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Abstract

We study a class of quantized enveloping algebras, called twisted Yangians, associated with the
symmetric pairs of types B, C, D in Cartan’s classification. These algebras can be regarded as coideal
subalgebras of the Yangian for orthogonal or symplectic Lie algebras. They can also be presented as
quotients of a reflection algebra by additional symmetry relations. We prove an analogue of the Poincaré—
Birkoff-Witt Theorem, determine their centres and study also extended reflection algebras.

Contents

1 Introduction . 1

2 Extended Yangian . 3

3 Twisted Yangians . . 5
3.1 Symmetric pairs of types B C D . 5
3.2 Twisted Yangians as subalgebras and quotlentb of extended tw1sted Yanglans e 7
3.3 Poincaré-Birkhoff-Witt Theorem for twisted Yangians . . . . . . . . . . . . . . 8
3.4 The centre of twisted Yangians . . . o ]
3.5 Quantization of a left Lie coideal Structure e

4 Reflection algebras. . . . P P
4.1 Solutions of the reﬂectlon and bymmetry equatlons . e I3
4.2 Isomorphism between twisted Yangians and reflection algebras . £

5 Connection with quantum contraction. . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Extended reflection algebra . . . . A |
5.2 Quantum contraction for reflection algebra ]

1 Introduction

Twisted Yangians are some of the most elegant examples of the infinite dimensional reflection algebras in-
troduced by E. Sklyanin in [Sk]. The name twisted Yangian is due to G. Olshanskii, who constructed the
first examples of such algebras for symmetric pairs of types Al and AII in [O]] using the RTT-presentation
of Yangians [FRT]. It is known that those twisted Yangians can be presented in two different ways: as
abstract algebras defined by a reflection equation together with some additional relations, such as symmetry
and unitarity relations, or as coideal subalgebras of the Yangian Y (gl,). Twisted Yangians have also been
shown to emerge in Drinfeld’s original presentation of Yangians [DMS], an approach which allows the con-
struction of generalized (or MacKay) twisted Yangians Y (g, €) for symmetric pairs (g, €) of arbitrary type
[Mal]. Moreover, these twisted Yangians Y (g,€) have been shown to be an integral part of many models
of mathematical physics, such as open spin chains, vertex models, non-linear sigma models, and play an
important part in quantum field theory; see e.g. [Ma2] and references therein.

The algebraic properties of Yangians of type A and twisted Yangians of types Al and AII (corresponding
to the symmetric pairs (gly,son) and (gly,spy), or with gl replaced by sly) were thoroughly explored in
the survey paper [MNO] by A. Molev, M. Nazarov and G. Olshankii (see also the references therein). The
RTT-type relation gives the Yangian Y (gly), while Y (sly) is obtained by setting the quantum determinant
of Y(gln) equal to the identity. For the case of the twisted Yangians of types AI and All, the reflection



equation (in its twisted form) leads to an extended twisted Yangian; by introducing an additional symmetry
relation, the twisted Yangian is recovered. The analogue of the quantum determinant for the twisted Yangian
is called the Sklyanin determinant. Its coefficients generate the whole centre of the twisted Yangian and,
by setting it equal to 1, the special twisted Yangian, which is a coideal subalgebra of Y (sly), is obtained.
Finite-dimensional irreducible representations of these algebras were classified in [Mol] and their skew-
representations were explored in [Mo2]. Recent work of S. Khoroshkin and M. Nazarov (e.g. [KhNal,
KhNa2, KhNa3, KNP] and related papers) provides explicit realizations of those representations for the
Yangians of type A and for the twisted Yangians of types AI and AII using the theory of Howe dual pairs
and Mickelsson algebras. There also exist symmetric pairs of type AIII, namely (gly,gl, ® gly—p): the
corresponding twisted Yangians were constructed by A. Molev and E. Ragoucy in [MoRa] who related them
also to reflection algebras and classified their finite-dimensional irreducible representations. In this case, the
reflection equation is used in its regular (non-twisted) form and the role of the symmetry equation is played
by the unitarity constraint.

The g-analogues of twisted Yangians of types Al and AII were constructed in [MRS] and of type AIII in
[CGM]. They can be called either twisted ¢-Yangians or twisted quantum loop algebras. Given a certain
involution p on g, twisted Yangians can be understood as flat deformations of the enveloping algebra of
the twisted (half-loop) current Lie algebra g[z]” (see below for its definition), and their g-analogues are
deformations of the enveloping algebra of the twisted loop Lie algebra g[z,z~!]? (where the involution on
Clz,»71] is 2 ~ 2~!). Moreover, the defining relations of these algebras use a slightly different type of
reflection equations. The specialization of quantum loop algebras to Yangians was postulated by Drinfel’d
[Dr1], and was proven in [GTL, GuMa]. The proof relies of the Drinfeld’s second presentation of these algebras
[Dr3]; however, no analogue of this presentation is known for twisted quantum loop algebras and twisted
Yangians, but it is still possible to degenerate twisted quantum loop algebras to twisted Yangians using the
RTT-presentation in types Al and AII [CoGu]. Closure relations for twisted Yangians in Drinfeld’s first
presentation for symmetric pairs of general type were recently demonstrated in [BeRe]. Twisted quantum
loop algebras should fit in the more general framework of quantum symmetric pairs for Kac-Moody Lie
algebras developed in [Ko]. This last paper presents a generalization of the work of G. Letzter [Le], M. Noumi
and T. Sugitani on quantum symmetric spaces [NoSu].

An RTT-presentation of Yangians associated with the classical Lie algebras of types B, C, D is given
very explicitly by D. Arnoudon et al. in [AACFR], but the existence of such presentations has been known
since the foundational papers [Drl, Dr2]. It was further explored in [AMR], where certain isomorphisms
between Yangians of low rank were constructed and the finite dimensional irreducible representations were
classified. In this case, the RTT-type relation defines an extended Yangian X (g), while the Yangian Y (g) is
obtained by taking the quotient of X (g) by the ideal generated by all non-scalar central elements.

The goal of this paper is to construct analogues of Olshanskii’s twisted Yangians for all symmetric pairs
of classical Lie algebras of types B, C, D and to describe fundamental properties of these new algebras. The
symmetric pairs are those given by Cartan’s classification of symmetric spaces (see [He], Chapter X):

BDI: (son,s0, ©504), CL: (spn,gln/2), CIL (spn,sp, @ spg), DIIL (son, glny2),

where p + ¢ = N, and p, q, N are all even in the CI, CII and DIII cases. For all of these cases, the twisted
Yangian can be understood as a quantization of the universal enveloping algebra $g[z]? of the twisted current
Lie algebra g[x]” related to the pair (g, g”), where p is an involution of g and g” denotes the subalgebra of g
fixed by p. The twisted current algebra g[z]” is defined as the subspace of g[z] consisting of elements fixed
by the involution p extended to g[z] by p(Fp(x)) = p(F)p(—x) VF € g, Vp(z) € Clzx].

We also construct twisted Yangians corresponding to trivial symmetric pairs, namely

BCDO: (g,9) for g=spny and g=soy.

In this case, the involution p acts trivially on g, but is non-trivially extended to the current Lie algebra, giving
g[z]? = g[z?]. Despite the fact that g[z?] = g[z] as a Lie algebra, the quantization of the twisted current
algebra tg[z?] is a twisted Yangian not isomorphic to Y (g). For Lie algebras of type A, the corresponding
twisted Yangian can be constructed as in [MoRa] for the extremal case p = N of the symmetric pair of
type AIII (gly, gl, ® gln_p). For symmetric pairs of types BDI and CII, we can also set p = N and ¢ = 0.
However, as we will see in this paper, there are some important differences between the extremal and non-
extremal cases. This is in contrast to type AIIL, where all of the twisted Yangians with p = 0,..., N obey



relations of the same form. Our twisted Yangians of type BCDO are very similar to the reflection algebra
defined in [IMO] - see Definition 3.1, Proposition 3.2 and the homomorphism (3.44) in loc. cit.

First, we define extended twisted Yangians X (g,G)*" as coideal subalgebras of the extended Yangians
X (g), and twisted Yangians Y (g,G)™ as quotients of the extended twisted Yangians by the unitarity con-
straint. The latter have no non-trivial central elements and are coideal subalgebras of the Yangians Y (g).
The construction of these coideal subalgebras is based on a matrix G(u), which is a solution of the reflec-
tion equation and is a rational function of the spectral parameter u and the matrix G. The corresponding
symmetric pair is (g, g?) where g = {X € g| X = GXG '}, and all the symmetric pairs of types B, C and
D can be obtained this way. Moreover, the form of the rational matrix G(u) coincides with that of rational
K-matrices of the principal chiral model on the half-line found in [MaSho]. The differences are due to the
fact that for a given symmetric pair, the matrix G is not unique.

We show that Y (g, G)! is isomorphic to a subalgebra Y (g, G)™ of the extended Yangian and this leads
to the decomposition X (g,G)™ =~ ZX(g,G)™ @ Y (g,G)"™ where ZX (g, G)™ is the centre of X (g, G)™: see
Theorem 3.1. We then prove an analogue of the Poincaré-Birkoff-Witt Theorem for the twisted Yangians
and their extended version (Theorem 3.2), and determine the centre of X (g,G)™ in Subsection 3.4. We also
explain how twisted Yangians provide a quantization of a left Lie coideal structure: see Theorem 3.3.

In Section 4, we show that twisted Yangians (extended or not) are isomorphic to a class of reflection
algebras satisfying additional symmetry and unitarity relations: see Theorems 4.1 and 4.2. In the following
section on the quantum contraction, we introduce extended reflection algebras and explain how the symmetry
and unitarity relations are equivalent to the vanishing of certain central elements: see Theorems 5.2 and 5.4.
These central elements are obtained as coefficients of certain even and odd power series. Similar results were
already known for twisted Yangians of types AI and AII [MNO].

Since sl is isomorphic to so3 and sps, it is natural to ask if our twisted Yangians for g = so3 or g = spo
are isomorphic to Olshanski’s twisted Yangians for sly: this is indeed the case as proved in [GRW].

In a future work, we hope to explore g-analogues of our twisted Yangians and of the extended Yangians.

A word of explanation is necessary to clarify the terminology used in this paper. We use the name twisted
Yangian when referring to coideal subalgebras of a Yangian. We use the name reflection algebra for algebras
defined by a refiection equation. Twisted Yangians and reflection algebras are not isomorphic in general; they
become isomorphic by requiring additional (symmetry and/or unitarity) relations to hold.

Acknowledgements. The first author acknowledges the support of the Natural Sciences and Engi-
neering Research Council of Canada through its Discovery Grant program. Part of this work was done
during the second author’s visits to the University of Alberta. V.R. thanks the University of Alberta for the
hospitality, and also gratefully acknowledges the Engineering and Physical Sciences Research Council of the
United Kingdom for the Postdoctoral Fellowship under the grant EP/K031805/1.

2 Extended Yangian

The extended Yangian X (g) was first introduced in [AACFR] and was studied furthermore in [AMR]. It
admits as quotients the standard (untwisted) orthogonal and symplectic Yangians Y (g): see the remark at
the end of Section 2 in [AMR]. In this section, we will summarize relevant definitions and results from
loc. cit., to which we refer the reader for detailed explanations.

Let n € N and set N = 2n or N = 2n + 1. Then g will denote either the orthogonal Lie algebra sox
or the symplectic Lie algebra spy (only when N = 2n). These algebras can be realized as Lie subalgebras
of gly in the following way. Let us label the rows and columns of gly by the indices {—n,...,—1,1,...,n}
if N = 2n and by {-n,...,—1,0,1,...,n} if N = 2n+ 1. Set 6;; = 1 in the orthogonal case Vi,j and
0;; = sign(i) - sign(j) in the symplectic case for i,j € {£1,42,...,£n}. Let F;; = E;; — 0,;E_; _; where
E;; is the usual elementary matrix of gly. Then g = spanc{F;; | —n <4,j < n}. These matrices satisfy the
relations

Fij +05F_5,-i =0, [Fijv Fy] = ik Es — 0uFry + 0305 1 Fr s — 0550; 1 F_j,. (2.1)
All the tensor products in this paper will be over C, so ® = ®¢. We need to introduce some operators:

P € EndCY @ End C"V will denote the permutation operator on CY ® CV, and @ will denote the transposed
projector on CV ® CV, so

P=3 L E;®Eu Q=3 ,0;E;®E ;. (2.2)



The operator @ is obtained from P by taking the transpose of either the first or the second matrix, namely
Q = P't = P2 the transpose t being the one with respect to the bilinear form on CV given by (u,v) = u/Bv
where B is the matrix with entries b;; = sign(¢) §; —; in the symplectic case and b;; = 6; —; in the orthogonal
case, and the primed notation u’ denotes the usual matrix transposition. The transposition ¢ acts on the
basis elements by the rule (E;;)* = 6;;E_; _;. Let I denote the identity matrix. Then P? = I, and also
PQ = QP = +Q and Q? = NQ, which will be useful below. Here (and further in this paper) the upper sign
corresponds to the orthogonal case and the lower sign to the symplectic case.
Set kK = N/2 F 1. The R-matrix R(u) that we will need is defined by:
R(u)=1— r + @

U uU—kK

(2.3)

It is a solution of the quantum Yang-Baxter equation with spectral parameter,
ng(u) R13(u + 1}) Ros (’U) = Ro3 (’U) R13(u + ’U) ng(u). (24)
We borrowed the matrix R(u) from [AACFR], but it actually appeared earlier in [ZaZa] and [KuSKk].

