Dissimilarity
of item in the left position (H, L) × Dissimilarity of item in
right position (H, L). The stimulus complexity was operationally
defined as the number of letters used to form the stimulus items.
The last two factors constituted the full factorial SFT design
permitting the assessment of processing order.

The two test items in the most complex condition (C = 3, with
the widest stimuli) spanned 5 cm horizontally. At a viewing dis-
tance of 1.7 m from the computer screen, this width corresponds
to a visual angle of 1.86 degrees, well within the fovea.

Each participant performed on 30 blocks of 128 trials each.
The order of trials was randomized within blocks. The complexity
of the presented items (i.e., the number of letters: C = 1, 2, or 3)
was manipulated between blocks, whereas factorial combinations
(HH, HL, LH, LL) varied within blocks. For each participant, the
mean RT for each conjunction of item complexity and factorial
combination was calculated from approximately 200 trials.

Visual search on visual patterns (Experiment 2, Fific et al., 2008b)
This condition was identical to the C = 1 condition of the pre-
vious study, except that it employed visual patterns as stimuli
instead of letters. Each participant performed in 10 blocks of 128
trials.

RESULTS
CONDITION 0: INDIVIDUAL SUBJECT DATA, MIC ANALYSIS
The results of the MIC tests are published elsewhere (Townsend
and Fific, 2004; Fific et al., 2008b). The author summarizes the
findings in Table 2.

All subjects’ results satisfied the ordering of mean RTs (RTLL >

RTLH, RTHL > RTHH), except for the first subject in the C = 1
condition of the visual search task (Table 2). In addition, all sub-
jects showed significant main effects of the single factors, that is,
the effect of high and low dissimilarity for each item position.
Highly dissimilar items always showed on average faster process-
ing rates than the low dissimilar items, for both item positions
(1 and 2). These findings indicated that the basic manipulation
of item-to-target dissimilarity produced the expected cognitive
effect and furthermore that the processing of an item in each par-
ticular position occurred. Being uniform for all subjects, these
results were not reported in the table.

The critical MIC test results were based on the inspection of
the significance of an interactive component and the sign value
of the MIC score. As reported in Table 2 the individual-subject
analyses showed individual subject variability in MIC values. All
MIC values were interpretable (except the first subject in the C =
1 condition), and the signatures each fell into one of the expected
categories.

Conclusion
The subjects’ MIC values showed large variability across the three
experiments. In the two visual studies subjects showed primarily
over-additive results (9 subjects) and some additive results (6 sub-
jects), thus implying coactive and serial processing. One subject’s
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Table 2 | Summarized ANOVA results for the MIC tests at different levels of subject analysis.

