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The theory of stationary spatially localized patterns in dissipative systems driven by time-independent
forcing is well developed. With time-periodic forcing, related but time-dependent structures may result.
These may consist of breathing localized patterns, or states that grow for part of the cycle via nucleation
of new wavelengths of the pattern followed by wavelength annihilation during the remainder of the cycle.
These two competing processes lead to a complex phase diagram whose structure is a consequence of a
series of resonances between the nucleation time and the forcing period. The resulting diagram is computed
for the periodically forced quadratic-cubic Swift—-Hohenberg equation, and its details are interpreted in
terms of the properties of the depinning transition for the fronts bounding the localized state on either side.
The results are expected to shed light on localized states in a large variety of periodically driven systems.
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Spatially localized structures arise in a number of
systems of interest in physics, chemistry, and biology
[1-6]. Such states often consist of a steady spatial pattern
embedded in a homogeneous background. The theory of
these states is well developed, at least in one spatial
dimension, where the spatial coordinate x can be employed
as a timelike variable to describe solutions on the real line
that evolve away from the homogenous state as x increases
from —oo before returning to it as x — oo [7—13]. In many
cases, however, the localized states may be embedded in
a fluctuating background [14-16] or the system may be
subject to time-dependent forcing [17-20], situations to
which the current understanding does not apply. Of par-
ticular interest is the study of vegetation patterns that arise
in semiarid regions [21,22]. Such systems are often bistable
between a bare soil state and a vegetation state, and exhibit
localized structures. In models, such patterns may gradually
shrink in extent or collapse homogeneously, depending on
the level of precipitation [23]. In this Letter, we study the
processes governing the growth or decay of such patterns
in systems subject to time-periodic forcing [e.g., seasonal
variation in growing conditions (precipitation, for instance)]
and map out the location in parameter space where localized
states persist or decay. The intricate structure we find
is a consequence of resonances between the growth
time scale and the forcing period.

In the absence of periodic forcing, the localized states in
these systems are found within a pinning or snaking region
in parameter space [24] whose structure is captured in detail
by the Swift—-Hohenberg equation with competing non-
linear terms. This is so for shear flows [25], convection
[26], optical systems [27], and even models of crime hot
spots [28,29]. Related equations are used to model
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localized vegetation patches [22,23]. As a result the
Swift-Hohenberg equation has become the model of choice
for studying spatial localization in different settings. We
therefore adopt a model of this type to study the properties
of localized states in systems with spatially homogeneous
but temporally periodic forcing,

Ou=r(thu— (14 0%)2u+ bu> — u’. (1)

When r is a constant and b > /27/38, this equation
exhibits bistability between a stable homogeneous state
up(x) =0 and a stable spatially periodic state u,(x).
Within the bistability region, one finds an infinite number
of different stable localized states with symmetry under
x — —x and either maxima (hereafter L states) or minima
(hereafter L, states) at x = 0. These are located on two
distinct branches within a pinning or snaking region that
straddles the so-called Maxwell point » = r,;, where u;, and
u, have the same free energy E [8,9]. For example, when
b = 1.8, bistability is present in r, <r<0, where r=
r, ~—0.3744 corresponds to a fold on the u,, branch, while
the localized states are found in the interval r_ < r <r,,
where r_~—-0.3390 and r, ~-0.2593 [9]. When
r=r(t), Eq. (1) no longer has a Lyapunov functional
and a free energy cannot be defined, but we can define an
effective Maxwell point » = 7, using the definition £ = 0,
where E = (1/T) [] Edr and T is the oscillation period of
r(t). To study the effect of parameter oscillation on the
localized structures within the pinning region, we take

r(t) = ro+ psin <?> , 2)

