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 The coating uniformity of corn seeds in a batch seed coater is evaluated by DEM 

 Discrete drop coating model is used to evaluate the coating uniformity of the seeds 

 Effect of process parameters on coating uniformity of the seeds is investigated 

 The atomiser disk position is strongly influencing the coating uniformity 

 Optimum process parameters for rotary batch seed coaters are reported 
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M. Piccioned
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Abstract

Coating of particulate solids by a thin �lm layer is of interest in many industrial

applications such as seed and tablet coating. In seed processing, seeds are com-

monly coated with a protective coating layer consisting of fertilisers and disease

control agents, such as pesticides and fungicides. Batch coaters are commonly

used for this purpose. A typical coater consists of a vertical axis cylindrical ves-

sel with a rotating base and a spray disc in the centre, onto which the coating

liquid is fed to atomise and spray-coat the seeds. The seeds are driven around

the vessel by its rotating base, and are mixed by two ba�es; one on either side

of the vessel. In the present study, Distinct Element Method (DEM) simula-

tions are used to model the seed coating process. Corn seed are used as a model
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material and their shape is captured using X-Ray Tomography (XRT), which is

approximated in the DEM by clumped spheres. The coating uniformity of the

seeds is predicted by implementing a coating model in the DEM, whereby the

coating droplets are simulated as very �ne spheres projecting tangentially from

a ring at the edge of the spinning disk. The size and velocity of droplets leaving

the spray disk are measured using high speed video imaging and implemented

into DEM simulations. The coating mechanism is represented in the DEM by

considering that once a droplet contacts a corn seed, it is removed from the

simulation and its mass is attributed to the coating of the corn seed. The dis-

tribution of mass of sprayed spheres on the corn seeds and their coe�cient of

variation are evaluated for a range of process conditions, such as the base rota-

tional speed, atomiser disc position relative to the base and ba�e arrangement

and designs. It is found that the atomiser disc vertical position, ba�e angle and

clearance to the wall are most inuential, whilst the base rotational speed and

ba�e width and curvature have only minimal e�ect.

Keywords:

Coating uniformity, Drum Coater, Particle shape, Coating, Discrete element

method, Coating optimisation, Process optimisation
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1. Introduction

Coating of particulate solids by a thin �lm layer is of interest in many indus-

trial applications, such as seed and tablet coating. Particularly in seed coating,

seeds are commonly coated with a protective coating layer consisting of fertilis-

ers and pesticides in order to improve their germination. The quality of the

�nished product is strongly dependent on the e�ectiveness of the coating liquid

formulation and the level of coverage of the coating on the seeds. The latter

is inuenced by the motion, mixing and coating phenomena of seeds which are

directly controlled by process parameters. Hence, understanding the e�ect of

each process parameter on coating uniformity of seeds is essential. To do so, the

particle kinematic behaviour (ow �eld, mixing pattern, etc.) and the residence

time of seeds in the coating zone have to be analysed. Discrete Element Method

(DEM) [1] provides a robust way of simulating particulate systems and has re-

cently been used to address the coating uniformity of pharmaceutical tablet

coating [2, 3, 4, 5]. Inter- and intra particle coating variability are the two pa-

rameters for assessing the coating variability. The former is the variation in the

average coating mass from a granule to another, whilst the latter is the distri-

bution of coating liquid on the surfaces of individual granules, in which both

3



Page 6 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

factors can be quanti�ed using the coe�cient of variation [6]. Inter particle

coating variability is de�ned as the coe�cient of variation of the coating mass

amongst the particles.

In the pharmaceutical industry, horizontal axis drum coaters are commonly

used for coating tablets with a thin layer of �lm. In this type of coater, a large

number of tablets are placed inside the drum, which is rotated around its axis.

The rotational motion of the drum leads to radial and slight axial mixing of

the tablets [7]. The coating �lm is formed by spraying a liquid onto a moving

tablet bed. Mixing and uniformity of coating is enhanced by placing a number

of ba�es inside the drum. This type of coater however is di�erent to those

used for coating seeds with two main di�erences: i) in seed coating the drum

is placed vertically and the motion is brought about by a rotating base; ii) a

rotating disc atomiser is used instead of a nozzle sprayer. However, the two types

of mixers share the same underlying particle mechanics and knowledge of the

former would help understand the latter for which little has been published in

the literature. In contrast, the behaviour of particle beds in rotating drums with

horizontal axis has been extensively investigated and reported in the literature

[7, 8, 9, 10, 11], where it has been found that the drum �lling level and Froude

number, Fr � !2R=g (where ! and R are the rotational speed and radius of the

4
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drum and g is the gravitational acceleration) inuence the particle ow �eld.

