
RAPID COMMUNICATIONS

PHYSICAL REVIEW FLUIDS 2, 031901(R) (2017)

Experimental evidence of symmetry-breaking supercritical transition
in pipe flow of shear-thinning fluids
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Experimental results reveal that the asymmetric flow of shear-thinning fluid through
a cylindrical pipe, which was previously associated with the laminar-turbulent transition
process, appears to have the characteristics of a nonhysteretic, supercritical instability of the
laminar base state. Contrary to what was previously believed, classical transition is found to
be responsible for returning symmetry to the flow. An absence of evidence of the instability
in simulations (either linear or nonlinear) suggests that an element of physics is lacking in
the commonly used rheological model for inelastic shear-thinning fluids. These unexpected
discoveries raise new questions regarding the stability of these practically important fluids
and how they can be successfully modeled.
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Pipe flow of non-Newtonian fluids is of great practical importance because many manmade
fluids are non-Newtonian, for example, cosmetics and food products like shampoos or sauces,
and the manufacturing processes for these fluids invariably involve pipe flow. Such fluids often have
complicated material properties: Their viscosity can change with the flow rate (shear thinning or shear
thickening), stresses created in complex fluids can become strongly anisotropic in space and depend
on the deformation history (viscoelasticity), and their simple flows can spontaneously split into
several regions moving at different deformation rates (shear banding). In this paper we demonstrate
that pipe flows of shear-thinning fluids exhibit an unexpected spontaneous symmetry breaking,
leading to asymmetric velocity profiles. We present experimental evidence that this asymmetry is
not due to the laminar-turbulent transition process (as previously believed) but has the signature of
a supercritical instability.

Scientific interest in the transition from laminar to turbulent flow in a cylindrical pipe can be traced
back to the renowned work of Reynolds. One of the primary reasons that the dynamical process
of transition in pipe flow is so intriguing is that all theoretical and numerical evidence suggests
that laminar pipe flow is linearly stable for all Reynolds numbers (Re) [1,2], yet abrupt transition
to turbulence cannot ultimately be avoided. Much progress has been made in recent years through
the discovery of exact solutions to the Navier-Stokes equations (in the form of traveling waves) at
transitional Re [3–8] and how the footprints of these solutions persist into fully turbulent flows [9].

Although not as widely studied as the pipe flow of Newtonian fluids, pipe flow of non-Newtonian,
shear-thinning fluids is also scientifically interesting for the similarities and, significantly, differences
between shear thinning and Newtonian flow in transition. Previous work suggests that, like its
Newtonian counterpart, pipe flow of simple, inelastic power-law-type shear-thinning fluids is linearly
stable [10]. However, the most confusing aspect of the flow of non-Newtonian fluids is the asymmetric
form the velocity profile takes at transitional Reynolds numbers (≈103 to 104) in a pipe of circular
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FIG. 1. Variation of asymmetry measures α,rp/D and urms/Ub (closed symbols) and transition indicators
prms/P and vrθ,rms/Ub (open symbols). The solid curve is a power law of the form rp/D = a(Re − Rec)b, where
b = 0.55. Inset shows dependence of the fluctuations of α on Re.

(and therefore axisymmetric) cross section. This counterintuitive observation remains unexplained
despite its ubiquity in all experimental results since its discovery around 20 years ago. Rarely is
such an observation made that appears so unphysical, but it has now been found experimentally in
independent research programs in the United Kingdom [11,12], France [13–15], Australia [16], and
subsequently Canada [17]. The asymmetry has therefore been observed in several facilities using a
wide range of shear-thinning fluids, including aqueous solutions of xanthan gum, polyacrylamide,
carboxymethylcellulose, carbopol, and laponite [16]. The problem appears universal as it is observed
consistently and remains for the whole duration of the experiments (on the order of weeks). Many
possible causes have been tested and eliminated, such as the rotation of the earth, curvature of
the pipe axis, significant imperfection of flow geometry, upstream and downstream disturbances,
temperature gradients, and inlet effects [12,16]. The question of what physical mechanism is leading
to such an unusual flow remains open and of broad interest given its fundamental nature.