Definition 2.1 (JAACFR, AMR]). The extended Yangian X (g) is the associative C-algebra with generators
tz(-;) for —m <4, j < n and r € Z>q, which satisfy the following relations:
R(u —v) Ty (u) Ta(v) = To(v) T1 (u) R(u — v), (2.5)
where Ty (u) and Ty(u) are the elements of End CN @ End CN @ X (g)[[u~?]] given by
Ti(u) =30 By @1@t(u),  To(u) =377 1@ Eij @ tij(u),

i,j=—"n i,j=—n

with the formal power series given by

tip(u) = 0ot um e X(g)[[w ), £ =4y

r=0 "ij

In terms of the power series elements t;;(u), the defining relations are

5 (), 1 (0)] = —— (1 0)ta(0) = 145 (0) )
R i — in (85 O tag () 2 (0) = 81,5 B th,—a(0) tia (4) ). (2.6)
The Hopf algebra structure of X (g) is given by
Actij(u) = Yop_ ti(u) @ tgi(u), S T(u) = T~ (u), €:T(u)— 1. (2.7)

Lemma 2.1 ([AMR, Proposition 3.11]). There ezxists an embedding g — X (g) of the enveloping algebra
1) ).

of g into the extended Yangian given by Fj; — %(tgjl) =05t

Remark 2.1 ([AMR]). If i # j, then tgjl-) = fﬁijt(l) so the embedding sends Fjj to tz(;). However,

—j,—i2
21

tz(.il) =2 —t(_lz-{_i where z1 1s a certain central element in X (g), so the previous embedding maps Fy; to tgil) -3

Next, we will state some properties of X (g) that we will require in further sections. Consider an arbitrary
formal series f(u) of the form

flu)=1+ fiu=" + fou™? +--- € C[[u "]

Let a € C be an arbitrary constant and let A be a matrix with entries in C such that AA* = 1. Then each
of the maps in the first line below defines an automorphism of X (g) and each map in the second line defines
an anti-automorphism:

pg o T(uw) = f(u)T(u), 7o T(u) = T'(u— a), o T(u) — AT (u)A, (2.8)
T(u) = T(—u), T (u) = T"(u), T(u) = T (u). (2.9)

This is verified with the use of the following property of the R-matrix:
R(u)R(—u) = (1 —u"?)-1, (2.10)



and the fact that R(u) is stable under the composition of the transpositions in the first and the second copies
of EndCY: R"'2(u) = R(u).

Let ZX(g) denote the centre of X(g). Multiply both sides of (2.5) by u — v — k and set u = v + k.
Then upon replacing v by u one obtains QT (u + k) Ta(u) = To(u) Ti(u + k) Q. Recall that N=1Q is a
projection operator to a one-dimensional subspace of CV @ CV. Thus the expression above must be equal
to @ times a formal power series z(u). Using the definition of @, one deduces that Q T (u) = Q T%(u) and
Ty (u) Q = T¢(u) Q. From this, one can show that

T'u+ k) T(u) = T(u) T (u+ k) = z(u) - I, (2.11)

where z(u) = 1+ > .,z u™" is called the quantum contraction of the matrix T'(u); its coefficients z;
generate the centre ZX(g) of X(g). This leads to the following tensor product decomposition of X (g)
[AMR, Theorem 3.1]:

X(g9) =2ZX(g) ®Y(9), (2.12)

where Y (g) is the Yangian of g. Y (g) is thus isomorphic to the quotient of X (g) by the ideal generated by
the central elements z;, that is, Y (g) = X(g)/(z(u) — 1). It is also isomorphic to the subalgebra of X(g)
stable under all the automorphisms ps. Let us give a few more details which will be relevant later.

Let y(u) be the unique series such that z(u) = y(u) y(u+ k). By (2.11) the automorphism py takes y(u)
to f(u)y(u). The Yangian Y (g) (JAMR], Corollary 3.2) may be alternatively defined as the subalgebra of
X(g) stable under all the automorphisms py given in (2.8), i.e. as the subalgebra }N/(g) generated by the

()

coefficients 7;;” of the series 7;;(u) = y~H(w) tij(u) with —n < i,j <n and r € Z>o.

The generators Ti(;) of Y (g) satisfy the relations (2.6) with t;j(u) replaced by 7;;(u) and the additional
relation
Ezz—n 0ok T,a),k(u + /{) Tal (u) = Opy- (2.13)

We can also express these as:
T(u) =y(u) T (u), Tw) T (u+k) =T (u+r)T(u)=1I (2.14)

where 7 (u) is the matrix with entries 7;;(u).

3 Twisted Yangians

The twisted Yangians of types AT and AII, corresponding to the symmetric pairs (gl,,s0,), and (gly,spx)
and the twisted reflection equation were first introduced by G. Olshanskii in [Ol] and have been studied
extensively over the past twenty years (see e.g. [MNO] for a pedagogic exposition). Those of type AIIl were
first investigated in [MoRa] where they were called reflection algebras since they can be defined using the
non-twisted reflection equation, and their twisted quantum loop analogues were introduced in [CGM]. In
this section, we introduce new twisted Yangians for the classical Lie algebras of types B, C and D: they
are in bijection with the symmetric pairs of types BDI, CI, CII and DIII. This notation refers to Cartan’s
classification of symmetric spaces. We also introduce twisted Yangians BCDO of even levels that are analogues
of the even loop twisted Yangians of [BeRe] and the reflection algebras B(n,0) of [MoRa].

3.1 Symmetric pairs of types B, C, D

The symmetric pairs we are interested in are of the form (g, g°) where p is an involutive automorphism of g
given by Ad(G) where G € G or v/—1G € G and
G={AcSLy(C)|A™' = A"} and g = {X €5sly| X + X' =0}.

The fixed-point subalgebra g” is given by g = {X € g| X = GXG 1} =span{X +GXG 1| X € g}. We will
denote by g” the eigenspace of eigenvalue —1 of p and by g;; the entries of G. The matrix G is not unique,
but gAd(91) = gAd(92) jmplies that G, and Go are, up to a central element, conjugate to each other under G
as explained below, except in type D where On(C) has to be considered instead of SOy (C).

Let us consider each symmetric pair and one or two choices for the matrix G:

e BCDO: G = Iy, p is trivial and g” = g.



N
e CI : Niseven, g=spy,G=>2,(Ey—FE_;_;) and g" = g[%. In this case, it is vV—1G € G.

N
e DIII : Niseven, g=son,G=2> 72,(Ey;—FE_;_;)and g¥ = gly . In this case, it is v—1G € G.
e CIT : N,pandqareevenand >0, N=p+gq, g=spn,

a N
G=—->21(Es+E_;_;)+ Zii%+1(Eii +E_;_;)

and g” = sp, © sp,. More precisely, the subalgebra of g” spanned by Fj; with —2 < i,j < I is

isomorphic to sp, and the subalgebra of g# spanned by F;; with [i|,|j| > 2 is isomorphic to sp,,.
e BDI : g=soy, g” = so0, $so, where p > ¢ > 0if N isodd, and p > ¢ > 0 if N is even. (If ¢ = 1,
then so, is the zero Lie algebra.) When N is even, p and ¢ have the same parity and G is given by
P—q N
G=> 21 (Bu+E )+ Zf:p%qﬂ(Efi,i + Ei ).

When N is odd, p — ¢ is odd and

p—g—1 N1

g = szi p—g—1 Eii + Zi,%*ﬁl (E*i»i + Ei,*i)'
- 2 - 2

To see that g = so, @ so,, we will adopt the more common point of view on soy, namely that it is
isomorphic to the the Lie algebra of matrices in sly skew-symmetric with respect to the main diagonal.
Let soy = {X € sly | X = —X'}: here, X’ is the standard transpose of X with respect to its main
V=1

diagonal. Let C' be the matrix with non zero-entries given by c;; = ——V\};, Coj—i = %, Coisi = Y755 Cipmi =
% for 1 <i < & if N is even and for 1 < i < &=L if N is odd; in the latter case, we also set cog = 1.

Then CC’' = K where K is the antidiagonal matrix with entries k;; = ; —;. An isomorphism ¢ : soxy — g
is given by p(X) = CXC~!. Indeed, if X = —X’, then —p(X)! = ~K(CXC7')K = -K(C7')X'C'K =
CXC™1 =¢(X),so p(X) €g.

If N is even and p > ¢, we let G be the diagonal matrix with entries g;; = 1 for —% <i<p- % and
gis = —1 for p — % +1<i< % If Niseven and p=q = %, we let G be the diagonal matrix with entries
gii = 1 for i < 0and g; = —1 for ¢ > 0. If N is odd and p > ¢, we let G be the diagonal matrix with
entries g; = 1 for 7N2’1 <i<p-— % and g; = —1 for p— % <i< % Conjugation by G defines an
automorphism p of son with fixed-point subalgebra isomorphic to so, @ s0,. Using ¢, we can transport it

to an automorphism p of g: p(X) = (g o po e )(X) = (CGC~HX(CGC~1)~1. Observe that G = CGC !
with G as given above, and p(X) = GXG™': this proves that g” = s0,, & s0, because g” is isomorphic via ¢

to sof.
When N, p and q are even, another possibility for G is Zigﬂ(Eii +E_;_;)— Zigzl(En+E—z’,—i)- When
N-—1 p—1
N is odd, p is odd and g is even, another possibility for G is ZFTLH(E” +E_i i) —>2 (Bu+ E_i ;).
The fixed-point subalgebra is also isomorphic to so, ® so,. The maQin advantage of the first matrix G given
above in the BDI case is that it works for all possible parities of N, p and q.

The various matrices G chosen in the previous paragraphs will help us define the twisted Yangians that will
be of interest to us in the remainder of this article. They are not the only ones that we could use. Theorem
6.1 in [He| says that if p; and po are two involutions of a simple Lie algebra g and if g”* is isomorphic to
g°2, then p; and ps are conjugate under Aut(g). When g is of type B or C, there are no Dynkin diagram
automorphisms and consequently Aut(g) consists of inner automorphisms. This means that there exists a
third matrix D in G such that Ad(G;) = Ad(D)Ad(G2)Ad(D)~!, hence G; = ZDGoD~! where Z is in the
centre of G. We can take G, to be one of the matrices G above (in types BI or CII) or v/—1G (in type CI) and
conclude that if G; is any other matrix such that Ad(G;) is an involution of g with fixed-point subalgebra
isomorphic to g°, then G is in the orbit of G (or v/—1G) under the adjoint action of G, up to multiplication
by a central element in G. (The centre is trivial when G = SON(C) and N is odd, and it is equal to {+I}
when G = SON(C) with N even or G = Spy(C).) The orbit of G (or v/—1G) under the action of Aut(g) is
in bijection with Aut(g)/Cent(q)(G) where Cent gy (g)(G) is the centralizer of G in Aut(g). The centralizer
Centayt(g)(9) can be determined for the specific matrices G considered above and is a complex Lie subgroup
of G with Lie algebra g”.



3.2 Twisted Yangians as subalgebras and quotients of extended twisted Yan-
gians
We now introduce two types of twisted Yangians associated to the extended Yangian X (g). We will explore

their algebraic structure in the subsections bellow.

Definition 3.1. Let the matriz G be as described above. The extended twisted Yangian X (g,G)*™ is the
subalgebra of X (g) generated by the coefficients of the entries of the S-matrix

S(u) =T(u—r/2)G(u) T (—u + K/2), (3.1)
where
e G(u) =G for cases BCDO, CI, DIII and DI, CII when p = gq;
e G(u)=(I—cuG)(1—cu)™t withc= ﬁ for cases BDI, CII when p > q.

