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GALOIS ACTION ON SPECIAL THETA VALUES

PALOMA BENGOECHEA

Abstract. For a primitive Dirichlet character χ of conductor N set

θχ(τ ) =
∑

n∈Z
nǫ χ(n) eπin2τ/N (where ǫ = 0 for even χ, ǫ = 1 for odd

χ) the associated theta series. Its value at its point of symmetry under
the modular transformation τ 7→ −1/τ is related by θχ(i) = W (χ)θχ̄(i)
to the root number of the L-series of χ and hence can be used to calculate
the latter quickly if it does not vanish. Using Shimura’s reciprocity law,
we calculate the Galois action on these special values of theta functions
with odd N normalised by the Dedekind eta function. As a consequence,
we prove some experimental results of Cohen and Zagier and we deduce
a partial result on the non-vanishing of these special theta values with
prime N .

1. Introduction

Let χ be a primitive Dirichlet character with conductor N and order m.
The theta series associated to the character χ is defined on the upper half-
plane H by

(1) θχ(τ) =
∑

n∈Z

nǫ χ(n) qn
2/2N (q = e(τ), τ ∈ H),

where ǫ equals 0 if χ is even, or 1 if χ is odd. (Here and in the sequel we use
the notation e(x) = e2iπx for x ∈ C.) The theta series satisfies the functional
equation

(2) θχ̄(−1/τ) = W (χ) (τ/i)1/2+ǫ θχ(τ),

where W (χ) is the algebraic number of module 1 called root number, defined
in an explicit way as the normalized Gauss sum associated to χ

(3) W (χ) = G(χ)/
√
N, G(χ) =

∑

nmodN

χ(n) e(n/N).

From equation (2) one deduces the analytic continuation and the functional
equation of the L-series L(s, χ) =

∑

n∈Z χ(n)n
−s. For a given value s, we

cannot compute L(s, χ) with a big precision directly from its definition be-
cause it is very slowly convergent or even not convergent at all. However, we
can use its approximative functional equation which arises from truncating
the series; in this case, we can compute L(s, χ) in O(

√
N) time if the value
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2 PALOMA BENGOECHEA

of W (χ) is known. From definition (3), we compute W (χ) in O(N) steps.
In fact we can do better: considering equation (2) with the value τ = i, we
deduce the identity

W (χ) =
θχ̄(i)

θχ(i)
,

from which we compute W (χ) in O(
√
N) steps when θχ(i) 6= 0. A natural

question arises then: does θχ(i) vanish for any χ?
Louboutin proved in [Lou99] that there exists a constant c > 0 such that,

for every prime p, at least cp/ log p of the (p−1)/2 values θχ(i), where χ is odd
with prime conductor p, do not vanish. Cohen and Zagier described explicit
computational results in [CZ13] showing that θχ(i) 6= 0 for the first 500
millions of characters χ with N ≤ 52100, except for exactly (up to complex
conjugation) two even characters with respective conductor 300 and 600.

Moreover, they defined the functions

Aχ(τ) =
θχ(τ/N)

η(τ/N)1+2ǫ
, Bχ(τ) = |Aχ(τ)|2 = Aχ(τ)Aχ̄(τ),

where η is the Dedekind’s eta function defined by

η(τ) = q1/24
∞
∏

n = 1

(1− qn),

and studied the algebraic numbers Aχ(ip) and Bχ(ip) when p is prime and
it is the conductor of χ. Indeed, since the functions above are modular func-
tions, they are algebraic on the points of complex multiplication. Because
of the algebraicity, the numbers Bχ(iN) are much easier to study than the
values θχ(i). Also is the product of the numbers Bχ(iN) for all characters χ
with fixed conductor N and fixed order m (up to complex conjugation). We
denote these products by

N (N,m) =
∏

order(χ)=m
χ≈χ̄

Bχ(iN).

Cohen and Zagier speculated that the values N (p,m)2 always belong to
Q(i, j(ip)). Moreover, if we denote by N (p,m)d the smallest power of
N (p,m) belonging to Q(i, j(ip)), then the experimental results led Cohen
and Zagier to conjecture that, for the special case of the trivial character,
d = 1 if p ≡ 1 (mod 4) and d = 2 if p ≡ 3 (mod 4); for Legendre’s character
(m = 2), it seems that d = 1.