MIC test ANOVA Full-factorial design conditions

df 2 F η2 LL (ms) LH (ms) HL (ms) HH (ms) MIC (ms) Inference

GRAND MEAN

23992 15.4 0.001 772 662 662 572 20 Coactive

VISUAL SEARCH: PSEUDOWORDS

Mean subjects 7458 50.2** 0.007 984 730 762 587 78 Coactive

Complexity

C = 1 595 3.1† 0.005 619 564 623 530 −38 –

C = 2 633 34.9** 0.052 1106 711 802 581 175 Coactive

C = 3 631 4.4* 0.007 1302 885 934 579 63 Coactive

C = 1 591 1.2 0.002 557 506 509 470 12 Serial

C = 2 630 41.0** 0.061 908 649 681 554 132 Coactive

C = 3 626 3.1† 0.005 1149 799 848 549 51 Serial

C = 1 590 0.9 0.001 622 577 561 534 19 Serial

C = 2 632 59.4** 0.086 963 671 643 527 176 Coactive

C = 3 628 14.0** 0.022 1191 856 808 578 106 Coactive

C = 1 595 2.0 0.003 678 639 631 609 17 Serial

C = 2 633 33.8** 0.051 1194 869 949 766 142 Coactive

C = 3 630 11.7** 0.018 1446 995 1113 753 91 Coactive

VISUAL SEARCH: PATTERNS

Mean subjects 2346 5.4* 0.002 668 577 587 532 36 Coactive

Complexity

C = 1 587 2.1 0.004 863 699 746 630 49 Serial

C = 1 576 4.7* 0.008 750 642 655 617 70 Coactive

C = 1 584 2.0 0.003 520 469 465 432 17 Serial

C = 1 587 4.4* 0.007 545 494 482 452 22 Coactive

SHORT-TERM MEMORY SEARCH

Mean subjects 14180 11.0** 0.001 676 641 622 571 −15 Parallel

Interstimulus interval

ISI = 700 1375 0.8 0.001 606 565 559 507 −12 Serial

ISI = 700 1645 0.2 0.000 632 607 595 565 −5 Serial

ISI = 700 1202 11.4** 0.009 598 590 562 518 −37 Parallel

ISI = 700 1394 2.2 0.002 747 706 690 664 15 Serial

ISI = 700 1439 0.3 0.000 786 703 666 593 10 Serial

ISI = 2000 1379 0.3 0.000 628 567 561 507 7 Serial

ISI = 2000 1710 3.7† 0.002 640 628 600 567 −21 Serial

ISI = 2000 1201 14.7** 0.012 613 592 577 512 −43 Parallel

ISI = 2000 1387 5.6* 0.004 748 730 717 672 −27 Parallel

ISI = 2000 1412 4.2* 0.003 761 708 680 591 −36 Parallel

**p < 0.01, *p < 0.05, †p < 0.08. The df1s were 1.

results were inconclusive, violating the conditional assumptions
of selective influence and or process independence. The subject
could also exhibit an unknown type of cognitive strategy. In con-
trast, the subjects in the memory study showed either additivity
(6 subjects) or under-additivity (4 subjects), thus implying the
presence of both serial and parallel processing across subjects. See
Table 3 for summary.

CONDITION 1: AVERAGED SUBJECTS DATA, MIC ANALYSIS
First I analyzed the MIC results averaged across subjects and
then across all experimental conditions (the visual and mem-
ory search conditions) to and obtained the grand mean MIC
data (Figure 3A). Then, using ANOVA I tested the significance

of the interaction between two factors. Each factor is defined as
the item’s item-to-target-dissimilarity (high, low), for one of the
two positions in the search set position. The interaction test is
used to provide a statistical significance finding for the MIC test.
The interaction between the two factors was found to be sig-
nificant F(1, 23992) = 15.37, p < 0.01, η2 = 0.001. The observed
MIC = 20 ms, indicating overadditivity (Figure 3, top left panel).

Conclusion: all subjects processing (26) was based on the coactive
processing model
Next, I conducted the MIC test conditioned on the type of cog-
nitive task used. I break down the overall mean RT results into
three different experimental studies: the visual search task using
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pseudowords, visual search task using visual patterns, and short-
term memory task. The results of MIC tests are presented in
Table 2 (the rows “Mean subjects,” and also in Figures 3B–D).

Conclusion
The results indicated that when the MIC is calculated by aver-
aging across all subjects the MIC test showed overadditivity
(MIC > 0) in both of the visual search tasks, thus implying coac-
tive processing (for 12 + 4 subjects). In a sharp contrast, the MIC
indicated underadditivity (MIC < 0) in the short-term memory
experiment, thus implying parallel processing, for all 10 subjects.

CONDITION 2 : INDIVIDUAL SUBJECT DATA, REGRESSION ANALYSIS
The individual mean RT-dissimilarity functions are analyzed. The
author conducted the linear regression analysis between mean RT
and the number of item-to-target dissimilar items in a search
set (0, 1, 2 items in a search set dissimilar to the target) for

Table 3 | Summary of the inferences across different comparison

conditions from Table 1.

Serial Parallel Coactive Unaccounted

Condition 0 (full) 12 4 9 1

Condition 1 (jeop 1) – 10 16 –

Condition 2 (jeop 2) 13 4 9 –

Condition 3 (jeop 1 and 2) 26 – – –

each individual subject across different experimental conditions
(Table 4, left hand side).

Using linear regression, the linear relationship accounts for
a large percent of mean RT variability for most of the subjects
(it ranged from 94 to 100% across all subjects, with the mean
R2 = 98% and SD = 0.0282).

