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RESEARCH ARTICLE

A Computational Study of Systemic Hydration in Vocal Fold Collision

Pinaki Bhattacharya and Thomas Siegmund∗

School of Mechanical Engineering, Purdue University, West Lafayette, U.S.A.

(May 14, 2012)

Mechanical stresses develop within vocal fold (VF) soft tissues, due to phonation-associated vibration and
collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper,
high-fidelty numerical computations are described taking into account fully three-dimensional geometry,
realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach
is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains.
The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered,
whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase
of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were
investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was
estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak air-flow
velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the
range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and
their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs
tends to increase the state of hydration of the VF tissue whereas VF collision works to reduce hydration.

Keywords: vocal folds; computational modeling; stresses; vibration; collision; interstitial fluid flux

1. Introduction

The myoelastic aerodynamic theory of voice production (van den Berg 1958; Titze 2006)

considers true self-oscillation of the vocal folds (VFs) as a dynamic flow-structure in-

teraction (FSI), where the glottal air flow pressure and VF stresses are out of balance

instantaneously. This imbalance causes the VFs to move and results in an oscillatory mo-

tion as either the air pressure exceeds the restoring force in the VF or vice-versa. This

definition of VF self-oscillation sets the context in which the computations in the present

paper are performed. The characteristics of self-oscillation, e.g. time-period of oscilla-

tion, magnitude of VF vibration and oscillation of flow pressures and velocities are not

imposed externally, but are obtained as a result of the coupled system. Computations are

conducted with the goal to investigate the role of VF stresses during self-oscillation on

VF hydration.

Past studies (Bartlett and Thibeault 2011; Branski et al 2006; Dikkers et al 1993; Gray

and Titze 1988; Gray 2000) suggest that voice health and VF function are dependent on

the histology of the underlying tissue. Hydration of VF tissue is posited to be beneficial for

voice health by helping maintain tissue composition in a healthy state (Tateya et al 2006).

Chan and Tayama (2002); Leydon et al (2009); Sivasankar and Leydon (2010) show that

systemic and superficial hydration of VF tissue regulate biomechanical, aerodynamic and

acoustics indicators of voice health. Miri et al (2012) demonstrate that the hydration state

significantly alters tissue biomechanical characteristics.
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Vocal health has also been considered to be influenced by mechanical stresses in the

VFs, which result from free vibration and collision between the folds. Titze (1994) out-

lined several contributors to the total mechanical stress and discussed their possible effect

on VF tissue damage. Significant research has been conducted to determine contact pres-

sures (Jiang et al 2001; Spencer et al 2006; Tao et al 2006; Verdolini et al 1999), stress

tensor components following a choice of coordinate axes (Gunter 2003; Spencer et al

2006) and the coordinate axis invariant von-Mises stress (Gunter 2003).

In this paper, VF systemic hydration is related to vibration induced mechanical stresses

in the VF using poroelastic theory (Biot 1941) as suggested by previous research on VF

tissue composition (Noordzij and Ossoff 2006). Poroelastic theory considers the inter-

stitial fluid flux as linearly proportional to the hydrostatic stress gradient, where stress

gradients result due to VF vibration and collision. However, the problem of determining

mechanical stresses in the VF is challenging. Experimental techniques to determine con-

tact pressures on VF surface using pressure sensors (Gunter et al 2005; Verdolini et al

1998) have provided significant insight into the VF deformation response. However, sur-

face pressures do not reveal the hydrostatic stress distribution inside the VF tissue. Digital

image correlation has been used to measure superior-surface displacements on vibrating

and colliding VFs (Chen and Mongeau 2009; Spencer et al 2006). The resulting strain

field is used to estimate stresses on the superior surface using a linear elastic model for

the mechanical response of the VFs, and to estimate contact pressures assuming an under-

lying contact model. Spatial resolution of stresses in the interior (away from the superior

surface) and accuracy of the collision model remain the main challenges of this approach.

Computational models of the VFs have been used to directly determine stresses dur-

ing oscillation and collision. However, complexities in modeling the multi-physics na-

ture of the flow-structure interaction problem has led to research that mostly incorporates

simplifications like two-dimensional (2D) geometry, longitudinal uncoupling of VF sec-

tions and non-linear stiffening of VF tissue for modeling contact (Dejonckere and Kob

2009; Horáček et al 2005, 2009; Luo et al 2008, 2009; Zheng et al 2009). A related chal-

lenge is in solving the glottal airflow. Several studies (Drechsel and Thomson 2008; Krebs

et al 2012; Sidlof et al 2011; Triep and Brücker 2010) focusing on the flow across three-

dimensional (3D) VFs (either forced or self-oscillating) show that the glottal flow has a

rich structure in time and space. Oversimplification of the glottal flow physics (2D ge-

ometry, low order flow models) may not yield reliable results in determining VF stresses

during self-oscillation (Dejonckere and Kob 2009; Horáček et al 2005, 2009; Luo et al

2008, 2009; Zheng et al 2009).

The phonation process is a strongly coupled fluid-structure interaction problem. De-

velopment of solution strategies that incorporate multi-physics capabilities are only be-

ginning to receive the kind of attention reserved for dedicated solvers. Luo et al (2008,

2009); Zheng et al (2010) have implemented monolithic numerical algorithms based on a

fully Eulerian description of the combined fluid-structure domain. This methodology has

an exciting future as it significantly reduces the required book-keeping and solution in-

terpolation back and forth across the interface between the two distinct physical domains.

However, at present it requires meeting afresh challenges particular to the individual do-

mains that have been treated satisfactorily in the dedicated solvers. Contact algorithms

and viscoelastic constitutive models are the relevant features in the present context.

Currently, Tao et al (2006) and Zheng et al (2010) are the only studies that simulate

self-oscillation of 3D continuum model of VF tissue accounting for collision between op-

posing VFs. In Tao et al (2006), the VF volume was modeled as a set of coronal layers

that were mechanically uncoupled, that is mechanical stresses and strains were discon-

tinuous between adjacent layers. The basic assumption behind this approach is that the

anterior-posterior motion of the VF is much smaller compared to the motion in the other

two directions. Consequently, the anterior-posterior strains and anterior-posterior stresses
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are zero. However, a relevant deformation mode of the VFs is that of flexure, due to which

anterior-posterior stresses can be significant. On the other hand, in Zheng et al (2010) the

effective Reynolds number at which the simulation was conducted is an order of mag-

nitude lower than those of the actual physical problem. Furthermore, the effective stress

relaxation factor used in Zheng et al (2010) is several orders of magnitude lower than the

biphasic theory treatment of Zhang et al (2008) would suggest. The VF self-oscillation

problem is, however, expected to be strongly influenced by viscosity in the fluid and solid

domains.

In the present work a computational model is introduced with the following main fea-

tures: 3D geometry, full Navier-Stokes description for fluid flow with physically repre-

sentative gas properties, resulting in realistic levels of VF deformation amplitudes and VF

collision characteristics. A segregated-solver approach employing commercially-available

dedicated computational software is used. A separate coupling code resolves the commu-

nication of solution across the code interface. This method has been used successfully for

a suite of coupled-physics problems (Bathe et al 1999; Stein et al 2000; Taylor et al 1998;

Zhang and Hisada 2001) and leverages the substantial advancement made in simulating

problems involving a single physical domain (fluid or structural).

Results from two FSI computations are presented; the computations correspond to a VF

tissue under ‘normal’ conditions, and another which is severely dehydrated. For the ‘nor-

mal’ VF case, overall exterior characteristics of mean deformation, vibration and collision

are compared with experimental observations. Vibration and collision characteristics are

analysed in detail, with focus on the internal hydrostatic stress state. The state of stress is

analyzed at representative times for a collision-free vibration cycle, and for a cycle with

VF collision. The effect of mechanical stresses on VF hydration is demonstrated. Results

are discussed in the context of previous experimental and numerical studies.

2. Method

The computational model comprises separate definitions for the continuum regions cor-

responding to the glottal airflow and the pair of VFs, a contact interaction model for the

VFs, and a coupled interaction model between the air (fluid) and tissue (structural) do-

mains. The coordinate system origin for both fluid and structural domains is located at the

intersection of the mid-coronal plane, the mid-saggital plane and the VF superior surface

(figure 1a). A right-hand coordinate system is fixed by choosing xis, xml and xap axes in

the inferior-superior, medial-lateral and anterior-posterior directions respectively.