Concerning the numbers Aχ(ip), Cohen and Zagier observed that the de-
gree drastically decreases for some powers. If we denote by ζm the m-th root
of unity e2πim and σs the element of Gal(Q(i, j(ip), ζm)/Q(i, j(ip)) send-
ing ζm to ζsm, they speculated Aχ(ip)

k ∈ Q(j(ip), ζm) for some k ∈ N and

Aχs(ip)k = σs(Aχ(ip)
k) for all s ∈ (Z/mZ)∗.

We are able to calculate the Galois action on these algebraic numbers
and, using class field theory and Shimura’s reciprocity law, we prove Cohen
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and Zagier’s experimental results mentioned above and the generalizations
to odd conductors. Concerning the non-vanishing of the special theta values,
we prove θχ(i) 6= 0 for all non-quadratic χ with prime and “big” conductor
p = 2l + 1, where l is also prime (so l is a Sophie Germain prime).

2. Modularity

Throughout the paper we denote by χ a primitive character with odd
conductor N and order m.

In this section we explicit the action of the group Γθ ∩ Γ0(N) on θχ(τ).
We can decompose the theta series in the following way:

(4) θχ(τ) =
∑

hmodN

χ(h) θ
(ǫ)
N,h(τ),

where the coefficients χ(h) are m-th roots of unity and

(5) θ
(ǫ)
N,h(τ) =

∑

n∈Z
n≡h (mod N)

nǫ qn
2/2N .

We define the group

Γθ =

{(

a b
c d

)

∈ SL(2,Z) :

(

a b
c d

)

≡
(

1 0
0 1

)

or

(

0 1
1 0

)

(mod 2)

}

.

In order to compute the action of Γθ∩Γ0(N) on the functions θ
(ǫ)
N,h(τ), we

use Proposition 10.4 in [Iwa97], namely

Proposition 2.1 (Iwaniec). We have

(6) θ
(ǫ)
N,h(−1/τ) = (i/N)1/2 (−τ)1/2+ǫ

∑

lmodN

e(hl/N) θ
(ǫ)
N,l(τ).

Proposition 2.2. For γ =

(

a b
c d

)

∈ Γθ ∩ Γ0(N), we have

(7) θ
(ǫ)
N,h(γ(τ)) = e

(a2bdh2

2N

)

υ(γ,N) (cτ + d)1/2+ǫ θ
(ǫ)
N,ah(τ),

with

(8) υ(γ,N) =















ζbN8

(

d

|bN |

)

if d is even,

ζd−1
8

(−bN

d

)

if d is odd,

where
(

·
·

)

is the Kronecker symbol.

Proof. First we suppose d > 0. We write

γ′ =

(

a b
c d

)(

0 −1
1 0

)

=

(

b −a
d −c

)

.
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Since dγ′(τ) = b− 1

dτ − c
, we have

(9) θ
(ǫ)
N,h(γ

′(τ)) =
∑

n≡h (mod N)

nǫ e
( n2

2N

( b

d
− 1

d(dτ − c)

))

.

But e(bn2/2dN) only depends on n (mod dN). Indeed, if b ≡ 0 (mod 2),
then this assertion is obvious. Otherwise, d ≡ 0 (mod 2) and for n = kdN+r
with 1 ≤ r ≤ dN , k ∈ Z, we have n2 ≡ r2 (mod 2dN).

Hence we can split the sum (9) into classes modulo dN :

θ
(ǫ)
N,h(γ

′(τ)) =
∑

mmod dN
m≡h (mod N)

e
( bm2

2dN

)

∑

n≡m (mod dN)

nǫ e
( n2

2dN

−1

dτ − c

)

.

The second sum is the theta function associated (in the sense (5)) to the

conductor dN and residual class m (mod dN) evaluated on
−1

dτ − c
. By

applying Proposition 2.1 to this sum, we obtain
( i

dN

)1/2
(c− dτ)1/2+ǫ

∑

lmod dN

e
( lm

dN

)

∑

n≡l (mod dN)

nǫ e
( n2

2dN
(dτ − c)

)

.

