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Gravitational waves emitted by a particle rotating around a Schwarzschild black hole:

A semiclassical approach
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We analyze the gravitational radiation emitted from a particle in circular motion around a
Schwarzschild black hole using the framework of quantum field theory in curved spacetime at tree
level. The gravitational perturbations are written in a gauge-invariant formalism for spherically sym-
metric spacetimes. We discuss the results, comparing them to the radiation emitted by a particle
when it is assumed to be orbiting a massive object due to a Newtonian force in flat spacetime.

PACS numbers: 04.60.-m, 04.62.+v, 04.50.-h, 04.25.Nx, 04.60.Gw, 11.25.Db

I. INTRODUCTION

Black holes are among the most important predictions
of General Relativity (GR). Several observations indicate
the presence of supermassive black holes in the center
of nearly all large galaxies [1, 2]. In addition, there is
strong evidence for stellar-mass black holes having an
influence on other stars in binary systems [3], emitting
X-rays through accretion (see Ref. [4] for a review on
observational evidence of stellar-mass and supermassive
black holes). Moreover, black holes are believed to play
an important part in powerful astrophysical processes,
such as gamma-ray bursts [5]. The recent detections of
gravitational waves [6, 7] emitted by binary black hole
mergers make the study of black holes and radiation-
emission scenarios even more appealing, particularly the
emission of gravitational waves. Binary black hole sys-
tems can provide settings in which the extreme curva-
ture of the black hole generates remarkable signatures
which can, in principle, be experimentally detected. It
is also interesting to study gravitational radiation emit-
ted by a relatively small object which can be approxi-
mated by a point particle in circular orbit around a black
hole, in highly relativistic motion, the so-called geodesic
synchcrotron radiation scenario. The possibility of this
mechanism for gravitational synchrotron radiation was
raised in Refs. [8, 9]. While studying the scalar radia-
tion emitted by a point source in circular geodesic mo-
tion around a Schwarzschild black hole, it was argued
that gravitational radiation emitted by the source would
be mostly of the synchrotron type, which has frequen-
cies much higher than the angular frequency of the orbit
and radiation distributed in narrow angles. This was fur-
ther investigated in Ref. [10] where the authors computed
the high-frequency spectra of electromagnetic and gravi-
tational radiation for a particle orbiting a Schwarzschild
black hole. In Refs. [11, 12], using the Regge-Wheeler for-
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malism [13–15] and Green’s function techniques [16–19],
it was shown that the spectrum of gravitational radiation
from a point particle around a Schwarzschild black hole
is much broader than the scalar or electromagnetic ones,
at least for high-l multipole modes. For stable orbits, a
full analysis and numerical computations were done in
Refs. [20, 21].

The framework of Quantum Field Theory (QFT) in
curved spacetimes [22, 23] has been used at tree level to
compute the (massless) scalar radiation of a point source
in circular orbit around Schwarzschild [24, 25], Reissner-
Nordström [26] and Kerr black holes [27]. The case of
massive scalar radiation from a point source orbiting a
stellar object or a Schwarzschild black hole was analyzed
in Ref. [28]. Electromagnetic radiation from a point
charge rotating around an uncharged static black hole
was analyzed in Ref. [29], using the same semiclassical
approach. Although this approach is found to give the
same results as the classical methods (e.g. using Green’s
function techniques), it will make the radiative quantum
corrections to these results more straightforward. It also
allows an alternative interpretation of the radiation pro-
cesses discussed in this paper. We also find that by re-
garding the classical fields as quantum particles one can
treat several aspects of the radiation phenomena in an
unified manner.

In this paper we analyze the gravitational radiation
emitted by a point particle in geodesic circular orbit
around a Schwarzschild black hole using the framework
of QFT in curved spacetimes at tree level. Using numer-
ically obtained solutions, we compute the total emitted
power, as well as the power radiated to infinity in both
stable and unstable orbits. We also analyze the spectrum
of the emitted radiation.

The rest of this paper is organized as follows. In Sec. II
we present the formalism developed in Refs. [30, 31]
for linear perturbations of the gravitational field around
spherically symmetric spacetimes. We give a brief re-
view of the formalism, specializing it to the background
of a 4-dimensional Schwarzschild spacetime. In Sec. III
we present the framework of QFT for linearized gravity
in which we will work, applying this framework to the
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case of a point particle emitting gravitational radiation,
in geodesic circular motion around a Schwarzschild black
hole. We also obtain numerical results for the emitted
power of gravitational radiation. In Sec. IV we com-
pare these results to an analogous case in flat spacetime,
namely the radiation emitted by a particle orbiting a
Newtonian massive object. We conclude this paper with
some remarks in Sec. V. We present the derivation of the
normalization factor of one type of the modes, the scalar-
type modes, in Appendix A. Throughout this paper we
use the metric signature −+++ and natural units such
that G = c = ~ = 1.

II. GRAVITATIONAL PERTURBATIONS IN

SCHWARZSCHILD SPACETIME

In this section we present a brief review of the formal-
ism developed in Refs. [30, 31]. By expanding suitably
defined gauge-invariant quantities in terms of harmonic
tensors, the perturbed Einstein’s equations are reduced
to a set of self-adjoint ordinary differential equations, one
for each type of perturbation: scalar-, vector- and tensor-
type gravitational perturbations. This formalism can be
used for background spacetimes in any dimensions with
some special isometries. Here we restrict this formalism
to Schwarzschild spacetime in 3+1 dimensions.