Table 1. Geometric dimensions and constitutive properties of glottal airflow model.

Air-tract Dimensions Air Properties

Tentry 10.0 mm pref 101 kPa

Texit 20.0 mm ρf 1.23 kg/m3

T 10.7 mm µ 1.79×10−4 kg/m·s
L 20.0 mm

W 17.4 mm

2.1 Glottal airflow model

The 3D glottal air-tract geometry includes the glottis (region between the folds), and rect-

angular parallelepipeds corresponding to upstream (inferior) and downstream (superior)

channels (figure 1a). Dimensions of the channels are given in table 1. Parts of the bound-

ary of the air-tract that interact with the VFs are identified as glottal surfaces.
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Figure 1. (a) Geometry of the flow domain volume. The inlet, outlet and glottal flow-structure interaction surfaces appear
as shaded. The coordinate system origin (⊗) and coordinate axes (at an offset) are shown. (b) Initial mesh of the flow
domain at a coronal section

The fluid domain mass and momentum conservation equations are written in integral

form, in the absence of body forces, for an arbitrary volume of fluid V f as:

∮

∂ (V f )
(~v−~vg) ·d~S = 0, (1)

ρf

d

dt

∫

V f
~vdV +ρf

∮

∂ (V f )
~v(~v−~vg) ·d~S = −

∮

∂ (V f )
pI ·d~S+

∮

∂ (V f )
τττ f ·d~S. (2)

Here,~v represents the velocity of the fluid particle at a point with respect to a stationary ob-

server and p is the static pressure measured with respect to an absolute reference pressure

pref , I is the second-order identity tensor, and τττ f is the stress tensor. The density of the

fluid ρf is assumed constant (incompressible) following the Boussinesq approximation.

Values used for these quantities are given in table 1. The mesh is Eulerian and the velocity

of the underlying grid~vg is taken into account. In the finite volume approach variables are

typically stored at discrete cell centers. A first order upwinding interpolation scheme is

used to determine face values for momentum quantities. A least-square cell-based scheme

is used to compute gradients at cell centers from face values. The flow pressure at faces is

determined using the pressure staggering option (or PRESTO! scheme).

To solve incompressible flow, a modified form of the SIMPLE algorithm is followed.

A guess pressure field is employed, then the momentum equation (2) is advanced using

this guess pressure. The resulting velocity field is not divergence-free, a requirement that

follows from the continuity equation (1). To make this field divergence-free the required

pressure and velocity corrections are prescribed following a predetermined strategy. In-

stead of the original SIMPLE presciption, the PISO algorithm is employed to relate pres-

sure and velocity corrections, with one additional iteration each for neighbor and skew-

ness correction. The first order implicit scheme is used to discretize all time-derivatives

and integrate over a time-increment.

The flow domain is meshed using tetrahedral cells. A mid-coronal cross-section of the
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initial mesh is shown in figure 1b. During the computation, mesh refinement in the near-

glottis region is maintained by using layering and remeshing techniques. Typical edge

length in this region is approximately 0.05 mm. The commercially available computa-

tional fluid dynamics (CFD) software Ansys/FLUENT is employed to solve the glottal

airflow dynamics.

2.2 Vocal fold structural model

The 3D structural domain comprises a pair of VFs with identical geometry and mesh. The

geometry of one of the VFs (left) is shown in figure 2a. Specific dimensions of the VF

volume appear in table 2. The geometry follows the M5 canonical model (Scherer et al

2001), with the 2D VF shape pertaining to the M5 definition extruded uniformly through

the length L of the VF in the anterior-posterior direction. Reference points ~A, ~B and ~C
(figure 2) are identified on the medial surface of the left VF to serve as probe locations for

contact pressures during VF collision. Point ~A lies at (−0.740,−0.294,0.00) mm. Points
~B and ~C are located at a distance of 1.20 mm on either side of~A along the anterior-posterior

direction. A point ~A′ is identified on the right VF at (−0.740,0.294,0.00) mm.

A
CL

L D

T

x

x
x

is

ap

ml

CB

(a) (b)

Figure 2. (a) Three-dimensional geometry of the left half of the vocal fold (VF) model. The part of the glottal surface that

is expected to contact is highlighted as CL. Locations of reference points ~A, ~B and ~C are shown. (b) Hexahedral mesh of the
VF model. Note the higher refinement near contact-prone mid-membranous location

Table 2. Geometric dimensions and constitutive properties of vocal fold models.

Vocal Fold Dimensions Tissue Properties (I) Tissue Properties (II)

Hydrated Dehydrated

L 20.0 mm E 6.00 kPa E 6.00 kPa

D 8.40 mm ν 0.450 ν 0.450

T 10.7 mm ρs 1070 kg/m3 ρs 1070 kg/m3

dg 0.600 mm τ1 0.500 s τ1 0.100 s

dp 0.200 mm k1,g1 0.670 k1,g1 0.100

The pair of VFs are assembled as shown in figure 3. The glottal angle is ψ = −20.0◦

(converging) and the initial separation of the VFs is dg = 0.600 mm. Note that W =
2D+ dg, and the VF surfaces SL and SR sit flush with the flow domain boundary. Parts

of the VF exterior surfaces (CL and CR) are identified as possible contact surfaces, where

the subscripts L and R correspond to left and right VF respectively.

The structural domain equilibrium equation, in the absence of body forces, is written in

the weak form of virtual-work principle as

∫

V s
σσσ : δDv dV =

∮

∂ (V s)
~τs ·δ~uv d~S−

∫

V s
ρs~̈u ·δ~uv dV. (3)
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Figure 3. Mid-coronal cross-section showing initial configuration: rigid planes PL and PR separated by distance dp, the
left and right VFs separated initially by at least the gap dg and located symmetrically on either side of the respective
rigid planes, contact surfaces CL and CR on respective VFs, initial included glottal angle ψ and flow-structure interaction
surfaces SL and SR defined on the respective VFs. Coordinate axes are shown offset from the origin for clarity

All variables are expressed above in the current, or deformed, configuration. Here σσσ is the

Cauchy stress tensor,~τs is a externally imposed surface traction, ~̈u is the local acceleration

vector, δ~uv is a virtual displacement and δDv is the corresponding virtual deformation

gradient. Symbols ρs, V s and ∂ (V s) correspond to the density of the tissue, the deformed

configuration volume and its bounding surface respectively. In the finite element approach

the equation above is first discretized in space using consistent interpolation functions that

relate the value of a variable at a point with values at discrete nodes.

The acceleration vector ~̈u in (3) is used to determine the displacement ~u using a time

integration scheme. The time integration operator follows the implicit Hilber-Hughes-

Taylor α-method (Hilber et al 1977), which allows for numerical damping. The small

amount of numerical damping can effectively remove high-frequency noise from the so-

lution. Damping is controlled by the parameter α =−0.41421 of the algorithm.

The commercially available finite element (FE) package ABAQUS is employed to solve

the VF dynamics. Both VF volumes are meshed identically. A hexahedral element mesh

(using first-order C3D8RH elements from the ABAQUS/Standard library) is used to dis-

cretize the VF volumes. Increased refinement near the contact-prone mid-membranous

region is present, as shown in figure 2b.

2.3 Contact interaction model

In an ideal contact model, surfaces CL and CR would interact. Due to restrictions arising

out of numerical algorithm implementation in FLUENT, it is required that the topology of

the fluid volume remains unchanged throughout the computation. Therefore, direct con-

tact between surfaces CL and CR cannot be considered. Instead, as an approximation of the

true contact, a pair of auxiliary rigid planar (2D) surfaces, PL and PR, are defined to inter-

act with CL and CR respectively. The rigid surfaces PL and PR are fixed in space and sepa-

rated by dp = 0.200 m. Each rigid plane is meshed identically using rigid R3D4 elements

from the ABAQUS/Standard library. The element edge length is uniformly 0.606 mm.
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2.4 Boundary and coupling conditions

At any point of time during the computation, the bounding surface of the VFs ∂ (V s) can

be expressed as a union of mutually disjoint surface sets

∂ (V s) = [∂ (V s)]B ∪ [∂ (V s)]C ∪ [∂ (V s)]FSI . (4)

Here, [∂ (V s)]B comprises the lateral (xml = ±W/2), anterior (xap = L/2) and posterior

(xap =−L/2) surfaces of the VF. Throughout the computation, all degrees of freedom are

constrained for nodes on [∂ (V s)]B.