In this work we provide experimental results that simultaneously capture the three-component
velocity field across the entire pipe cross section, a significant advancement on the exclusively
pointwise single-component measurements of previous works. This leads to a much clearer picture
of the behavior of the asymmetric velocity profile and reveals that the asymmetry is produced by
a pathway that has not previously been proposed. As shown in Fig. 1, three different bifurcation
measures exhibit an approximate square-root dependence, the signature of a supercritical bifurcation,
at a Reynolds number far below subcritical transition associated with puffs, indicated by the sudden
large increase in the pressure fluctuations, prms, and cross-stream fluctuations, vrθ,rms, in Fig. 1. Thus,
it is apparent that the asymmetry observed in pipe flow of shear-thinning fluids is not associated with
the laminar-turbulent transition process, but is in fact an instability of the laminar flow. This insight
is in direct contradiction with the previous thinking on this matter [11–17].

The experiments were conducted in the Very Large Scale Pipe Flow (VLSPF) facility at the
University of Liverpool. The facility comprises a 23.3-m-long pipe constructed of a set of borosilicate
glass tubes with 100 ± 0.1-mm internal diameter. To avoid geometrical imperfections and the
possibility of longitudinal curvature effects leading to secondary flow, the pipe was assembled
using a laser and target alignment process, which ensures the overall end-to-end straightness well
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FIG. 2. Time-averaged streamwise velocity profile (U/Ub) for laminar (Re = 300,α = 0.025), transitional
(Re = 8000,α = 0.165), and turbulent (Re = 15000,α = 0.018) flow, from left to right, respectively.

within 1 mm. A plenum chamber is positioned before the inlet which includes a complete flow
reversal followed by baffles and screens to eliminate any effect the final bend may have on the
flow. The flow is investigated using a high-speed, stereoscopic particle image velocimetry (SPIV)
technique (similar to Ref. [9]) in which the measurement plane (located 22 m from the pipe inlet,
corresponding to 220D where D = pipe diameter) is perpendicular to the streamwise velocity,
providing all three components of velocity across the entire pipe cross section.

The working fluid was a 0.15% (by weight) aqueous solution of a xanthan gum (Keltrol TF),
which exhibits shear-thinning behavior to the extent that (in the shear rate range of interest) an
increase by two orders of magnitude in shear rate leads to a decrease by a single order of magnitude
in viscosity with no shear banding. In consideration of this inhomogeneity of the viscosity, the
Reynolds number is defined as Re = ρUbD/μw, where ρ is the density of the working fluid, Ub is
the bulk velocity, D is the inner diameter of the pipe, and μw is the viscosity corresponding to the
average shear rate at the wall (calculated using pressure-drop measurements) at the appropriate flow
rate. The relationship between shear rate and viscosity is obtained using a controlled-stress rotational
rheometer with a cone-and-plate geometry (cone angle 2◦). In the shear rate range 32 < γ̇ < 373 s−1

(which corresponds approximately to the average wall shear rate range in these experiments), this
relationship is well fit by a power law of the form μw = kγ̇ n−1, with k = 0.165 Pa sn and n = 0.5.

Figure 2 shows time-averaged streamwise velocity profiles obtained using the SPIV at laminar,
transitional, and turbulent Reynolds numbers. Axisymmetric velocity profiles are clearly observed
for both laminar and turbulent flow as expected. Indeed, the laminar profile agrees well with that
of the analytical solution for fully developed pipe flow of a power-law fluid with the appropriate
power-law index. A significant asymmetry is observed at the transitional Reynolds number, which
is consistent with observations from previous laser Doppler velocimetry (LDV) measurements [16].
No secondary flow is measurable in the asymmetric state.

An asymmetry parameter, α,

α =
∫ R

0

∫ 2π

0 |U (r,θ ) − UM (r)| dθ rdr
∫ R

0 UM (r) 2π rdr
, (1)

is introduced to quantify the degree of azimuthal flow asymmetry in any given snapshot and reveal
how the asymmetry varies in time. In Eq. (1), UM is the arithmetic mean of the streamwise velocity
U at the specified radial location r along the circumferential direction as defined in Eq. (2),

UM (r) =
∫ 2π

0 U (r,θ ) dθ

2π
. (2)

The values of α given for the laminar (2.5%) and turbulent (1.8%) flows are associated with the
random error in the SPIV measurements, whereas in the asymmetric case it is an order of magnitude
higher (16.5%).