We will further refer to the first case above as ‘G of the first kind’ and to the second case as ‘G of the second
kind’. We will use the same terminology for the matrices G(u) and S(u).

Remark 3.1. The BCDO case was considered in [IMO] (see Definition 3.1 of their reflection algebra); those
authors used a slightly different formula for S(u) (see Proposition 3.2 in [IMO]). Our formula (3.1) is more
in line with the one used in [MNO]. The choice of G(u) is motivated by [MaSho]. The rational form of G(u)
is a new feature of twisted Yangians of types B,C,D which is not present in type A. The shift by /2 in (3.1)
is imposed upon us by (2.11). Shifting by k/2 gives a more symmetric formula for S(u) and for the left-hand
side of (3.2), which is similar to the notation used in physics for the unitary condition.

Proposition 3.1. In the algebra X(g,G)™, the product S(u) S(—u) is a scalar matriz
S(u)S(—u) =w(u) - I, (3.2)
where w(u) is an even formal power series in u~! with coefficients w; (i = 2,4,...) central in X(g,G)"™.
Proof. Recall that T*(u + ) T'(u) = T(u) T*(u + k) = z(u) - I. Thus
S(u) S(—u) = 2(—u— k/2) z2(u — k/2) - I,
and w(u) = z(—u — £/2) z(u — k/2) is indeed an even series whose coefficients are central since so are the

coefficients of z(u) in X (g). O

Let W(g,G)!™ denote the commutative algebra generated by the coefficients of w(u). It will be proven
in Section 3.4 that W (g, G)™ is indeed the centre of X (g,G)"".

Definition 3.2. The twisted Yangian Y (g,G)™ is the quotient of X(g,G)™ by the ideal generated by the
coefficients of the unitarity relation, i.e.,

Y(g,9)"™ = X(g,9)"/(S(u) S(~u) — I). (3-3)
The new Yangians, as Olshanskii’s twisted Yangians, are coideal subalgebras of a larger Yangian.
Proposition 3.2. The algebra X (g,G)" is a left coideal subalgebra of X (g):
A(X(g.9)™) € X(g) ® X(9,9)™.
Proof. Tt is sufficient to show that A(s;;(u)) € X(g) ® X(g,G)". Indeed,
$ij () = D pe—n Ojb tia(w — K/2) gav(u) t—j—p(—u + £/2).
and by (2.7),
A(sij(u) = 24 pe O tia(u — 1/2) T _p(—u + £/2) @ sap(u), (3.4)
which completes the proof. O
The elements w; are group-like in X (g, )™, that is, A : w(u) — w(u) ® w(u). This follows straightfor-
wardly since A : z(u) — z(u) ® z(u) (see (2.29) in [AMR]), which can be obtained from (2.11).
Now we show that Y(g,G)™ is isomorphic to a subalgebra of the extended twisted Yangian. Recall
that Y (g) was defined as the subalgebra of X(g) generated by the coefficients Ti(;)
y~ 1 (u) ti;(w) with —n < i,j <n and r € Z>o; moreover, the 7;;(u) are matrix entries of 7 (u).

of the series 7;;(u) =



Theorem 3.1. Let Y(g,G)™ be the subalgebra of Y (g) generated by the coefficients oij(u) of X(u) defined
by S(u) = T(u— r/2)Gw)T (—u + /2). Then Y (g,G)™ is a subalgebra of X(g,G)"™ and the quotient
homomorphism X (g,G)™ — Y (g,G)"™ induces an isomorphism between Y (g, G)"™ and Y (g,G)™. Moreover,
X(g,G)™ is isomorphic to W(g,G)™ ®@ Y (g, G)™.

Proof. Set q(u) = y(u — £/2)y(—u + £/2). Then X(u) = q(u)"1S(u) and w(u) = q(u)q(—u) = q(u)q(u + ).
It follows from the last equality using induction that the coefficients of g(u) can be expressed in terms
of the coefficients of w(u), hence belong to the centre of X (g,G)". The entries of ¥(u) are thus also in
X(g,6)™, so Y(g,G)™ is a subalgebra of X(g,G)™. From the decomposition S(u) = q(u)S(u), it follows
that X (g,G)™ = W(g,G)™ - Y(g,6)™. W(g, )™ C ZX(g) since w(u) = z(—u — £/2)z(u — £/2) and
Y(g,G)™ C Y(g), where Y (g) is the subalgebra of X(g) generated by the coefficients of T (u). (Y(g) is
isomorphic to the Yangian Y (g) - sce [AMR].) Therefore, since X (g) = ZX(g) ® Y (g) [AMR], X (g,G)™ is
isomorphic to W (g, G)™ ® Y (g,G)™.

The kernel of the quotient homomorphism X (g,G)! — Y (g,G)™ is generated by w;, i > 1. It follows
from the decomposition X (g, G)™ = W(g,G)™ ® Y(g,G)™ that X(g,G)™ = ker & Y (g,G)™ and thus

57(97 G)* is isomorphic to the image of the quotient homomorphism, that is, to Y (g, G)*". O

Let f(u) be an invertible power series. The restriction of the map g1 of X(g) (see (2.8)) to the subalgebra
X (g,G)"™ provides an automorphism of the latter; we denote it by 4. Indeed, by (2.8) and (3.1) we have

g s S() o Flu— 5/2) T(w— 1/2) G(u) f(—u+1/2) T (—u+ 1/2) = f(u— 1/2)f(—u + 1/2) S(u),
From this we see that g(u) given by g(u) = f(u)f(—u) is an even series and v,(S(u)) = g(u — x/2)S(u).

Corollary 3.1. The algebra }7(9, G)™ is stable under all automorphisms of the form v,.

Proof. We know already that ps(7 (u)) = T (u), from which it follows that pf(3(u)) = ¥(u). The same
holds for v, since it is obtained from pf by restriction. O

Corollary 3.2. The algebra Y (g,G)™ is a left coideal subalgebra of Y (g):
A(Y(9,6)™) CY(g) @ Y(g, )™
Proof. This follows by Theorem 3.1 and analogous computation as in the proof of Proposition 3.2 O

Remark 3.2. The following observation will be useful in further sections. Let A € G. The automorphism
aa of X(g) (see (2.8)) restricts to an isomorphism between X (g,G)"™ and X (g, AGA")™ (see (3.1)). This
isomorphism descends to the quotients Y (g,G)* and Y (g, AGA?)*v.

3.3 Poincaré—Birkhoff-Witt Theorem for twisted Yangians

We first formulate this theorem in terms of the associated graded algebra of a certain filtration on the twisted
Yangian and then in terms of a vector space basis. We first prove it for Y (g,G)" (and hence for Y (g,G)™"
by Theorem 3.1) and then for the extended twisted Yangian X (g, G).

Since Y (g, G)™ is a subalgebra of X(g,G)™, it inherits its filtration, which in turn comes from the
filtration on X(g) obtained by setting deg tgn) = m — 1. As a subalgebra of X(g), Y(g) also inherits a
filtration.

The following lemma will be useful in the proof of Proposition 3.3 and Corollary 3.4 below.

(m)
ij
component of the associated graded algebra gr X(g). Let %i(;n) and, respectively, 5%’1) denote the images of

Lemma 3.1. Denote respectively by fg;”) and 8;." the images of tz(-;”) and sgn) in the (m—1)-th homogeneous

Ti(;n) and Ugn) in the (m — 1)-st homogeneous component of gr 57(9) Then the following equalities hold:

gg’n) = ZZ:—n (EET)gaj + (_1)m9jagiaf(,n;’),a> + 0m1Gijs (3.5)
G = (T g+ (~1)™0j0giaT ) + i (3.6)

where Gi; = 0 if G(u) is of the first kind and gij = (gij — 6i5)c™ " if G(u) is of the second kind.



Proof. The proofs of both identities are very similar, so we consider only (3.5). Let g;;(u) denote the matrix
elements of G(u). Then the matrix elements of S(u) are expressed as

sij(u) = D0 ey O tia(u — £/2) gap(u) t—j _p(—u + K/2). (3.7)
We have

T T —1 K —s—r
ia (= 1/2) = X250ty (0 = #/2) 7" = ia + Lot Lano tiy (”;“ )(5) w
and

top(—ut £/2) = 3, 0o (— 1)) k/2) 7T = 05+ 3,00 Yo (1)), (S*’“— 1) (5) s,

s
Set f)(u) = ¥,00 (5 e 1) (k/2)*u"* and f©(u) = 1. Let G(u) be of the first kind. Then G(u) = G and
9ij(w) = gij, giving
sij(w) = gij + X0 S or (87 905 + (~1) 0as9:at)_ ) FO (w) u
e Lot (1005800 gat) _ FO () FO (whu =, (3.8)

and
gz(';n) = a—n (f&gl)ga] + (=™ gagmf( ) ) for m > 1.
Let G(u) of the second kind. Then
Gu)=(T—cuG)(l—cu) ' =G+ (G—1) Y5 ¢ u,
and
sij() = gij + 0 Ypmn U+ 0 Sy (67 9as + (—1) s iat") ) £ () u"
et (870 (1) 0y glt ) ) £ () et
+ b= nsz1(—1)° Oyt (gab + s 9 ‘t) t(s LSO@FOwuTE, (3.9)

where ¢/, = gap — 0qp. This time we get

_(m) Zn (é;n)gaj + ( )majagla%:?)_a) + 5ml(gij - 51'3')071 for m Z 1. O

z] a=—n

The twisted current algebra g[x]? is defined as the subspace of g[z]| consisting of elements fixed by the
involution p extended to g[z] by p(F @ p(z)) = p(F) ® p(—=x) for all F € g. The next result is an analogue
for twisted Yangians of Theorem 3.6 in [AMR].

Proposition 3.3. The graded algebra gr ?(g,g)tw is isomorphic to the enveloping algebra Ug[x]? of the
twisted current algebra g[x]?.

Proof. The Lie algebra g[z]? is the linear span of the elements
FP™ = (Fy— (~1)"GF;G Y)a™ ' with  —n<ij<n m>L
It is also spanned by the elements F((p ™) defined by
EL™ = S0 (Fiagag = (~1)"giaFag)a™ " (3.10)
Let us see why this is true. The (a,b) entry of QFZ-jg*1 is sz:_n Gac(Fit)cagap and (Fij)ea = (Eij —
0i;E_j —i)ea = 0icOja — 0—j,c0—i,qbij, SO
(a, b) entry of g g_ ZC d=—n gac(ézcéjd 5—j,c(5—i,d9ij)gdb
= v de—n OicOjagGacgdp — I g 0—j,cO—i,abijGacan
= 9aigjb — 0ij9a,—jG—ib-



Therefore,
GFiG " =3 o (9aigib — 0ij9a,—i9—i) Eab
= Za,b:_n Jaillavgjp — ZZJ,:_,L 0ii9—a,—iF—a,—b9—i,—b
= av——n JaiFavgip = D0y GiaFab ;-
It follows that >, F Zlgp,m) F(p’ ™) , which shows that

spanC{F pim) | —n<i,j<n}C spanC{FZ-lj(-p’m) | —n <i,j <n}.

Indeed,
S i gy = X0 b (FiaGabge; — (=) giaFasges )™
=3 (Fialaj — (=1)™ >0, GiaFapgj) 2™ = Fi(jp,m).
Moreover,
S (Fy — ()G E, G ggpamt = S e g g = S ey e,

which implies that
spang{FL™ | —n < i,j < n} C spanc{FC™ | —n < i,j < n},

hence equality holds. It will be useful later to know that F/(p m) = (&) 9¢j(—1)mF;§p’m).
By ([AMR], Theorem 3.6) there exists an isomorphism  : ng[ac] — grY(g), Fijzm ' — ?Z-(jm). Using the

symmetry of 7’( ™) and (3.6), we can write

_(m) Za——n ( i(;n)gaj - (71)mgia7_—g(,;'n)) + 57nl§z’j
and we have
/(p,m n —(m —(m —
b F o S (75 g0 — ()™ gia7y”) = 05 = g, (3.11)

(m) generate

Slnce spanc{ F}; (p:m) | —n <i,j <n} = spanC{Fi/](p’m)| n <i,j < n} and the elements o;;
Y (g, , we can conclude the proof because we already know that 1) is an isomorphism, hence its restriction
g) lude th fb Iready know that hism, h t tricti

to Ug[z]? must provide an isomorphism with gr ?(g, g)tw. O

Corollary 3.3. Set F'p = Za__n (FiaGaj + giaFaj). The assignment F (N O'( ) —gij defines an embedding
dg? < Y (g, G)™.