A. Background Schwarzschild Spacetime

We work in the background spacetime of a chargeless
nonrotating black hole of mass M , described by the line
element:

ds2 = gµνdx
µdxν

= −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdϕ2), (1)

where

f(r) = 1− 2M

r
. (2)

It is useful for us to define the line element of the orbit
spacetime:

ds2orb = gabdx
adxb = −f(r)dt2 +

dr2

f(r)
. (3)

As we will see in Sec. II B it is basically in the orbit
spacetime that the dynamical equations for perturbations
have to be solved. It is also useful to define the line
element of the two-sphere S2:

dσ2 = γijdx
idxj = dθ2 + sin2 θdϕ2. (4)

The definitions (1), (3) and (4) above establish part of the
notation used. Greek letters are used for spacetime in-
dices running from 0 to 3, the first letters from the Latin

alphabet are used for the t and r components and letters
i, j, k, ... are used for the θ and ϕ components. Covariant
derivatives and Christoffel symbols corresponding to ds2,
ds2orb and dσ2 are denoted by ∇µ, Γ

α
µν ; Da, Γ

a
bc; and D̂i,

Γ̂i
jk respectively.

B. Scalar-type and vector-type perturbations

Gravitational perturbations of the scalar-type are de-
fined as the metric perturbations whose angular depen-
dence is described by the scalar spherical harmonics
Y lm(θ, ϕ), which satisfy

(

∆̂2 + k2S

)

Y lm(θ, ϕ) = 0, (5)

with eigenvalues

k2S = l(l + 1), l = 0, 1, 2, ..., (6)

where ∆̂2 is the Laplace-Beltrami differential operator on
S2, namely

∆̂2 ≡ 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2
. (7)

The solutions to Eq. (5) are given by

Y lm(θ, ϕ) = ClmP l
m(cos θ)eimϕ. (8)

The normalization constants are [32]:

Clm =

√

(2l + 1)

4π

(l −m)!

(l +m)!
. (9)

The scalar-type metric perturbation modes h
(S;lm)
µν can

be written as follows [31]

h
(S;lm)
ab = f

(S;l)
ab Y lm, (10)

h
(S;lm)
ai = rf (S;l)

a S
(lm)
i , (11)

h
(S;lm)
ij = 2r2

(

HS;l
L γijY

lm +HS;l
T S

(lm)
ij

)

, (12)

where

S
(lm)
i = − 1

kS
D̂iY

lm, (13)

S
(lm)
ij =

1

k2S
D̂iD̂jY

lm +
1

2
γijY

lm. (14)

The quantities f
(S;l)
ab , f

(S;l)
a , HS;l

L and HS;l
T are gauge-

dependent quantities and functions of t and r only.
Gauge-invariant quantities can be defined for l ≥ 2

and written in terms of a master variable ΦS
l (t, r), which

satisfies the following wave equation, resulting from the
perturbed Einstein’s equations:

�ΦS
l (t, r)−

VS(r)

f(r)
ΦS

l (t, r) = 0, (15)
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with the Zerilli effective potential [15]:

VS(r) = f(r)
2λ2(λ+ 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2

(16)

where

λ =
1

2
(l − 1)(l + 2). (17)

The � is the d’Alembert operator in the orbit spacetime,
namely

� ≡ −f(r)−1 ∂2

∂t2
+

∂

∂r

[

f(r)
∂

∂r

]

. (18)

The derivation of Eq. (15) is highly involved and can be
found in Refs. [30, 31]. Using the same gauge choice as
in Refs. [33, 34], one can write the perturbation modes
in terms of the master variable ΦS

l (t, r) as

h
(S;lm)
ai = 0, (19)

h
(S;lm)
ij = 2r2γijF

lY lm, (20)

h
(S;lm)
ab = F

(l)
ab Y

lm, (21)

with

F l =
1

4r2H

[
(H − rf ′)ΩS

l + 2rDarDaΩ
S
l

]
,

(22)

F
(l)
ab =

1

H

(

DaDb −
1

2
gab�

)

ΩS
l , (23)

H = 2

(

λ+
3M

r

)

, (24)

and

ΩS
l = rHΦS

l . (25)

The mode with l = 0 cannot be described in terms of
the master variable of Eq. (15). However, it is a spher-
ically symmetric perturbation, which, by Birkhoff’s the-
orem, consists in a shift of the mass parameter of the
black hole [16]. Hence, we will not consider this mode,
since it is non-radiative. The l = 1 modes can always be
eliminated by a gauge transformation [31].
Gravitational vector-type perturbations are defined as

the metric perturbations whose angular dependence is
described by vector spherical harmonics satisfying the
following equations

(

∆̂2 + k2V

)

Y
(lm)
i (θ, ϕ) = 0, (26)

D̂jY
(lm)
j (θ, ϕ) = 0. (27)

The set of eigenvalues takes the form

k2V = l(l + 1)− 1, l = 1, 2, 3, .... (28)

The solutions to Eqs. (26) and (27) on the unit 2-sphere
are [13, 35]

Y
(lm)
i (θ, ϕ) =

ǫij
√

l(l + 1)
∂̂jY lm(θ, ϕ). (29)

The Levi-Civita tensor on the S2 is defined by

ǫθθ = ǫϕϕ = 0, (30)

ǫθϕ = −ǫϕθ = sin θ. (31)

The gravitational perturbation modes of the vector-type

h
(V ;lm)
µν can be written as

h
(V ;lm)
ab = 0, (32)

h
(V ;lm)
ai = rf (V ;l)

a Y
(lm)
i , (33)

h
(V ;lm)
ij = 2r2HV ;l

T V
(lm)
ij , (34)

with

V
(lm)
ij = − 1

2kV

(

D̂iY
(lm)
j + D̂jY

(lm)
i

)