Any point~x ∈ ∂ (V s)− [∂ (V s)]B must satisfy the contact condition

|xml| ≥ dp/2, ∀t ≥ 0. (5)

Possibly topologically disjoint regions within ∂ (V s)− [∂ (V s)]B (note: ∂ (V s)− [∂ (V s)]B =
⋃

(SL,SR)), for which the equality |xml| = dp/2 is satisfied at a given instant, comprise

the surface set [∂ (V s)]C referred to in (4). Thus [∂ (V s)]C denotes the surface region(s) in

active contact, and is always a subset of
⋃

(CL,CR). The remainder of the VF bounding

surfaces is denoted by [∂ (V s)]FSI .

The displacement condition |xml|= dp/2 on [∂ (V s)]C implies that normal surface trac-

tions on [∂ (V s)]C are unspecified with the limitation that tensile forces are not allowed.

The tangential contact interaction is frictionless, i.e. shear forces are always zero on

[∂ (V s)]C while there is no constraint on the in-plane displacement.

On [∂ (V s)]FSI the following surface traction boundary condition is applied

~τs(t) = [−p(t +∆t)I+ τττ f(t +∆t)] · n̂, (6)

where n̂ is the surface normal at a given location on the interface. The terms on the right

hand side are obtained from corresponding nodes on the flow domain boundary. The dy-

namic compatibility condition (6) ensures momentum balance at the FSI interface.

With the above conditions imposed on the VF boundary at time step t, equation (3)

can be integrated in time to obtain the displacement and stress fields throughout the VF

domain at time step t+∆t. However, equation (6) requires determination of flow variables

at t +∆t. The method of determination is given below.

At any time t the flow domain boundary ∂ (V f) can be composed as a union of mutually

disjoint surface sets

∂ (V f) = [∂ (V f)]B ∪ [∂ (V f)]C′ ∪ [∂ (V f)]FSI . (7)

Here, [∂ (V f)]B comprises the flow inlet (xis =−T −Tentry), flow outlet (xis = Texit), and

non-moving walls of the entry and exit channels (xml = ±W/2 and xap = ±L/2) (fig-

ure 1a). The pressure at the inlet pin is varied with time t as

pin(t)

pmax
=

{

(t/Tramp)
2[3−2(t/Tramp)] ∀t ∈ [0,Tramp]

1 ∀t ∈ [Tramp,∞),
(8)

where pmax = 400 Pa and Tramp = 0.15 s. The pressure at the outlet is constant at 0 Pa. At

all times, no slip and no penetration are prescribed on the non-moving walls of the entry

and exit channels, i.e.~v =~vg = 0 on xml =±W/2 and on xap =±L/2.

The kinematic compatibility condition, needed to ensure that the moving–deforming re-

gions of flow boundary (∂ (V f)− [∂ (V f)]B) remain coincident with the moving–deforming

regions of the VF boundary (∂ (V s)− [∂ (V s)]B), is enforced using a backward difference
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operator in time,

~vg(t)|∂ (V f )−[∂ (V f )]B
=

[~u(t)−~u(t −∆t)]∂ (V s)−[∂ (V s)]B

∆t
. (9)

Simultaneously, no slip and no penetration condition (~v =~vg) is imposed on (∂ (V f)−
[∂ (V f)]B). Further, we define [∂ (V f)]FSI as that part of the flow-domain boundary which

remains coincident with [∂ (V s)]FSI , and [∂ (V f)]C′ is defined by its coincidence with

[∂ (V s)]C. It is important to note that material surface regions are exchanged between

[∂ (V s)]C and [∂ (V s)]FSI over time (for e.g. [∂ (V s)]C = /0 in the fully open state) and this

results in corresponding exchange of surface sets between [∂ (V f)]C′ and [∂ (V f)]FSI .

With the above boundary conditions on the flow domain (requiring solid domain solu-

tion ~u only at instants t and t −∆t), equations (1) and (2) are integrated to obtain flow

velocity and pressure at time step t +∆t. The surface traction (−pI+ τττ f) · n̂ at t +∆t is

then computed and substituted back into (6). This updates the solid domain solution to

t +∆t. Using the solid domain solution at instants t and t +∆t in (9) to obtain~vg(t +∆t)
on ∂ (V f)− [∂ (V f)]B the flow solution can be obtained at step t+2∆t. The time integration

of the coupled domain proceeds accordingly.

Equations (6) and (9) define the weak-coupling approximation employed in the present

model. The surface traction (−pI+τττ f) · n̂ at t +∆t is used to compute the surface traction
~τs at t. As a result of staggered approach, the displacement of the solid domain boundary

is ahead of the fluid domain boundary by a single increment. The error introduced due to

the mismatch in displacements is considered to be small compared to the magnitude of the

total displacement integrated over time. The coupling software MpCCI is used to effect

the transfer of solution variables between ABAQUS and FLUENT. The time-increment

used to integrate the balance equations in both FLUENT and ABAQUS is identical to

the solution exchange increment used by MpCCI. In the present computation a constant

increment ∆t = 0.020 ms was used.

2.5 Constitutive relationships

The constitutive relation for the fluid (air) follows a Newtonian incompressible fluid pre-

scription,

τττ f = µ
[

∇~v+(∇~v)T
]

, (10)

where µ is the dynamic viscosity. Properties of air corresponding to STP are used (ta-

ble 1).

For the VF tissue a viscoelastic constitutive relation is used to define the stress-strain

response,

σσσ(t) =
∫ t

0
2G(t − t ′)ėeedt ′+ I

∫ t

0
K(t − t ′)ε̇ dt ′, (11)

where eee is the deviatoric part of the strain, and ε is the volumetric part. The second-order

identity tensor is denoted by I. Functions G and K correspond to time-dependent shear

and bulk moduli defined by a single-term Prony series

G(t) =
E

2(1+ν)
[1−g1 +g1 exp(−t/τ1)] ,

K(t) =
E

3(1−2ν)
[1− k1 + k1 exp(−t/τ1)] , (12)



December 8, 2012 15:21 Computer Methods in Biomechanics and Biomedical Engineering contact-part1

Computer Methods in Biomechanics and Biomedical Engineering 9

where E is the instantaneous small-strain elastic modulus of the VF tissue. The properties

E, g1, k1 and τ1 are given numerical values such that the single-phase viscoelastic VF

tissue behaves similar to a biphasic material as considered by Zhang et al (2008). The

Poisson’s ratio of the VF tissue ν is given a value close to the incompressibility limit of

0.50, and its density ρs is set close to that of water at STP (table 2).

In Zhang et al (2008) the stress within VF tissue – defined as a one-dimensional (1D)

linear biphasic material of initial length L – due to an applied displacement at one end

u(L, t) = ε0

{

t/T0, 0 ≤ t ≤ T0 = 0.01 s
1, t ≥ T0,

(13)

while the other end is fixed (u(0, t) = 0) is given by

σ(t ≥ T0) =
HAε0

L
+

HAε0

L

[

2e−π2kHAt/L2+π2kHB

(

L2

T0π2kHA

)

×

(

1−
φ f

φ s

π2kHB

L2 +π2kHB

)

(

eT0π2kHA/L2+π2kHB −1
)

]

, (14)

where only the first term is retained for the sake of simplicity. Here, HA = λs+ 2µs and

HB = (λf + 2µf)(φ
s/φ f )

2
are respectively the moduli of the solid and fluid phases in

terms of the usual elastic constants (solid) and viscosity coefficients (fluid), φ s and φ f

are the volume fractions of the solid and fluid phases respectively and k is the hydraulic

permeability of the solid phase. For water, λf =−2µf/3 (Schlichting 1989).