Remark 3.3. The algebra Y (g,G)"™ may be considered as a flat deformation of the algebra $ig[z]?. Introduce
a formal deformation parameter h. Let Yy(g,G)*™ be the Clh]-subalgebra of Y (g,G)" &c C[h] generated by

58) = h’“flsz(-;) forr > 1. (Here we denote by sg) also the image of SE;) under the quotient homomorphism
X(g,9)" — Y(g,G)"™.) For a € C*, Yu(9,9)"/(h — a)Yy(g,G)"™ is isomorphic to Y (g,G)"", whereas
Yi(g,G)™ /hYr(g,G)™ is isomorphic to the enveloping algebra of g[z]”.

Now we formulate the Poincaré-Birkhoff-Witt property in terms of a vector space basis, which could be
useful for obtaining a basis of a Verma module as in Section 4.2 in [Mo3]. Suppose that G is a diagonal

matrix. Then we have:
5'2(;1) = (gjj ( 1) gu) + 5m1gz]
Let G be in the BDI case. We write (assuming that goo = 1 and 9—j.j»9j,—; do not appear if j = 0)

51(,;”)7 " )gJ] +7'(7 39 ig — (D" gi T, ( ) - (= 1)mgi,—z‘7_'£?j+5m1§¢j-

Define
0 = { (=t 4 1), 2 (050)), P ={ormgh ek pOU PO o POU {0} U P

where k =0 if N is even and k = 1 if N is odd (i.e. ¢;s =1, gi.—; =0 for i € P and ¢;; =0, g;,.—; = 1 for
i€ QF).

10



Then

U= - (—ymEY for i j e, (3.12)

G = iy = 7o) — (~)MF for g e QF (3.13)
g =7 (—ymE dor ie ot jep, (3.14)

o =™ — (1Y for i€ P,jeQF. (3.15)

Recall that a vector space basis of ?(g) is provided by the ordered monomials in the generators Ti@ with
r > 1and i+ 7 > 0 in the orthogonal case and i + j > 0 in the symplectic case ([AMR], Corollary 3.7).
This together with what was considered above implies the following analogue of the Poincaré—Birkhoff-Witt
theorem for the algebra Y (g,G)™.

T tw

Theorem 3.2. Given any total ordering on the set of generators ai(j) of SN/'(g7 G)™, a vector space basis of

57(9, G)' is provided by the ordered monomials in the following generators (r > 1):

o BDO: oY withi+j> 0.

o CO: oV withi+j>0.
o CI: 0"V withi,j>0; and o> with i +j >0, ij < 0.
o DI o) " withi,j >0; and 0" with i+ j > 0, ij < 0.
o CII: oV withi+j >0 and |i|,|j| < & or i, |j| > £ +1;

)
G withi>§41, —§<j<forj>4+1, -§<i<$.

ij

e BDI: UZ(JQ.T_I) with i+ 4§ > 0 and either i,5 € P, ori € P>% j € Qt, ori e QF, j € P>0 or
gril) when i > |j| and i,j € QF;

B0 with i+ j > 0 and either i € P>, j € QF orie QF, j € P> ori=0,j € QF (in

type BI only); we should also include JgT) when i > |j|,i # j and i,j € QF.

and

i=20,7 € QF (in type BI only); we should also include o

and o

Proof. This follows from Proposition 3.3. The Lie algebra g[z]? is spanned by the matrices FZ-/J(P ™) for
—n < 4,7 < n, so all we need to do is to extract a basis from this spanning set. This will lead via the
Poincaré-Birkhoff-Witt Theorem to a basis of {g[x]” which, by Proposition 3.3, corresponds to a basis of
§~/(g7 G)' consisting of ordered monomials in some of the generators UZ@.

Let’s explain a little bit how the basis is obtained in the BDI case. By considering the four cases i,j € P,
i,j € QF, ieP,je 9t and i€ QF, j € P and using the anti-symmetry F;; = —F_; _;, it can be checked
that g? ® Cz2" is spanned by Fl-/](p’%) with i + 7 > 0 and either i,j € P, or i € P>°, j € Q*, ori € QF,
j € P> ori=0,5€ QF (in type BI only), or i,j € QF with i > |j|. All these elements are linearly

independent and there are exactly W

L;(p_@ with i,5 € P, @ with i € P20 j € 9t ori € QF, j € P>Y, and there are ¢> — ¢ with
i,j € QF and i > |j].

As for §° ® Cx? 1, it is spanned by F;J(-p’ with i 4+ j > 0 and either i € P>°, j € Qt, ori € OF,
je P> ori=0,7¢€ QF (in type Bl only), or 4,5 € QF with i > |j|,i # j. These are all linearly
independent and there are pg such elements, which is the dimension of §. O

of them, which is the dimension of g”. Indeed, there are

2r+1)

T

Corollary 3.4. Given any total ordering on the set of generators sgj) of X(g,6)%, a vector space basis of
(r)

X(g,6)™ is provided by the ordered monomials in the generators w; with i = 2,4,6,..., and S

satisfying the same constraints as in Theorem 3.2.

with 7,1, j

Proof. By Proposition 3.3, Theorem 3.1 and Corollary 3.5 (3) (to be proved below), the graded algebra
gr X (g,G)™ is isomorphic to the tensor product of Ug[z]? and the polynomial algebra C[¢2,&y,...] in the

11



indeterminates &;. Denote by w,, the images of the elements w,, in the (m — 1)-th homogeneous component
of gr X(g,G)". Recall that
F(m) F(m)
tig +0it

—J,—t

_ _(m) 1
=0ijZm  and 7'1(] R i(é;n) — 0,8 ).
Moreover, we have w,,, = 2Z,,. Then, by (3.5), we see that the image of the element sgjm) in the (m — 1)-th
component of gr X (g, G)™ is given by

m —(m 1 _

m —(m 1 m _ _
Filj(p’ ' Sl('j ' 1(1 + (=1)")9:ijWm — 6m13ij,

with w,, being the image of &,,. This concludes the proof. O

3.4 The centre of twisted Yangians

In order to deduce that W (g, G)* is the centre of X (g, G)™, we will need to know that the centre of Y (g, G)™
is trivial. By the previous proposition, this reduces to the same problem for the enveloping algebra of the
twisted current algebra.

Proposition 3.4. The centre of the enveloping algebra of glx]? is trivial.

Proof. Since g is a simple Lie algebra, g” is reductive in g and it is equal to it own normalizer in g by
Theorem 1.13.3 in [Di]. It follows that if a non-zero element of g is invariant under the adjoint action of g*,
then this element belongs to the normalizer of g, hence it belongs to the centre of g°. Consequently, if the
centre of g” is trivial, then g does not have any nonzero elements invariant under the adjoint action of g”
and Theorem 2.8.1 in [Mo3] allows us to conclude that the enveloping algebra of g[x]? has no centre.

For the cases which interests us in this paper, the centre of g” is non-trivial in types CI and DIII where
it happens to be one-dimensional and is spanned by the matrix J given by J = >"" | F; and [Fi; 15, J] =
£2F4; 4 ifd, 5 > 1.

Let C be an element in the centre of 4g[z]? which is not a scalar. A basis of $ig[z]? is provided by
ordered monomials (in some fixed chosen order) of the elements Fijx2m fori,7 > 1,m >0 and Fijx2m+1 for
ij <0,i+37>0,m >0 (except that F_; ; = 0 when g is of type DIIIL.) Therefore, we can write C' as a sum
of such monomials.

Since C' is in the centre of Lg[z]?, [Jz",C] = 0 for all > 0 and it follows that the monomials in C' cannot
include any Fj;jz?™*! with ij < 0,i+j > 0,m > 0. (This can be seen by taking r larger than any of the
exponents of x appearing in any of the monomials which add up to C.) Therefore, C is a central element
in 4g”[2?] and it follows from Lemma 1.7.4 in [Mo3] that the centre of $g?[z?] is a polynomial ring in the
variables Jz?™, m > 0. However, such an element cannot be in the centre of $lg[z]? unless it is zero, again
because [F; 44, J] = £2F¢; 1, if 4,5 > 1. O

The next corollary is the analogue of Corollary 3.9 in [AMR] for the (extended) twisted Yangians.

Corollary 3.5. The following statements hold:
1. The centre of the algebra Y (g,G)* is trivial.
2. The coefficients of the even series w(u) generate the whole centre ZX (g,G)"™ of X(g,G)"".

3. The coefficients wa; of the even series w(u) are algebraically independent, so the subalgebra Z X (g,G)"
of X(g,G) is isomorphic to the algebra of polynomials in countably many variables.

Proof. 1 follows Propositions 3.3 and 3.4. By Theorem 3.1, the even coefficients of the series w(u) generate
the whole centre of X (g, G), which proves 2.

As for 8, the algebraic independence of the ws; is a consequence of the algebraic independence of the
central elements z; and the fact that, since w(u) = z(—u — k/2)z(u — k/2), we have that wq; = 2z; +
p(z1,...,2i—1) for some polynomial p(z1,...,2;-1). O

12



Corollary 3.6. The algebra X(g,G)™ is isomorphic to the tensor product of its centre and the subalgebra
Y(g.G)".

Proof. This is an immediate consequence of Theorem 3.1 and Corollary 3.5. O

3.5 Quantization of a left Lie coideal structure

It was shown in (J[AACFR], Theorem 3.3) that Y (g) is a homogencous quantization of a Lie bi-algebra
(g[z], ) (see Definition 6.2.6 in [CP]), where § is a cobracket on g[z] defined as follows. g[z] is equal to
spanC{Fi(;) |-n <i,j <n,r>1}, where Fi(;) = F;; "1 and the grading on g[z] is given by deg Fi(jr) =r—1.

(For convenience we set F -(Q) =0.) Then
SFY) =Sn X (FY Y e By — FS e FYY). (3.17)

= (T (u/h) — I)/k and let 7;;(u) denote the matrix elements of T (u). Then, for the coefficient T (r)
7ij(u), set

Set T (u)
of ™" in

8(71) = 4 (A - a7(E0))

Since A(i’g)) N(T) ®1+1® T ) + Y ST ( Z(: )& T(S)) it follows that

6(7 (7)) Z Z ( ~(r— S)®T(6) (é)®7~_(7" S)) (3.18)

a=-—n s=1
Using the generators 7:-(;), we can define a flat deformation Y (g) of Yg[z] and Yy (g)/hYx(g) = Ug[z] by
identifying %i(;) (mod k) with 77, (See Remark 3.3 where Yj(g,G)™ (2 Yi(g,G)™™) is considered.) Upon

this identification, the cobracket (3.18) becomes (3.17).

We want to show that an analogous result holds for ?h(g,g) It will be convenient for us to use
the language of twisted Manin triples and left Lie coideals as introduced by S. Belliard and N. Crampe in
([BeCr], Definitions 2.1 and 2.2). (What we call left Lie coideals are termed left Lie bi-ideals in loc. cit.)
Left Lie coideal structures for twisted current algebras were constructed by one of the current authors in
([BeRe], Section 4.2). Let g = g” @ g° be the symmetric pair decomposition of g with respect to the
involution p. The standard Lie bialgebra structure on the current algebra g[z] comes from the Manin triple
(g((x71)), g[z], g[[z~]]) with the non-degenerate ad-invariant bilinear form (-,-) given by (Fja", Fox™%) =
K(F1, F3)6(r = s — 1) where k(Fy, F3) = %Tr(Fng). (In particular, k(Fj;, Fj;) = 1 and &(F};, Fiy) = 0 if
(k,1) # (j,i) or (k,1) # (—i,—j).) The involution p can be naturally extended to g((z~!)) and we will denote
its extension also by p. The pairing (-, ) is not p-invariant because

(p(Frz"), p(Fox™ 1)) = —(p(F1)a", p(Fo)a ™" 1) = —r(F1, F) = —(Fia’, Foa ™).