Suzzi et al. [12] investigated the e�ect of tablet shape and �ll level on

mixing and inter-tablet coating variability in a continuous rotating drum coater

for a binary mixture. Considering that mixing promotes good coating, in their

study, the mixing e�ciency for the all investigated tablet shapes decreased with

increasing the �ll level of the coater. The dispersive mixing of bi-convex tablets

was faster than oval shaped tablets indicating that particle shape should be

simulated rigorously. A signi�cantly better performance was achieved at the

lowest �ll ratio in the case of rounded tablets. In the above work, the inter-

tablet coating uniformity was investigated by a �rst order rate approximation.

Moreover, the back-splashing of satellite droplets and the transfer of coating

solution from a tablet to neighbouring tablets and walls were neglected. The

inter-tablet coating standard deviation was directly correlated to the average

fractional residence time of particles in the coating zone, the mass ratio between

the droplets retaining and those impinging on the tablet surface, and the rate

of droplets arriving on the surface. Based on this approach, Suzzi et al. [12]

concluded that the average fractional residence time of particles in the coating

zone decreased with increasing the �ll ratio leading to a decline in coating speed.

Kalbag and Wassgren [6] investigated the inter-tablet coating variability

5
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within the spray zone in a horizontal pan coater. They proposed Equation (1)

for estimating the coe�cient of variation of the tablet coating at a given time

(t),

CoV (t) =

s
�tseg
t

�
1

n=N
� 1

�
(1)

where �tseg is the time that the tablets stay in the spray zone in a quasi-

segregated state, n is the number of tablets being coated per coating trial and

N is the total number of tablets in the system. They found that the value

of �tseg depended on the geometry of the pan, tablet shape, spraying mecha-

nism and operational conditions. Consequently, a series of experiments or DEM

simulations were required to be carried out to determine the value of �tseg.

The authors reported that the coe�cient of variation of tablet residence time

followed a power law relation with time. Moreover, �tseg decreased with in-

creasing the Froude number of the pan, aspect ratio of the spray zone, and

frictional coe�cients of the particles. This led to a more uniform residence time

of tablets being present in the spray zone and consequently coating mass on the

tablets.

Li et al.[13] investigated the e�ect of particle size distribution of spherical

particles on coating uniformity in an industrial paddle coater using DEM sim-

6
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ulations and spray post-processing analysis, known as ray tracing. The coating

mass a particle gains during its kth visit to the spray zone was calculated using

�mY;k = RyAtot�ktS;k (2)

where Ry, Atot, �k and tS;k are the constant spray ux density, unobscured pro-

jected surface area, average exposed area percentage and spray zone residence

time during the kth visit to the spray zone. Li et al. [13] reported that for poly-

disperse particles, smaller particles tend to have a relatively high frequency of

spray zone visits and low shielding by surrounding particles, leading to higher

spray preference toward smaller particles in the system. Just et al. [14] looked

at optimisation of the inter-tablet coating uniformity in a pan coater exper-

imentally, by varying process parameters such as pan load and speed, spray

rate, number of spray nozzles and spraying time using a statistical design of

experiment approach. A laboratory and a pilot scale pan coaters were used.

They reported that a low spray rate and a high pan speed improved the coating

uniformity at both scales. The most inuential parameter a�ecting the coating

uniformity was found to be the number of nozzles used in the system, where a

signi�cant improvement was found by using four spray nozzles as compared to

7
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two. They also reported that uniformity of coating was improved by increasing

the coating time.

In conclusion, the DEM simulations have proved useful in developing a bet-

ter understanding of coating operation and optimising it. The methodologies

developed for predicting the variation of coating can be extended and applied

to corn seed coating. However, no such analysis of coating optimisation has so

far been reported for seed coaters in the literature. Hence, in this study the

e�ect of seed coating process parameters on coating uniformity of corn seeds is

addressed.