If d ≡ 0 (mod 2), then n2 ≡ l2 (mod 2dN). Otherwise, c ≡ 0 (mod 2). In
both situations, cn2 ≡ cl2 (mod 2dN). Thus
(10)

θ
(ǫ)
N,h(γ

′(τ)) =
( i

dN

)1/2
(c− dτ)1/2+ǫ

∑

lmod dN

ϕ(h, l)
∑

n≡l (mod dN)

nǫ e
( n2

2N
τ
)

,

where

ϕ(h, l) =
∑

mmod dN
m≡h (mod N)

e((bm2 + 2lm− cl2)/2dN).

We rewrite ϕ(h, l) after changing the variable m by m+ cl:

ϕ(h, l) =
∑

mmod dN
m≡h−cl (mod N)

e((b(m+ cl)2 + 2l(m+ cl)− cl2)/2dN)

=
∑

mmod dN
m≡h−cl (mod N)

e((bm2 + 2adlm+ acdl2)/2dN)

since ad− bc = 1. In the term 2adlm, we replace m by h− cl (mod N):

(11) ϕ(h, l) = e(2ahl − acl2/2N)ϕ(h − cl, 0).

This expression makes possible to replace in (10) l (mod dN) by l (mod N).
We obtain

(12) θ
(ǫ)
N,h(γ

′(τ)) =
( i

dN

)1/2
(c− dτ)1/2+ǫ

∑

lmodN

ϕ(h, l) θ
(ǫ)
N,l(τ).
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Replacing τ by −1/τ and applying Proposition 2.1 to each θ
(ǫ)
N,l(−1/τ), we

get

θ
(ǫ)
N,h(γ(τ)) =

(−1)ǫ

d1/2N
(cτ + d)1/2+ǫ

∑

lmodN

φ(h, l) θ
(ǫ)
N,l(τ),

where
φ(h, l) =

∑

gmodN

ϕ(h, g) e(gl/N).

Since c ≡ 0 (mod N) and ac ≡ 0 (mod 2), the formula (11) becomes

ϕ(h, l) = e(ahl/N)ϕ(h, 0).

Hence

φ(h, l) = ϕ(h, 0)
∑

gmodN

e(g(ah + l)/N)

=

{

ϕ(h, 0)N if l ≡ −ah (mod N)
0 otherwise.

Therefore

θ
(ǫ)
N,h(γ(τ)) =

(−1)ǫ

d1/2
ϕ(h, 0) (cτ + d)1/2+ǫ θ

(ǫ)
N,−ah(τ)

=
ϕ(h, 0)

d1/2
(cτ + d)1/2+ǫ θ

(ǫ)
N,ah(τ).

We still have to calculate

ϕ(h, 0) =
∑

mmod dN
m≡h (mod N)

e
( bm2

2dN

)

.

Since ad ≡ 1 (mod N), we can write m = adh+ nN with 1 ≤ n ≤ d. Thus
we get

ϕ(h, 0) = e
(a2bdh2

2N

)

SbN,d,

where

SbN,d =
∑

1≤n≤d

e
(bNn2

2d

)

is a well known Gauss sum, calculated for example in [Mum83]:

SbN,d =























d1/2 ζbN8

(

d

|bN |

)

if d is even,

d1/2 ζd−1
8

(−bN

d

)

if d is odd.

Finally we obtain (7) for d > 0. When d < 0, we can change γ by −γ such
that the left-hand term of the equality (7) does not vary. It is easily shown
that the right-hand term does not vary either, i.e, υ(−γ,N)i = υ(γ,N).
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�

Meyer’s formula ( [Mey57]) gives, for γ =

(

a b
c d

)

∈ SL(2,Z), some func-

tions ǫ1(γ) and ǫ2(γ) such that

(13) η(γ(τ)) = ǫ1(γ) ǫ2(γ) (cτ + d)1/2 η(τ).