with r_ < ry < r;. We choose the oscillation amplitude
p=0.1> (r. —r_)/2~0.04 so that the system exits the
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pinning region on either side during each cycle. When this
is the case and r > r, the fronts connecting the localized
state to u;, temporarily depin and the structure grows by
nucleating additional wavelengths of the spatial pattern.
When r < r_, the fronts also depin but this time the
structure starts to shrink as the homogeneous state starts
to invade the periodic state. For r < r,, this process is
overwhelmed by an overall decay of the whole structure.
In the limit of fast oscillations, leading-order asymptotics
predict that 7, behaves as an effective Maxwell point of the
averaged system, with a region of bistability and a pinning
region that shrink as T increases. However, for larger 7, this
is no longer the case and the dynamics is instead organized
by a series of resonances between the cycle period and
the time required to nucleate or annihilate wavelengths of
the pattern.

Our simulations employ a fourth-order time differencing
scheme [30] coupled to a Fourier scheme in space. In all
cases, we use the stable spatially localized solutions L of
the r = ry problem as initial conditions, and solve Eq. (1)
on a periodic domain of length I that is sufficiently large to
avoid finite size effects, typically I' = 80z, i.e., 40 critical
wavelengths. Similar results were obtained for L, initial
conditions.

We characterize the length of a given localized solution
in terms of the location of the fronts that connect it to the
homogeneous state on either side,

2 v ) 2
f=—5— ; xu~dx, lullf/, = | udx. (3)

lullf)»
Thus the L states for constant forcing are bounded by fronts
at x = +f, where f takes values near (1+ 2n)m,n=
0,1,2,.... With the forcing (2), 0 < T < oo, episodic

depinning generates oscillations in the spatial extent of
the localized state. The number of wavelengths lost and
gained within a cycle depends on the parameters r, p, and T
and the relative balance determines whether the localized
state ultimately grows through net nucleation [Fig. 1(a)],
persists indefinitely [Fig. 1(b)], or decays by net annihilation
[Fig. 1(c)]. Amplitude decay begins to dominate the dynam-
ics of the localized states outside of the region of bistability
and, if enough time is spent with r < r,,, the amplitude of
the structure may fall below a critical value from which it
cannot recover [Fig. 1(d)]. Figures 1(a)—(d) also show the
corresponding projections on the L, bifurcation diagram [9]
and reveal that within the pinning region the solution
trajectory follows appropriate portions of the L, branch;
nucleation events are triggered when it exits the pinning
region into r > r,, and these manifest themselves in sudden
jumps in f. In contrast, the annihilation events occur in
close succession and f varies continuously during the decay
phase of each cycle period.

We characterize the overall behavior by computing the
change in f, averaged over a large number (N, > 10) of
periods T,

ft=1+NT) - f(t= 1)

(A1) = o

; (4)

where f, > T is taken large enough to bypass initial
transients.

Simulations are run for p = 0.1, r_ < ry < r,,and 10 <
T <400 in increments of 10~ in r; and 1 in T. The net
change (Af) in position of the right front takes values near
0, +27, +4x, etc.; (Af) = 0 indicates the presence of a
periodic orbit in which 0, 1,2, ... wavelengths are added on
either side of the structure and then annihilated within each
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FIG. 1 (color online).
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The four different types of dynamics obtained from Eq. (1): growth by depinning at r, = —0.278 (a), periodic