. (35)

By defining the gauge-invariant quantity for the modes
with l ≥ 2,

F (V ;l)
a = f (V ;l)

a +
r

kV
DaH

V ;l
T , (36)

we can write it in terms of a master variable ΦV
l (t, r) as

rF (V ;l)
a = ǫabD

b
(
rΦV

l

)
. (37)

The master variable satisfies the following equation:

�ΦV
l (t, r)−

VV (r)

f(r)
ΦV

l (t, r) = 0, (38)

with the Regge-Wheeler effective potential [13]:

VV (r) = f(r)

(
l(l + 1)

r2
− 6M

r3

)

. (39)

The l = 1 vector-type modes correspond to rotational
perturbations, i.e. perturbations which give nonzero an-
gular momentum to the background metric [16]. Again,
we will not consider these non-radiative modes. In a spe-
cific gauge choice [33, 34], one can write the vector-type
modes as follows

h
(V ;lm)
ai = Y

(lm)
i ǫabD

b
(
rΦV

l

)
, (40)

with all other components vanishing, where ǫab is the
Levi-Civita tensor in the orbit spacetime.
In n + 1 dimensional spacetime with n ≥ 4, there are

also gravitational tensor-type perturbations, whose an-
gular dependence is given by traceless tensor spherical
harmonics. However, they do not exist on S2 [13, 36].
(A concise proof of this fact can be found in Ref. [35].)
Thus, there are no tensor-type modes for gravitational
perturbations in 3 + 1 dimensions.
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III. QUANTIZATION AND GEODESIC

SYNCHROTRON RADIATION

We will consider the case of a test1 point particle in
circular orbit emitting gravitational waves as it rotates
around the black hole. We compute the emitted power
using a semiclassical analysis, i.e. by considering the
gravitational perturbations as a quantized field in the
background Schwarzschild spacetime.

A. Quantization of gravitational perturbations in

Schwarzschild spacetime

We quantize the field hµν in the same manner as in
Refs. [33, 34] (see Ref. [37] for a more complete descrip-
tion.) The Lagrangian density of free linearized gravity
in a background spacetime can be written as:

L =
√−g

[

∇µh
µλ∇νhνλ − 1

2
∇λhµν∇λhµν

+
1

2
(∇µh− 2∇νh

µν)∇µh+Rµνλσh
µλhνσ

]

,

(41)

where h ≡ hµ
µ. The conjugate momentum current is

given by

pλµν ≡ 1√−g

∂L
∂(∇λhµν)

, (42)

thus

pλµν = −∇λhµν + gλµ
(

∇κh
κν − 1

2
∇νh

)

+gλν
(

∇κh
κµ − 1

2
∇µh

)

+ gµν
(
∇λh−∇κh

λκ
)
.

(43)

Note that we have not yet chosen any gauge condition.
For any two solutions to the Euler-Lagrange equations,
we define their symplectic product by

Ω(h, h′) ≡ −
∫

Σ

dΣnα

(
hµνp

′αµν − pαµνh′
µν

)
, (44)

where pαµν and p′αµν are the conjugate momentum cur-
rents of the two solutions hµν and h′

µν , respectively, and
Σ is a Cauchy surface with future-directed unit normal
vector nα. It can be shown that Ω(h, h′) is independent of
the choice of Σ [37, 38]. If there were no degeneracy, i.e. if

there were no solutions h
(null)
µν satisfying Ω(h(null), h) = 0

for all solutions hµν , one could define an inner product
by

〈h, h′〉 = iΩ(h, h′), (45)

1 The word “test” is used here in the sense that the particle does
not modify the background metric field.

where the overbar denotes complex conjugation. Sup-
pose that a complete set of positive-frequency solutions,
i.e. solutions whose time dependence is of the form e−iωt,

ω > 0, is given by {h(n)
µν }, where n represents all (con-

tinuous and discrete) labels. Then a positive- and a
negative-frequency solution would be orthogonal to one
another with respect to the inner product (45), and this
inner product would be positive definite on the space of
positive-frequency solutions. Then, we could expand the

quantum field ĥµν(x) as

ĥµν(x) =
∑

n

[

ânh
(n)
µν (x) + â†nh

(n)
µν (x)

]

. (46)

The canonical equal-time commutation relations would
be equivalent to

[âm, â†n] =
(
M−1

)

mn
(47)

and

[âm, ân] = [â†m, â†n] = 0, (48)

where M−1 is the inverse of matrix Mmn = 〈h(m), h(n)〉.
However, due to gauge invariance, the simplectic prod-
uct given by (44) is degenerate: a pure gauge solution

h
(gauge)
µν = ∇µΛν +∇νΛµ has vanishing simplectic prod-

uct with any other solution, as it is well known. Thus, one
needs to modify the quantization procedure described
above. One standard way to proceed is to consider only
the physical solutions, i.e. solutions satisfying gauge con-
ditions that fix the gauge degrees of freedom completely.
When all gauge degrees of freedom are eliminated, the
simplectic product is non-degenerate and one quantizes
the field by imposing the equal-time commutation rela-
tions given by Eqs. (47) and (48). We follow this proce-
dure after fixing the gauge completely as described in
Sec. II B and normalizing the scalar- and vector-type
modes, so that Mmn = δmn, which may involve Dirac
delta functions. Thus, we expand the quantum gravita-
tional perturbation as in Eq. (46) in terms of positive-
and negative-frequency solutions given by Eqs. (19)-(21)
and (40), with definite frequencies ω. We require the
positive-frequency solutions to be normalized with re-
spect to the inner product (45) as follows:

〈h(P ;ωlm), h(P ′;ω′l′m′)〉 = δPP ′

δll
′

δmm′

δ(ω − ω′),

(49)

where P = S, V labels the type of the perturbations, with
S denoting the scalar-type and V denoting the vector-
type perturbations.
We write the positive-frequency modes of the master

variables as

ΦP
ωl(t, r) = e−iωtuP

ωl(r), ω > 0. (50)

Then the functions uP
ωl(r) satisfy the following

Schrödinger-like differential equation:

−f(r)
d

dr

(

f(r)
d

dr
uP
ωl(r)

)

+
(
VP (r)− ω2

)
uP
ωl(r) = 0.