Conclusion 1
Extremely high R2-values of linear function fits among subjects
implied a strict serial exhaustive process.

It is questionable whether the results would indicate signifi-
cant curving of the mean data points, either of the convex or
concave type. The standard way to test whether the data could be
better explained by the linear or non-linear (polynomial of a sec-
ond degree) model, is to conduct the regression analysis using the
second-order polynomial regression function (quadratic). But in
this study the use of quadratic regression is precluded as there are
only three data points to be fitted. That is, there would be the same
number of free parameters as the number of points, so the test for
the significant R2 change from a linear to non-linear model would
not be valid.

To provide the alternative test for curvature of the mean RT
dissimilarity data the author conducted another regression anal-
ysis on the individual subject RT data this time by using all RTs
not averaged across the dissimilarity conditions (0, 1, 2). Now
the author compared whether the adding of a second order poly-
nomial component could be used to significantly improve the
goodness of fit (R2-value) (Table 4, right hand side).

FIGURE 3 | (A) Mean RT averaged across the subjects, and (C,D) the MIC test results for different experimental conditions.

www.frontiersin.org October 2014 | Volume 5 | Article 1130 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Fific Inferences and problematic forms of aggregation

Table 4 | Summarized linear regression results for different levels of subject analysis.

Linear regression Concavity/convexity test

R2 F Intercept (ms) Slope (ms) R2 change df2 F change Inference

GRAND MEAN

1.00 299.4 769 −100 0.001 23993 15.38** Coactive

VISUAL SEARCH PSEUDOWORDS

Mean subjects 0.99 74.7 965 −196 0.005 7459 49.97** Coactive

Complexity

C = 1 0.94 16.4 625 −44 0.005 596 2.97† Serial

C = 2 0.97 27.3 1077 −263 0.026 634 33.86** Coactive

C = 3 1.00 399.2 1292 −361 0.002 632 4.33* Coactive

C = 1 0.99 169.5 555 −44 0.002 592 1.20 Serial

C = 2 0.96 21.5 886 −177 0.032 631 40.64** Coactive

C = 3 1.00 419.0 1140 −300 0.002 627 3.10† Serial

C = 1 0.99 68.0 619 −44 0.001 591 0.86 Serial

C = 2 0.95 18.4 934 −218 0.042 633 59.21** Coactive

C = 3 0.99 100.4 1173 −306 0.009 629 13.90** Coactive

C = 1 0.98 49.2 675 −35 0.003 596 2.05 Serial

C = 2 0.97 27.6 1170 −214 0.026 634 32.57** Coactive

C = 3 0.99 174.8 1431 −347 0.006 631 10.91* Coactive

VISUAL SEARCH PATTERNS

Mean subjects 0.97 36.0 663 −69 0.002 2347 5.36* Coactive

Complexity

C = 1 0.99 69.4 855 −116 0.003 588 2.08 Serial

C = 1 0.92 10.8 739 −67 0.008 577 4.69* Coactive

C = 1 0.99 76.4 517 −44 0.003 585 2.05 Serial

C = 1 0.98 54.1 542 −47 0.006 588 4.41* Coactive

MEMORY SEARCH

Mean Subjects 0.99 152.8 679 −53 0.001 14181 10.93** Parallel

Interstimulus interval

SI = 700 1.00 222.6 608 −50 0.001 1376 0.81 Serial

ISI = 700 1.00 465.7 633 −33 0 1646 0.21 Serial

ISI = 700 0.94 14.4 605 −40 0.009 1203 11.27** Parallel

ISI = 700 0.99 97.6 745 −42 0.001 1395 2.16 Serial

ISI = 700 1.00 1132.0 785 −97 0 1440 0.35 Serial

ISI = 2000 1.00 926.6 627 −60 0 1380 0.32 Serial

ISI = 2000 0.97 35.2 644 −37 0.002 1711 3.77† Serial

ISI = 2000 0.94 16.6 620 −50 0.011 1202 14.64** Parallel

ISI = 2000 0.96 23.7 753 −38 0.004 1388 5.57* Parallel

ISI = 2000 0.99 68.7 767 −85 0.003 1413 4.07* Parallel

**p < 0.01, *p < 0.05, †p < 0.08. Each linear regression was conducted with 1 degree of freedom for the concavity/convexity test. The first dfs were 1 as stated,

and the df2s are reported in the table.