orbit at ry = 0.279 (b), shrinkage by depinning at ry = —0.280 (c), and amplitude decay at r, = —0.281 (d). Each solution is
represented in a space-time plot (left) and as a trajectory superposed on a bifurcation diagram representing the forcing r as a function of
the location of the front f (right). The bifurcation diagrams represent spatially localized (L, blue) and spatially periodic (u,,, green)
states of the static system r(z) = r. Parameters are T = 300, p = 0.1, and b = 1.8.
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cycle period. Nonzero values of (Af) correspond to a net
growth or decay per cycle of 1,2, ... wavelengths on either
side of the localized structure. The results are reported in
Fig. 2, where the boundaries between colored regions
correspond to (Af) = +x,+3x,.... The central region
of the (ry, T) parameter plane, labeled PO, corresponds to
spatially localized, periodically breathing states (periodic
orbits) characterized by a balance between the number of
wavelengths nucleated in a cycle and the number annihi-
lated. To the right of this region, the number of wavelengths
nucleated exceeds that destroyed and the structure gradu-
ally grows in length; the opposite is the case to the left
of PO. Both processes accelerate with distance from this
region, and in the white region in Fig. 2 the structure
collapses within one cycle regardless of its spatial extent.
This is so even for domain-filling periodic states—an
indication that the temporal forcing has effectively nar-
rowed the parameter range of bistability for the system. As
T increases, the phase diagram exhibits a succession of
pinched zones, where the region of periodic orbits shrinks
dramatically, separated by sweet spots, where it expands
again. These are centered around ry= —0.29 at low T
and slant to values slightly larger than ry~ —0.28 as T
increases. A similar structure is observed in the regions of
growing or decaying solutions. The variation in the pattern
length to the left of the PO region is reported in Fig. 3 for
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FIG. 2 (color online). Map of the different dynamics observed
in the (r(, T') plane for p = 0.1 and b = 1.8. Periodic orbits exist
in region PO [Fig. 1(b)]. The regions to the right (left) of PO
consist, in order, of growing (decaying) solutions where the
pattern experiences net growth (decay) by 1,2, ... wavelengths
on either side per cycle as exemplified in Fig. 1(a) [Fig. 1(c)].
The white region indicates parameter values at which the
amplitude of the localized pattern decays within one cycle
independently of its original size [Fig. 1(d)]. The figure is plotted
over the pinning region r_ < rq < r, for p = 0. The red dots
refer to solutions shown in Fig. 1 while the blue line indicates the
parameter values investigated in Fig. 3.

T = 100. The figure reveals a series of plateaus corre-
sponding to the loss of a fixed number of wavelengths per
cycle. These are separated by thinner transition zones,
where the number of wavelengths lost per cycle is not an
integer. For instance, in the transition zone between PO and
the first decay region, one can find a region within which
the pattern loses two wavelengths every three oscillation
cycles. Figure 3(b) reports the size of the plateaus and of
the transition zones as a function of the number of wave-
lengths lost per cycle and suggests that the left boundary
of the (rg, T) region in Fig. 2 corresponds to an accumu-
lation point of exponentially decreasing intervals within
which progressively more wavelengths are lost per oscil-
lation cycle.

Beyond this “cliff,” the system spends enough time in
r <r, that the solution reaches the trivial state via an
overall amplitude decay within one cycle regardless of its
spatial extent. The location of this cliff moves to higher
values of ry as T increases as a consequence of the
increased time spent undergoing amplitude decay. In an
infinite domain, we expect the cliff to approach ry = r), +
p~—0.2744 as T — o0, as this is the threshold for reaching
r < r, during a forcing cycle.

To understand the structure seen in Fig. 2, we examine
the depinning process that takes place as soon as r(t) exits
the pinning region, allowing the stable periodic state to
invade the homogeneous state (r > r,) or vice versa
(r<r_). Whenp - (r, —r_)/2+6, § < 1, this process
is slow and takes place on a O(5~'/?) time scale. This time
is comparable to the time spent outside the pinning region
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FIG. 3 (color online). (a) Average change in the number of
wavelengths An = (Af)/2z on each side of the localized
structure per cycle of the forcing as a function of ry for
T =100, p =0.1, and b = 1.8 (blue line segment in Fig. 2).
(b) Length Ar of the plateaus (green crosses, plotted at integer
values of An) and of the transition regions between plateaus (red
circles, plotted at An + 0.5 for a transition between plateaus An
and An + 1) as functions of An. The best fit lines, Arp(An)=
1.1x 1072 exp(1.02An) for the plateaus and Ary(An) = 3.3 x
1073 exp(0.96An) for the transition zones, indicate that both
shrink exponentially as |An| increases.
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when T = O(57!). An asymptotic calculation of the
depinning time [9,31] yields TS » (aiéli/z)‘l, where
6y =|r—ry| and a, ~0.1682, a_=~0.2279 (for b = 1.8).
Here and in the following, quantities with a — (4) subscript
refer to decay (nucleation) events on the left (right) of the
snaking region. This asymptotic result allows us to predict
the change in the number of wavelengths on each side of
the localized structure during an excursion of the parameter
r(t) outside the pinning region by computing