For the displacement condition (13), the stress on a VF tissue defined as an equivalent

single-phase viscoelastic solid is found by integrating (11) to be

σ(t ≥ T0) =
Eε0

L

[

1− k1 +

(

k1τ1

T0

)

(eT0/τ1 −1)e−t/τ1

]

. (15)

Expressions (14) and (15) are equivalent under two limits. In the first case, assuming

a fluid volume fraction typical of a ‘hydrated’ VF tissue φ f = 70% (Hanson et al 2010;

Phillips et al 2009), with hydraulic permeability k in the range given in literature (Zhang

et al 2008; Tao et al 2009), and L equal to the VF length (as in table 2), it follows that

π2kHB ≪ L2. This limit is modeled by the choice of parameters corresponding to model I

to table 2. In the second case, assuming a severely dehydrated VF tissue φ f → 0, it follows

that π2kHB ≫ L2. Model II property values in table 2 simulate VF tissue in this limit.

A detailed treatment of accuracy concerns regarding various parts of the computational

FSI model can be found in appendix C.

3. Results

It must be noted that the time-independent elastic modulus E and Poisson’s ratio ν of

the VF tissue is identical for models I and II. Therefore both models have identical in

vacuo eigenfrequencies, the first of which is 47 Hz. However, in the FSI computations, the

frequency of vibration is an outcome of the coupled model, and differences are expected

between the models. Computational results are presented first for the computation with

tissue parameters representing a hydrated tissue (model I). An FSI computation over a

physical duration of 286 ms is presented.1 During the ramp phase, the VFs deform from

1The computation ran for about 50 hours of CPU time, with 9 cores (4 for FLUENT, 4 for ABAQUS and 1 for MpCCI)
employed on a 24-core 2.3 GHz AMD OpteronTM multi-processor system.
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their rest state, thereby bulging upward (figure 4a). The overall mean deformation of the

VFs are nearly symmetric to each other. Vibrations (in t ≥ Tramp) occur around this mean

state.

(a)

(b)
v  [m/s]is

|u| [m]

ψ’

Figure 4. At t = Tramp: (a) contours of displacement magnitude corresponding to the mean deformed shape, (b) contours
of inferior-superior component of glottal airflow velocity on the mid-coronal section.

Figure 4b depicts a typical flow field in the mid coronal section of the model I before vi-

bration onset. Considering the mid-coronal section in the mean deformed state (figure 4a),

the included angle between the VFs is ψ = 20.8◦, only slightly increased when compared

to the rest state (ψ = 20.0◦). Flow measurements over a large range of included glottal

angles with rigid models having M5 geometries were reported in Fulcher et al (2010).

These authors suggests that for a converging case of ψ = 20.0◦, the flow pressure near

location ~A (the glottal exit) is less than that at the flow domain outlet. The pressure dif-

ference between glottal exit and outlet is about 10% of the pressure difference between

the inlet and outlet. Therefore, the maximum pressure drop occurs between the inlet and

glottal exit and is approximately 1.1pmax. Bernoulli’s theorem is expected to be valid up

to the glottal exit, which is close to the site of flow separation that results in the glottal jet.
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Thereby, the approximate relation holds,

1.1pmax ≈
1

2
ρf(q

2
2 −q2

1), (16)

where q1 and q2 are average flow speeds through the inlet and glottal exit sections respec-

tively. Mass continuity dictates that the mass flow rate at every cross-section perpendicular

to the streamwise direction must be identical,

ṁ = ρfA1q1 = ρfA2q2, (17)

where A1 and A2 are the respective cross-section areas at the inlet and glottal exit. The

mean opening between the VFs at mid-coronal plane d̄ ≃ 2|xml(~A)|= 0.732 mm. Thereby

A2 can be approximated as Ld̄, assuming a rectangular opening. Using (16) and (17), it

can be shown that

ṁ2 =
2ρf(1.10pmax)A

2
1A2

2

A2
1 −A2

2

(18)

relating the mean mass flow rate with the inlet pressure. The estimated mean mass flow

rate from this simple model is 0.480 g/s.
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Figure 5. Comparison of computed mass flow rate in dependence of time (solid line) and its predicted mean value using
Bernoulli’s theorem (16) (dashed line)

The computed mass flow-rate at the inlet in dependence of time is shown in figure 5.

The computed mass flow rate averaged over the cycles shown is ṁcomputed = 0.575 g/s.

The corresponding computed average volume flow rate of 471 ml/s. The average mass

flow rate based Reynolds number is Re = ṁcomputed/Lµ ∼ 1600. The peak centerline

velocity component in the xis direction was found to be ∼ 31 m/s.

The post-ramp motion of the VFs develops in time to be soon dominated by a single fre-

quency oscillation. This is also evident from the fluctuations in flow rate shown in figure 5.

The time variation of distance between point ~A on the left VF and the plane PL is plotted

in figure 6 for t ≥ 0.19 s. The three-dimensionality of the computed flow is evident in

figure 6. Slight differences between the medial-lateral motion of the left and right VFs are

perceptible which can be attributed to the unequal distribution of flow pressure on the left

and right VFs. The frequency of vibration is deduced by considering time elapsed between

successive peaks in time history and is found to be 167 Hz. The frequency remains nearly
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Figure 6. Contact opening distance in dependence of time: solid line, at reference point ~A on left vocal fold; dashed line,

at point ~A′ on right vocal fold

constant throughout the computation (SD 1.16%). At three instants of a collision-free vi-

bration cycle, in particular, at t = 0.19626 s, 0.19772 s and 0.19920 s, the mid-coronal

sections of the left VF are shown in figure 7. These instances correspond to, respectively,

the maximum open state, the mean state, and the least open (or closed) state. Approxi-

mating the motion of the right VF to be symmetric, the corresponding included glottal

angles (ψ) at these instants are 13.1◦, 20.1◦ and 26.9◦, respectively. Though the glottal

angles remain convergent, there is significant change in the degree of convergence over

the vibration cycle. The amplitude increases with time such that after some cycles it is

large enough to result in collision. As seen in figure 6, collision becomes well-established

in the cycle beginning at t = 0.27986 s.

(a) (c)(b)

Figure 7. Glottal angle changes significantly during each phonatory cycle. Deformed shapes of the mid-coronal section at
three different instants corresponding to: (a) maximum open state at t = 0.19626 s, (b) mean state at t = 0.19772 s and (c)
maximum closed state at t = 0.19920 s.
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Figure 8. Time history of area of the left VF rigid plane PL during seven consecutive collision cycles
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Figure 9. Time history of contact pressures measured at locations ~A, ~B and ~C of the left VF through (a) three consecutive
collision cycles, and (b) four subsequent cycles

Figure 10. At t = 0.19772 s, distribution of hydrostatic stress on several transverse planes (1 mm intervals)

Figure 8 shows the time variation of the area of the left VF under contact for seven con-

secutive collision cycles. The three-dimensionality of the airflow noted earlier includes an

anterior-posterior asymmetry in VF deformation, and thereby VF collision. The asymme-

try also causes different contact pressures at ~B and ~C. Contact area being a global measure

does not capture this asymmetry, but is seen clearly in the contact pressure history fig-

ure 9. The asymmetry develops over subsequent cycles, in that the location of contact

pressure peak within a cycle changes between ~A, ~B and ~C. The within-cycle peak contact

pressure computed at ~A is found to be between 0.3 kPa and 1.5 kPa. The duration within

which the left VF contacts with the plane PL at ~A (in each cycle) – when expressed as a

percentage of the cycle time – is at most 13.4%. This corresponds to an open quotient of

at least 86.6%.

Hydrostatic stress is defined

σH =
1

3
σkk, (19)
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where σi j is the Cauchy stress tensor σσσ written in the Einstein notation. The repeated

index in (19) denotes a summation. Biot’s poroelastic theory (1941) specifies that the

solid and fluid constituents of the poroelastic VF tissue exert an equal, opposite and non-

zero force on each other. The theory employs Darcy’s law to relate this non-zero force,

given by the gradient of hydrostatic stress, to the interstitial fluid flux

~q ∝ ∇∇∇σH , (20)

where~q is the flux vector of the interstitial fluid. Instantaneous interstitial fluid flux fields

are determined, and transport of pore fluid over time due to its motion is neglected.

Thereby, local hydraulic permeability and fluid volume fraction are assumed constant,

and can be absorbed into any multiplicative constant associated with (20).

With respect to figure 6, consider one typical vibration cycle free of collision (from

t = 0.19626 to t = 0.20212) and one vibration cycle with fully developed collision (from

t = 0.27986 s to t = 0.28578 s). The distribution of hydrostatic stress at t = 0.19772 s,

i.e. the mean vibration state, is shown in figure 10. The contours of σH are given at sev-

eral inferior-superior cross-sections of the left VF. It is found that the levels of σH are

rather independent of the anterior-posterior location in the VF, and thus anterior-posterior

gradients are small. This is in contrast to the distribution of the hydrostatic stress on the

medial-lateral plane.