We can fix c > 0 or c = 0 and d > 0, changing γ by −γ if necessary; then

Im(cτ + d) ≥ 0 and we chose Re(cτ + d)
1
2 ≥ 0. If c > 0, we write c = 2r · c0

with c0 odd. If c = 0, we write c0 = r = 1. Then we have

ǫ1(γ) =

(

a

c0

)

and ǫ2(γ) = ζ
ab+cd(1−a2)−ca+3c0(a−1)+r 3

2
(a2−1)

24 .

Proposition 2.3. Let w =
24N

(12, N)
. The functions

θ
(ǫ)
N,h(τ)

η1+2ǫ(τ)
are Γ(w)-

invariant and the functions
θ
(ǫ)
N,h(τ/N)

η1+2ǫ(τ/N)
are Γ(wN)-invariant.

Proof. For γ =

(

a b
c d

)

∈ Γ(w), the multiplicative system υ(γ,N) in

Proposition 2.2 becomes simpler (see [Iwa97] Proposition 10.6): υ(γ,N) =
ǫ1(γ). The same happens with the second Meyer’s function: ǫ2(γ) = 1.

Hence the functions θ
(ǫ)
N,h(τ)/η

1+2ǫ(τ) are Γ(w)-invariant.

Let γ =

(

a b
c d

)

be an element in Γ(wN). We write

γ′ =

(

1 0
0 N

)(

a b
c d

)(

1 0
0 N

)−1

=

(

a b
N

cN d

)

,

such that γ′ ∈ Γ(w) and

θ
(ǫ)
N,h(γ(τ)/N)

η1+2ǫ(γ(τ)/N)
=

θ
(ǫ)
N,h(γ

′(τ/N))

η1+2ǫ(γ′(τ/N))
=

θ
(ǫ)
N,h(τ/N)

η1+2ǫ(τ/N)
.

�

3. Shimura’s reciprocity law

In this section we follow the interpretation of Shimura’s reciprocity law
(see [Shi71]) by Gee and Stevenhagen (see [GS98], [Gee00], [Ste00]). Let K be
an imaginary quadratic field and O an order in K with basis [α, 1]. The first
fundamental theorem of complex multiplication states that the j-invariant
j(α) is an algebraic integer and K(j(α)) is the ring class field HO of O (see,
for example, [Cox89]). For M ≥ 1, the field FM of modular functions with
level M is defined as the field of meromorphic functions on H∪{∞}, invariant

by Γ(M) and whose coefficients in the Fourier expansion in the variable q1/M

belong to the field Q(ζM ). It follows from the second fundamental theorem of
complex multiplication, stated for example in [Cox89] and proved in [Lan87]
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and [Fra35], that for a function f belonging to the field FM , the value f(α)
is an element of the ray class field HM,O with conductor M over the ring
class field HO.

Shimura’s reciprocity law gives the action of the group Gal(HM,O/HO)
on f(α) combining Artin’s reciprocity law arisen from class field theory, and
Galois theory on FM . Artin’s reciprocity law gives the exact sequence

O∗ −→ (O/MO)∗
A−→ Gal(HM,O/HO) −→ 1,

where A is the Artin map. The map

GL2(Z/MZ) −→ Gal(FM/F1)

µ =
(

1 0
0 det(µ)

)

γ 7→ (
∑

ckq
k/M 7→ (

∑

σdet(µ)(ck)q
k/M )|0γ),

where γ ∈ SL2(Z/MZ) and σdet(µ) ∈ Aut(Q(ζM )) sends ζM to ζ
det(µ)
M , is

surjective. When D < −4, its kernel is {±1}.
Then we have the following diagram, where all the sequences are exact:

O∗ −→ (O/MO)∗
A−→ Gal(HM,O/HO) −→ 1

↓ gα
{±1} −→ GL2(Z/MZ) −→ Gal(FM/F1) −→ 1.

The connection map gα sends x ∈ (O/MO)∗ to the matrix corresponding to

the multiplication by x with respect to the basis [α, 1] (gα(x)
(

α

1

)

=
(

xα

x

)

).