Conclusions 2
The results of the regression analysis showed a signifi-
cant curving of the individual subject data (Table 4, under
Concavity/convexity test). The inferences about cognitive pro-
cesses paralleled those of the MIC tests conducted on individual
subjects’ data (Table 2).

The only exception was the first subject whom was catego-
rized now as a serial processor unlike in the MIC test in which
this subject couldn’t be classified in one of the three processing
strategies.

CONDITION 3: AVERAGED SUBJECTS’ DATA, REGRESSION ANALYSIS
First, I analyzed the data when averaged across subjects (indi-
vidual data combined from the three experimental condi-
tions). I conducted the linear regression analysis between mean
RT and the number of item-to-target dissimilar items in a
search set (0, 1, 2 items in a search set dissimilar to the
target).

The significant proportion of explained variability indicates
that the mean RT linearly decreases with increasing the number
of items that are dissimilar to the target (see Figure 4, and Table 4
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FIGURE 4 | Linear regression analyses between Mean RT averaged

across the subjects and the number of item-to-target dissimilar items

in a search set, for different experimental conditions.

the first row Grand Mean). This relationship accounts for 100%
of mean RT variability, R2 = 1 (Figure 4).

Conclusion 1
All subjects (26) processed the stimuli using the serial processing
strategy. The rate of sequential processing per item is defined by
the value of the regression function slope which was estimated
from data to be 100 ms per item.

Second, I conducted the regression analysis on RT averaged
across subjects but sorted by type of experimental condition. I
break down the overall mean RTs into three different experimen-
tal studies: the visual search task using pseudowords, the visual
search task using visual patterns, and the short-term memory
task.

The results of the linear regression analysis between the mean
RT and the number of dissimilar items are presented in Table 4
(the rows Mean subjects) and Figure 4. All three relationships
accounted for between 97 and 99% of mean RT variability (0.97 ≤
r2 ≤ 0.99). The explained variability indicated that the mean RT
linearly decreases with the number of items that are dissimilar to
the target (Figure 4).

Conclusion 2
All subjects (26) used the serial cognitive processing strategy
across different conditions. The rate of sequential processing
per item was different for different experimental studies (see
Figure 4) and varied between 196 ms per unit for pseudowords to
68 and 53 ms per unit for simple visual stimuli and STM search.

GENERAL DISCUSSION
The main goal of the current paper was to explore the diagnostic
accuracy of identifying the true underlying organization of cog-
nitive processes in different experimental situations. The author
discussed and analyzed two major concerns that could negatively
impact the chances of achieving the main goals present in modern
cognitive modeling trends.

The first concern deals with analyzing aggregated subjects
data to infer the details associated with cognitive processes. Data
aggregation across subjects has a long history of practice in
the field. The main rationale is to use this powerful averaging
tool to reduce random noise from observations and increase the
power of diagnostic tests. The averaging tool rests on the condi-
tional hypothesis that different subjects use the same cognitive
operations. However, this hypothesis is rarely stated and sub-
stantiated. This is unfortunate, because when a researcher relaxes
the conditional hypothesis that subjects use the same cognitive
operations, surprising outcomes of averaging across subjects can
occur. One of the most dramatic outcomes is inferring ghost cog-
nitive processes. This error occurs when we average across two
very different cognitive strategies. The resulting averaged data
would support a strategy that may not exist and/or may not be
theoretically feasible.

Research in the cognitive domain has over the years reached
a critical view of the issue of individual differences in cogni-
tive operations. It has become a pressing matter to address the
issue of individual subject analysis. Scanning the current litera-
ture, the author found several such publications in the Journal of
Psychological Review (Fific et al., 2010; Hills and Hertwig, 2012;
Benjamin, 2013; Kellen et al., 2013b; Turner et al., 2013), the
leading edge in theoretical advances relevant to the problem of
averaging data across subjects.