2. Materials and Method

2.1. DEM Simulations

A series of DEM simulations were carried out for a rotary batch seed coater

(0.3 m in diameter and 0.21 m in height), as shown in Figure 1, using EDEM R

software (DEM-Solutions, Edinburgh, UK) in order to predict the e�ect of var-

ious coating process parameters on the coating uniformity of corn seeds. Atom-

isation of a liquid stream introduced by a nozzle onto a spraying disc was sim-

ulated by generating spheres at a radial position (represented by a ring-shaped

virtual geometry) corresponding to the tip of the rotating disc and at a rate

8
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conforming to the liquid ow rate. The droplet size and velocity distributions

corresponded to the experimental values. On contacting the surfaces of the corn

seeds, the droplets were removed and their mass was added to the accumulated

coating mass. The base rotates to mobilise the seeds, whilst the vertical plates

act as ba�es, turning the bed over and ensuring adequate mixing of the seeds

in order to increase the uniformity of coating.

A Phoenix Nanotom CT scanner (GE Measurement and Control, US) was

used to obtain the 3D image of a single corn seed in the 7.1 - 8.0 mm sieve-cut,

as shown in Figure 2a. The shape of corn seeds is then approximated with �ve

clumped sphere (approximately 0.1 % deviation in volume compared to that

of the actual seed) with various sizes, as shown in Figure 2b, using ASG2013

software (Cogency, South Africa). It has been shown that this approximation

is adequate for predicting the motion of corn seeds in the coater [2]. A bed

consisting of approximately 4200 seeds (21,000 spheres), corresponding to 1.4

kg of corn seeds, was used.

2.2. Coating Model

The spray droplets are considered as non-interacting spheres until they con-

tact the corn seeds. Their size and velocity distributions are incorporated in the

9
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simulations, based on experimental data obtained by video motion analysis. In

the simulations described here, a particle property termed `coating liquid mass'

is introduced in addition to the existing properties. The model of Toschko� et

al. [15] is used to model the coating process and briey described here. For

contacts between droplets and corn seeds, the droplet mass is added to the

property `coating liquid mass' of the corn seed and the droplet is deleted. The

momentum of droplets is negligible in comparison to the corn seeds, hence the

impact of droplets on the corn seeds would not have a strong inuence on the

momentum of corn seeds and it is ignored in the force calculations. In addi-

tion, inter-droplet collisions were very infrequent in the video recordings and

are therefore not considered in the simulations. This signi�cantly improves the

calculation speed. However, it is possible to account for these collisions and

establish the coalescence phenomenon, but it is beyond the scope of this work.

In addition to the above criterion, Hertz-Mindlin contact model with rolling

friction based on viscous dissipation [16] is used for simulating inter-particle

interactions.

10
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2.3. Implementation of Droplet Generation

In order to incorporate the coating liquid droplets in the DEM simulations,

the size and velocity distributions of the droplets are required. There are no

data on the size distribution of droplets generated from disc atomisers in the

literature. Only the mean or Sauter diameter has been reported [17, 18, 19, 20].

Hence, a series of high speed video recordings were carried out to measure the

droplet size and velocity distributions once they were released from the atomiser

disc. De-ionised water was used as the spraying liquid, the ow rate of which

was �xed at 2.67 ml=s. The motion of droplets was recorded using a Redlake

HG-100K high-speed video camera. The camera set up is shown in Figure 3.

The video recording frame rates for droplet size analysis and velocity mea-

surement are di�erent to ensure best condition for each case. For the former,

the frame rate was 200 fps. The size of each droplet at each video frame was

measured every 5ms using ImageJ software, based on the number of pixels.

This process was carried out over a period of 10 s. The droplets smaller than 50

µm in diameter were excluded from the analysis as they were very infrequent.

Moreover, due to the resolution of captured images, they did not contain an

adequate number of pixels (i.e. less than 5 pixels in diameter). For the droplet

velocity measurement, the frame rate was 2,000 fps. The magnitude of droplet

11
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velocity was calculated from the travelled distance of each droplet between the

consecutive video frames with a time di�erence of 500 µs. The droplet size and

velocity distributions are shown in Figures 4 and 5, respectively. The measured

droplet size distribution here agrees with the mean droplet size and Sauter di-

ameter correlations reported in the literature [17]. However, the correlations in

the literature do not provide any information about the size distribution.