One of the major insights provided by our SPIV measurements in comparison to all other
previous work is the time-varying behavior of the asymmetric flow pattern, which was hitherto
considered stationary. The variation in time is highlighted in Fig. 3 by the time history of the
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FIG. 3. The time-varying nature of the asymmetric flow pattern at Re = 8000 is shown by the time history
of asymmetry factor, α (bottom) and instantaneous cross-stream snapshots of the streamwise velocity (U/Ub).
(a) Asymmetric flow with preferred orientation, (b) temporarily quasiaxisymmetric flow induced by a turbulent
puff, and (c) a brief visit to asymmetric flow with an alternative orientation. The experimental duration is
approximately 200 s and the SPIV acquisition rate is 5 Hz. The two insets show the location of the peak velocity
in the radial-azimuthal plane as the asymmetry returns following the passing of a puff.

asymmetry factor (α) showing frequent dramatic drops, indicating that the flow is briefly returning
to a quasiaxisymmetric state [an example is shown in Fig. 3(b)]. These events are associated
with turbulent puffs passing through the measurement plane. A turbulent puff is captured using
high-speed SPIV and pseudospatially reconstructed using Taylor’s approximation ([18,19] using the
bulk velocity, Ub as the convection velocity) in Fig. 4. It is clear from the simultaneous time histories
of nondimensional swirling strength (λciD/Ub, where λci is the imaginary part of the complex
eigenvalue of the 3D velocity gradient tensor averaged across the pipe cross section) and α that the
presence of a turbulent puff (indicated by high swirling strength) leads to a sudden decrease in the
asymmetry factor, signaling that the flow pattern is becoming much more axisymmetric.

FIG. 4. The temporary elimination of the asymmetry by a turbulent puff at Re = 8000. The top panel shows
simultaneous time histories of the nondimensional swirling strength and the asymmetry factor (α). The bottom
panel shows a visualization of a puff using isosurfaces of swirling strength (λciD/Ub = 0.012); red and blue
indicate regions on the isosurface where the local axial vorticity is positive and negative respectively. The SPIV
acquisition rate is 200 Hz.
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Returning to Fig. 3, the example asymmetric flow pattern shown in Fig. 3(a) is the preferred
flow pattern in which the flow spends most of its time and therefore has a profound influence on
the asymmetric time-averaged velocity profile seen in Fig. 2. We have confirmed that this favored
location is largely invariant with axial location by taking LDV measurements at many locations
(over several meters) upstream of the SPIV measurement plane and finding little change in the
orientation of the asymmetry. The invariance of the orientation with axial location indicates that the
asymmetry is not due to a helical instability spiralling down the pipe. It is also notable that previous
work examined the effect of inlet disturbance on the asymmetry by obstructing the flow in the
plenum chamber just before the inlet on the side of the pipe where the highest velocity of asymmetry
appeared [12]. The blockage introduced an asymmetric disturbance with a different orientation into
the flow. However, this imposed asymmetry was not sustained through the development of flow, and
the asymmetry at the measurement plane (220D from inlet) recovered to the same favored location as
that in the unblocked case, demonstrating the robustness of the asymmetry and its favored location.

It is clear from the instantaneous and time-averaged values of α that the flow is instantaneously
more asymmetric than any other previous measurements have indicated (α ≈ 23%). Although the
asymmetric flow pattern is most commonly observed in this orientation, there are numerous brief
instances when the orientation is different. One example is indicated in Fig. 3(c). This is from an
instance when the flow is returning to asymmetry after the passing of a turbulent puff. It is commonly
seen that immediately following a puff the asymmetry reappears in a different orientation and then
slowly rotates to its preferred location as shown in the insets in Fig. 3.