(51)
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Close to and far away from the horizon, both effective po-
tentials given by Eqs. (16) and (39) tend to zero. Hence
the two independent solutions of Eq. (51) can be written
as

uP,up
ωl ≈

{

AP
ωl(e

iωr∗ +RP,up
ωl e−iωr∗), r & 2M,

AP
ωlT

P,up
ωl eiωr∗ , r ≫ 2M ;

(52)

uP,in
ωl ≈

{

AP
ωlT

P,in
ωl e−iωr∗ , r & 2M,

AP
ωl(e

−iωr∗ +RP,in
ωl eiωr∗), r ≫ 2M,

(53)

where r∗ ≡ r + 2M log
(

r
2M − 1

)
is the tortoise coordi-

nate.
The modes uP,up

ωl are purely incoming from the past

horizon H− while the modes uP,in
ωl are purely incoming

from the past null infinity J−. Using Eq. (49), we de-
termine the asymptotic normalization constants AP

ωl to
be:

AV
ωl =

1
√

8πω(l − 1)(l + 2)
(54)

and

AS
ωl =

1
√

2πω(l − 1)l(l + 1)(l + 2)
. (55)

We present the calculation of the inner product for
the scalar-type modes, which is necessary for finding
Eq. (55), in Appendix A.

B. Gravitational radiation emission by a point

particle

The point particle will contribute to the action with
the interaction term given by

ŜI =

√
32π

2

∫

d4x
√−gTµν(x)ĥµν(x), (56)

where Tµν is its energy-momentum tensor. Without loss
of generality (due to the spherical symmetry of the prob-
lem), we consider the particle orbiting the black hole in
the θ = π/2 plane, at r = R, with angular velocity Ω, as
measured by a static asymptotic observer. Its 4-velocity
is written as

uµ = (γ, 0, 0, γΩ), (57)

where

γ =
dt

dτ
=

1

[f(R)−R2Ω2]
1

2

. (58)

One can write the energy-momentum tensor as

Tµν = µ
uµuν

γ
√−g

δ(r −R)δ(θ − π/2)δ(ϕ− Ωt), (59)

where µ is the particle’s mass.

We expand the graviton field ĥµν(x) as:

ĥµν(x) =
∑

P,λ

∞∑

l=2

l∑

m=−l

∞∫

0

dω
[

âP,λ
lm (ω)h(P,λ;ωlm)

µν (x)

+âP,λ
lm

†
(ω)h

(P,λ;ωlm)
µν (x)

]

. (60)

To first order in perturbation theory, the emission am-
plitude of a λ = in, up graviton of the P -type with quan-
tum numbers l,m and frequency ω is

AP,λ;ωlm
em = 〈P, λ;ωlm|iŜI |0〉, (61)

which can be found to be

AP,λ;ωlm
em =

i
√
32π

2

∫

d4x
√−gTµνh

(P,λ;ωlm)
µν . (62)

Here, the initial state |0〉 is the one annihilated by all

the âP,λ
lm (ω), i.e. the Boulware vacuum. If we had chosen

the Unruh [39] or Hartle-Hawking vacuum states [40] (see
also Refs. [41, 42]), then the transition rate calculated
from the amplitude given by Eq. (61) would be associated
with the net radiation emitted by the particle, since the
absorption and stimulated emission rates (these two rates
are induced by the thermal fluxes) give the same result.
The emission amplitude AP,λ;ωlm

em is proportional to δ(ω−
mΩ), and hence the particle will only emit gravitons with
the condition ω = mΩ satisfied. In particular, since ω
and Ω are both positive, only modes with m ≥ 1 will be
emitted.
The emitted power for a graviton with a given type of

labels P, λ and quantum numbers l,m reads

WP,λ;lm
em =

∞∫

0

dω ω
|AP,λ;ωlm

em |2
T

, (63)

where

T = 2πδ(0) =

∞∫

−∞

dt (64)

is the total time measured by an asymptotic static ob-
server [43]. Thus, the vector-type contributions to the
emitted power are given by

WV,λ;lm
em = 64π2µ2γ2f(R)2mΩ3

∣
∣
∣Y (lm)

ϕ

(π

2
,Ωt

)∣
∣
∣

2

×
∣
∣
∣
∣

d

dR

(

RuV,λ
ωml(R)

)
∣
∣
∣
∣

2

, (65)

with

ωm = mΩ. (66)

We note that the vector-type modes only contribute
for odd values of (l + m), due to the presence of the
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∣
∣
∣Y

(lm)
ϕ

(
π
2 ,Ωt

)
∣
∣
∣

2

factor, which vanishes for even values of

(l+m). The scalar-type contributions can be written as

WS,λ;lm
em = 16π2µ2γ2mΩ

∣
∣
∣Y (lm)

(π

2
,Ωt

)∣
∣
∣

2

×
∣
∣
∣F

(λ;ωml)
tt (R) + 2R2Ω2Fλ;ωml(R)

∣
∣
∣

2

,

(67)

where the functions F
(λ;ωml)
tt (R) and Fλ;ωml(R) are:

Fλ;ωml(R) =
1

4HR2

{

[H −Rf ′(R)]
[

RHuS,λ
ωml(R)

]

+2Rf(R)
d

dR

[

RHuS,λ
ωml(R)

]}

(68)

and

F
(λ;ωml)
tt (R) =

1

2H

{

f(R)2
d2

dR2

[

RHuS,λ
ωml(R)

]

−ω2
mRHuS,λ

ωml(R)
}

. (69)

We note that only the scalar-type modes with even values
of (l + m) contribute to the emitted power due to the
∣
∣Y (lm)

(
π
2 ,Ωt

)∣
∣
2
factor.

