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Abstract. Autobiographical memory (AM) refers to the organisation of
one’s experience into a coherent narrative. The exact neural mechanisms
responsible for the manifestation of AM in humans are unknown. On the
other hand, the field of psychology has provided us with useful under-
standing about the functionality of a bio-inspired synthetic AM (SAM)
system, in a higher level of description. This paper is concerned with
a top-down approach to SAM, where known components and organisa-
tion guide the architecture but the unknown details of each module are
abstracted. By using Bayesian latent variable models we obtain a trans-
parent SAM system with which we can interact in a structured way. This
allows us to reveal the properties of specific sub-modules and map them
to functionality observed in biological systems. The top-down approach
can cope well with the high performance requirements of a bio-inspired
cognitive system. This is demonstrated in experiments with faces data.

Keywords: Synthetic, Autobiographical, Memory, Hippocampus, Robotics,
Deep, Gaussian, Process, MRD

1 Introduction and Motivation

Autobiographical memory (AM) refers to the ability to recollect episodes from
one’s experience, relying on organising events and context (semantics) into a
narrative. A key task for the intersection of cognitive robotics and biomimetics
is to create Synthetic Autobiographical Memory (SAM) systems inspired by
the so far known physiology of the brain. However, our current understanding
of neural connection formation and activity does not go as far as to enable
understanding of how high-level structures, such as semantics, emerge. On the
other hand, experimental psychology has provided us with useful understanding
about how the functionality of AM is organised in “modules” and upon which
requirements. Consequently, for practical purposes top-down approaches to SAM
are developed. These approaches ensure that the known AM requirements are
respected and focus on implementing the functional (rather than physiological)
AM modules and their interconnections. Any known physiological information
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is sought to be incorporated in the low-level components of the approach, which
implement specific tasks (e.g. pattern completion).

Machine learning (ML) has been used in the past to implement the higher
levels of top-down approaches to synthetic physiological systems. However, if
ML is used as a “black-box” and purely out of necessity to improve function-
ality, then consistency in the overall framework is lost. In other words, it is
no longer clear whether certain properties of the artificial system emerge due
to the low-level bio-inspired components or due to the high-level ML methods.
This hinders subsequent evaluation of hypotheses about the system. This paper
studies the requirements for enabling top-down approaches to SAM, in a way
that functionality is improved (making it usable in a real robotic system) with-
out sacrificing transparency. Subsequently, an existing ML approach, referred to
as deep Gaussian processes (deep GPs) [1], is studied and linked to the SAM
framework as a key ingredient of the top-down SAM approach suggested here.
Finally, the results section demonstrates how deep GPs differ from many ML
“black-box” approaches (in the context of biomimetics) by enabling uncertainty
quantification and intuitive interaction with the model. It is shown that by us-
ing a deep GP, not only do we obtain high-level SAM functionality, but we can
also recognise individual low-level components of the model as proxies of known
sub-functions of AM, such as compression or pattern completion.

2 Requirements for a Top-down SAM System

In [2] the authors recognise the following requirements enabling a biologically
inspired SAM system to match the functionality of AM:

– Compression of perceived signals in a way that information emerges from
raw data (recognition of patterns).

– Pattern separation to encode different contexts separately and ensure that
weak but important signals are not overwhelmed by stronger ones.

– Pattern completion for reconstructing events from partial information.

In [2], unitary coherent perception was also added to the requirements of the
generic SAM system, although it was highlighted that this selection is subop-
timal in practice and choices stemming from Bayesian brain hypotheses [3] are
an alternative. In practice, the unitary coherent perception is usually used as
a means of avoiding the costly computational requirements associated with full
Bayesian inference. However, in a top-down approach that targets improved
functionality and transparency, the Bayesian component is vital. This is because
the model components are only functional approximations to the true underlying
physiological system and, therefore, the Bayesian quantification of uncertainty in
our (unavoidably imperfect) representation is important. Deterministic inference
is also desired to achieve transparency. In [2] this requirement was fulfilled indi-
rectly through a deterministic Gibbs sampler variant within the unitary coherent
perception framework. Here, the intractable full Bayesian inference is approxi-
mated with a deterministic variational approximation. Based on the above, two
more requirements are recognised particularly for the top-down SAM approach:
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– Deterministic inference: The same starting conditions and parameters
should always result in the same outcome.

– Encoding consistency: Supervised, semi-supervised and unsupervised learn-
ing should be handled using the same representations. It is unrealistic to
assume completely different encoding for memories depending on whether
labelled data were available or not during learning.