Figure 11a–c show the distribution of hydrostatic stresses on the mid-coronal plane at

the maximum open, mean, and closed states of the free-vibration cycle (t = 0.19626 s,

0.19772 s and 0.19920 s). Figure 11d–f shows hydrostatic stress contours on the mid-

coronal plane at corresponding states of the cycle with VF collision: maximum open at

t = 0.27986 s, mean state at 0.28134 s, and closed at 0.28264 s. The hydrostatic stresses

change significantly over the mid-coronal plane. Local hydrostatic stress gradients ∇∇∇σH ,

proportional to interstitial flux vectors~q, are visualized over a selected region of the mid-

coronal plane (figure 12) close to the VF medial surface. The anterior-posterior component

of ∇∇∇σH and ~q are neglected in the following as their magnitude is significantly less than

that of the in-plane gradient. For each instant considered, the maximum of the vector mag-

nitudes is used to normalize the hydrostatic stress gradient vectors at the given instant. The

vectors also represent normalized instantaneous interstitial fluid flux vectors at the corre-

(a)

(d) (e) (f)

(c)(b)
[Pa]σ

H

Figure 11. Hydrostatic stress contours on the mid-coronal plane (reference configuration): (a–c) open, mean and closed
instants in free-vibration cycle starting at t = 0.19626 s; (d–f) open, mean and closed instants in cycle with collision starting
at t = 0.27986 s. Note contour levels are identical to those in figure 10
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Figure 12. Instantaneous vectors of hydrostatic pressure gradients on mid-coronal plane for model I (reference configuration). Vector lengths are normalized by the maximum gradient magnitude of each subplot.
(a–c) Open, mean and closed instants in free-vibration cycle starting at t = 0.19626 s. (d–f) Open, mean and closed instants in cycle with collision starting at t = 0.27986 s. Values in braces indicate the magnitude
of largest instantaneous hydrostatic stress gradient
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sponding time instants. In figures 12a–c, the largest gradient vector is always directed to-

wards the medial surface, and its magnitude changes by about 46 % between its maximum

and minimum values during the cycle. It is thereby inferred that the predominant gradient

is caused by the mean deformation of the VF. Indeed, this large gradient is substantial in

the mean states of both the vibration and collision cycle (figures 12b,d). Comparing the

open and closed states of the cycle without contact (figures 12a,c), a secondary interstitial

fluid flux is apparent. This flux is aligned approximately along the inferior-superior axis

and switches sense every half-cycle. In the open state, the superior surface is in relative

compression, and this directs the interstitial fluid inferiorly. The situation is reversed in the

closed state, and flux vectors point superiorly. This secondary fluid flux is understood to

be associated with vibration. Comparing figures 12a,d the arrows directed away from the

superior surface are found to be larger in the collision cycle case. This is expected since

the amplitude of vibration is larger in the collision cycle, causing the magnitude of the

secondary flux (relative to the rather constant mean flux) to be larger during the collision

cycle. Figure 12f shows a strong tertiary interstitial fluid flux. This flux is associated with

VF surface collision, which modifies the hydrostatic stress state locally. This interstitial

fluid flux component is large in magnitude (about 63 % larger than the maximum flux in

the open state) directed opposite to the primary fluid flux direction, i.e. away from the

medial surface during collision. The influence is limited spatially to within a zone sur-

rounding the location of collision (see figure 12c,f), and temporally to within the duration

the particular location is in contact. Outside this spatio-temporal zone interstitial fluid flux

characteristics resemble those of a free-vibration cycle.

Results from the FSI simulation considering properties of a dehydrated tissue (model

II) are presented below. Only some select variables are detailed herein that emphasize

the contrast with respect to the hydrated tissue (model I). The mean opening between

the VFs at the mid-coronal plane and the mean mass-flow rate are d̄ = 0.852 mm and

ṁcomputed = 0.676 g/s respectively. The frequency of vibration for model II is 108 Hz,

the peak contact pressures are in the range 0.5–2.0 kPa and open quotients are at least

75.5 %.

The hydrostatic stress gradient derived interstitial fluid flux vectors are considered at in-

stants 0.25480 s, 0.25710 s and 0.25940 s that represent fully open, mean and maximum

closed states respectively within a collision-free vibration cycle of model II. For respec-

tive states within a cycle with collision, instants 0.28170 s, 0.28400 s and 0.28570 s are

considered. The normalized interstitial fluid flux vectors are shown in figure 13(a)–(c) and

(d)–(f) respectively for the collision-free cycle and the cycle with collision. The cycles are

selected such that the amplitudes of vibration about the mean are comparable to those in

corresponding cycles in figure 12 (model I).

Comparison of figures 12 and 13 indicate that the overall fluid flux directions were

not altered by changing the tissue properties. However, significant changes in the spatial

distribution of flux magnitudes are found. For the free vibration conditions, the magnitude

of flux is significantly reduced for all instances considered (−19 %, −42 %, −37 % for

the open, mean and closed states, respectively), with the strongest reduction occurring at

the mean state. Furthermore, the flux magnitudes are less equally distributed spatially in

the dehydrated state with the highest flux rates highly concentrated closely to the medial

plane.

For the vibration conditions with contact, the magnitude of flux strength is reduced for

the open and mean instances only (−45 %, and −42 %, respectively), but is increased

(+28 %) for the contact instance. Again, the flux magnitudes are found to be are less

equally distributed spatially in the dehydrated state with the highest flux highly concen-

trated closely to the medial lateral plane. This finding is especially true for the contact

state where the local flux away from the medial plane highly dominates.
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Figure 13. Instantaneous hydrostatic pressure gradients on mid-coronal plane for model II (reference configuration). Vector lengths are normalized by the maximum gradient magnitude of each subplot. (a–c) Open,
mean and closed instants in free-vibration cycle starting at t = 0.25480 s. (d–f) Open, mean and closed instants in cycle with collision starting at t = 0.28170 s. Values in braces indicate the magnitude of largest
instantaneous hydrostatic stress gradient
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4. Discussion

The present study documents FSI computations of VF vibrations under realistic condi-

tions. For computations considering a hydrated tissue (model I), the average mass flow

rate based Reynolds number was found to compare well with Re ∼ O(103) measured

in physical experiments (Alipour and Scherer 1995; Cranen and Boves 1985; Triep and

Brücker 2010). The computed peak centerline velocity component in the xis direction is

typical of measured values in experiments (Erath and Plesniak 2006; Pelorson et al 1994).

The computed average volume flow rate is well within the 80−750 ml/s range measured

in experiments using excised larynges and physical replicas of VFs (Alipour and Scherer

1995; van den Berg et al 1957; Cranen and Boves 1985; Erath and Plesniak 2006, 2010;

Triep et al 2005) and computed using numerical models (Scherer et al 2001; Thomson

et al 2005; Triep and Brücker 2010). The three-dimensional development of the com-

puted glottal jet was also observed in experiments (Krebs et al 2012; Triep and Brücker

2010). The frequency of vibration as computed falls within the range of realistic phonation

frequency (George et al 2008; Morris and Brown Jr. 1996; Titze 2006; Zhang et al 2006).

The vibration amplitude is in the range of measured values (Alipour et al 2001; Baer

1981; George et al 2008). The computed peak contact pressures were in the range of mea-

sured (Gunter et al 2005; Jiang and Titze 1994; Spencer et al 2006; Verdolini et al 1999)

and computed values (Chen 2009; Gunter 2003; Horáček et al 2005). The computed open

quotients were at the higher end of the 28−93% range observed in experiments (Hanson

et al 1990; Henrich et al 2005; Verdolini et al 1998). For the dehydrated tissue condition

(model II) the above variables were also found to be within the range of values measured

in experiments. However, it was evident that a change in the underlying tissue character-

istics could result in significantly different vibration characteristics even when the airflow

conditions were kept identical. In particular, it was found that a dehydrated VF tissue vi-

brated with a lower frequency than the hydrated tissue. The mean opening between the

VFs during vibration was also higher for the dehydrated case, which perhaps explains the

higher mean volume air flow rate through the glottis compared to the hydrated case.