For accurate representation of the droplets in the DEM simulations, it is

important to take into account the directional motion of the droplets once they

are released from the atomiser disc. Hence, from high-speed video recordings

it was found that the droplets moved tangentially relative to the edge of the

atomiser, as indicated by the tracked position of some of the droplets after

being released from the atomiser disc in Figure 6.

Based on the measured droplet size and velocity distributions and the di-

rection of their movement, a custom code was implemented in EDEM software

for generation and movement of droplets. A ring-shaped virtual geometry with

1.5 mm height and a small thickness of 0.75 mm with the outer diameter cor-

responding to the disc atomiser diameter was considered as the particle factory

for generation of the droplets. The droplets were randomly generated inside the

particle factory and at the �rst time step of generation of each droplet, they

12
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were given an initial acceleration, which led to the desired tangential velocity at

the end of the subsequent time step. The schematic diagram of how the droplets

are generated in the model is shown in Figure 7. In the simulations, the rate

of generation of droplet spheres was chosen such that their volumetric ow rate

was equal to that used in the experiments, i.e. 2.67 ml=s. This produced about

36,300 spheres per second. The droplets were generated after 1 s of real time

operation where the motion of seeds had reached steady state.

The elastic modulus of seeds was reduced by two orders of magnitude, com-

pared to the experimental measurements, in order to speed up the simulations.

This was considered to be safe since the motion of non-adhesive particles was

of interest. It has been shown that varying elastic modulus to this degree is not

inuential on the motion of such particles in DEM simulations [21, 22]. Coe�-

cients of restitution and sliding friction of particles were measured experimen-

tally using a high-speed video camera and the NanoCrusher (Micro Materials,

UK), respectively. The particle and simulation properties are summarised in

Tables 1 and 2, where particle size follows a normal distribution. The unifor-

mity of corn seeds coating is simulated by varying the ba�e angle, distance to

the wall and geometry, spraying disc position and rotational speed of the base

of the coater.

13
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3. Results and Discussion

3.1. Ba�e Angle and Wall Clearance

The e�ect of ba�e angle and clearance to the walls on the coating uniformity

of corn seeds are investigated by varying from 25� to 55� and 5 mm to 20 mm,

respectively. The latter was considered such that it represented a clearance

corresponding to approximately 1 to 4 corn seed diameters. The de�nitions of

the angle, �, and clearance, d, are shown in Figure 8.

For all the investigated cases, the rotational speed of the coater base, atom-

iser disc distance to the base and ow rate of coating droplets were kept constant

at 300 rpm, 30 mm and 2.67 ml=s, respectively. The coating simulations were

carried out for 25 s of real time operation using the at ba�e design, as shown in

Figure 9. The evolution of coating variability with time is shown Figure 10. For

25 s of coating time, which is typically used for industrial scale coaters, the CV

of coating mass has decreased considerably approaching a relative asymptotic

level.

The e�ect of ba�e clearance to the wall on coating uniformity of corn seeds is

shown in Figure 11. For all investigated cases, the coating mass variability is re-

duced as the clearance gap is increased to 15 mm, after which it increases again.

14
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Therefore, the optimum ba�e clearance is around 15 mm for the investigated

system here for all the ba�e angles. This clearance represents approximately

two to three particle diameters. The di�erence between the two extreme cases

of clearance gap (5 and 20 mm) investigated is considered signi�cant, where 5

% improvement in terms of coating uniformity is achieved. The e�ect of ba�e

angle on coating variability is shown in Figure 12. For clearance of 10 to 20

mm, the coating uniformity is improved by increasing the ba�e angle to 35 {

45�, beyond which the CV is slightly increased. However, in the case of a 5 mm

clearance, the optimum ba�e angle was found to be 25�.

Using the above analysis, it can be concluded that optimum values of ba�e

angle and clearance to the wall of the coater are 45� and 15 mm, respectively,

where the coating uniformity of corn seeds can be improved by 7% between the

two extremes of coating mass CV. The clearance gap controls the fraction of

the surface that is renewed after each circulation of base, since this parameter

controls the thickness of the particle layer being sliced o� from the bed surface.