The map p can thus be viewed as an anti-invariant Manin triple twist in the terminology of [BeCr].
The cobracket § associated to this Manin triple is p-anti-invariant in the sense that d(p(Fz")) =

—(p®@p) (8(Fz")):
(6(p(Fra™)), (Fpa™) @ (Fza™)) = (p(Fia"™), [Fpa", F3z™])
= —(F1z™, p([Foa™, F32"]))
= —(Fuz™, [p(Fox"™), p(Fa™)]) = —(8(Fiz™), p(Fox"™) @ p(F3a"™)).
It follows that d(g[z]?) C (§[z]” ® g[z]”) @ (g[z]” ® g[z]"). (Here g[z]” is the eigenspace of g[z] for the
eigenvalue —1 of p.) The restriction of d to g[z]? can thus be decomposed as § = 7 + 7/ where T is the

composite of § with the projection onto §[z]” ® g[z]? and similarly for 7/. (Note that 7/ = —o o 7 where

o:a®br— b®a is the flip operator. 7’ yields a right Lie coideal structure.)
/(p,m)

tw

The Lie algebra g[z]” is spanned by the elements F}; and using (3.10) one can compute 5(Fi/j(p’m))

and find that
’(P ) (s) /(p,r—s) s () /(p,r—s)
6( ) Z Z (F ®F (_1) Faj ®Fia

a=—n §=

/(p,r—s) (s) /(p,r—s) (s)
_Faj ®F7Ja +(_1)3Fia ®Faj )
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It follows that
T(FP) = Z Z (FY @ Bl =) — (-1 F) @ FP=)). (3.19)

Theorem 3.3. The algebra Y(g, G)'™ is a homogeneous quantization of the left Lie coideal (Uglx]?, T).
Proof. We have to verify item (4 ) in Definition 5.3 of [BeRe]: for items (1) — (&), see [AACFR, Theorem 3.3],

Remark 3.3 and Corollary 3.2. Set fl( ) = (Z(u/h) — G(u/h))/h and let &;;(u) denote the matrix elements
of £(u). Then, for the coefficient a( of ™" in &;;(u), set
o3 =1 (865~ (96 @1+ 1955)) € Yalo) @ Valg. ) [ ]]
In this proof, ¢ denotes the inclusion Yy (g, G)™ C Vi (g). Using (3.4), for r > 1 we find
AGS) = T (70 + (000007 ) @14 185
=) S (g0~ (10009 700 @1
+ hZa,bzfn o) Hjb(—l)sf-(rfs)gaﬁﬁsj),, ®1
R, X (P @ ol (120078, 5l Y) + o), (3.20)
where O(h?) denotes elements of quadratic and higher order in /. Then, by observing that, for r > 1,
065) = T (70005 + (1009 7))
i =1) 5 (7 g0 — (1) 00 000 700
+h e ( 70 G0 — (1) 600075 )
F A e T O ()7 9w+ OR)

and using the symmetry relation 7'( = —0;; %EZ-LZ. (mod h), we obtain, for r > 1,

7)) = e S (7 @ G0 = baragas) = (F1°7) @ (6177 = 0,1ia) ) + O(R).

Since %i(as) = Fi(;) (mod h) and 551;75) —0r—510aj = F;gp’rfs) (mod h) (see (3.11)), we can conclude from
(3.19) that 7 = 7 (mod k). O

4 Reflection algebras

In this section, we introduce a reflection algebra B(G) defined via the R-matrix given by (2.3), the matrix
G and an additional symmetry relation. We show that the extended twisted Yangian X (g,G)* given by
Definition 3.1 is isomorphic to the algebra B(G), but first we prove a similar isomorphism for Y (g, G)* and
a quotient of B(G). The usual notation + and F will distinguish orthogonal (upper sign) and symplectic
(lower sign) cases. The lower sign in (£) will distinguish the cases CI and DIII from the other cases.

Using solutions of the reflection equation, quantum analogues of symmetric spaces were introduced in
[NoSu]. By analogy, we may think of twisted Yangians as affine and quantized versions of symmetric spaces.

Definition 4.1. The reflection algebra B(G) is the unital associative algebra generated by elements sl(-;) for
—n < 1,5 <n, r € Z>q satisfying the reflection equation
R(u —v)S1(u) R(u + v) S2(v) = Sa(v) R(u + v) S1(u) R(u — v), (4.1)

and the symmetry relation

S(u) —S(k — u) n tr(G(u))S(k —u) — tr(S(u)) - I

U — K 2u — 2k ’

St(u) = (£)S(k — u) + (4.2)

where the S-matriz S(u) is defined by
S(u) = Y0, Eij @ sij(u) € End(CY) @ BG)[[uw 1), sij(u) = Y505t u ™, s =gy, (4.3)
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The reflection equation (4.1) is equivalent to the following set of relations:

" i ” (Skj(u) sit(v) = sk; (v) Sil(u))

o 3 (g Sua0) s (2) — 510 (0) 0 ()
_ ; 2": 5z‘j (Ska(U) Saz(v) — Ska(U) Sal(u)>

u? —v? a=-—n

[sij(u), sk (v)] =

1 n
o 5 (B 00 505 () S0 (0) = B0, Oy Sk -a(0) 10 (1))

U—V— K o="np

- Hﬁ (9j,—k si,—k(u)s—j1(v) = 0i 15k, —i(v) S—l,j(u))
(u n ’U)(ul— o R) ei,fj a:zn;n (5]@,72' Sfj,a(u) Sal (v) - (Sl’,j Ska(”) Sa,fi(u)>
(u— v)(ul—i— v —K) Oimi (Sk_l(u) s—51(v) = sk,—i(v) S—J’J(“))

L Qij i ((5]@’71‘ Saa (’LL) S,j’l(’l)) — (51},j Sk,—i (’U) Saa (u)) (44)

S (u—v—r)(utv—r) 7,

The symmetry relation (4.2) is equivalent to

iy (w) — sigls —w) | (G siy(x —w) = 9y im0 (1) (4.5)

2u— K 2u — 2K

0ijs—j,—i(u) = (£) i (K —u)

Remark 4.1. Let us comment on the choice of the reflection equation (4.1) for the algebra B(G). Consider
the twisted reflection equation

R(u —v) S} (u) R (—u — v) Sh(v) = Sh(v) R*(—u —v) S} (u) R(u — v). (4.6)

Observe that R (u) = R(k —u). Then it is possible to see that (4.6) is equivalent to (4.1) upon identification
S'(u) = S(u + k/2). Moreover, the choice of (4.1) has motivated the form of the S-matriz S(u) in (3.1).
For the twisted reflection equation (4.6) the natural choice would be S'(u) = T(u)G(u + k/2) T*(—u), the
unitarity relation would become S'(u) S"(—k —u) = I.

Remark 4.2. The set of relations (4.4) and the symmetry relation (4.5) are the analogues of those obtained
in [MNO]. In particular, the first three lines of (4.4) coincide with (3.7.2) in loc. cit and the first three
terms of (4.5) with k = 0 and the plus sign in (£) coincide with (3.6.4) in loc. cit. The additional terms
are essentially new features of the twisted Yangians of types B,C,D.

Consider an arbitrary even power series g(u) € 1+u~2C[[u~?]] and a matrix A € G such that AGA! = G.
The maps
vy + S(u) > g(u—r/2)S(u) and «s : S(u) — AS(u)A’, (4.7

are automorphisms of B(G), as can be seen from the symmetry relation (4.2). Furthermore, the map S(u) —
S'(u) is an anti-automorphism of B(G). This is verified by taking the transpose of the reflection equation
(4.1) and using the transpose symmetry of the R-matrix, R (u) = R(u). The compatibility with the
symmetry relation (4.2) is straightforward.

By dropping the symmetry relations one obtains an extended reflection algebra XB(G). We will consider
this extension in Section 5. The following lemmas will be needed to establish a homomorphism from the
algebra B(G) to the extended twisted Yangian X (g,G)".

4.1 Solutions of the reflection and symmetry equations

Lemma 4.1. The matriz G(u) is a solution of the reflection equation

ng(u - ’U) gl (U) R12 (u + U) gg (U) = g2 (’U) ng(u + ’U) gl (U) R12 (u - U). (48)
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Proof. Let G(u) be of the first kind. Then it is enough to prove the following equalities:

(-i5)al-an)e-a(-a)a (- o5) @

PG1QGy = G2QG1P, QG1 PGy = G2 PG1Q), (4.10)

G1QG2 = G2QG1, QG1G2 = G2G1Q, QG1QG2 = G2QG1Q. (4.11)
o (4.9) can be expanded and checked directly using PG; = Go P, PGy = G P and G2 = I.
o (4.10) follows by similar arguments as (4.9) and PQ = QP.
o The first identity in (4.11) can be checked directly:

G1QG2 = 370 i 0i49ii0—j,—iBij @ B—i —j = >0 i, 0ij9-i,-i95 Eij @ E—i—j = G2QG1.
o The second identity in (4.11) is
QG1G2 =320 i 0159539~ By @ E—i -5 = Q=311 0ij9iig—i,—iEij ® E_i —j = G2G1Q.
o For the third identity in (4.11), we have
QG1QG2 = (sz:,n 0i59;iFi; @ Efi,fj) (Zz,l:,n Or19—1,—1 B ® E—k,fl)

= ZZZ:—n (Z;;_n 9ij9jzgjj) g, Bg@E_; _, (4.12)

and

and similarly
G2QG:1Q =31, (Z?:,n 9ij9jlgjj) g—i—iBa®@E_; . (4.13)

Since 0,;0;, = 03, the sum Z?:_n 0;;0;195; vanishes when G is traceless, which is true in cases CI, DIII and
also in cases DI, CII when p = ¢, so QG1QGs = 0 = G2QG1Q in those cases. If G = I, we can see that

QG1QG = G2QG1Q is true also.
Now let G(u) be of the second kind, namely G(u) = (I —cuG)(1 — cu)~! with ¢ = ﬁ and p > ¢. Then
it is enough to prove the following equalities:

1= 2w (1= ) 6a) = 6o0) (1 2 ) Gafu) (1- ) (4.14)
¥ ¥

and

GoQP + QPGy = Go PQ + PQGa, (4.15)
PG QG2 + QG PGy = GoPG1Q + G2QG1 P, ( )
PG1QG2 + G2 PG1Q = G2QG1 P + QG1 PG, (4.17)
2QG1P + G2 PQ + GoQP = 2PG1Q + PQG2 + QPGa, (4.18)
PQG2 + QPG + G2QQ = Go PQ + GoQP + 2k(G2Q — QG2) + QQGa, (4.19)
G2G10Q + G1QG2 = G2QG1 + QG1 G, (4.20)
G2G1Q + G2QG1 = G1QG2 + QG1Go, (4.21)
2Q(G1 + G2) — 2(G1 + G2)Q = c(G2PG1Q + G2QG1 P + QG1QG2
— PG1QGy — QG1 PGy — G2QG1Q). (4.22)
o (4.14) can be expanded and checked directly using PGy = GoP, PGy = G, P.
o (4.15)-(4.18) follow by PGy = GoP, PGy = Gi P, QP = PQ and G2 = 1I.
o By similar arguments (4.19) is equivalent to

2PQGs — 2G2PQ = (N — 2k)(QG2 — G2Q).

Recall that QP = PQ = £Q and k = N/2 F 1. Thus 2PQ = £2 = N — 2k, and the equality holds
o (4.20) and (4.21) are essentially the same and can be checked directly. They are true if G is the diagonal
matrix in type CII. This follows by (4.11). We only need to show that they are true for the BDI case. Recall
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that G = C~'GC is a diagonal matrix and observe that C7'C; QC,C, = Q where Q = P> = Pi. (A’
denotes the transpose of the matrix A with respect to the main diagonal; the index in P indicates on which
copy of End(C¥) the transpose is taken.) Indeed, using that K = CC’ and Q = P* = Ky P2 Ky, we obtain

CTLC Q0,0 = CT Oy YKy PR Ky CyCy = O HCy L CoCy P2 CLCHCLCy
= C7ICLP(Cy )20 = (C7 105 P PCLCy )2 = Q.
Conjugating (4.20) by C’fl and 02_1, we deduce that it is equivalent to 5261@ + 51@52 = 52@51 + @51527
which can be checked as (4.11) since G is diagonal with entries equal to +1. The same argument gives (4.21).

o The last equality, (4.22), by similar arguments as before, is equivalent to

2Q(G1 + G2) — 2(G1 + G2)Q = ¢(QG1QG2 — G2QG,Q).
Conjugating by C1 L and cy ! we deduce that (4.22) is equivalent to

2@(51 + 52) - 2(g~1 + QNQ)Q = C(©g~1@§2 - §2é§1©)
G is diagonal with entries §;; = +1. Then

2Q(G1 + Go) — 2(G1 + G2)Q = 4QG1 — 4G,Q = 433 i (Gig — 9u) EBij @ Eij, (4.23)

Similarly to (4.12) and (4.13), we have
(QG:1QG2 — G2QG1Q) = ¢ (X, Guk) i i nlGij — Gii) Eij @ Eij (4.24)
and Y p_ . grk =P — ¢, so the equality holds if ¢ = ﬁ. O

Lemma 4.2. The S-matriz S(u) satisfies the reflection equation
R(u — v) S1(u) R(u 4 v) Sa(v) = Sa(v) R(u + v) S1(u) R(u — v). (4.25)

Proof. The proof of (4.25) follows the standard method, see e.g. Section 3 of [MNO]. We will need the
following auxiliary relations:

TH(—u+ #/2) R(u+v) To(v — £/2) = Ta(v — £/2) R(u +v) T{(—u + k/2), (4.26)
Ti(u—k/2) Rlu+v)Ts(—v + K/2) = Ts(—v + £/2) R(u +v) Ty (u — £/2), (4.27)
R(u—v) T{(—u+ k/2) Ta(—v + k/2) = Ta(—v + £/2) T{ (—u + £/2) R(u — v). (4.28)

Let us show why these are true. The first relation is obtained by transposing the first factor of the ternary
relation (2.5) and using symmetry of the R-matrix R'(u) = R(k — u),

R(u —v)T1(u) Ta(v) = Ty (v) T1(u) R(u — v) = Ti(u) R(k — u+v) To(v) = To(v) R(k — u +v) T} (u).