Given that the velocity profile in both the laminar and turbulent flow regimes is axisymmetric and
in between it is found to be asymmetric, an important question is precisely how the velocity profile
varies with Reynolds number. In particular, how does the asymmetry first form and how does the flow
axisymmetry return at higher Re? We answer these questions by taking SPIV measurements across
a range of Reynolds numbers from laminar through to transitional Re. Figure 1 shows that beyond
a critical Reynolds number (Rec) the magnitude of the asymmetry factor (α) increases steadily
with Re. In fact, it approximately grows with the square root of Re, suggesting a supercritical
bifurcation. The radius at which the peak in the profile of the streamwise velocity is located is
another measure of the flow asymmetry (i.e., an alternative bifurcation parameter). Here we define
rp as the flow-weighted mean radius of the fastest 20% of the flow (a more robust measure than
simply the instantaneous maximum of U ) and plot its time average in Fig. 1 normalized by the pipe
diameter (rp/D). It also has an approximately square-root dependence on Re: Fitting a power law
of the form rp/D = a(Re − Rec)b yields b = 0.55 (with an R-squared value of 0.9854), which has
been plotted as a curve on Fig. 1.

It is well known that classical transition to turbulence in many parallel shear flows, including
Newtonian pipe flow, is a subcritical rather than a supercritical phenomenon and therefore the
square-root behavior of the asymmetry measures (α and rp/D) indicates that the asymmetry is not
due to the laminar-turbulent transition process. To determine the Re at which classical transition to
turbulence (in the form of puffs) is occurring, we can examine the pressure and velocity fluctuations.
In Fig. 1 we plot root mean square (rms) of the pressure fluctuations normalized by mean pressure
(prms/P ). The square-root behavior is not observed and instead we see a sudden increase in the
pressure fluctuations (i.e., subcritical transition) at Re = 7000–8000 (within the expected range for
shear-thinning fluids, which are known to delay transition to turbulence in comparison to Newtonian
flows [20]), significantly higher than the Re at which the supercritical bifurcation is observed
(Re ≈ 2300).

The streamwise velocity fluctuations (plotted normalized by bulk velocity in Fig. 1 as urms/Ub)
follow the trend of the asymmetry measures with a square-root dependence on Re, whereas the
velocity fluctuations in the radial-azimuthal (r-θ ) plane follow a trend similar to that of the pressure
fluctuations. Turbulence in pipe flow is inherently three-dimensional and so all components of the
velocity should show substantial fluctuations when transition occurs. The reason that the streamwise
component follows the trend of the asymmetry measures is due to the fact that beyond the onset
of the instability it is apparent that the asymmetry is not stationary in time; it therefore creates a

031901-5



RAPID COMMUNICATIONS

WEN, POOLE, WILLIS, AND DENNIS

fluctuation in U due to this movement, which is not seen in the in-plane velocity components because
the asymmetry is not seen in those components and there is no significant secondary flow associated
with the asymmetry.

Varying the concentration of xanthan gum in the mixture can be used to vary the magnitude of
the viscosity dependence on shear (which can be broadly quantified using the power-law parameter,
n). A direct relationship between shear thinning and the magnitude of the asymmetry is observable,
reinforcing the idea that the instability is strongly dependent on the shear-thinning nature of the fluid
and is commensurate with the fact that the asymmetry is never observed in Newtonian fluid flow.
Continuation of the power law parameter towards n = 1 is heading towards the Newtonian case, and
indeed the magnitude of the asymmetry gradually decreases and disappears at n = 1. Furthermore,
all mixtures exhibit very similar behavior, particularly that the asymmetry measures grow with an
approximately square-root dependence on Re.

Simulations have been performed using an extension of the openpipeflow.org Navier-Stokes
solver for the experimental parameters, with an inelastic Carreau-Yasuda rheology matching the
shear-thinning characteristics of the working fluid in the experiments. These simulations in a
periodic domain of length 15D reproduce subcritical turbulence for Re � 6500, as observed in
the experiments. Below these values of Re, however, perturbations return to the axisymmetric state.
The Coriolis effect has been examined as an origin for the asymmetry, but in simulations was found
to induce only small α ≈ 0.01 at Re = 4500. This might, however, be sufficient to excite another (the
experimentally observed) instability with preferential orientation. Thus far the numerical simulations
have not shown the symmetry-breaking bifurcation seen in the experiments. This indicates that the
current simulations have not incorporated all of the relevant physics associated with the complex
working fluid. For example, mild elasticity may be important. However, it is nontrivial to correctly
identify the relevant constitutive equation that should be used in this case. This also explains why
previous theoretical work considering a purely shear-thinning (power law) inelastic fluid found it to
be linearly stable [10], whereas our experiments imply it is unstable. It appears that modeling the
shear-thinning characteristics alone is insufficient to capture the instability.