Moreover, the ba�e angle controls the direction and the position of the particles

being sliced from the bed. In combination, these two parameters control the

surface renewal rate of the bed, which directly inuences the coating uniformity

of corn seeds since only the particles at the surface receive coating liquid. This

15
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process is amenable to analysis by the surface renewal theory, similar to work

of Mann [23] and Freireich and Li [24].

3.2. Ba�e Geometry

In addition to ba�e angle and clearance, surface renewal rate and motion

of particles after being sliced o� from the surface depend on the ba�e shape.

Hence a number of ba�e designs were proposed to investigate the inuence of

ba�e shape. For this purpose, two key features of the shape were considered:

width and geometry. For the curvature of the ba�e, two cases were considered:

at and curved faces; and three ba�e widths were considered for each, as shown

in Figure 9. In order to compare the results, all other simulation parameters

such as position of atomiser disk (30 mm), base rotation speed (300 rpm) and

total mass input (1.4 kg) were kept constant and the optimum ba�e angle (45

�) and clearance gap (15 mm) were used.

The coating mass CV values for the proposed ba�e designs are shown in

Figure 13. It is clear that the e�ect of ba�e width on coating uniformity of

corn seeds for all the investigated cases is not signi�cant, as CV increases by

about 1% only when the ba�e width is doubled from 30 to 60 mm for the at

ba�es. However, in the case of the curved ba�es, a ba�e width of 45 mm

16
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improves inter-particle coating uniformity by approximately 1 { 2% compared

to widths of 30 and 60 mm, respectively. Comparing the atness and curvature

of the ba�es, the curvature of the ba�e does not strongly inuence the coating

uniformity; however, the curved ba�e with a width of 45 mm results in a slightly

lower coe�cient of variation than the original at ba�e.

By �xing the ba�es clearance and angle, regardless of the width and curva-

ture of the ba�es, the fraction of particles being sliced o� from the surface of

the bed is more or less similar. The ba�e curvature and width are expected to

a�ect the motion of particles after passing the ba�es, rather than inuencing

the surface renewal rate.

3.3. Atomiser Vertical Position

Since the coating droplets are generated using a rotating disc atomiser rather

than a sprayer, a thin layer of droplets are generated. The position of the

atomiser disc relative to the base of the coater a�ects the fraction of seeds being

coated on the surface of bed. A series of DEM simulations were carried out by

varying the vertical position of atomiser disc relative to the base of the coater

from 30 to 70 mm, using the at design ba�e (30 mm wide) with clearance and

angle of 15 mm and 45, respectively. The particle coating mass CV values using

17
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the proposed vertical positions of the atomiser disc are shown in Figure 14. The

coating uniformity of the particles improves as the vertical position is increased

to 50 mm from the base; however beyond this point it starts to deteriorate (CV

increases). Comparing the optimised vertical position of the spray disc (50 mm)

with the initial position used in the earlier simulations (30 mm), the position

of the disc relative to the base of coater has a notable inuence on the coating

variability and approximately 5% improvement of coating variability is achieved

as shown in Figure 14. Hence, it can be concluded that this process parameter

is one of the key inuential parameters in the coating process using this type of

coater.

3.4. Base Rotation Speed

In addition to the dynamics of droplet generation and surface renewal rate,

the number of coating events (number of bed turnovers) is expected to inuence

the coating variability of the particles in the process. In general, a larger number

of rotations should lead to a higher probability of new and less coated particles

being available for coating at the surface of the bed, thus leading to a higher

probability that the particles will be more uniformly coated in the system. It

is expected that a minimum number of bed turnovers is required to let all

18
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the particles become coated. However, an excessively high rotational speed

would lead to higher impact velocities of the seeds to the ba�es, which may

damage both the particles and their coating. In this study, the intention was

to focus on the coating variability of particles rather than any damage on their

coating; hence the potential damage to the coating of the seeds is disregarded.

Therefore only three base rotational speeds of 300, 400 and 500 rpm were used to

investigate their e�ect on the coating variability. It was found that increasing the

speed improved the coating uniformity of the corn seeds but only very slightly,

as approximately 1.4 % improvement was achieved.

4. Conclusions

The e�ect of various seed coater process parameters on coating variability of

corn seeds in a batch seed coater was investigated using DEM simulations. In the

coating model, the coating liquid droplets were represented by small spheres and

once brought into contact with a corn seed surface, their mass was stored in the

corn seeds coating mass parameter, and they were removed from the simulation.