The average air flow rate, which remains constant post ramp, was compared with

Bernoulli’s approximation for steady flow. The flow during free-vibration and collision

cycles is not steady in a strict sense. However, the so-called quasisteady approximation

has been found to hold for the glottal air-flow (McGowan 1993). The quasisteady approxi-

mation states that the instantaneous flow field though a vibrating glottis is not significantly

altered if the deformation of the glottis is frozen in time. The physical implication of the

approximation is that at any instant the constriction in the glottal channel provides a larger

flow acceleration relative to the time- dependent VF motion. Mathematically, this means

that the time-derivative of velocity potential in the unsteady Bernoulli equation (Batchelor

2010) is relatively small compared to the other terms. The 18.0 % difference between the

computed and approximated values of average flow-rate is possibly due to the fact that

the unsteady effects are not entirely negligible.

Coupled flow-structure interaction problems can be classified in terms of their coupling

strength. The coupling strength can be loosely understood as a measure of the influence

of the flow-structure interaction on the overall behavior of either domain. The problem

of a flag fluttering in the wind is a highly coupled problem (Argentina and Mahadevan

2005). Ignoring the flow-structure interaction changes the outcome in each domain. The

“added mass” concept is a well-known measure of coupling strength (van Brummelen and

Geuzaine 2010; Förster et al 2007; Zhang and Hisada 2004). It has been noted that due to

the added mass effect, numerical solutions of highly-coupled interaction problems using

the staggered approach with segregated solvers are susceptible to numerical instability. A

variety of factors, viz. density ratio of structure and fluid, material viscosity and stiffness,

size of time increment, affect the stability of computing a coupled FSI problem. In fact, if



December 8, 2012 15:21 Computer Methods in Biomechanics and Biomedical Engineering contact-part1

Computer Methods in Biomechanics and Biomedical Engineering 19

the fluid is incompressible, a segregated problem will always become unstable in a finite

number of time increments (Förster et al 2007). The instability in the computed FSI solu-

tions presented in this paper cause the fluctuation amplitude of displacement and stresses

to grow with time for both cases considered. This limitation is inherent in a segregated ap-

proach. In an ideal case, a finite but stable amplitude of vibration is likely to be observed.

However, in the present case the instability is weak. A rough estimate of the amplitude

growth rate can be obtained from figure 6. The amplitude of vibration (about the mean

distance ∼ 0.25 mm) for the first cycle is ∼ 0.2 mm. Assuming the mean to be identical

for the last cycle the fluctuation amplitude is ∼ 0.37 mm, i.e. and increase of ∼ 1.8 times

over 15 vibration cycles. Therefore, on an average, the amplitude of vibration increases

by ∼ 3.9% between subsequent cycles. The time-constant associated with this growth rate

is much smaller than the vibration period. As the VF vibration amplitude increases, the

fluctuation in the flow rate is also found to increase, at a rate which is indistinguishable

from the rate of increase of VF vibration amplitude. This implies that flow rate fluctua-

tion remains linearly proportional to the VF vibration amplitude. Further, throughout the

computation the average flow rate and mean VF vibration amplitude remains steady. It

can be argued that the present computation determines the state of stress in an experi-

mental model with identical geometry, material properties and average flow rate. Such a

determination is possible by selecting a particular computed cycle for which the flow-rate

fluctuation amplitude matches the experimentally measured flow-rate fluctuation ampli-

tude. For this specific computed cycle, the VF motion would match that of the experiment.

The state of stress corresponding to this particular cycle is hence physically relevant.

The problem of unstable response is also relevant because the onset of phonation is in

itself a instability event. Phonation onsets when the transglottal pressure difference goes

above a certain value. This value, or phonation threshold pressure (PTP), is a function of

the dynamical system (tissue properties, geometry, boundary conditions, etc.). Although

in the VF FSI problem the density ratio of structure and fluid and structural stiffness are

favorable in mitigating the role of numerical instability, it is difficult to reliably predict

physical instability (onset) in the presence of numerical instability. Therefore the phona-

tion onset problem is not addressed in this paper. This is not a shortcoming because the

phonation onset problem is independent of the problem of determining stresses that de-

velop in a readily self-oscillating VF post the onset. For transglottal pressure difference

above PTP, the frequency and amplitude of vibration in self-oscillation are not externally

imposed conditions; rather they appear as part of the solution. This is highlighted in the

present computations where the two models considered have significant differences in fre-

quencies of vibration and average deformation, although their in vacuo eigenfrequencies

based on the instantaneous elastic properties are identical.

The FSI computation framework employed in this paper allows for detailed determi-

nation of the spatial and temporal evolution of stresses in the interior of the VFs. In par-

ticular, hydrostatic stresses and their gradients are considered. The poroelastic nature of

VF tissue motivates the use of hydrostatic stress gradients to determine the flux at which

interstitial fluid flows relative to the solid matrix. Distribution of hydrostatic stress at three

representative instants (corresponding to open, mean and closed states) of free-vibration

cycles and collision cycles were presented for the two VF tissue characteristic states (hy-

drated and dehydrated). These results underline the following implications on the intersti-

tial fluid flux within the VF tissue:

(1) Interstitial fluid flux along a coronal plane is typically stronger that out of it. This

is because the hydrostatic stress gradients in the anterior-posterior direction were

found in general to be weaker compared to those in the mid-coronal plane.

(2) Within the mid-coronal plane, the sense of the gradient in the mean state dictates

that interstitial fluid is driven strongly and continuously towards the medial sur-

face of the folds. This is likely to hold for other nearby coronal planes as well, as
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gradients of hydrostatic stress in the anterior-posterior direction are small.

(3) A secondary interstitial fluid flux is aligned approximately along the inferior-

superior axis and switches sense every half-cycle. The strength of this flux scales

with the magnitude of vibration around the mean state. It aids in the uniform

distribution of interstitial fluid throughout the VF volume.

(4) A tertiary interstitial fluid flux results from collision at the VF surface. The

collision-induced flux operates only within a zone surrounding the location of col-

lision (see figures 12c,f and 13c,f), and while the particular location is in contact.

This flux component is directed against the mean deformation induced primary

flux.

The degree of severity of collision can be quantified through the extent of the spatio-

temporal zone of influence of reversed interstitial fluid flux, and also the magnitude of

change in stress caused by collision. The extent of the spatio-temporal domain of influ-

ence of collision is in turn determined by the specific phonation conditions. For example,

by changing the initial pre-phonatory distance between the VFs, the fraction of cycle-time

for which contact occurs and the spatial depth of influence is modified, while keeping

vibration amplitude and mean deformation constant. Open quotients smaller than those

computed in this paper, and well-within the experimentally observed range, can be ex-

pected to result in more severe collision. The effect of moderate collision (as considered

here) on the interstitial fluid flux is strong relative to the mean flux. Collision can thereby

be expected to play an effective role in removing fluid from the medial surface.

The differences between figures 12 and 13 highlight the effect of tissue viscoelastic

properties, and thereby its hydration state. Specifically comparing the maximum open

state in the collision-free cycles in figures 12a and 13a, respectively, it is observed that the

increase in stress gradient magnitude near the medial surface as compared to the rest of

the mid-coronal section is even higher in the dehydrated than in the hydrated state. This is

true in general for other states when the mid-coronal section is not in active contact. In the

dehydrated state collision-induced stresses are seen to play a stronger role in dehydrating

the VF tissue compared to the hydrated state. A plausible biomechanical implication is

that severe dehydration of VF tissue can lead to even higher levels of dehydration leading

to potential tissue damage. Such implications could be investigated in future through care-

fully designed experiments. Although it is not reasonable to draw definitive conclusions

regarding VF biomechanics based solely on present computations, it must be emphasized

that specific quantitative comparisons such as the above can only be made by conduct-

ing FSI computations presented herein, and cannot be determined from simplified models

considering gross pressure differences in the system.

The interstitial fluid flux in Darcy’s equation (20) is, strictly speaking, proportional to

the gradient of that part of the total hydrostatic stress (σH) which is supported by the fluid

constituent. The fluid-supported hydrostatic stress, as fraction of the total stress, changes

with time. Therefore, it can be argued that the proportionality in (20) includes a time-

dependent factor. Indeed, in Zhang et al (2008) it was shown that this time-dependence

is given by an exponential decay (see figure 7 in Zhang et al 2008). The time-constant

for the exponential decay is given by τ1, whereas the time period of vibration is 1/ f . For

models I and II the ratio of the time-scales 1/( f τ1) is 1.20 % and 9.26 % respectively.