Then by substituting v — —u++x/2 and v — v — /2 we obtain (4.26). The second relation (4.27) is obtained
from (4.26) by conjugating with P,

Ty(—u+k/2) Rlu+v)Th(v—k/2) = Ty (v — £/2) R(u +v) Te(—u + x/2),
and interchanging u <> v. The last relation (4.28) is obtained by transposing the first factor of (4.27), giving
R(k—u—v)Ti(u—k/2) Te(—v + K/2) = Ta(—v + £/2) T1(u — £/2) R(k — u — v),
and substituting v — —u + x. Now
R(u—v) Sy (u) R(u+v) Sy(v)

= R(u—v) T1(u— #/2) Gi (u) (T{ (—u + #£/2) R(u +v) To(v — £/2)) Ga(u) T3(—v + #/2)

= (R(u—v)Ty(u—k/2) To(v — £/2)) G1(u) R(u+v) T} (—u + £/2) Go(u) T (—v + k/2) by (4.26)
=Tp(v — £/2) Ti(u — £/2) (R(u = v) Gi(u) R(u +v) Ga(u)) T{ (—u + £/2) Ty (~v + £/2) by (2.5)
= Tp(v — #/2) Ty (u — #/2) Go(u) R(u + v) G1 (u) (R(u — v) T{ (—u + £/2) T (~v + #/2)) by (4.8)
=Ty(v —K/2) Ga(u) (Ty(u — K/2) R(u+v) Te(—v + £/2)) G1(u) T} (—u + x/2) R(u —v) by (4.28)
=Ty(v — K/2) Go(u) Th(—v + £/2) R(u +v) T1(u — £/2) Gy (u) T{(—u + £/2) R(u — ) by (4.27)
= S5(v) R(u+ v) S1(u) R(u — v).

O
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Lemma 4.3. The S-matriz S(u) satisfies the symmetry relation
S(u) — Sk —w) n tr(G(w))S(k —u) — tr(S(u)) - I

4.2
2u— K 2u — 2K (4.29)

St(u) = (£)S(k —u) £

Proof. By (3.1) we have
(S'(u))ij = Oijs—j,—i(u) = S e, 0 Ob,—i Gab(w) t—j.a(u — £/2) ti p(—u + £/2),
where gqp(u) denotes the matrix elements of G(u). Using commutation relations (2.6) we find
t_ja(u—rK/2)t _p(—u+K/2)
=t _p(—u+K/2)t_;q(u—K/2)

+ 2u1_ s (tia(u — /43/2) tfj,—b(_u + 5/2) — tm(—u + ,‘{/2) t*j,*b(u — /{/2))
+ 1 Zn: (5ab Oucti—c(—u+rK/2)t_j(u—K[2) = 0;j0_j ctea(u—K/2)t_c _p(—u + ,{/2)).

2u — 2Kk =2,

Let G(u) be of the first kind. Then gqp(¢) = 04p gaa a0d gaa = (£) g—q,—a. In this case we find

(St( )i Z 0j,—a Gaa ti,—a(—u+K/2)t_ja(u —rK/2)

a=—n

Z 0j,—a Yaa (tia(u — £/2)t—j —a(—u+ K/2) = tia(—u + K/2)t_j _a(u — £/2))

2 U—=FKg=—n

o0 i o bz_ Jaa (05, v ts, p(—u+r/2)t_jp(u— K/2) = 655 Oap tpa(u — K/2) t b —o(—u + K/2))
oSty S~ S5y | S B g

where in the second equality we have used the property 6; _, = %6;, and the fact that G(u) = G and
tr(G) = 0 for all of the first kind cases except BCDO.
Now let G(u) be of the second kind. We now have gqp(u) = g—p —q(u) and Ogp goc (1) = Oac goe(w) giving

(S"(u))ij = i 0, gap(u) ts —p(—u+rK/2)t_jo(u—K/2)

a,b=—n

Qul_ e l;_n 0j,—b Gav(w) (tia(w — £/2) t—j b (—u+ K/2) = tia(-u + K/2) L p(u = K/2))

1 n
+ %4 —on a,b,;:—ngab(U) (0ab 0j,—cti—c(—u+r/2)t_; (u—K/2)
— 03 Ope tea(u — K/2) t_e _p(—u + K/2))

(S(u) = T(—u+ £/2) G(u) T (u — /<;/2))1,j

+

1
2u— kK

= (T(—u+£/2)G(u) T (u — m/2))ij +

+ 5y ((G(W) (T(—u+ 5/2) T (u = /2))ij = digtx(S(w))) (4.31)

Observe that tr(G(u)) = (2k £ 2 — 4u)(1 — cu)~! and use the relation
c(2u—kr)(I-G)
(1—cu)(1—c(k—u))’

G(u) =G(k —u) +

This gives the identity

(1 ! ) Glu) + 2@ _ (1 S S tr(g(“))) Gk —u),

2u— K 2u— K 2u — 2K

that applied to (4.31) gives
(S(u) = S(x —u))y 4 BGW)(S(r — )i — dij tr(S(u))

2u— K 2u — 2K ’

(S%(u)ij = (S(k —u))i; +

which, combined with (4.30), proves the symmetry relation (4.29) in all cases. O
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4.2 Isomorphism between twisted Yangians and reflection algebras

It follows by Lemmas 4.2 and 4.3 that the following formula does indeed define a homomorphism ¢ : B(G) —
X (g,G)™ which is surjective:

¢ : B(G) — X(g,0)"™, S(u)— S(u) =T(u—r/2)G(u)T" (—u+ k/2), (4.32)

It will be proved in Theorem 4.2 below that ¢ is also injective. We will first establish an isomorphism
between their quotients by their ideals generated by non-scalar central elements. To achieve this, we start
with the next proposition which is suggested by the analogous result (Proposition 3.1) for the extended
twisted Yangian and will be needed to identify the quotient of B(G) isomorphic to the twisted Yangian
Y(g, g)tw .

Proposition 4.1. In the algebra B(G) the product S(u) S(—u) = w(u) - I is a scalar matriz, where w(u) is
an even formal power series in u~t with coefficients w; (i = 2,4,...) central in B(G).

Proof. By multiplying both sides of (4.4) by (u? — v?) and setting v = —u, we have
615 Xz (Ska() Sar(—) = Spa(—u) st (u))
=2ud ., <5jk Sia () Sar(—1) — i Ska(—1) Saj (U))

2u n
S 0y Yy (i 50 (0) Sar( =) = 81 Sral(—) S0 i(w) . (4:33)

Suppose first that k # +I. Set i = j = k in (4.33) to conclude that

> (ska(u) Sut(—10) — Spa(—1) sal(u)) =2u" () Sar(—).

Setting ¢ = j = [ in (4.33) gives

> aen (Ska(u) Sal(—u) — Ska(—u) Sal(u)) =—2u} ,__, ska(—u)sa(u), (4.34)

n

so > spa(w)sa(—u) = =D spa(—u)sq(u). Now let us set i = j = —k in (4.33) to obtain

S (k) Sar(—) = spa( =) s () ) = =52 S0, spa(u) sar(—). (4.35)
(4.34) and (4.35) imply that
2u
n _ —9 n _
2’LL — K Za:—n Ska (u) Slll( U) u Eazfn Ska (U) slll( U)

and it follows that D" spq(u)su(—u) =0=>""_  spa(—u)sau(u).

If j=k=1landi=—[in (4.33), then Y /" s ,(u)su(—u) =0, and if i = k = [,j = —k, we obtain
that >0 spo(—u)se,—k(u) = 0.

We have showed that S(u)S(—u) and S(—u)S(u) are diagonal matrices. If k = [, then setting ¢ = j = k
in (4.33) shows directly that > (ska(u) Sal(—u) — sga(—u) sal(u)) =0, so S(u)S(—u) = S(—u) S(u).

a=—n

If n > 2, then we can choose i,j,k,l such that ¢ = [,j = k and ¢ # —j, in which case we find
from (4.33) that > i sio(u)sei(—u) = >on__ sja(—u)sej(u). Ifi =1= —j = —k, then we get also
DD (sia(u) Sqi(—u) —s_a(—u) sa7_¢(u)) = 0. Therefore, the diagonal entries of S(u)S(—u) are all equal.

The conclusion so far is that w(u) is an even series. Showing that w(u) is central in B(G) is exactly as in
Proposition 2.1 in [MoRa]. O

Definition 4.2. Let UB(G) be the quotient of the reflection algebra B(G) by the ideal generated by the entries
of S(u) S(—u) — I. We will call the relation

S(u)S(—u) = 1. (4.36)

the unitarity constraint.

Theorem 4.1. The twisted Yangian Y (g,G)™ is isomorphic to UB(G).
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Proof. The homomorphism ¢ descends to ¢ : UB(G) — Y (g,G)"™ and is surjective. We have to see why it
is injective. This will be a consequence of the Poincaré-Birkhoff-Witt Theorem for Y (g,G)*”. Let us also

denote by SE;") the images of these generators in the quotient UB(G). We have a filtration on UB(G) obtained

(m)

by assigning degree m — 1 to s;; " and 45 becomes a filtered homomorphism.

Let s i ) denote the image of the abstract generator s(j ™) in the (m — 1)-th homogeneous component
of griB(G). The symmetry relation (4.2) leads to the following relation in the (m — 1)-th homogeneous
component of the graded algebra:

0,575 = () (~1)"s;]” + tx(0) (g5 — 6:,) /2. (4.37)
The defining relation (4.4) implies that the following relation holds in gr /B(G):
[gz(';ll)’gg?z)] = g5y Y — ga §1§T1+m2 Vo (-nym 2 (6]k Gia ST 5y gay s 1)>
n
- ; <5k 7191(1 ga] s(_721l+mz 2 5l,7j9aj Gia §§;n_1:mz 1))
+ (=)™ (9 —kGi,— (mll+m2 V_g, —19—1,j 7(m1+m2 1)) (4.38)

/(psm)

It can be checked directly that exactly the same relation holds for the generators F;; of the Lie algebra

g[z]?. The equalities (4.37) and (4.38) imply that the elements 51('3' satisfy all the deﬁning relations of the
generators I (e of g[z]?, so there exists a surjective algebra homomorphism ¢ : $lg[z]? — gridB(G) given
by F, /(p ™ s( ™) §m1Gij- (The relation (4.38) also holds when m = 1 and 58) is replaced by 55;) — Gij.)
The compomte of this horpomorphism with gro : gr UB(G) — grY(g,G)* is an isomorphism by Proposition
3.3. Therefore, ¢ and gr ¢ must also be isomorphisms, and it follows that ¢ is an isomorphism. O

Since ¢p(w(u)) = w(u) = g(u)q(—u) and the coefficients of g(u) can be expressed in terms of the coefficients
of w(u) (see the proof of Theorem 3.1), we can write w(u) = q(u)q(—u) with ¢(q(u)) = g(u). The central
elements wo;,7 = 1,2,... are algebraically independent by Corollary 3.5 and ¢(wa;) = wa;, so the central
elements wo;,7 = 1,2,... are also algebraically independent and ¢ provides an isomorphism between the
subalgebra WB(G) of B(G) generated by the elements wa; and the centre ZX (g,G)™ of X(g,G)" according
to Corollary 3.5.