Next, we compute numerically the solutions to
Eqs. (15) and (38) in the frequency domain. We inte-
grate numerically these differential equations by requir-
ing the boundary conditions given by Eqs. (52) and (53)
to be satisfied, choosing suitable values of r. For the
value close to the horizon, we have chosen r/M ≥ 2 + ǫ,
with ǫ = 10−3. As for the “numerical infinity”, r∞, we
write it as a function of l and ωm such that the following
condition is satisfied

ω2
m ≫ l(l + 1)

r2∞
. (70)

In our computation we have chosen our “numerical infin-
ity” to be:

r∞ =
250

√

l(l + 1)

ωm
. (71)

With the numerically obtained solutions, we use
Eqs. (65) and (67) to compute the total emitted power
as

Wem =
∑

λ

∞∑

l=2

l∑

m=1

(
WS,λ;lm

em +WV,λ;lm
em

)
. (72)

We compute the emitted power as a function of the an-
gular velocity Ω, relating to it the radial coordinate R of
the test particle by

R =

(
M

Ω2

)1/3

, (73)

which is required for the particle to be in circular orbit
around the black hole, according to GR [44]. We in-

clude in our results both stable (up to Ω = (6
√
6M)−1 ≈

0.068 M−1) and unstable circular orbits (up to Ω =

(3
√
3M)−1 ≈ 0.192 M−1). As the circular orbit ap-

proaches the orbit of the light ray at R = 3M , the emit-
ted power increases rapidly, mainly because its motion
becomes ultrarelativistic (the particle’s energy increases
with ut). For this reason we find it more appropriate
to plot the emitted power on a logarithmic scale. The
particle becomes ultrarelativistic only for unstable orbits
and we note that, if backreaction is taken into account,
a particle in an unstable orbit starts its plunge into the
black hole.

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

W
e
m

  
M

2
 µ

-2
 

Ω M

l
max

 = 2

l
max

 = 3

l
max

 = 4

l
max

 = 6

l
max

 = 10

l
max

 = 20

Figure 1. Total power emitted by the test particle rotating
around the black hole, given by Eq. (72), plotted as a function
of the angular velocity Ω. The summation in l in Eq. (72) is
truncated at a certain value of l, which we denote as lmax.
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Figure 2. Scalar-type power emitted by the test particle,
given by Eq. (67), as a function of the angular velocity Ω.
We show here the modes with l = m, which give the main
contributions to the total emitted power.

The results for the emitted power are plotted in Figs. 1,
2 and 3. For stable orbits, the main contribution to
the total emitted power are the modes with l = 2
(m = 2 and m = 1 for the scalar- and vector-type radi-
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Figure 3. Comparison between the l = 2 scalar-type power,
given by Eq. (67), and the l = 2 vector-type power emitted
by the test particle, given by Eq. (65), as a function of the
angular velocity Ω.

ation, respectively). We note that the vector-type emit-
ted power, given by Eq. (65), is suppressed by a factor
of R2Ω2 = M/R, compared to the scalar-type emitted
power [20], given by Eq. (67) (see Fig. 3).
We note that the l = 2 modes have a dominant contri-

bution to the emitted power for most of the Ω range, as
one can see in Fig. 4. The contribution from all the other
l modes start to dominate over the l = 2 mode contribu-
tion at Ω ≈ 0.164 M−1. For unstable orbits, the high-
l contributions become more important, but the l = 2
modes still have a significant contribution (see Fig. 5).
For stable orbits, we can see that the contribution of the
high multipoles is small. For unstable orbits, high mul-
tipoles are enhanced, but the low multipoles (especially
the l = 2 modes) are still important.
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Figure 4. Comparison between the contributions of the l = 2
and l > 2 modes (we considered contributions up to l = 20).
For most of the range of Ω (up to Ω ≈ 0.164 M−1), the l = 2
mode is the dominant contribution.
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em /Wem between the emitted power of the
l = 2 modes and the total emitted power (we have considered
contributions to the total emitted power up to l = 20). The
l = 2 modes remain relevant contributions to the emitted
power even for unstable orbits.