The second concern deals with selection of the most appropri-
ate research design to provide the best diagnostic performance in
detecting cognitive processing details. A major trend in the cog-
nitive domain relies on the principle that more complex designs
make for better inferences. This is common practice in all areas of
psychological research, which follows up on a recommendation
for external generalizability. In that sense validation of a cogni-
tive model should be based on the model’s ability to generalize
to as many as possible results and conditions as possible. In prin-
ciple this is the right way to make scientific advances, especially
in an area where it is not possible to precisely specify the mini-
mal criteria for a research design complexity. For that reason the
author introduced the SFT, which has been primarily designed to
make inferences about underlying processing order (serial, paral-
lel, coactive), stopping rule (terminating, exhaustive), and process
dependency. The SFT approach proposes criteria for minimal
research design complexity that can be used to construct the most
effective diagnostic tools.

In this study the author reported the analysis of the effects
of two possible ways inferences about cognitive processes can
be jeopardized. The effect of the first jeopardy was measured
by comparing the analysis of data averaged over the subjects to
the analysis of individual subjects’ data. The effect of the sec-
ond jeopardy was measured by comparing the results of the
analysis of the full factorial design (MIC) to the comparable
FFD (linear regression on RT-difference function). More impor-
tantly the author cross combined the levels of jeopardies in
a 2 × 2 analysis, leading to four different analysis conditions
(Table 1). Condition zero served as a reference condition as it
was the least influenced by both jeopardies. Table 3 shows the
summary of inferences about the cognitive processes across the
conditions.
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Aggregating the data across subjects (Jeopardy 1) reduced the
diagnostic accuracy of our inferences about cognitive process to
about half (accuracy = 13/26). The analyses of the effect of sub-
jects’ data aggregation (Condition 1 and 0), showed not only
omissions in detecting of some cognitive strategies, such as miss-
ing to detect 12 cases of serial processing, but also showed a
number of false recognitions of parallel or coactive processing.
Comparing the diversity of individual strategies revealed by the
MIC test in Condition zero to the strategies inferred after the data
aggregation shows an interesting finding. The resulting aggre-
gated inferences are not necessarily affected by the most inferred
individual cognitive processes. As shown in the memory search
experiment, the individual MIC analyses indicated 6 serial and
4 parallel subjects (Table 2 bottom part—short term memory
search). However, the inferences based on the aggregated val-
ues indicated parallel processing for all subjects (Table 2 the line
“mean subjects” for short-term memory). This could happen as
the aggregated MIC score accumulated the size of effects from
the individual subjects’ data. The individual MIC scores showed
7 negative values, of which only 4 reached significance and were
inferred to occur in parallel (Table 2, bottom).

Collapsing across the full-factorial research design to create a
less complex design (Jeopardy 2) showed very good diagnostic
accuracy of cognitive processes. Using the FFD as an alternative to
the full-factorial design led to 25/26 correct inferences (see sum-
mary in Table 3, Condition 2, the individual results in Table 4).
The study can conclude that the shape of the RT-difference
function can be used as a complement to the MIC test.

However, this comes with three caveats. First, using the FFD
would be very ineffective if the data was aggregated over the
subjects (as presented in Figure 4). The results of regression
analysis on the data aggregated over the subjects showed impres-
sive fits to linear functions and showed very high R2-values
for each experiment. These results all point to the across sub-
ject uniform conclusion: serial processing (with low accuracy
= 12/26). Second, even when the mean RT-difference functions
are calculated for each separate subject (the Results Section,
Condition 2, Conclusion 1) the curving of RT-difference func-
tions may be difficult to detect using the conventional statisti-
cal test to reject the null hypothesis. To get the 25/26 correct
detections, not only is the individual subjects analysis recom-
mended but it is also recommended to use all data for each
subject to test the curvature hypothesis (left-hand side Table 4,
Concavity/convexity test). And the third and the most impor-
tant caveat: using the FFD will very likely lead to increasing false
alarm rates in detecting the known cognitive strategies, serial,
parallel, or coactive. When scrutinized closely (Supplementary
Material), the proposed FFD design shows good performance
in inferring the correct cognitive strategy when all SFT condi-
tional assumptions were met. However, if some of these assump-
tion were not met, then FFD may not be able to detect that
a violation occurred and will proceed to the incorrect infer-
ence. This is because FFD cannot test the mean RT ordering
RTLL > RTLH, RTHL > RTHH, as the two LH and HL situ-
ations are aggregated. One such case is shown in Table 3 and
also in Table 2, the first row with C = 1. The subjects’ MIC
RT data showed a violation of the mean RT ordering RTLL >