dt
n :i/ _, 5
+ T, T(ipn<t) ( )

where 7_ (7 ) is the time spent on the left (right) of the
pinning region during a cycle. We assume that the system
equilibrates to the nearest stable localized state during the
traverse of the pinning region, erasing or completing
unfinished nucleation or decay events, and so round n.
to the closest integer at time 7, denoted by [n_]. Although
qualitatively correct, we obtained better accuracy with a

fifth order fit to T"". To do so, we calculated the depinning
time on the right (left) of the pinning region from
simulations of Eq. (1) as a function of the distance from
r.(r_), and fitted the results using a least squares method
with the polynomial approximation

5
dpn\ — i/2
(1) 2 ) sl (6)
i=1

The predictions of this procedure for different values of r
and T are shown in the (ry, T') plane in Fig. 4. The regions
of constant [n_ ] ([n_]) exist between the red (blue) lines in
Fig. 4 and are labeled with red (blue) integers. The sum
An = [n,] + [n_] indicates the net change in the number of
wavelengths of the pattern on either side of the localized
structure during one cycle of the forcing. The PO region
corresponds to locations where this sum vanishes. This
region exhibits alternating pinching zones and sweet spots
in excellent agreement with the results presented in Fig. 2,
and this agreement extends to regions of net growth
and shrinkage on either side of the PO region; these
predictions become more and more accurate in the adia-
batic limit 7 — oo.

A separate calculation is required to identify the location
of the cliff beyond which the solutions irrevocably collapse
to the trivial state. We calculate this location from a fifth-
order numerical fit to the collapse time T°° for periodic
solutions u,, of the constant r problem with r < r,. The
result applies in the time-dependent problem whenever r(r)
falls below r, and the system spends sufficient time in this
region for the solution to collapse, i.e., we integrate Eq. (5)
with T%"" (1) replaced by T<°!(z) over the time interval spent
in r < r,, and use the condition n = 1/2 as a definition of
the cliff. The result, shown using a thick black line (Fig. 4),
also agrees very well with that found in Fig. 2. The theory

4007

FIG. 4 (color online). Prediction in the (ry, T) plane of net
decay (growth) of a spatially localized initial condition of Eq. (1)
with time-periodic forcing (2) obtained from relation (5) with
p = 0.1 and b = 1.8 and the numerical fit (6). Positive (negative)
integers represent the change in the number of wavelengths on
either side of the localized structure due to nucleation [n,]
(annihilation [n_]) events during one forcing cycle; An = [n, ] +
[n_] = 0 in the dark region. The bold black line represents the
predicted location of the cliff that marks the onset of amplitude
collapse. The figure is plotted over the same r, interval as Fig. 2.

does not, however, capture the behavior of the exponen-
tially compressed decay regions accumulating at the cliff
that are present in the full problem (1)-(2) or the complex
transition zones between adjacent plateaus shown in
Fig. 3(a).