Let UB(G) denote the subalgebra of B(G) generated by the coefficients 0'1(-;) of the series o;(u) =
9ij + D1 O'(T) ~" where o;;(u) is the (i, )" -entry of the matrix ¥ = q(u)1S(u). Observe that ¢ maps
L{B(g) to Y (g,G)™. It follows from Proposition 4.1 that S Tia(u) ogi(—u) = 8.

The next theorem provides the analogue of Theorem 3.1 for reflection algebras.

Theorem 4.2. The extended twisted Yangian X (g,G)™ is isomorphic via ¢ to the algebra B(G). The
restriction of ¢ to UB(G) provides an isomorphism between UB(G) and Y (g,G)™ such that ¢ : B(u) — S(u),
oij(u) = o4(u). Furthermore, B(G) is isomorphic to WB(G) ® UB(G) and the quotient homomorphism
B(G) - UB(G) induces an isomorphism between L?B(Q) and UB(G).

Proof. We start by showing that B(G) = WB(G) ® ZIB(Q) following the ideas in the proof of Theorem 3.1
in [AMR]. If f(u) is a power series in u~! such that f(u) = f(k — u), then the assignment S(u) — f(u)S(u)
defines an isomorphism of the reflection algebra B(G). This isomorphism sends w(u) to f(u)f(—u)w(u).
Because w(u) = q(u)q(—u) = q(u)q(u + ), it follows that it sends q(u) to f(u)q(u) and q(u + k) to
f(u+ k)q(u + k), which equals f(—u)q(u + &). Z;l?%(g) is thus invariant under such isomorphisms.

We have that B(G) = WB(G) - UB(G). We need to show that the elements wo; are algebraically inde-
pendent, over zﬂs(g) Suppose, on the contrary, that P(wa,wy,...,ws,) = 0 for some polynomial P in n
variables with coefficients in ZIB(Q) Since w(u) = q(u)q(u + &), it is enough to show that the elements
q2i are algebraically independent over UB(G) (notice that q(—u) = q(u + ) implies that the elements qa;
with j odd can be expressed in terms of those with j even), so we can consider instead a relation of the

form ﬁ(qg,q4, ...,02n) = 0 chosen so that n is minimal. Let f(u) = (1 + %) (1 + %), SO

20



fw) = f(k—u) and multiplication by f(u) on S(u) provides an isomorphism of B(G). Since this isomorphism
sends q(u) to f(u)q(u), it follows from ﬁ(qg,q4, ..., q2p) = 0 that ﬁ(qg, d4,---,92n +a) =0 for any a € C.
Therefore, P does not depend on its last variable, which contradicts the choice of n. Consequently, the
elements wo; are algebraically independent over UB(G) and B(G) = WB(G) @ UB(G).

Once the isomorphism B(G) = WB(G) ®ZIB(Q) has been established, it follows that the quotient homo-
morphism 7 : B(G) = UB(G) restricts to an isomorphism between ZIB(Q) and UB(G). Let mp : X(g,G)t" —
Y (g,G)™ be the quotient homomorphism, so m3 0 ¢ = (;ASO m1. Since 7o induces an isomorphism between
Y(g,6)™ and Y (g,G)™ by Theorem 3.1 and since ¢ maps %(g) to Y(g,G)™, it follows from Theorem

4.1 that ¢ restricts to an isomorphism between UB(G) and Y (g, G)"™. Putting all this information together
along with Theorem 3.1 allows us to conclude that X (g, G)" is isomorphic via ¢ to B(G). O

Corollary 4.1. WB(G) is the whole centre ZB(G) of B(G).

Proof. This is an immediate consequence of the previous theorem and Corollary 3.5. O

5 Connection with quantum contraction

Here we use an alternative approach of investigating the algebraic properties of the reflection algebras and
twisted Yangians which was put forward in Section 6 in [MNO]. This approach is based on the use of the one-
dimensional projection operator ). We construct certain series whose elements are central in the extended
reflection algebra defined by the reflection equation only. The new constructed series are in one-to-one
correspondence with the symmetry and unitarity relations.

In the computations below, we will use the following notation. Let {e;}? _, denote the standard basis
of CV. We have

P (81' X ej) =e; ® ey, Q (6z’ ® Ej) = 5—i,j Zk ejk (e_k ® ek)-

These relations can be checked using the definitions (2.2). We also set £ = >, 0x1 (e ® ex) so that
Q ((CN ® (CN) = (Cf and Q (ei & €j) = (572‘4‘ 6‘j1 5

5.1 Extended reflection algebra

In this section, we define an extended reflection algebra XB(G) which depends on the R-matrix given by (2.3)
and the matrix G only. We then construct certain formal power series c(u) in u~! with coefficients central
in XB(G). This is an analogue of the series d(u) constructed in Section 6 in [MNO]. Then we show that the
algebra B(G) is isomorphic to the quotient of XB(G) by the ideal ZX(G) generated by the coefficients of the
series c(u), namely

B(G) = XB(G)/(c(u) - 1),

or in other words, the constrain c(u) = 1 is equivalent to the symmetry relation of B(G). Moreover, we will
show that the following tensor product decomposition holds:

XB(G) = ZX(G) ® B(G).

Definition 5.1. The extended reflection algebra XB(G) is the unital associative C-algebra generated by
elements xl(;) for —m <4, j < mn,r € Z>q satisfying the reflection equation

R(u — v) X1 (u) R(u + v) Xa(v) = Xa(v) R(u + v) Xy (u) R(u — v), (5.1)
where the S-matriz X(u) is defined in the usual way:
Xw) =37 Y Eij ® Xg;)ufr’ Xg;» = gi;.

In what comes next, the following observation will be useful. Let h(u) be a formal power series such that
h(u) € 14+ u~'C[[u~!]] and A € G a matrix such that AGA® = G. The maps

vp o X(u) = h(u) X(u), 3 0 X(u) = X (=u), aa : X(u) = AX(u)A (5.2)
are automorphisms of XB(G).
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Lemma 5.1. The matriz G(u) satisfies the following identity
QGi(u) R2u — k) Gyt (kv —u) = Gy ' (k —u) R2u — r) G1(u) Q = p(u) Q, (5.3)

where
1 n tr(G(u))

2u—k  2u—2K

p(u) = (£) 15 (5.4)

Proof. Recall that the R-matrix R(u) has a simple pole at u = x with res R(u) = Q. By multiplying both
sides of (4.8) with G5 *(v) we obtain
R(u+v) G (w) R(u — 0) G (v) = G (v) Ru — v) Gu (w) R(u + ).

Now multiply both sides of the previous equality by v 4+ v — k and then set v = —u + x. What remains is
the first equality in (5.3). To prove the second equality, we need to consider each kind of G(u) individually.
Let G(u) of the first kind. In this case, the left-hand side of (5.3) becomes

1 RG1Q 05
Q<(i)1:':2u—/<a>+ 2u — 2K’

because lepggl = QP = £Q and leggl = QG1G> = QGLG,. By (4.12) and properties of G, it follows
that

NQ =tr(G(u)) @ for the BCDO case,

061G = {0 for cases CI, DIII, DI and CII when p = q.

Now let G(u) of the second kind. By (4.12) we have QGi1Q = >.i" ¢ Q = (p — ¢) Q. Recall that
c=4/(p—q), k = N/2F 1 and tr(G(u)) = (N — 4u)(1 — cu)~!. Then a straightforward (but tedious)
calculation gives

(-1t

B 1 (1 + u(u — &) + c(k — 2u)G (N —4u)(I — c(u — K)G)
_Q(<1$2 n) (1 =cu)(1—c(u—k)) + (2u2n)(lcu)(lc(u5)))

L o)),

2u— K 2u — 2K

=Q (1 T
By combining the expressions above, we find p(u) as given by (5.4). O

Proposition 5.1. There exists a formal power series
cu)=1+ciut +cu2+... € XBG)[[u™]]
such that the following identity holds
QX1 (u) RQ2u — k) X3 (k —u) = X5 ' (k — u) R(2u — &) X1 (u) Q = p(u) c(u) Q. (5.5)

Proof. Multiply both sides of (5.1) by X;l(v) and v + v — k and then set v = kK — u. This gives the first
equality in (5.5). The second equality follows from the fact that Q/N is a projection operator to a one-
dimensional subspace of (C)®2, thus the right-hand side must be equal to the operator @ times some formal
power series ¢’(u) in u~! with coefficients in XB(G). The coefficient of u? in ¢’(u) must be (£)1 since the
coefficients of u® in the series X;(u), X5 '(k — u) and R(2u — k) are equal to Gi, G, ' and I, respectively,
giving QG1G; ' = QGLGs = (£) Q. Now since p(u) given by (5.4) is invertible, we can set c(u) = p~!(u) ¢/ (u).
This gives (5.5) as required. O

Remark 5.1. The identity (5.5) together with (5.4) are the analogues of those obtained in [MNO]. In
particular, by setting k = 0, choosing the plus sign in (£) and discarding the last term in (5.4) we recover
the identity (1) in Proposition 6.2 in loc. cit. (see also Remark 4.2 in Section 4 above).

Theorem 5.1. All the coefficients of the series c(u) are central in XB(G).

The proof of this theorem is similar to the one for Theorem 6.3 in [MNO].
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Proof. Proving that c(u) is central takes several steps. Consider the tensor space (End CV)®3, Enumerate
the copies of End C by 0,1,2 and set

RZ]:R”(UZ—UJ)7 R/ :R”(ul—i-u]), Xlle(ul), Wlth 0§Z<]§2

i
We need to prove the identity
Xo c(u1) @iz = c(u1) Q12 Xo, (5.6)

which is equivalent to the statement that c(u) is central. First, we need some auxiliary identities. Consider
the following Yang-Baxter identities:

Ri2Ro2 Ro1 = Ro1Ro2R12, (5.7)
R/12R61R02 = R02R61R/12a (5.8)
R/12R62R01 = R01R62R’12, (5 9)
Ri2 Ry Ryy = Rip Ry Riz. (5.10)

Here (5.7) is the Yang-Baxter equation (2.4) written in the new notation. The remaining identities follow by
transposing appropriate factors of the tensor space (End CV)®? and using the property R'(u) = R(k — u).
For example, to obtain (5.8), we need to transpose (5.7) with to and substitute ug — Kk — ug, ug — —us.
The remaining identities can be obtained in a similar same way. The reflection equation in the new notation

reads as
R1oX1 RioXs = X R, X1 Rya. (5.11)

By multiplying both sides with X5 L we get
RioX1R1oX5t = X5 ' R1oX 1 RY . (5.12)
These auxiliary identities are needed to prove the following relation:
Ro1 RiyXoRoa Ry X5 ' R1aX1 Riy = X3 ' R12X1 Ry Ry Ro2Xo Ry Rot - (5.13)
Indeed,
Ro1 (RuXoRo2X5 )Ry R1oX1 Ryy = Ro1 X5 ' RoaXo(Rbg Rhy R12)X1 Ry by (5.12)
= Ro1 X5 ' RoaXo Ria Ry Rip X1 R by (5.10)
= X3 ' (Ro1 Ro2 Ri2)Xo Ry Roo X1 Ry

= X5 'Rz Roa(Ron Xo Ry X1 ) Rpo Ry, by (5.7)
= X5 ' R1aRo2X1 Ry Xo(Ro1 RjyRy) by (5.11)
= X3 ' R12X1(Ro2 Ry R5)XoRiaRo1 by (5.9)
= X5 ' R12X1 R}y R}, Ro2Xo Rys Ro1 by (5.8),

thus proving (5.13). Now multiply both sides of (5.14) by u1 + u2 + & and set us = kK — uy. By Proposition
5.1 we obtain

R01R62X0R02R61Q12 c(ul) = C(Ul) Q12R61R02X0R62R01. (514)
We will use the following identities to simplify (5.14):

Q12R)1 Ro2 = Roa Ry Q12 = (1 — (uo +u1 — k) 7%) Q12 (5.15)

Qu2RpsRo1 = RorRipQi2 = (1 — (ug — u1) %) Qu2, (5.16)

which follow from (5.10) and (5.7), respectively, after replacing us by —us and taking the residue at u; +ug =
k. Let us explicitly show how to obtain (5.15). Since Q/N is a one-dimensional projector it is sufficient to
consider the action of Q12Rj; Ro2 on the basis vector n = e; ® e_; ® e; € (CN)®3 since Q12 = €; @ &.
Define u;; = u; — u; and v;; = u; + u;. This gives