If X2 +Bx+C is the irreducible polynomial of α over Q, we can explicitely
describe gα by

gα : (O/MO)∗ −→ GL2(Z/MZ)

x = sα+ t 7→
(

t−Bs −Cs
s t

)

.

The map gα gives an action of (O/MO)∗ on FM and the reciprocity relation:
for x ∈ (O/MO)∗,

(f(α))x = (f gα(x−1))(α).

Moreover, denoting by F =
⋃

M≥1 FM the modular field, if the extension

F/Q(f) is Galois, then we have the fundamental equivalence:

(f(α))x = f(α) ⇔ f gα(x) = f.

We denote by

WM,α =

{(

t−Bs −Cs
s t

)

∈ GL2(Z/MZ) | t, s ∈ Z/MZ

}

the image of (O/MO)∗ by gα when D < −4. The algebraic number f(α)
belongs to HO if f is invariant by the action of WM,α/ {±1}.
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4. Galois action, proofs of the experimental results

Let χ be a primitive character with odd conductor N and order m. By

Proposition 2.3, the functions
θ
(ǫ)
N,h(τ)

η1+2ǫ(τ)
belong to the field Fw, where w =

24
(12,N) . Hence we deduce (see decomposition (4)) that the numbers Aχ(iN)

belong to the field Hw,OK
(ζm), where OK is the ring of integers of the field

K = Q(i). In this section we use Shimura’s reciprocity law to obtain more
accurated statements about the algebraicity of the numbers Aχ(iN) and
Bχ(iN).

Let

v = χ(−1), M = 24mN2,

and n = m if m is even and 2m otherwise. We consider the order O = Z[iN ]
in K = Q(i), and its ring class field HO = K(j(iN)).

By Proposition 2.3, we know that the functions Aχ(τ) and Bχ(τ) belong
to the field FM . Following the notations of section 3,

WM,iN =

{(

t −N2s
s t

)

∈ GL2(Z/MZ) | t, s ∈ Z/MZ

}

.

Proposition 4.1. For µ =

(

t −N2s
s t

)

∈ WM,iN , we have

(Bχ|µ)(τ) = (−1)
N−v

2
(t−1) Bχdet(µ)(τ)

and

(Aχ|µ)(τ)n = (−1)
(N−v)n

2
(t−1) Aχdet(µ)(τ)n.

Proof. Let µ =

(

t −N2s
s t

)

be an element in WM,iN . We write

µ =

(

1 0
0 det(µ)

)(

t −N2s
s(det(µ))−1 t(det(µ))−1

)

.

The first matrix transforms Bχ(τ) into Bχdet(µ)(τ). To explicit the action

of the second matrix we chose γ =

(

a b
c d

)

∈ SL(2,Z) a representant of
(

t −N2s
s(det(µ))−1 t(det(µ))−1

)

∈ SL2(Z/MZ) with c > 0, or c = 0 and d > 0.

Since

(14) a ≡ ddet(µ) (mod M), b ≡ −cN2 det(µ) (mod M)

and N is odd, we have γ ∈ Γθ ∩ Γ0(N2).
We write

(15) γ′ =

(

1 0
0 N

)(

a b
c d

)(

1 0
0 N

)−1

=

(

a b
N

cN d

)
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such that γ′ satisfies the conditions of Proposition 2.2 and

(16) Bχ(γ(τ)) =
θχ

(

γ′
( τ

N

))

θχ̄

(

γ′
( τ

N

))

η
(

γ′
( τ

N

))2(1+2ǫ)
.

Meyer’s formula (13) gives

η
(

γ′
( τ

N

))2
= ǫ1(γ

′)2 ǫ2(γ
′)2 (cτ + d) η

( τ

N

)2

with ǫ1(γ
′)2 = 1 and ǫ2(γ

′)2 = ζ
a b
N
+cdN(1−a2)−acN+3c0N(a−1)

12 , where c = 2rc0
with c0 odd if c > 0, and c0 = 1 if c = 0.