RTLH, RTHL > RTHH (Table 2, RTLL = 619 ms, RTLH = 564 ms,
RTHL = 623 ms, RTHH = 530 ms) rendering the MIC test not
valid for making inferences. The MIC test indicated that it is
highly likely that some part of the conditional hypothesis was
violated, thus preventing us from reaching a clear conclusion.
However, when the FFD design is used the ordering of mean RTs
allows for inferences (RTLL = 619 ms, RTLHandHL = (564 ms +
623 ms)/2 = 593 ms, RTHH = 530 ms). The FFD design falsely
inferred that this subject was a serial processor. In general the
proposed FFD design is not an accurate test for the detection
of “unknown” cognitive processes. The proof is shown in the
corollary Supplementary Material.

Combining both jeopardies led to 12/26 correct inferences of
serial processing (Table 3, Condition 3, see also Figure 4, “grand
mean”). The linear regression analysis of RT-difference functions
showed very high R2-values of linear functions across different
experiments, leaving practically no room for curving, and detec-
tion of either parallel or coactive processing. Thus, the results
did not infer any parallel or coactive strategies which constitute
almost half of the individual result’s analyses. The disappointingly
low level of 46% correct inferences clearly warrants the use of bet-
ter methods. In the relevant published work so far the author was
able to find several studies that may be characterized as using the
Condition 3 methods (for example, Lachmann and Geissler, 2002;
Lachmann and van Leeuwen, 2004) and thus could be challenged
for the validity of their inferences about cognitive processes.

The results of the current study lead to the following rec-
ommendations. To improve the diagnostic accuracy of cognitive
process, it is advisable to avoid the jeopardies by both adopting
the minimal research design criteria as proposed by SFT, and also
by conducting individual subject analysis, rather than conducting
the analysis on aggregated subject data. Both jeopardies have been
recognized in the scientific community as having detrimental
effects on inferences but infrequently taken care of.

A review of current research trends reveals a number of
researchers who are ready to switch from the subject aggregating
procedures, and instead consider using individual subject analy-
sis, if they are not already en route to developing and using such
methods (e.g., Myung et al., 2000; Brown and Heathcote, 2003;
Estes and Maddox, 2005; Soto et al., 2014). The main challenge
in using individual subject data is to provide an integral assess-
ment of such data that can enable clear communication between
researchers. This is the case when one has to report a variety
of individual differences in a large data set. Another issue is the
question of what the best statistical methodology is for analyzing
data while allowing for individual assessment. Some researchers
have suggested using hierarchical Bayesian statistical inference
as a principle tool for hypotheses testing, as it allows for natu-
ral incorporation of individual difference as a part of statistical
tests (e.g., Rouder and Lu, 2005; Lee, 2008; Liu and Smith, 2009;
Bartlema et al., 2014).

In this paper the author recommends that the research com-
munity pay attention to recent methodological advances that
allow for specification of criteria for the minimal complexity of
research designs. The SFT proposes that (a) each cognitive pro-
cess should be controlled by a separate experimental factor over
the manipulated process saliency, and (b) The saliency levels of
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all factors should be combined in a full factorial design. The fac-
tor’s saliency is a manipulation designed to selectively influence the
speed of a certain cognitive process, so that the process is either
speed up or slowed down (by provision of the selective influ-
ence). The minimal research design complexity is defined to be
composed of 2n experimental conditions. If your research design
of exactly n number of processes has less than 2n experimental
conditions it is likely that the results of such a study will not be
conclusive about the organization of the cognitive processes of
interest. In that case, you may rather seek external generalizability,
which will improve the likelihood of making correct inferences
about the cognitive processes, though at an unknown rate.
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