We have described the impact of parameter oscillations
on spatially localized structures. Our results, obtained using
the simplest model of such states, reveal that the parameter
oscillation shrinks the existence region of stationary spa-
tially localized solutions down to a connected series of
sweet spots populated by spatially localized, periodically
breathing states, separated by pinched zones. These states,
which can model seasonal invasion and retreat of vegeta-
tion in simplest models of desertification [21,22], are
generated by temporary depinning of the fronts on either
side, leading to an oscillation between the growth and
decay of the structure over a forcing cycle. The presence
of the sweet spots is a consequence of resonances between
the natural growth rate of localized structures outside the
pinning region and the forcing frequency, and it is these
resonances that are responsible for the complex structure of
the parameter plane of the system (Fig. 2). These reso-
nances occur even in gradient systems such as Eq. (1)
because the growth process is itself periodic in the frame of
the depinned front. The features of this structure are
predicted quantitatively within a theoretical framework
based on the properties of the depinning time in the static
system (Fig. 4). This framework provides insight into the
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dynamics of the system, generalizes to other forms of the
parameter oscillation r(z), and provides a rationale for
studying depinning of two-dimensional patterns [32,33],
including models of desertification [23] with time-depen-
dent forcing.

This work was supported by the National Science
Foundation under Grants No. DMS-1211953 and
No. DMS-1233692.

*punit_gandhi @berkeley.edu
[1] A.R. Champneys, Physica (Amsterdam)
(1998).
[2] R. Richter and I. V. Barashenkov, Phys. Rev. Lett. 94,
184503 (2005).
[3] O. Batiste, E. Knobloch, A. Alonso, and 1. Mercader,
J. Fluid Mech. 560, 149 (2006).
[4] E. Knobloch, Nonlinearity 21, T45 (2008).
[5] T. M. Schneider, J. F. Gibson, and J. Burke, Phys. Rev. Lett.
104, 104501 (2010).
[6] C. Beaume, A. Bergeon, and E. Knobloch, Phys. Fluids 25,
024105 (2013).
[7]1 N.J. Balmforth, Annu. Rev. Fluid Mech. 27, 335 (1995).
[8] P.D. Woods and A.R. Champneys, Physica (Amsterdam)
129D, 147 (1999).
[9] J. Burke and E. Knobloch, Phys. Rev. E 73, 056211 (2006).
[10] J. Burke and E. Knobloch, Chaos 17, 037102 (2007).
[11] S. M. Houghton and E. Knobloch, Phys. Rev. E 80, 026210
(2009).

[12] G. Kozyreff, P. Assemat, and S.J. Chapman, Phys. Rev.
Lett. 103, 164501 (2009).

[13] E. Makrides and B. Sandstede, Physica (Amsterdam) 268D,
59 (2014).

[14] B. Schipers, M. Feldmann, T. Ackemann, and W. Lange,
Phys. Rev. Lett. 85, 748 (2000).

112D, 158

[15] A. Prigent, G. Grégoire, H. Chaté, O. Dauchot, and
W. van Saarloos, Phys. Rev. Lett. 89, 014501 (2002).

[16] D. Barkley and L.S. Tuckerman, Phys. Rev. Lett. 94,
014502 (2005).

[17] P.B. Umbanhowar, F. Melo, and H.L. Swinney, Nature
(London) 382, 793 (1996).

[18] O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and
J. Fineberg, Phys. Rev. Lett. 83, 3190 (1999).

[19] A.M. Rucklidge and M. Silber, SIAM J. Appl. Dyn. Syst. 8,
298 (2009).

[20] A. Alnahdi, J. Niesen, and A. Rucklidge, SIAM J. Appl.
Dyn. Syst. 13, 1311 (2014).

[21] M. Tlidi, R. Lefever, and A. Vladimirov, in Dissipative
Solitons: From Optics to Biology and Medicine (Springer,
New York, 2008), pp. 1-22.

[22] E. Meron, Ecol. Model. 234, 70 (2012).

[23] Y. R. Zelnik, S. Kinast, H. Yizhak, G. Bel, and E. Meron,
Phil. Trans. R. Soc. A 371, 20120358 (2013).

[24] Y. Pomeau, Physica (Amsterdam) 23D, 3 (1986).

[25] T. M. Schneider, D. Marinc, and B. Eckhardt, J. Fluid Mech.
646, 441 (2010).

[26] I. Mercader, O. Batiste, A. Alonso, and E. Knobloch,
J. Fluid Mech. 667, 586 (2011).