On the other hand, Proposition 2.2 gives the expression for the numerator
of (16):
(17)

υ(γ′, N)2 (cτ + d)2+4ǫ
∑

h1,h2 modN

χ(a−1h1) χ̄(a
−1h2) θ

(ǫ)
N,h1

( τ

N

)

θ
(ǫ)
N,h2

( τ

N

)

,

where

υ(γ′, N) = υ(γ, 1) =















ζb8

(

d

|b|

)

if d is even

ζd−1
8

(−b

d

)

if d is odd.

Since χ(t−1h1)χ̄(t
−1h2) = χ(h1)χ̄(h2), the numerator of (16) becomes

θχ

(

γ′
( τ

N

))

θχ̄

(

γ′
( τ

N

))

= υ(γ, 1)2 (cτ + d)1+2ǫ θχ

( τ

N

)

θχ̄

( τ

N

)

.

Hence

Bχ(γ(τ)) =
υ(γ, 1)2

ǫ2(γ′)2(1+2ǫ)
Bχ(τ).

We use the congruences (14) to calculate υ(γ, 1)2/ǫ2(γ
′)2(1+2ǫ).

On the one hand, cdN(1−a2) ≡ 0 (mod 3) because either a2 ≡ 1 (mod 3),
either a ≡ 0 (mod 3), in which case d ≡ 0 (mod 3).

On the other hand, a b
N − acN ≡ −acN(1 + det(µ)) ≡ 0 (mod 12). The

first congruence is clear, also is the second modulo 4. For the second con-
gruence modulo 3, either det(µ) ≡ −1 (mod 3), either det(µ) ≡ 1 (mod 3),
in which case a ≡ d (mod 3), so ad − bc = 1 implies bc ≡ 0 (mod 3), and
thus c ≡ 0 (mod 3) or N ≡ 0 (mod 3). Hence

(18) ǫ2(γ
′)2 = ζ

3cdN(1−a2)+c0N(a−1)
4 .

We distinguish two cases.
1) If d is odd, then, the congruences (14) and the equation ad − bc = 1

imply that ad ≡ 1 (mod 4), so the exponent of ζ4 in (18) becomes

c0N(a− 1) ≡ c0N(d− 1) (mod 4).
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Therefore

υ(γ, 1)2

ǫ2(γ′)2(1+2ǫ)
=

ζd−1
4

ζ
c0N(d−1)(1+2ǫ)
4

= ζ
(d−1)(1−c0N(1+2ǫ))
4 = 1.

2) If d is even, then, because of congruences (14), the exponent of ζ4 in
(18) becomes

3cdN + cN(a− 1) ≡ cN(3d + a− 1) ≡ −cN (mod 4),

so
υ(γ, 1)2

ǫ2(γ′)2(1+2ǫ)
=

ζb4

ζ
−cN(1+2ǫ)
4

= ζ
c((1+2ǫ)N−1)
4 = (−1)

N−v
2 .

The second equality can be deduced from the congruences b ≡ c ≡ 1 (mod 2)
and bc ≡ −1 (mod 4).

Thus
(Bχ|µ)(τ) = (−1)

N−v
2

(t−1) Bχdet(µ)(τ).

We can explicit the action of WM,iN on Aχ(τ)
n in a similar way. The

expression (17) becomes in this case

υ(γ′, N)n (cτ + d)n/2+nǫ
∑

h1,...,hn modN

n
∏

j=1

χ(a−1hj) θ
(ǫ)
N,hj

( τ

N

)

,

with υ(γ′, N) = υ(γ, 1). Since χ(a−1)n = 1, following the previous notations
(15), we have

θχ

(

γ′
( τ

N

))n
= υ(γ, 1)n (cτ + d)n/2+nǫ θχ

( τ

N

)n
,

so

Aχ(γ(τ))
n =

υ(γ, 1)n

(ǫ1(γ′)ǫ2(γ′))(1+2ǫ)n
Aχ(τ)

n = (−1)
(N−v)n

2
(d−1)Aχ(τ)

n

and

(Aχ|µ)(τ)n = (−1)
(N−v)n

2
(t−1) Aχdet(µ)(τ)n.

�

From now on we suppose N = p > 2 is prime and we denote by X(p,m) the
set of characters with conductor p and order m up to complex conjugation.
All characters with fixed prime conductor and fixed order have the same
parity; as before v = 1 if they are even and v = −1 if they are odd.