The uniformity of coating was then analysed based on coe�cient of variation

coating mass of the seeds. It was shown that using this model the amount of

the coating on each particle could be tracked; hence useful information such as
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distribution of coating mass among the particles and coe�cient of variation of

coating mass of the particles could be assessed. Among the proposed process

parameters, it was found that the position of the atomiser disc relative to the

base of coater and ba�es clearance to the walls strongly inuence the coating

uniformity of the particles. Moreover, It is found that the position of atomiser

disc plays an important role on improving the coating uniformity of particles and

a change in distance from the base of the coater, from 30 to 50 mm, decreases

the particle coating mass CV by 5%. In the case of ba�e clearance to the wall,

using the at ba�e design, a clearance to the wall of 15 mm provides the lowest

inter-particle coating variability compared to small and large clearance gaps.

An improvement of approximately 7% is achieved between the best and worst

case combination of ba�e angle and clearance gap investigated in this study. On

the other hand, other process parameters (e.g. ba�es angle, curvature, width

and base rotational speed) had insigni�cant e�ects on coating uniformity of the

particles where only a 1 to 2% change in coating mass coe�cient of variation is

observed.

20



Page 23 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

5. Acknowledgements

The �nancial support of Syngenta through its Technology & Engineering's

Strategic & Enabling Technology programme is gratefully acknowledged. The

authors would like to thank Dr Neil George, Syngenta Ltd, UK for his sup-

port and encouragement, and Phil Taylor of Syngenta Jealott's Hill Formula-

tion Technology Group for providing the seed coater. The authors also would

like to thank DEM Solutions (Edinburgh, UK) for their technical support and

providing additional software licences for this work.

References

[1] P. A. Cundall, O. Strack, A discrete numerical model for granular assem-

blies, Gotechnique 29 (2) (1979) 47{65. doi:10.1680/geot.1979.29.1.47.

[2] M. Pasha, C. Hare, M. Ghadiri, A. Gunadi, P. M. Piccione, E�ect of particle

shape on ow in discrete element method simulation of a rotary batch

seed coater, Powder Technology 296 (2016) 29 { 36. doi:doi:10.1016/j.

powtec.2015.10.055.

[3] P. Cleary, Dem prediction of industrial and geophysical particle ows, Par-

ticuology 8 (2) (2010) 106{118. doi:10.1016/j.partic.2009.05.006.

21

http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/doi:10.1016/j.powtec.2015.10.055
http://dx.doi.org/doi:10.1016/j.powtec.2015.10.055
http://dx.doi.org/10.1016/j.partic.2009.05.006


Page 24 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

[4] H. Zhu, Z. Zhou, R. Yang, A. B. Yu, Discrete particle simulation of par-

ticulate systems: A review of major applications and �ndings, Chemical

Engineering Science 63 (23) (2008) 5728{5770. doi:10.1016/j.ces.2008.

08.006.

[5] C. Hare, U. Zafar, M. Ghadiri, T. Freeman, M. J. Murtagh, Analysis of

the dynamics of the FT4 powder rheometer, Powder Technology 285 (2015)

123{127. doi:doi:10.1016/j.powtec.2015.04.039.

[6] A. Kalbag, C. R. Wassgren, Inter-tablet coating variability: Tablet resi-

dence time variability, Chemical Engineering Science 64 (11) (2009) 2705{

2717. doi:10.1016/j.ces.2009.02.037.

[7] A. Muliadi, P. Sojka, A review of pharmaceutical tablet spray coating,

Atomization and Sprays 20 (7) (2010) 611{638. doi:10.1615/AtomizSpr.

v20.i7.40.

[8] K. Yamane, T. Sato, T. Tanaka, Y. Tsuji, Computer simulation of tablet

motion in coating drum, Pharmaceutical Research 12 (9) (1995) 1264{1268.

doi:10.1023/A:1016201102355.