The inset of Fig. 1 shows the fluctuations in the asymmetry factor (α′
rms). They show that close

to the bifurcation (Re � Rec) α is very nearly steady (as the magnitude of α′
rms is comparable

to the measurement noise) but as Re increases the fluctuations in α increase significantly. These
fluctuations can also be observed in the time history of α shown in Fig. 3. This indicates that with
increasing Re, not only does the magnitude of asymmetry evolve, but the flow also manifests a
more pronounced time-varying nature. If the instability is a Hopf bifurcation we would expect a
small-amplitude limit cycle to occur just above the Reynolds number at which the instability appears.
We cannot identify a single frequency at the onset of the instability in our experimental data, probably
because the amplitude of the oscillation is too small to be measured with the SPIV. However, a little
further above Rec (2500 < Re < 3500) we observed oscillations across a range of low frequencies
(f < 0.1 Hz) in α, rp, and U . These frequencies correspond reasonably well with those found
by Esmael et al. [15], once they are converted into Strouhal number (St = f D/Ub ≈ 10−3). We
also observed a power law decay in the energy spectra of the axial velocity fluctuations with an
exponent of approximately −3, which again is similar to that found by Esmael et al. [15]. Due
to the limitations of their experiment (single-point measurements of one component of velocity),
Esmael et al. [15] were not able to identify a supercritical bifurcation and interpreted their results
as indicating a weakly turbulent state, which was chaotic in time and regular in space, induced by
the shear-thinning behavior of the fluid. While our results are entirely consistent with their data,
our interpretation is quite different as there is now more evidence to suggest the presence of a
supercritical instability.

Figure 5 shows the path that the asymmetry takes to reach its favored orientation as the Reynolds
number is varied. Each dot corresponds to the location of the peak velocity at an instant in time. Each
color corresponds to a nominal step change in Re, although it should be noted that throughout the
whole duration of the experiment the flow is transiently changing as at no point does it reach a true
steady state. Figure 5 shows that, remarkably, the asymmetry is nonhysteretic and reversible: It has
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FIG. 5. Traces of the peak velocity during the transient processes of axisymmetric-asymmetric transition
(left) and asymmetric-axisymmetric relaminarisation (right). Each dot corresponds to an instant in time color
coded by its nominal Re according to Re = 1960 (pink), Re = 3400 (blue), Re = 4230 (red), Re = 5750 (green),
and Re = 6740 (black) with the time delay between each Re being 30 s. The arrows indicate the direction of
movement with time.

a preferred route between axisymmetry and asymmetry, which it adheres to regardless of whether
it is approaching transition to turbulence or relaminarizing. The similarity between Fig. 5 and the
insets of Fig. 3 is clear. Broadly speaking, the asymmetry moves outward from the center of the pipe
and then rotates to its preferred azimuthal location along an approximately constant radius.

The experimental results presented in this paper demonstrate that a counterintuitive, yet apparently
universal, asymmetry in pipe flow of shear-thinning fluids is not caused by the laminar-turbulent
transition process (as previously believed) but is a distinct supercritical instability of the laminar
base flow, which is in fact eliminated by the turbulent structures that are formed during classical
subcritical, laminar-turbulent transition. We have therefore identified a flow instability that is unique
to shear-thinning fluids.

The square-root dependence of the symmetry breaking with Re suggests a pitchfork. For this
geometry a pitchfork of revolution might be expected, meaning any orientation is possible in
principle. However, any imperfection in the experiment (including the relatively small effect of the
Coriolis force) may break the symmetry of the flow, making one orientation (i.e., solution) stable
and all others unstable [21,22], thus dictating the particular favored orientation observed in the
experiments. The robustness of the preferred orientation of the asymmetry in the experiments is
consistent with this idea. A supercritical Hopf bifurcation is also possible, given that its frequency
signal quite likely would be within the experimental noise at onset. The simulations suggest that a
subcritical instability is unlikely as any nonlinear perturbation, including in the presence of a small
Coriolis force, is found to decay. Together with the experiments, these results imply that laminar
pipe flow of real shear-thinning fluids may be linearly unstable to asymmetric disturbances, which is
not something that has previously been considered and presents many questions for all researchers
interested in the stability of fluid flows.
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