One can compute the power of emitted gravitons ob-
served at infinity by considering only the modes which
are purely outgoing at future null infinity. Since these

modes are related to the modes uP,in
ωl by complex conju-

gation, we can write the power observed at infinity as2

W obs
em =

∑

P,l,m

WP,in;lm
em . (74)

In Figs. 6 and 7, the ratio W obs
em /Wem is plotted as a

function of the angular velocity Ω. For unstable orbits, a
considerable amount of emitted power is absorbed by the
black hole, as shown in Fig. 7. Approximately 38% of
the radiation fails to reach the asymptotically flat region
(infinity), for the innermost unstable orbit. In contrast,
for stable orbits, more than 99% of the emitted power
escapes to infinity, as one can see in Fig. 6. We com-
pared our results for the asymptotic radiation (scalar-
and vector-type contributions) in stable orbits with other
works [12, 21], resulting in excellent agreement.
Next, we analyze the radiation associated to the modes

with large m, and hence with large l. Since only modes
with ωm = mΩ are emitted, the total power for a given
frequency, P (ωm), can be written as a function of m, and
hence as a function of ωm, as [12]

P (ωm) =
∑

λ,P

∞∑

l≥|m|

WP,λ;lm
em . (75)

2 The corresponding formulae for the massless scalar radiation in
Ref. [24] [Eqs. (35) and (36) of that reference] are incorrect [45].
Similar incorrect formulae were used in Refs. [25–29]. Correction
of these formulae does not affect the main conclusions in those
references.
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em /Wem, between the asymptotically
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plotted for stable orbits. We have considered contributions
up to l = 20. We see that almost all the energy is radiated
away to infinity, in the case of stable orbits.
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em /Wem, between the asymptotically
observed and the total emitted power, as a function of Ω,
plotted for stable, as well as for unstable circular orbits. As
in Fig. 6, we have considered contributions up to l = 20.

The power P (ωm) depends on a discrete variable ωm,
but we can regard it as a continuous variable for m ≫ 1.
In this continuum limit, we can write the emitted power
Wem in terms of the spectral density function, denoted
by P (ω)/Ω, as [46]

Wem =
∞∑

m=1

P (ωm)

Ω
∆ωm ≈

∞∫

0

dω
P (ω)

Ω
, (76)

with ∆ωm = ωm − ωm−1 = Ω. We compute P (ωm)
and its asymptotically observed counterpart, obtained by
summing onlyWP,in;lm

em in Eq. (75), for a particle orbiting
the black hole in a highly relativistic unstable orbit with
R = (3 + δ)M , δ = 5 × 10−4, for frequencies up to ω =
2500Ω. We neglect the scalar-type modes with l > m and
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Figure 8. Total power emitted for a given frequency ωm.
Frequencies up to m = 30 are shown in this plot. Since only
gravitons with frequencies that are integer multiples of the
particle’s angular velocity are emitted (ωm = mΩ), the spec-
trum is discrete.
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Figure 9. Emitted power for a given frequency ωm in the
high-frequency range (100 ≤ m ≤ 2500).

vector-type modes with l > m+1 since the l = m scalar-
type and l = m+1 vector-type modes contribute to more
than 99% of the power at a given l. The results are shown
in Figs. 8 and 9. These results are in excellent agreement
with those for high multipoles in Refs. [10, 12] and show
that the contribution of the low frequency modes is still
relevant for the total radiation, even for unstable orbits.

IV. COMPARISON WITH FLAT SPACETIME

RESULTS

Let us now compare the emitted power Wem in
Schwarzschild spacetime with its analogues in Minkowski
spacetime, WM

em. For the flat spacetime computation, we
consider the particle to be in a circular orbit bound to a
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stellar object, due to a Newtonian force. When the par-
ticle is not very close to the central object, the two cases
should give similar results.
In Minkowski spacetime, we use essentially the same

procedure as in the Schwarzschild case to obtain the emit-
ted power, with the difference that we set f(r) = 1.
The perturbed metric hµν will have the same form as
in the Schwarzschild case, but now both master fields in
Minkowski spacetime satisfy the same equation, namely

�ΦM ;P
l (t, r)− VMΦM ;P

l (t, r) = 0, (77)

with VM = l(l+1)/r2 and P = S, V . The d’Alembertian
in Eq. (77) is the one compatible with the (flat) orbital
spacetime line element ds2orb = −dt2 + dr2. One can
write positive-frequency solutions to Eq. (77), which are
regular at the origin, as

ΦM ;P
ωl (t, r) = CP

ωle
−iωtrjl(ωr), (78)

where jl(ωr) are the spherical Bessel functions of the first
kind [47]. Using the inner product given by Eq. (45), we
obtain the normalization constants CP

ωl:

CV
ωl =

√
ω

2π(l − 1)(l + 2)
(79)

and

CS
ωl =

√

2ω

π(l − 1)l(l + 1)(l + 2)
. (80)

To compute the emitted power in Minkowski space-
time, we simply substitute the master fields of Eq. (78)
into Eqs. (65) and (67) to obtain3

WM ;S;lm
em = 16π2µ2γ2

MmΩ
∣
∣
∣Y (lm)

(π

2
,Ωt

)∣
∣
∣

2

×
∣
∣
∣F

(M ;ωml)
tt (RM ) + 2R2

MΩ2FM ;ωml(RM )
∣
∣
∣

2

(81)

and

WM ;V ;lm
em = 64π2µ2γ2

MmΩ3
∣
∣
∣Y (lm)

ϕ

(π

2
,Ωt

)∣
∣
∣

2

×
∣
∣
∣
∣
CV

ωml

d

dRM

(
R2

M jl(ωmRM )
)
∣
∣
∣
∣

2

,

(82)

where γM = (1−R2
MΩ2)−1/2 is the Lorentz factor. The

quantities FM ;ωml(RM ) and F
(M ;ωml)
tt (RM ) are obtained

by substituting the master field ΦM ;S
ωml into Eqs. (22) and

3 We adopt the usual Minkowski vacuum, i.e. the vacuum that is
annihilated by the annihilation operators corresponding to the
positive-frequency mode functions given by Eq. (78).