[9] T. Leaver, H. Shannon, R. Rowe, A photometric analysis of tablet move-

ment in a side-vented perforated drum (accela-cota), Journal of Pharmacy

22

http://dx.doi.org/10.1016/j.ces.2008.08.006
http://dx.doi.org/10.1016/j.ces.2008.08.006
http://dx.doi.org/doi:10.1016/j.powtec.2015.04.039
http://dx.doi.org/10.1016/j.ces.2009.02.037
http://dx.doi.org/10.1615/AtomizSpr.v20.i7.40
http://dx.doi.org/10.1615/AtomizSpr.v20.i7.40
http://dx.doi.org/10.1023/A:1016201102355


Page 25 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

and Pharmacology 37 (1) (1985) 17{21. doi:10.1111/j.2042-7158.1985.

tb04924.x.

[10] J. Park, C. R. Wassgren, Modeling the dynamics of fabric in a rotating

horizontal drum using the discrete element method, Particulate Science

and Technology 21 (2) (2003) 157{175. doi:10.1080/02726350307491.

[11] S. Sandadi, P. Pandey, R. Turton, In situ, near real-time acquisition of

particle motion in rotating pan coating equipment using imaging tech-

niques, Chemical Engineering Science 59 (24) (2004) 5807{5817. doi:

10.1016/j.ces.2004.06.036.

[12] D. Suzzi, G. Toschko�, S. Radl, D. Machold, S. D. Fraser, B. J. Glasser,

J. G. Khinast, Dem simulation of continuous tablet coating: E�ects of

tablet shape and �ll level on inter-tablet coating variability, Chemical Engi-

neering Science 69 (1) (2012) 107{121. doi:10.1016/j.ces.2011.10.009.

[13] J. Li, C. Wassgren, J. D. Lister, Multi-scale modeling of a spray coating

process in a paddle mixer/coater: The e�ect of particle size distribution on

particle segregation and coating uniformity, Chemical Engineering Science

95 (2013) 203{210. doi:10.1016/j.ces.2013.03.014.

[14] S. Just, G. Toschko�, A. Funke, D. Djuric, G. Scharrer, J. Khinast,

23

http://dx.doi.org/10.1111/j.2042-7158.1985.tb04924.x
http://dx.doi.org/10.1111/j.2042-7158.1985.tb04924.x
http://dx.doi.org/10.1080/02726350307491
http://dx.doi.org/10.1016/j.ces.2004.06.036
http://dx.doi.org/10.1016/j.ces.2004.06.036
http://dx.doi.org/10.1016/j.ces.2011.10.009
http://dx.doi.org/10.1016/j.ces.2013.03.014


Page 26 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

K. Knop, P. Kleinebudde, Optimization of the inter-tablet coating uni-

formity for an active coating process at lab and pilot scale., International

journal of pharmaceutics 457 (1) (2013) 1{8. doi:10.1016/j.ijpharm.

2013.09.010.

[15] G. Toschko�, S. Just, A. Funke, D. Djuric, K. Knop, P. Kleinbudde,

G. Scharrer, J. G. Khinast, Spray models for discrete element simulations

of particle coating processes, Chemical Engineering Science 101 (2013) 603{

614. doi:10.1016/j.ces.2013.06.051.

[16] Y. Zhou, B. Wright, R. Yang, B. Xu, A. Yu, Rolling friction in the dynamic

simulation of sandpile formation, Physica A: Statistical Mechanics and its

Applications 269 (24) (1999) 536 { 553. doi:10.1016/S0378-4371(99)

00183-1.

[17] W. H. Walton, W. C. Prewett, The production of sprays and mists of uni-

form drop size by means of spinning disc type sprayers, Proceedings of the

Physical Society. Section B 62 (6) (1949) 341. doi:10.1088/0370-1301/

62/6/301.

[18] R. P. Fraser, P. Eisenklam, Liquid atomization and the drop size of sprays,

24

http://dx.doi.org/10.1016/j.ijpharm.2013.09.010
http://dx.doi.org/10.1016/j.ijpharm.2013.09.010
http://dx.doi.org/10.1016/j.ces.2013.06.051
http://dx.doi.org/10.1016/S0378-4371(99)00183-1
http://dx.doi.org/10.1016/S0378-4371(99)00183-1
http://dx.doi.org/10.1088/0370-1301/62/6/301
http://dx.doi.org/10.1088/0370-1301/62/6/301


Page 27 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

Transactions of the Institution of Chemical Engineers 34 (4) (1956) 294{

319.