Theorem 4.2. The following sets are orbits for the action of the group

Gal(HM,O/HO) on the field HM,O:

(i)
{

Bχ(ip)
2 | χ ∈ X(p,m)

}

,

(ii) {Bχ(ip) | χ ∈ X(p,m)} if p ≡ v (mod 4),

(ii)
{

Aχ(ip)
2n, Aχ̄(ip)

2n | χ ∈ X(p,m)
}

,

(iv) {Aχ(ip)
n, Aχ̄(ip)

n | χ ∈ X(p,m)} if m ≡ 0 (mod 4) or p ≡ v (mod 4).

The proof follows from the two lemmas below.
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Lemma 4.3. Given χ ∈ X(p,m), we have

X(p,m) = {χσ, χ̄σ | σ ∈ (Z/mZ)∗} .
Proof. The inclusion of the right-hand set into X(p,m) is clear. We

should see that given χ and χ′ in X(p,m), the character χ′ is in the (Z/mZ)∗-
orbit of χ.

The group (Z/pZ)∗ is cyclic; let h be a generator. The groups Im(χ) and
Im(χ′) are contained in the group of the m-th roots of unity, which is also
cyclic and from which χ(h) and χ′(h) are generators. We write χ′(h) = χ(h)σ

with σ ∈ (Z/mZ)∗.

For hσ
′ ∈ (Z/pZ)∗, we have

χ′(hσ
′

) = χ′(h)σ
′

= χ(h)σσ
′

= χ(hσ
′

)σ ,

so χ′ = χσ.

�

Lemma 4.4. The following sets equality is satisfied:

(19) (Z/mZ)∗ =
{

±(t2 + s2) (mod m) : (t2 + p2s2, 6mp) = 1
}

.

Proof. Let u ∈ Z be coprime with m. By Dirichlet’s Theorem, there
exists a prime number q 6= 3, p such that

q ≡















u (mod 4m) if u ≡ 1 (mod 4)
−u (mod 4m) if u ≡ 3 (mod 4)
u+m (mod 4m) if u ≡ 0 (mod 2) and u+m ≡ 1 (mod 4)
−(u+m) (mod 4m) otherwise.

In all cases q ≡ 1 (mod 4) and we can write q = t2+ s2 with t, s ∈ Z. Hence

u ≡ ±(t2 + s2) (mod m).

We want to show (t2 + p2s2, 6pm) = 1. Since all the expressions above are
symmetric in t and s, we can suppose p ∤ t. Then (t2 + p2s2, p) = 1. When
p 6= 3, the integers s2 and p2s2 are the same modulo 2, and also modulo
3, so t2 + p2s2 ≡ q (mod 6). Since q 6= 2, 3, (t2 + p2s2, 6) = 1. (If p = 3,
also (t2 + p2s2, 6) = 1 because p ∤ t). Since p ≡ 1 (mod m), t2 + p2s2 ≡ ±u
(mod m). We chose u coprime with m, so (t2 + p2s2, 6pm) = 1. Therefore
±(t2 + s2) (mod m) belongs to the set on the right hand side of (19).

�

By Lemmas 4.3 and 4.4,

X(p,m) =
{

χdet(µ) | µ ∈ WM,ip

}

.

Then Theorem 4.2 follows from Proposition 4.1.

Corollary 4.5. We have

(i) N (p,m)2 ∈ HO,

(ii) N (p,m) ∈ HO if |X(p,m)| ≡ 0 (mod 2) or p ≡ v (mod 4).
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Corollary 4.6. For all χ ∈ X(p,m),

[HO(Bχ(ip)) : K] ≤











|X(p,m)|(p − v)

2
if p ≡ v (mod 4),

|X(p,m)|(p + v) if p ≡ −v (mod 4).

Proof. Denoting by h(O) the class number of O = Z[ip],

[HO : K] = |Gal(HO/K)| = |Cl(O)| = h(O).

Applying the general formula for the class number of an imaginary quadratic
order (see [Cox89]), we have

h(O) =















p− 1

2
if p ≡ 1 (mod 4)

p+ 1

2
if p ≡ 3 (mod 4).