This ratio is representative of the percentage decay in fluid-supported stress, as a fraction

of the total stress, within a single cycle of vibration. Therefore, the stress on the fluid

constituent effectively remains a constant fraction of σH . This implies that comparison of

interstitial fluid flux derived from (20) is a close measure of the fully coupled problem.

It is important to highlight the modeling challenges accompanying FSI computation

of phonation. Firstly, the present modeling framework accounts for collision between the

VFs during true FSI. To accomplish this within the limitations on computational modeling

capabilities, true contact between the VFs was avoided. Instead contact is enforced at a
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finite but small distance dp. The effect of this difference compared to the real situation

(dp = 0), on the development of local collision effects and the development of overall

FSI is discussed in appendices A and B respectively. In Shurtz and Thomson (2012) it

was demonstrated, using a two-dimensional computational model, that the VF dynamics

had negligible sensitivity to the choice of dp in the range considered. Both models I and

II can be compared with that in Shurtz and Thomson (2012) by considering the quantity

dp/dg. In the present case dp/dg = 0.33 was within the range of dp/dg (from 0.01 to 0.50)

considered by Shurtz and Thomson (2012). Thereby Shurtz and Thomson (2012) support

the arguments made in appendices A and B.

Another important aspect of the current framework, and in particular with respect to the

VF tissue constitutive relations, is that realistic viscoelastic properties were used and that

a full 3D geometric description was included. Deformation asymmetry in the anterior-

posterior direction, absent in 2D models reported in literature, emphasizes the importance

of three-dimensionality. In agreement with Erath et al (2011b,a), the asymmetry in the air

flow and the jet attachment in the medial–lateral direction (Coanda effect) did not result

in significant asymmetry of deformation between the left and right VFs. In the airflow

model, the dynamic viscosity of air was considered at its realistic value. Consequently,

the Reynolds number of the flow turned out to be representative of experimental FSI con-

ditions. The Reynolds number determines length and time scales of dynamic events in a

laminar flow, and Buckingham’s Pi-theorem stipulates that it is impossible to determine a

single scaling factor that can be applied to both air flow and tissue properties and yet keep

unchanged the relevant non-dimensional numbers of the fully coupled flow-structure in-

teraction system (Erath and Plesniak 2010). In this light, modifying the Reynolds number

in FSI computation of phonation removes the correspondence between dynamics of the

computational model and the physical system it attempts to model.

The results present quantitative data on the dynamic state of stresses inside a pair of VFs

with realistic 3D geometry and tissue properties obtained during flow-induced vibration

and collision. Validation with a carefully designed experimental replica is the best way to

resolve any questions regarding the physical relevance of the results presented herein. In

the paper it was shown that, wherever such a comparison is possible, the results from the

computation do agree with measurements made on similar experimental models.

5. Conclusion

This paper contributes to the current literature on VF modeling in two ways. Firstly, a

modeling methodology is presented that simulates vocal fold self-oscillation and contact

under conditions representative of experimental investigations. The computed results ob-

tained on the VF exterior (surface displacements, flow rate, contact pressure) were shown

to be well within experimental observations. This lends support to the validity of the pro-

posed model approach. The second important outcome, the focus of this study, is the de-

tailed determination of the stress state in the VF interior and its consequences on systemic

hydration. Considering the hydrostatic stress gradient, motivated by questions regarding

systemic hydration of VF tissue, the interstitial fluid flux in the VF interior was mapped on

a representative coronal plane. Dominant modes of interstitial fluid flux were identified,

and the motion characteristics that cause them were hypothesized. It follows that phona-

tion without VF collision leads to a state of stress that tends to distribute interstitial fluid

to the actively vibrating (medial, superior, inferior) regions of the VFs. Thereby, collision-

free phonation exercise is expected to be conducive towards increasing hydration in the

VF tissue in the average sense. Elliot et al (1995) found that subjects regularly reported

a better voice condition after a warm-up session. Typical warm-up exercises (O’Connor

2012; Voice and Swallowing Institute 2012) comprise singing in a softly-produced voice,

uttering vowels and a general avoidance of pressed vocal configurations. On the other
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hand, previous studies (Solomon and DiMattia 2000) have found that the effect on voice

competence measures (for example, PTP) due to tasks demanding higher voice intensity

can be offset by increased hydration of the VFs. Hanson et al (1990) found that increased

voice intensity is associated with lower open quotients, whereas Verdolini et al (1998)

found that decrease in open quotient was related to increase in contact stresses measured

on the VF surface. These observations taken together indicate that, from the perspective

of vocal health, increase in severity of collision is detrimental, whereas the avoidance of

excessive collision is beneficial. A biomechanical explanation for these clinical findings

is given in the present paper.
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Horáček J, Laukkanen AM, Šidlof P, , Murphy P, Švec JG (2009) Comparison of accelaration and impact stress as possible
loading factors in phonation: a computer modeling study. Folia Phoniatr 61(3):137–145

Jiang JJ, Titze IR (1994) Measurement of vocal fold intraglottal pressure and impact stress. J Voice 8(2):132–144
Jiang JJ, Shah AG, Hess MM, Verdolini K, Banzali FM, Hanson DG (2001) Vocal fold impact stress analysis. J Voice

15(1):4–14
Krebs F, Silva F, Sciamarella D, Artana G (2012) A three-dimensional study of the glottal jet. Exp Fluids 52(5):1133–1147
Leydon C, Sivasankar M, Falciglia DL, Atkins C, Fisher KV (2009) Vocal fold surface hydration: A review. J Voice

23(6):658–665
Luo H, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK (2008) An immersed-boundary method for flow-structure

interation in biological systems with application to phonation. J Comput Phys 227:9303–9332
Luo H, Mittal R, Bielamowicz SA (2009) Analysis of flow-structure interation in the larynx during phonation using an

immersed boundary method. J Acoust Soc Am 126(2):816–824
McGowan RS (1993) The quasisteady approximation in speech production. J Acoust Soc Am 94(5):3011–3013
Miri AK, Barthelat F, Mongeau L (2012) Effects of dehydration on the viscoelastic properties of vocal folds in large

deformations. J Voice 26(6):688–697
Morris RJ, Brown Jr WS (1996) Comparison of various automatic means for measuring mean fundamental frequency. J

Voice 10(2):159–165
Noordzij JP, Ossoff RH (2006) Anatomy and physiology of the larynx. Otolaryng Clin N Am 39:1–10
O’Connor K (2012) Caring for your voice. http://www.singwise.com/cgi-bin/main.pl?section=articles&doc=CareForVoice,

accessed January 23, 2012
Pelorson X, Hirschberg A, van Hassel RR, Wijnands APJ (1994) Theoretical and experimental study of quasisteady-

flow separation within the glottis during phonation. Application to a modified two-mass model. J Acoust Soc Am
96(6):3416–3431

Phillips R, Zhang Y, Keuler M, Tao C, Jiang JJ (2009) Measurement of liquid and solid component parameters in canine
vocal fold lamina propria. J Acoust Soc Am 125(4):2282–2287

Scherer RC, Shinwari D, DeWitt KJ, Zhang C, Kucinschi BR, Afjeh AA (2001) Intraglottal pressure profiles for a symmet-
ric and oblique glottis with a divergence angle of 10 degrees. J Acoust Soc Am 109(4):1616–1630

Schlichting H (1989) Boundary layer theory. McGraw-Hill
Shurtz TE, Thomson SL (2012) Influence of numerical model decisions on the flow-induced vibration of a computational

vocal fold model. J Comput Struct, in press
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Appendix A. Error in collision characteristics due to contact enforcement condition

In this section, the the error in determining VF stresses due to the particular value of dp
used is discussed. Note that the rigid planes interact with the VFs only during the collision

cycles. Thus, only for collision cycles, can the stress distribution in the VFs have an error

due to non-zero dp.

For the purpose of comparison, the physical scenario is approximated by the hypo-

thetical case dp = 0. This case is an approximation of the physical scenario because the

motion of the motion of the left and right VFs are not strictly symmetric. Although such

a case cannot be computed by the model (due to limitations mentioned earlier), it allows

systematic comparison with the computed case.