[19] D. J. Ryley, Analysis of a polydisperse aqueous spray from a high-speed

spinning disk atomizer, British Journal of Applied Physics 10 (4) (1959)

180.

[20] L. M. Boize, N. Dombrowski, The atomization characteristics of a spin-

ning disc ultra-low volume applicator, Journal of Agricultural Engineering

Research 21 (1) (1976) 87 { 99. doi:10.1016/0021-8634(76)90101-3.

[21] S. Lommen, D. Schott, G. Lodewijks, fDEMg speedup: Sti�ness e�ects

on behavior of bulk material, Particuology 12 (2014) 107 { 112. doi:

10.1016/j.partic.2013.03.006.

[22] R. Moreno-Atanasio, B. Xu, M. Ghadiri, Computer simulation of the e�ect

of contact sti�ness and adhesion on the uidization behaviour of powders,

Chemical Engineering Science 62 (12) (2007) 184 { 194. doi:10.1016/j.

ces.2006.08.036.

[23] U. Mann, Analysis of spouted-bed coating and granulation. 1. batch opera-

tion, Industrial & Engineering Chemistry Process Design and Development

22 (2) (1983) 288{292. doi:10.1021/i200021a019.

25

http://dx.doi.org/10.1016/0021-8634(76)90101-3
http://dx.doi.org/10.1016/j.partic.2013.03.006
http://dx.doi.org/10.1016/j.partic.2013.03.006
http://dx.doi.org/10.1016/j.ces.2006.08.036
http://dx.doi.org/10.1016/j.ces.2006.08.036
http://dx.doi.org/10.1021/i200021a019


Page 28 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

[24] B. Freireich, J. Li, A renewal theory approach to understanding inter-

particle coating variability, Powder Technology 249 (2013) 330 { 338.

doi:http://dx.doi.org/10.1016/j.powtec.2013.08.040.

26

http://dx.doi.org/http://dx.doi.org/10.1016/j.powtec.2013.08.040


Page 29 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1: Geometry of vertical batch seed coater.

Figure 2: (a) 3D captured shape of corn seed using XRT and (b) representation of corn seed

shape by �ve overlapped spheres in DEM simulation.
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Figure 3: High-speed camera set-up for measuring droplets size and velocity distributions; a)

real image and b) schematic image of the set-up.
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Figure 4: Measured de-ionised water droplet size distribution using high-speed video

imaging.
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Figure 5: Measured de-ionised water droplet velocity distribution using high-speed video

imaging.
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Figure 6: Motion of de-ionised water droplets after being released from the atomiser disc.

The coloured lines are showing the tracked position of the droplets in the high-speed video

images.
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Figure 7: Schematic representation of generation and movement of droplets being released

from the atomiser disc in DEM simulations, where px and py are X and Y position of the

droplets relative to the centre point of the ring.
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Figure 8: Schematic representation of ba�e angle, �, and clearance gap to the walls, d, in

the DEM simulations.
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Figure 9: Schematic design of the ba�es used in this study. The left schematic represents

the original ba�e design and the right two schematics represent the changes which has been

made to investigate the e�ect of ba�e geometry on coating uniformity.
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Figure 10: Standard deviation and CV of coating mass of corn seeds as a function of coating

time for ba�e angle and clearance gap of 45� and 15 mm, respectively.
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Figure 11: E�ect of ba�es clearance gap to the wall on coating uniformity of corn seeds in

DEM simulations.
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Figure 12: E�ect of ba�es angle on coating uniformity of corn seeds in DEM simulations.
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Figure 13: E�ect of atness and curvature of the ba�es on coating uniformity of corn seeds

in DEM simulations.
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Figure 14: E�ect of vertical position of atomiser disc relative to the base of coater on

coating uniformity of corn seeds in DEM simulations.
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Table 1: Properties of particles and walls used in DEM simulations.

Property Seeds Walls

Particle diameter (mm) 7.5 � 3% {

Shear modulus (GPa) 0.01 70

Density (kg/m3) 1163 7800

Poisson's ratio ({) 0.25 0.3

Table 2: Particle interaction properties used in DEM simulations.

Property Seed { Seed Seed { Wall

Coe�cient of sliding friction ({) 0.3 0.3

Coe�cient of rolling friction ({) 0.01 0.01

Coe�cient of restitution ({) 0.6 0.69
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