3 A Top-down Approach to SAM

3.1 Properties

The top-down SAM approach needs to be robust for embedding in a real robotic
system while, at the same time, fulfilling the requirements specified in the pre-
vious section, so that connections with expert knowledge from the domain of
psychology and neuroscience can be established. For this reason, the approach
proposed in this paper comes from a family of models which is:
− Bayesian probabilistic: Random variables encode the observables (signal

perceived by the robotic agent) and unknowns/latents (internal representation
of memories). In a Bayesian framework, prior knowledge (e.g. mammals have
legs) can be combined with observations (e.g. past memories) to define posterior
distributions (e.g. probability that an observed animal is a mammal). The pos-
terior uncertainty is important in practice. For example, an agent operating in
a dangerous environment can avoid actions associated with high uncertainty.
− Latent variable method: Latent variables correspond to the unknowns

in the modelling scenario, and can be inferred from the data. In the approach
proposed in this paper, the latent variables are taken to be much simpler and
compact (low-dimensional) compared to the high-dimensional observables. By
further associating the simple latent variables with the complex, noisy observa-
tions we can implement the compression and pattern separation requirements.
− Generative: The latent variables are associated with the observables via a

generative mapping function. This encodes our assumption that the highly com-
pressed latent variables (encoding memory events) should be able to generate
fantasy data in the observable domain.
− Non-parametric: A non-parametric approach allows to define the gen-

erative mapping without having to make crude assumptions about its nature.
Memory models built upon artificial neural networks [4] often assume paramet-
ric activation functions. Instead, the approach suggested in this paper is based
on Gaussian processes (GPs) [5], which learn functional relationships from data
with minimal assumptions. For example, figure 1 shows two functions (posterior
processes) learned with the same GP in the presence of different data.

3.2 Gaussian processes

To formalise the above, let us denote the noisy observables as y and the latent
variables as x. A mapping function f relates latent points to observables, so
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that y = f(x) + ǫ; here, ǫ denotes Gaussian noise, which leads to the Gaussian
likelihood p(y|f), where f , f(x) is the collection of mapping function values
(uncorrupted versions of y). To obtain a non-parametric mapping, we place a
Gaussian process prior distribution on the mapping function f , so we obtain a
prior p(f |x) which is also Gaussian. Thanks to the analytic Bayesian framework,
the mapping function values f can actually be integrated out, to obtain the
marginal likelihood (which is again Gaussian):

p(y|x) =

∫

f

p(y|f)p(f |x) =

∫

f

N
(

y|f , σ2
ǫ

)

N (f |0,K) . (1)

Contrast this with the parametric Bayesian regression approach, which assumes
that the mapping function has a fixed form wφ(x) parametrised by w, and
marginal likelihood p(y|x) =

∫

w
N

(

y|wφ(x), σ2
ǫ

)

N
(

w|0, σ2
w

)

. As can be seen,
rather than assuming a fixed parametric form and placing a prior on the pa-
rameters, in the Gaussian process framework we place the prior directly on the
mapping function. More details on GPs can be found in [5].

Notice that so far we have assumed that the latent points x are known. In the
approach taken in this paper, the latent variables are unknown. The Gaussian
process latent variable model [6] handles the unknown latent variables by placing
a prior on them and optimising the new objective p(y|x)p(x).

Inducing Point Representations. In a non-parametric model, the learned
quantities (posteriors over the mapping function process and over the latent
points) are conditioned on the training data. Being a generative model, this
already achieves compression; indeed, the posterior Gaussian process is able to
interpolate between the training points for every point in the input domain.
This is demonstrated in fig. 1, where the blue solid line gives an estimate for the
function in the whole line of real numbers. To achieve further compression via
a fixed set of points, one can use inducing point representations. In this case,
all the information in the set of pairs {x, f} is compressed through a smaller set
of pairs {z,u} that remains constant in size as the training dataset grows. This
is achieved by replacing the original Gaussian prior p(f |x) with a sparse prior
p(f |u,x, z) which depends on the inducing points. This is demonstrated in fig. 1.