(23), respectively, with the mass of the black hole set to
zero, namely

FM ;ωml(RM ) =
CS

ωml

4

{

ω2
mR2

M jl(ωmRM )

+
d2

dR2
M

[
R2

M jl(ωmRM )
]
}

(83)

and

F
(M ;ωml)
tt (RM ) =

CS
ωml

2

{
d2

dR2
M

[
R2

M jl(ωmRM )
]

−ω2
mR2

M jl(ωmRM )

}

. (84)

We have used the equation of motion given by Eq. (77)
to simplify Eq. (83). In Newtonian gravity, for the parti-
cle to be in a circular orbit around the stellar object, its
radial coordinate is related to its angular velocity by Ke-
pler’s third law, namely RM (Ω) = (MΩ−2)1/3. Since the
angular velocity Ω is a quantity measured by an asymp-
totic static observer and, hence, coordinate independent,
it is meaningful to compare the emitted powers from the
orbiting particle in Schwarzschild and Minkowski space-
times with the same value of Ω. This comparison is plot-
ted in Fig. 10.
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Figure 10. Ratio Wem/WM

em as a function of Ω. We have
considered contributions up to l = 20. The maximum value
considered for ΩM is (6

√
6)−1. As Ω increases, the ratio

decreases up to approximately 25%, until it starts to increase
due to the ultrarelativistic effect.

We note that there is a significant conceptual difference
between the radiations in the two cases: in Schwarzschild
spacetime, the circular orbit is a geodesics of the space-
time, whereas in Minkowski spacetime, it is a trajectory
supported by an external force. In other words, the circu-
lar orbit is not a geodesic of Minkowski spacetime. Thus,
the total radiation computation in Minkowski spacetime
should include the radiation generated by the source of
the external force, since the particle’s energy-momentum
tensor is not conserved by itself. However, it is likely that
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this additional radiation is negligible. (This is indeed the
case if the circular motion is supported by a thin rod con-
necting the particle and the origin [48].) The comparison
in this section has been done primarily to show consis-
tency of our numerical results in Schwarzschild spacetime
by comparing them to the solutions obtained analitically
in Minkowski spacetime, given by Eq. (78), which should
be a good approximation to the master fields far away
from the black hole.

V. CONCLUDING REMARKS

We have computed the power of gravitational radi-
ation emitted by a particle in circular orbit around a
Schwarzschild black hole. By writing the gravitational
perturbations in a gauge-invariant formalism, we used
QFT at tree level to obtain numerically the emitted
power, for both stable and unstable orbits. The scalar-
type gravitational radiation was shown to be dominating
over the vector-type gravitational radiation, the latter
being suppressed by a factor of R2Ω2 = M/R. This re-
sult is in agreement with Ref. [20], where the emitted
power was computed for stable orbits only. For most of
the range of the test particle’s angular velocity, we have
shown that the main contributions to the emitted power
are from the l = 2 modes for both scalar- and vector-
type gravitational perturbations. In unstable orbits, the
contributions from high multipole modes are enhanced.
Nevertheless, the l = 2 modes still have contributions
that are far from negligible.

In stable orbits, almost all of the emitted energy es-
capes to infinity. For unstable orbits however, a consid-
erable amount of energy is absorbed by the black hole.

Comparing the emitted powers in Schwarzschild and
Minkowski spacetimes, we see that the ratio between
them (Schwarzschild over Minkowski) approaches unity
when the particle is located very far away from the black
hole. This ratio decreases as the orbit moves inwards but
starts to increase near the innermost stable circular or-

bit (R = 6M) because the orbit becomes ultrarelativistic
sooner (i.e., for smaller values of Ω) in the Schwarzschild
spacetime, than in flat spacetime.
We found that high multipoles of the gravitational ra-

diation are significantly enhanced only for unstable or-
bits, although the low multipole modes remain as a rel-
evant contribution to the emitted power even in this
case. We also have found that no high frequency peaks
are present in the power spectrum, unlike the scalar-
radiation case [25]. We note that the particle in a stable
orbit will emit radiation, gradually losing energy and in-
spiraling to orbits with smaller radii. When it reaches
an unstable orbit, the particle emits a high amount of
gravitational radiation and quickly plunges down into the
black hole.
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Appendix A: Computation of the scalar-type inner

product

In this Appendix, we compute the inner product for
scalar-type perturbations at the future horizon, using
Eddington-Finkelstein coordinates. For the scalar-type
perturbation, the inner product (45) reads

〈hS , h′S〉 = −i

∫

Σ

dΣnaJ
a, (A1)

where

Ja = Y lmY l′m′

[
4

r
Ddr

(

F (ωl)abF
(ω′l′)
bd − F (ω′l′)abF

(ωl)
bd

)

−
(

F (ωl)bcDaF
(ω′l′)
bc − F (ω′l′)bcDaF

(ωl)
bc

)]

, (A2)

and na is the (future-pointing) unit vector normal to
the Cauchy hypersurface Σ. The inner product given
by Eq. (A1) can be rewritten as

〈hS , h′S〉 = iδll
′

δmm′

(l − 1)l(l + 1)(l + 2)

2

∞∫

2M

dr

f(r)

×
(

ΦS
ωl∂tΦ

S
ω′l′ − ΦS

ω′l′∂tΦ
S
ωl

)

. (A3)

We will derive Eq. (A3) using Eddington-Finkelstein co-
ordinates. To simplify the notation, from now on we omit
the labels for the frequency and angular quantum num-
bers, denoting quantities that depend on ω′, l′ and m′

with a prime.