We deduce from the statements (i) and (ii) of Theorem 4.2

[HO(Bχ(ip)) : HO] ≤







2|X(p,m)| if p ≡ −v (mod 4)

|X(p,m)| if p ≡ v (mod 4).

�

Theorem 4.7. There is a constant c > 0 such that for all non-quadratic χ
with prime conductor p = 2l+1, where l is prime, satisfying p > c, we have

θχ(i) 6= 0.

Proof. Louboutin proved in [Lou99] that there is a constant c > 0 such
that θχ(i) 6= 0 for at least cp/ log(p) characters of the (p−1)/2 odd characters
with conductor p and of the (p − 1)/2 even ones. When p = 2l + 1, there
is one odd character having order 2, (p − 3)/2 odd characters having order
2l, (p− 1)/2 even characters having order l and the trivial (even) character.
By Theorem 4.2, if Bχ(ip) 6= 0 for some χ ∈ X(p,m), then Bχ(ip) 6= 0
for all χ ∈ X(p,m). Thus θχ(i) 6= 0 for all non-quadratic characters with
conductor p satisfying log(p)/p < c.

�

Remark 4.8. For odd but maybe not prime N , Theorem 4.2 does not apply,

but we have

(20)
∏

χ∈X(N,m)

(X −Bχ(iN)2) ∈ HO[X].

If N |X(N,m)| ≡ ∑

χ∈X(N,m) χ(−1) (mod 4), then the square in (20) is not

necessary.

Acknowledgements. This work is part of my PhD thesis. I wish to
express my gratitude to Don Zagier for his precious advice in discussing
mathematics and to Pilar Bayer for her careful reading of this paper.



GALOIS ACTION ON SPECIAL THETA VALUES 13

References

[CZ13] Cohen, H; Zagier, D.: Vanishing and non-vanishing theta values. Annales
mathï¿ 1

2
matiques du Quï¿ 1

2
bec 37 (2013), 45-61 (special issue dedicated to Profes-

sor Paulo Ribenboim).
[Cox89] Cox, D.: Primes of the form x2 + ny2. John Wiley & Sons, 1989.
[Fra35] Franz, W.: Die Teilwert der Weberschen Tau-Funktion. J. reine angew. Math. 173

(1935) 60-64.
[Gee00] Gee, A.: Class fields by Shimura reciprocity. Thesis, University of Amsterdam

(2000).
[GS98] Gee, A.; Stevenhagen, P.: Generating class fields using Shimura reciprocity. Algo-

rithmic Number Theory (J. P. Buhler, ed.). Springer LNCS 1423 (1998) 441-453.
[Iwa97] Iwaniec, H.: Topics in Classical Automorphic Forms, American Mathematical

Soc, 1997.
[Lan87] Lang, S.: Elliptic functions, 2nd edition, Springer-Verlag, Berlin-Heidelberg-New

York, 1987.
[Lou99] Louboutin, S.: Sur le calcul numï¿ 1

2
rique des constantes des ï¿ 1

2
quations fonc-

tionnelles des fonctions L associï¿1
2
es aux caractï¿ 1

2
res impairs. C.R. Acad. Sci. Paris

329 (1999) 347-350.
[Mey57] Meyer, C.: ï¿ 1

2
ber einige Anwendungen Dedekindscher Summen. J.reine

angew.Math. 198 (1957) 143-203.
[Mum83] Mumford, D.: Tata Lectures on Theta I. Birkhï¿ 1

2
user, 1983.

[Shi71] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions.
Iwanami Shoten and Princeton University Press, 1971.

[Ste00] Stevenhagen, P.: Hilbert’s 12th problem, complex multiplication and Shimura reci-

procity. Adv. studies in pure mathematics, Math. Soc. Japan (2000) 1-16.

Department of Mathematics, University of York, York, YO10 5DD, United

Kingdom

E-mail address: paloma.bengoechea@york.ac.uk


	1. Introduction
	2. Modularity
	3. Shimura's reciprocity law
	4. Galois action, proofs of the experimental results
	References