3.3 Top-down SAM Architecture.

In this paper the focus is on developing a top-down SAM approach the func-
tionality of which is inspired by physiology. In particular, deep probabilistic
approaches have been linked in the past with functionality that can be observed
in the human brain [7]. For example, human vision involves a hierarchy of vi-
sual cortices (V1 – V5) which process visual signals in a progressive manner [8].
Evidence that this kind of hierarchical learning is performed in the brain areas as-
sociated with memory is not yet existent; the exact localisation and functionality
of the billions of neural interconnections associated with memory is yet unknown
and, therefore, making a neural simulation is currently impossible. Instead, the
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Fig. 1. The same GP prior combined with two different sets of observations (black x’s)
to obtain the posterior processes (blue solid line) and posterior uncertainty (shaded
area). Triangles along the x axis indicate the position of the inducing inputs, z.

top-down approach to SAM works on a higher level and seeks to simulate the
organisation of functionality (rather than the organisation of neurons) into hier-
archically structured (sub)modules. As such, the designed architecture involves
high level modules grouped into a core and a set which extends beyond the core
of the SAM, as can be seen in figure 2. These modules are explained below.

CORE
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Synthetic Autobiographical Memory

SQL

Mode selector (storage / recall)

Driver

Driver

Driver Driver

Driver

Driver

Processor

Processor

Processor

Processor

Audio

Visual

Language

Recognised 
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Tactile

Motor Position

Uncertainty

Language

Action

- Compression

- Pattern completion

- Pattern separation

- Prediction

- Chunking

Fig. 2. The developed Synthetic Autobiographical Memory (SAM) system. This paper
focuses on the core module, which is implemented using deep Gaussian processes [1].

Deep Gaussian Processes. To start with, the SAM core relies on a set of
latent variables which encode memory events in a compressed and noise-free
space. The latent variables are part of a deep Gaussian process model (deep
GP) [1]. A deep GP is the hierarchical extension to a standard GP. Instead of
having a single set of latent points, x, we now have a hierarchy: x1,x2, · · · ,xL,
where L denotes the number of layers. Every layer xℓ is linked to its previous
layer through a mapping function fℓ with a GP prior, so that xℓ = fℓ(xℓ−1). In
other words, the observed layer is successively processed by L non-parametric
functions, so that each function operates on the already processed output of
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the previous in the hierarchy. Importantly, the intermediate latent spaces are
available for inspection, revealing intuitive features. Figure 3 demonstrates this
process for the task of recognising handwritten digits; samples can be drawn
from the latent spaces in each layer, to reveal features that successively encode
more abstract information due to the successive processing.

Abstract concepts

Local features

...

...

...

...

...

...

...

...

Fig. 3. Samples from the hierarchy of the latent spaces discovered for a collection of
handwritten digit images. The lowest layer encodes very local features (e.g. if the circle
in a zero is closed or not), but successive processing allows the top layer to encode
abstract information, such as general characteristics of different digits.

Inference in deep Gaussian processes is not analytically tractable straight-
forwardly. This is because the model is required to marginalise over the latent
representation x so as to obtain a posterior over it through the Bayes rule:

p(x|y) = p(y|x)p(x)∫
x
p(y|x)p(x)

. The intractability in the denominator requires approxi-

mate solutions. In deep GPs, inference proceeds through a variational frame-
work. In contrast to stochastic inference approaches like sampling and MCMC,
a variational inference approach is deterministic [9]. This means that the same
starting conditions (e.g. initialisation of parameters) will always result in the
same approximation of the quantities of interest (posterior distributions, induc-
ing points, latent representation). Therefore, the requirement for deterministic
inference is fulfilled when deep GPs are used within the SAM core.

Multiple Modalities. In the SAM framework, multiple representations of the
same event must be taken into account consistently. Consider e.g. the separate
signals (visual, audio) associated with a memory from watching a theatrical play.
However, there is some commonality (specific scenes are associated with specific
sounds). Formally, assume that y(1),y(2), · · · ,y(M) represent the segmentation of
the observables into M different modalities. These can be accounted for in the la-
tent variable framework by maintaining for all modalities a singleQ−dimensional
latent space (i.e. a single representation compressed in Q features). Subsequently,
learning which parts of the whole latent space are relevant for which modality is
achieved by optimising a set of relevance weights w(m) ∈ ℜQ for each modality.