Defining a new coordinate by

u ≡ t− r∗, (A4)
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where r∗ is the tortoise coordinate, we find

du = dt− dr

f(r)
(A5)

and the orbit spacetime line element (3) becomes

ds2orb = −f(r)du2 − 2dudr. (A6)

We compute the inner product at the future horizon. The
horizon is at r = 2M and −∞ < u < ∞. If r < 2M , the
r =constant surface is a spacelike surface. A normalized
(future-pointing) vector orthogonal to this surface can be
written as

na = − [−f(r)]
−1/2

Dar

= [−f(r)]
−1/2

(
∂

∂u

)a

+ [−f(r)]
1/2

(
∂

∂r

)a

.(A7)

For this surface we have

dΣ = dΩ2du [−f(r)]
1/2

r2. (A8)

Hence, using Eq. (A7), we obtain

dΣna = r2dΩ2du

[(
∂

∂u

)a

− f(r)

(
∂

∂r

)a]

. (A9)

In the limit r → 2M , we get

lim
r→2M

dΣna = 4M2dΩ2du

(
∂

∂u

)a

. (A10)

From one of the equations of motion (gabFab = 0), we
have

Fur =
f(r)

2
Frr, (A11)

which means that Fur vanishes at the horizon. Moreover,
the first term in Eq. (A2) does not contribute to the inner
product because

naDdr
(

Fa
bF ′

bd − F ′
a
b
Fbd

)

= 0. (A12)

This follows from the fact that Fab is a symmetric tensor
and that na ∝ Dar [see Eq. (A7)].

For the second term in Eq. (A2), we have, at the hori-
zon,

F bcDuF
′
bc − F ′bcDuFbc = Frr∂uF

′
uu + Fuu∂uF

′
rr

−F ′
rr∂uFuu − F ′

uu∂uFrr

+
1

M

(
FrrF

′
uu − F ′

rrFuu

)
.

(A13)

We integrate Eq. (A13) by parts with respect to u, indi-
cating with the symbol “≈” the equivalence under inte-
gration by parts. We find

F bcDuF
′
bc − F ′bcDuFbc ≈ 2

(
Frr∂uF

′
uu + Fuu∂uF

′
rr

)

+
1

M

(
FrrF

′
uu − F ′

rrFuu

)
.

(A14)
At the horizon, one can write the components of the

gauge-invariant quantity F
(ωl)
ab as

Fuu =

(

2M∂2
u +

1

2
∂u

)

ΦS (A15)

and

Frr =

[

2M∂2
r +

(

2− 6

H

)

∂r

]

ΦS . (A16)

Here, H = H(r = 2M) [see Eq. (24)]. Thus,

H = l2 + l + 1. (A17)

We note that we set r = 2M after all differentiation is
done. Now, we substitute Eqs. (A15) and (A16) into
Eq. (A14), and integrate by parts with respect to u to
obtain

F bcDuF
′
bc − F ′bcDuFbc ≈ ∂uΦ

′SÔΦS − ∂uΦSÔΦ′S ,

(A18)

where the fourth order differential operator Ô reads

Ô = 8M2∂2
u∂

2
r − 6M∂u∂

2
r + 8M

(

1− 3

H

)

∂2
u∂r

−6

(

1− 3

H

)

∂u∂r + ∂2
r +

1

M

(

1− 3

H

)

∂r.

(A19)

We write Ô as the following linear combination

Ô = A�

[
f(r)

VS(r)
�

]

+ (B + C∂u)�, (A20)

with A, B and C being suitably chosen constants. We
can use the equations of motion to write

ÔΦS
ωl =

VS(r)

f(r)
[(A+B)

︸ ︷︷ ︸

constant at r=2M

ΦS
ωl + C∂uΦ

S
ωl]. (A21)

We note that the term containing C does not contribute
to the inner product. However, its presence is needed to
write the fourth order operator (A19) in the form (A20).
We may use a symbolic computation software to obtain

A =
[3 + (l − 1)l(l + 1)(l + 2)]2

2[3 + l(l + 1)(l4 + 2l3 − l + 1)]
, (A22)

B = 2− 3

l2 + l + 1
− 3

2

l2 + l + 1

(l − 1)l(l + 1)(l + 2) + 3
,

(A23)

and

C = 6M
l2 + l + 1

(l − 1)l(l + 1)(l + 2) + 3
. (A24)

Then, at the horizon, the inner product (A1) can be
written as
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〈hS , h′S〉 = i
(l − 1)l(l + 1)(l + 2)

2

∫

dΩ2duY lmY l′m′

(

ΦS
ωl∂uΦ

S
ω′l′ − ΦS

ω′l′∂uΦ
S
ωl

)

= lim
r→2M

i
(l − 1)l(l + 1)(l + 2)

2

∫

Σ

dΣnaY lmY l′m′

(

ΦS
ωl∂aΦ

S
ω′l′ − ΦS

ω′l′∂aΦ
S
ωl

)

. (A25)

This can be evaluated in a t =constant Cauchy surface in tr coordinates as

〈h(S;ωlm), h(S;ω′l′m′)〉 = i
(l − 1)l(l + 1)(l + 2)

2

∫

S2

dΩ2Y lmY l′m′

∞∫

2M

dr

f(r)

(

ΦS
ωl∂tΦ

S
ω′l′ − ΦS

ω′l′∂tΦ
S
ωl

)

, (A26)

which leads to Eq. (A3).

Another way to obtain Eq. (A3) is by computing the
inner product (A1) directly using tr coordinates. How-
ever, this method is much more involved, requiring sev-
eral cumbersome integration by parts, although we can
still use a computational software to do all the algebraic

computations. We have done so and the same result as
the Eddington-Finkelstein one has been obtained, as ex-
pected. In addition, since computing the inner product
in these coordinates does not require the presence of a
horizon, we can also use this method in flat spacetime,
in spherical coordinates.
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