In the fully-developed collision cycle, beginning at t = 0.27986 s, the VFs approach

each other, collide with the respective rigid planes, and move apart until they reach the

maximum open state at t = 0.28578 s. If at t = 0.28578 s the rigid planes are instanta-

neously repositioned at xml = 0 (such that dp = 0) for the successive cycle, the collision

characteristics are modified in two ways. Firstly, a smaller area of the VF surfaces collide,

and secondly, within this reduced collision-influenced region, the compression depth is

itself reduced by a distance equal to dp/2.

From the biomechanics standpoint, the decreases in contact area and contact depth im-

ply that the volume over which collision influences interstitial movement is overestimated

in the computation. In particular, the tertiary interstitial fluid flux due to collision is ex-

pected to be weaker in the physical scenario (compared to the computation). However,

the primary and secondary interstitial fluid flux modes (due to mean deformation and

vibration, respectively) are identical to the computation.

Appendix B. Estimate of error in FSI due to contact enforcement condition

It may be recalled that the rigid planes never interact directly with the flow domain. A

non-zero dp influences the flow solution inasmuch it modifies the movement of the VF

surfaces during collision cycles. Thereby, as computed, the FSI can contain an error due

to the presence of the rigid planes. A global measure of the error in FSI can be obtained

by considering energy quantities, and is estimated below.

For comparison, following the discussion in appendix A, the hypothetical dp = 0 case

is considered to represent the physical scenario. In particular, consider the time-instant

of maximum closure within a physical collision cycle. To move the deformed VF surface

in the physical scenario such that it matches the deformed VF shape as computed at a

corresponding instant, work will need to be done on the VFs. Part of this work is stored in

the VFs as excess strain energy up to the instant of maximum closure, while some energy
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is lost to VF viscoelasticity.

The excess strain-energy gained by the VFs can be estimated as follows. The medial–

lateral extent of the VF at rest is D = 8.40 mm. At the instant of maximum closure, each

VF in the computation is stretched by a distance dp/2 = 0.100 mm more in the medial–

lateral direction at the mid-coronal section. Hence the difference between the physical and

computed average strain in the medial–lateral direction is dp/2D= 0.0119. The difference

in strain-energy density (between computation and the physical situation) is proportional

to (dp/2D)2 = 1.42×10−4. The maximum area of the left VF coming under contact in the

cycle beginning at t = 0.27986 s was computed to be Ac = 1.69 mm2. The excess strain-

energy is thus approximately EAcD(dp/2D)2 = 12.5 × 10−9 J. Assuming an identical

value for the right VF, this corresponds to an error of 0.132 % relative to the average

strain-energy in the VFs during the computed cycle (∼ 19×10−6 J). The average strain-

energy in the VFs is a measure of the average energy transferred from the flow to the

VFs. Therefore, the error in the energy transfer from the flow to VFs during the half-cycle

(maximum opening to maximum closure) is also approximately 0.132 %. This is also an

estimate of how much the flow solution is affected due to the non-zero dp condition.

It must be emphasized that beyond the instant of maximum closure, the VFs lose strain

energy as they revert to the maximum open state. In doing so, all of the excess strain

energy gained in the closing phase is lost in the opening phase of the collision cycle.

Thus the error estimated above does not contribute to any global accummulation or loss

of energy in the flow domain over successive cycles.

For constant amplitude harmonic motion, the viscoelastic losses in each cycle will be

identical; specifically, this loss equals the (constant) area under the non-linear stress-strain

curve integrated over the volume of the viscolastic solid. Hence, the graph of viscoelastic

dissipation with time for constant amplitude motion is linear when averaged over cycle

time. From the computation the viscoelastic losses with time can be explained by a linear

dependence up to 99.95 %. As noted previously, the VFs in the computation demonstrate

vibration with the amplitude slightly increasing with time. Accounting for the slight in-

crease of vibration amplitude, increases the r2 correlation to 99.99 %. Hence, it can be

concluded that collision has a limited (less than 0.01 %) effect on viscoelastic losses.

Moreover, during the entire collision cycle considered in appendix A, the average en-

ergy lost to VF viscoelasticity (∼ 6×10−6 J) was computed to be approximately 1/3-rd

of the average strain energy during the same cycle. This further limits the role collision

plays in determining global energy transfer during FSI (less than 0.0033 %). The effect of

non-zero dp on the global development of FSI (mediated through differences in collision

characteristics between the computation and the physical scenario) cannot be larger than

the effect of collision itself, and is thereby even smaller.

It is hence concluded that energy transfer between VFs and flow domain, and thereby

global FSI dynamics, is not significantly affected by the non-zero dp condition.

Appendix C. Accuracy considerations

C.1 Mesh independence of contact model

For the solid domain, the mesh design can be compared to models of Hertz contact analy-

sis. In particular, for the prediction of the maximum value of contact pressures in the cen-

ter of the contact a finite element model is not significantly mesh sensitive. The present

model employs a mesh with an element size ratio to radius of curvature ratio (as approx-

imated by the circle defined by the vocal fold anterior and posterior ends and the contact

point) of 0.218 mm to 251 mm (i.e. less than 0.0869 %). This is in good agreement with

typical meshes employed for contact analysis e.g. ABAQUS 6.11 User Manual where the

element size to radius of curvature ratio is approximately 5 %.
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C.2 Airflow model

To test the accuracy of the mesh for the airflow model, a model with 2D geometry and

containing only the flow domain was created. The geometry of the VF wall was identical

to that in Scherer et al (2001). Specifically, it had identical thickness T and depth D as the

model in this paper, but the opposing glottal walls had an included angle of 10◦ and were

diverging. The VF walls were considered rigid and static. The mesh for the 2D model

was identical in refinement to a coronal section of the full 3D model considered in the

present study. A steady-state flow solution was considered, and the solution was compared

with data from Scherer et al (2001). For example, for a transglottal pressure difference of

294 Pa (or 3 cm water) the model predicts a maximum pressure drop (with respect to

the inlet) of 436 Pa which occurs at the glottal entrance. This is in good agreement with

Scherers value of 421 Pa (less than 3.42 % difference).

C.3 Flow-structure coupling model

The accuracy of the numerical scheme was verified by analyzing the elastic cantilever

benchmark model in Walhorn (2002). The results predicted by the present code set-up

were found to be in agreement with data given in Walhorn (2002). For example, the domi-

nant frequency of vibration at the beam tip and its corresponding amplitude were reported

to be 4.21 Hz and 1.68 mm in Walhorn (2002). These were computed as 4.10 Hz and

1.94 mm respectively by the present authors.

C.4 Computation of interstitial fluid flux vectors

Stress gradients were determined on the mid-coronal plane and shown in figure 12 (sec-

tion 3). To calculate the gradients, and generate the interstitial fluid flux vector plots, the

following method is employed. Nodes located on the mid-coronal section in the reference

(un-deformed state) are considered, and their coordinates are recorded. At a given instant,

hydrostatic stress values at the nodes are interpolated from the element values using the

C3D8RH formulation (ABAQUS Theory Manual). A structured rectangular 2D grid is de-

fined on the un-deformed mid-coronal surface. This grid is slightly more refined than the

original hexahedral grid. A linear interpolation scheme is used to determine hydrostatic

stress values over the finer grid from the nodal values. A central difference scheme is

used to determine derivatives of hydrostatic stress in the inferior–superior ∂σH/∂xis and

medial–lateral ∂σH/∂xml directions at each grid point. In the last two steps (interpolation

on to a finer grid, and computing spatial derivatives) the un-deformed nodal coordinates

are used.

Determination of stresses in each element at a particular instant is carried out by the

Hilber-Hughes-Taylor algorithm, which is at least second-order accurate in time. The

shape functions corresponding to C3D8RH elements are linear with respect to spatial co-

ordinates; thus the interpolation of elemental stress values to nodes is first-order accurate

with respect to element length. Linear interpolation of nodal values to the structured rect-

angular grid is again first-order accurate with respect to grid-size which is smaller than the

local element length. The central difference scheme used to determine spatial derivatives

(stress gradients) is second-order accurate. Thus the combined accuracy of the interstitial

fluid flux vectors is at least first-order with respect to element size and second-order with

respect to time increment.