[27] W.J. Firth, L. Columbo, and A. J. Scroggie, Phys. Rev. Lett.
99, 104503 (2007).

[28] M. B. Short and A. L. Bertozzi, SIAM J. Appl. Dyn. Syst. 9,
462 (2010).

[29] D.J.B. Lloyd and H. O’Farrell, Physica (Amsterdam)
253D, 23 (2013).

[30] S.M. Cox and P. C. Matthews, J. Comput. Phys. 176, 430
(2002).

[31] I.S. Aranson, B.A. Malomed, L. M. Pismen, and L.S.
Tsimring, Phys. Rev. E 62, R5 (2000).

[32] D.J.B. Lloyd, B. Sandstede, D. Avitabile, and A.R.
Champneys, SIAM J. Appl. Dyn. Syst. 7, 1049 (2008).

[33] G. Kozyreff and S.J. Chapman, Phys. Rev. Lett. 111,
054501 (2013).

034102-5


http://dx.doi.org/10.1016/S0167-2789(97)00209-1
http://dx.doi.org/10.1016/S0167-2789(97)00209-1
http://dx.doi.org/10.1103/PhysRevLett.94.184503
http://dx.doi.org/10.1103/PhysRevLett.94.184503
http://dx.doi.org/10.1017/S0022112006000759
http://dx.doi.org/10.1088/0951-7715/21/4/T02
http://dx.doi.org/10.1103/PhysRevLett.104.104501
http://dx.doi.org/10.1103/PhysRevLett.104.104501
http://dx.doi.org/10.1063/1.4792711
http://dx.doi.org/10.1063/1.4792711
http://dx.doi.org/10.1146/annurev.fl.27.010195.002003
http://dx.doi.org/10.1016/S0167-2789(98)00309-1
http://dx.doi.org/10.1016/S0167-2789(98)00309-1
http://dx.doi.org/10.1103/PhysRevE.73.056211
http://dx.doi.org/10.1063/1.2746816
http://dx.doi.org/10.1103/PhysRevE.80.026210
http://dx.doi.org/10.1103/PhysRevE.80.026210
http://dx.doi.org/10.1103/PhysRevLett.103.164501
http://dx.doi.org/10.1103/PhysRevLett.103.164501
http://dx.doi.org/10.1016/j.physd.2013.11.009
http://dx.doi.org/10.1016/j.physd.2013.11.009
http://dx.doi.org/10.1103/PhysRevLett.85.748
http://dx.doi.org/10.1103/PhysRevLett.89.014501
http://dx.doi.org/10.1103/PhysRevLett.94.014502
http://dx.doi.org/10.1103/PhysRevLett.94.014502
http://dx.doi.org/10.1038/382793a0
http://dx.doi.org/10.1038/382793a0
http://dx.doi.org/10.1103/PhysRevLett.83.3190
http://dx.doi.org/10.1137/080719066
http://dx.doi.org/10.1137/080719066
http://dx.doi.org/10.1137/130948495
http://dx.doi.org/10.1137/130948495
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.035
http://dx.doi.org/10.1098/rsta.2012.0358
http://dx.doi.org/10.1016/0167-2789(86)90104-1
http://dx.doi.org/10.1017/S0022112009993144
http://dx.doi.org/10.1017/S0022112009993144
http://dx.doi.org/10.1017/S0022112010004623
http://dx.doi.org/10.1103/PhysRevLett.99.104503
http://dx.doi.org/10.1103/PhysRevLett.99.104503
http://dx.doi.org/10.1137/090759069
http://dx.doi.org/10.1137/090759069
http://dx.doi.org/10.1016/j.physd.2013.02.005
http://dx.doi.org/10.1016/j.physd.2013.02.005
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1103/PhysRevE.62.R5
http://dx.doi.org/10.1137/070707622
http://dx.doi.org/10.1103/PhysRevLett.111.054501
http://dx.doi.org/10.1103/PhysRevLett.111.054501