Qi2Ro1 Roz(ei @ e—1 @ eq)

1 5i
= Q12R61 (ei Re_1Qe; ——e1Re_1Qe; + - Zj 91j e_;Qe_q ®6j> R
Uo2 Uo2 — K
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which evaluates to

di,—1

1
Qu2(e; ® ey ®61_u761®671 ® e; + dj0e—j®e_1®e¢;

02 uUp2 — K

1 0; —
——e_1Q¢ e + 371®€1®6i_’71
Vo1 Vo1U02 ’001(U02 - H)
57’1 1
- flie_iQe;®ey F——Fm——
ZJ 15 €=y J 1 Uoz(v(n — KJ)

djbhje1®e Q¢

+

Zj 01]' e_;Qe; Qe
di,—1

(vo1 — K)(uo2 — k)

Vo1 — R

Zj Qlj e Re;® e_1)

; 0 —
=Y, 0e®e®e— =Y 0e @ejOe+ ———3 fje 1 ®e; Oe;
Uo2 Up2 — K

0i,—1 di,—1 No; 1
- = frie_1®e_;Re; £ — Orie1®e_iQe; ———> biie_1Qe_; Re;
o1 Z] J J I ortion Z] J j 77 vo1 (w02 — k) Z] J J J
By » T N fiies L )
vmf/sZ] 161 ®e—;®e€; uoz(vmfﬁ)Z] 1j € ®e;j ®e;

0i,—1
(vo1 — £)(uo2 — k)
After substituting us — k — w1 most of the terms cancel each other. What remains is
(1= (uo +ur —#) )X 0hjei @ ey @e; = (1= (ug +ur — k)" %) (e @),

which implies (5.15). A similar calculation for Q12R{,Ro1 implies (5.16). These two relations applied to
(5.14) give (5.6). This proves the theorem. O

Zjelj €_1 ®€7j ®€j. (517)

Corollary 5.1. The odd coefficients c1,c3, ... of the series c(u) are algebraically independent.

Proof. Consider the polynomial ring C[z1, z2, .. .| in infinitely many variables and set f(u) = 14+> o, z,u"".
We have that f(u)G(u) is a solution of the reflection equation by Lemma 4.1. It follows that the assign-
ment X(u) — f(u)G(u) defines an algebra homomorphism B : End(CY) ® XB(G)[[u~}]] — End(CY) ®
Clx1, 2, .. ][[u"']]. Applying B to both sides of (5.5), we obtain that f(u)f(x—u)~' = Bf(c(u)) by Lemma

5.1. Therefore, Bf(cort1) = 2x2r41 + g2r Where go, is a polynomial in the variables z1,...,22,. Since the
variables x;, ¢ > 1 are algebraically independent, so are S¢(cor41) Vr > 0, and the same must be true for
the central elements co,41 for all r > 0. O]

Lemma 5.2. The S-matriz S(u) given in Definition 3.1 satisfies the symmetry relation
Q S1(u) R(2u — k) Sy ' (k — u) = Sy (k — u) R(2u — k) S1(u) Q = p(u) Q. (5.18)
where p(u) is the power series given in (5.4).

Proof. The proof of the first equality is analogous to the one in the proof of the Proposition 5.1 above.
Proving the second equality requires the following auxiliary relation:

TH(—u+r/2) RQu — k) Ti(u — k/2) "' = Th(u — k/2) ' R(2u — k) T{ (—u + K/2), (5.19)

which is is obtained by multiplying both sides of (4.28) with T%(—v + x/2)~! and substituting v — —u + k.
Now recall that Q Ty (u) = Q Té(u) and G~ (u) = G(—u). We have

Q S1(u) R(2u — k) Sy ' (k — u)
= QT1(u—#/2) Gi(u) (T} (~u+ £/2) R(2u — k) Ty (u — £/2)) "' Ga(u — k) Ty ' (—u + #/2)
= (QTi(u—r/2)Ti(u—r/2))"1Gi(u) R(2u — k) T (—u + k/2) Go(u — k) Ty *(—u + k/2) by (5.19)
— Q61 (w) R2u — 1) Galu — K) T (—u + 5/2) T (—u + 15/2)
— () Q T(—u+ 1/ T3 (—u+ 1/2) = p(u) Q by (5.3).
O

We have the following equivalence:
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Theorem 5.2. The relation c(u) = 1 is equivalent to the symmetry relation
X(u) = X(k —u)  tr(G(u)) X(k — u) — tr(X(u)) - I
+ .
2u—~k 2u — 2K
Proof. Denote the matrix elements of X! (u) by xj;(u), —n < i,j < n, and apply the left-hand side of (5.5)
to the vector e_; ® e; € (CV)®2. This gives
QX () R(2u — 1) X5 (5 — u) (e @ ) = QX (u) R(2u — ) S X}y (5 — w)(e_i @ )
n / 1 Ok Xi; (K — )
=QXi(u) > (xp(k—u)|e—i@ex— 50— 1 O Qe | +————————e_ Qe

k=—n 2u — 2K

Xt (u) = (£) X(k — u) +

(5.20)

Xk (u) X (k — u O X1 (K —
oy ((le_i(u) (= ) ey & e — e ( ;uk](ﬂ ) . e_j) L B, ;iu) X;i(ﬁ u) 06 ek)
kL - -
O_i1xin(u)xp (K —u) 01 x_g,—k(u)x; (k —u)
= Zk: <9k1 Xk, —i(w) X (K — u) — u _k,i + o 2/5 > €. (5.21)

For the right-hand side of (5.5) we have
p(u) c(u) Q (e~ ® ;) = p(u) c(u) 65 01 €. (5.22)

Recall that 0;; = >, xix(k — u)x);(k — u) and set x{;(k —u) = 37, dix X} ;(k — u). Then by comparing the
equalities (5.21) and (5.22) above we find

Xk (1) n Sike >y xu(u)
2u — K 2u—2Kk
By setting c(u) = 1 and using (5.4), the explicit form of p(u), we obtain the relation
Xik (K —u) — ik (u)  tr(G(u)) xip(k — u) — Ok Y, xu(u)
Jr
2u— K 2u — 2k
which is equivalent to a matrix element of the symmetry relation (5.20). On the other hand, if (5.20) is
satisfied, then (5.23) for ¢ = k = —1 becomes

p(u) c(u) Xk (K — u) = Opi X_g,—i(u) F (5.23)

Opi X—k,—i(u) = (F) i (k — u) F

x—1,-1(w) | 2 xu(u)

2u— kK 2u — 2k
where we have used (5.20) to obtain the second equality. Since x_; _1(x — u) and p(u) are invertible power
series, it follows that c(u) = 1. O

p(u) c(u)x_1,—1(k —u) = x11(u) F =p(u)x_1,-1(k —u),

Corollary 5.2. The reflection algebra B(G) is isomorphic the quotient of XB(G) by the ideal generated by
the coefficients of the series c(u):
B(G) = XB(G)/(c(u) —1).

Proposition 5.2. The algebra B(G) is invariant under the automorphism vy, for any series h(u) satisfying
h(u)h=Y(k —u) = 1.

Proof. By (5.5) the image of c(u) under the automorphism 7y, is h(u) h=!(k — u) c(u). If h(u) = h(k — u),
then 7y (c(u) — 1) = c(u) — 1, so the ideal generated by the coefficients of c(u) is stable under 7, and this
automorphism descends to the quotient XB(G)/(c(u) — 1). O

From (5.5), we quickly obtain
c(u)7'Q = p(u) @ Xa(k — u) R (2u — k)X{ ' (u)
which, after conjugating by P, gives
_ Ris—20) ., . plu)p(s—u)
1 _ 10,y
¢ (u) Q = p(u) @Xy(k — u) mxz (u) = mc(’f —u)Q.

It can be checked that p(u) p(k — u) = 1 — (2u — k)2, so it follows that c(k — u) = c~(u).

Let v(u) be the unique invertible power series with constant term 1 such that c(u) = v?(u). Then
v 2(u) = c(k —u) = v}(k — u), hence v~ 1(u) = v(k — u) because both have constant term 1. Thus it follows
that c(u) = v(u) v (k — u).

For any power series h(u), we have 7, (c(u)) = h(u) h=(k —u) c(u) (see (5.5)). If h(u) satisfies h=*(u) =
h(k — u) with constant term 1, then we deduce that 73, (c(u)) = h%(u) c(u) and 7, (v(u)) = h(u) v(u).
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Theorem 5.3. Let B(G) be the subalgebra of XB(G) generated by the coefficients of the series §;j(u) =
v (u) x5 (u). XB(G) is isomorphic to ZX(G)QB(G). Moreover, the quotient homomorphism XB(G) — B(G)
induces an isomorphism between B(G) and B(G).

Proof. Since the coefficients of the series c(u) generate ZX(G), the same is true for the coefficients of v(u).
Consequently, since x;;(u) = v(u)§;;(u), it follows that XB(G) = ZX(G) - B(G). Moreover if h™1(u) =
h(r — u) with constant term 1, the algebra B(G) is a 7j,-stable subalgebra of XB(G). Indeed, 7, (Si5(u)) =
Un (v (w) D (xij (1) = b= (w) v (u) h(u) xi; (u) = 5;;(u). The isomorphism XB(G) = ZX(G) ® B(G) can
now be proved via the same argument as in Theorem 3.1 in [AMR] using instead of 1 4+ au™" the power
series (1 + a(k —u)~™)/(1 4+ au™") for an appropriate odd value of n and any a € C. (When n is odd, it is
important that the first two terms of this power series are 1 — 2au™":

1 —u)™" -
Ital—w™ <1_(GU> (1—au™ +a?u™" =) =1 — 200" 4 ---

1+au™" 1—kru-1)»
The reason why n should be odd is that the odd coefficients of v(u) should be considered.) It follows that
the quotient XB(G) — B(G) induces an isomorphism between B(G) and B(G). O

Corollary 5.3. Given any total ordering, a vector space basis of XB(G) is provided by the ordered mono-
(r)

mials in the generators ci,cC3,... and wWa, Wy, ... and o with r,1,j satisfying the same constraints as in

Theorem 3.2.

5.2 Quantum contraction for reflection algebra

In this section, we define a certain series d(u), the image of ¥(c(u)) in the algebra B(G). We call this series
the quantum contraction of the matrix S(u) in an analogy to the quantum contraction y(u) of the twisted
Yangian in [MNO]. We then show that d(u) is an analogue of the series w(u).

Proposition 5.3. The following identity holds in the algebra B(G):

QS7H(—u) R(2u — k) Sa(u — k) = So(u — k) R(2u — k) S; 1 (—u) Q = p(u) d(u) Q. (5.24)
Proof. Apply the automorphism 7 to each part of (5.5) and take their image in the algebra B(G). O
Theorem 5.4. The coefficients of the quantum contraction d(u) generate the whole centre ZB(G) of B(G).

Proof. Set d(u) = ¢~!(d(u)) and let us apply the isomorphism ¢ : B(G) — X (g,G)™ to the left-hand side
of (5.24) to obtain

QT u+r/2)7 Gy (u) Ty (—u — 1/2) R(2u — k) Ta(u — 3#/2) Go(u — k) Ta(—u + 3k/2)
=QTi(u+r/2) ' To(u — 3k/2) Gi(u) R2u — &) Ga(u — k) Ty M (—u — k/2) Th(—u + 3K/2), (5.25)
where we have used G~'(—u) = G(u) and the identity
T (—u — k/2) R2u — k) Ta(u — 31/2) = To(u — 3k/2) R(2u — &) Ty ' (—u — K/2),

which is obtained by taking the inverse of (2.5), multiplying both sides with T5(v) and substituting v —
—u— k)2, v — u—3k/2. Now recall that Q T%(u) = QT1(u). Then, by (2.11), it follows that (5.25) is equal
to

y(u—36/2)y(—u+3k/2) . " q(u — K)
) T w2y —wj2) © =P Ty @

which yields, after comparing with the right-hand side of (5.24) and using the symmetry g(u — k) = ¢(—u),

g(=u)
d(u) = . 5.26
=2 (5.26)
Now since the coefficients of q(u) generate the whole centre ZX (g, G)!™, the same is true for the series d(u)
and, by the isomorphism ¢, for d(u). O

Corollary 5.4. We have XB(G) = ZX(G) ® ZB(9) @ UB(G) and ZX(G) @ ZB(G) is the centre of XB(G).
Proof. This follows from Theorem 5.3 and Theorem 4.2. O
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