If, for example, w
(2)
5 , w

(3)
5 6= 0, this means that the latent dimension 5 encodes

information for views 2 and 3, thus avoiding redundancy and achieving compres-
sion. This idea was developed in [10]. This approach can be embedded in the
deep GP framework of the SAM core, and is demonstrated in the next section.
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Modules Outside of the SAM Core. As can be seen in fig. 2, the top-down
SAM architecture links inputs to the SAM core through drivers and processors.
A processor is a module that allows raw stimuli to be pre-processed. This is not
a compulsory requirement, since the SAM core achieves compression through
the deep GP. However, this allows the usage of sophisticated feature extraction
methods (e.g. SURF features [11] from raw images) as a pre-processing step.
On the other hand, already processed information is incorporated into the SAM
through drivers. A driver is a module which is specific to the input/output it is
responsible for, and is employed to “translate” the highly structured information
into a language understandable by the SAM. For example, language/actions in
the context of social interaction with the robotic agent [12, 13] can be represented
as a set of frequencies of terms from a pre-built dictionary. On the other hand,
recalling an action involves another driver which translates the memory into
a series of motor commands. The current implementation accompanying this
paper only contains the appropriate processors and drivers for visual stimuli.

Tasks and Consistency. The SAM model operates in a supervised as well
as unsupervised scenario. In the supervised scenario, the latent representation
learned by the internal deep GP model is guided through additional input infor-
mation, t, expressed through a prior, that is, p(x|t). For example, t might be the
time-stamp of a particular frame associated with a visual stimulus and would
force the latent representation to form a smooth time-series . Unsupervised learn-
ing corresponds to the scenario where the latent representation is learned in an
unconstrained manner, only from the data. In this case, the latent representa-
tion is assigned a fairly uniformative prior N (x|0, I). Semi-supervised learning
can also be handled by following a data-imputation approach [14]. Overall, the
suggested SAM approach satisfies the encoding consistency requirement.

4 Demonstration

This section demonstrates results from the top-down SAM system. Due to space
limitations, a selection of the most representative results is presented here, but
more results can be seen online at https://youtu.be/rIPX3CIOhKY.

4.1 Face Rotations Experiment

For the first demonstration, images of 3 subjects were captured using a standard
mobile phone’s low-resolution camera (140 × 140 pixels per image). For each
subject, multiple images were recorded under different rotations of the face with
respect to the camera. To demonstrate the method in imperfect data, the images
were collected while the camera was held by hand and the subjects were moving
on their own; no further processing was made on the data (e.g. no cropping).
250 images of each subject were stored in three matrices, (Y(1),Y(2),Y(3)),

so that each triplet of rows, (y
(1)
n ,y

(2)
n ,y

(3)
n ), corresponds to the three faces
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under a similar rotation. These data were presented to a top-down SAM system.
The Gaussian processes used 45 inducing inputs (see end of section 3.2) and
a Q = 20−dimensional latent space, much smaller than the original output
dimensionality (140 × 140 = 19, 600). The inducing points and latent space
together achieve strong compression and chunking of the original signal.

A

B

C

(a) (b)

(c)

Fig. 4. Results from the rotating faces experiment. Figure (a) depcits the projection of
the internal SAM representation on the two dimensions shared for all modalities. Figure
(b) shows the corresponding outputs generated by conditioning on the selected locations
shown as A, B, C in fig. (a). Figure (c) shows outputs generated by conditioning on
latent locations which encode weak but highly descriptive signal.

The internal SAM representation of the raw visual signal was obtained af-
ter a training phase, required for tuning the parameters of the core’s models.
Next, this internal representation was investigated, to understand the way in
which weak and strong signals are chunked and how low-level (e.g. blinking) and
high-level (e.g. face characteristics) concepts emerge automatically. Out of the
20 features used to compress the observed signal, fig. 4(a) depicts two (one plot-
ted versus the other) which were deemed important by all three modalities. Red
crosses correspond to latent points xn which, in turn, correspond to observations

in each of the three modalities, (y
(1)
n ,y

(2)
n ,y

(3)
n ). The SAM system successfully

recovers a semi-circular shape, corresponding to the rotation of the faces from
1 to 180 degrees. Importantly, this information is encoded once for all three
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modalities and is learned automatically from the given dataset. Blue circles rep-
resent inducing points which further compress the internal representation. The
optimisation procedure spreads the inducing points nicely along the latent path.
Notice that the compressed discrete representation obtained with the latent and
inducing points can be conditioned upon to perform inference for any possi-
ble area in the latent space. This demonstrates the real power of the model in
terms of performing compression and pattern completion. Specifically, the
background intensity of fig. 4(a) represents the variance associated with the dis-
tribution, where bright intensities correspond to areas where the SAM model is
confident in its predictions. To demonstrate this, predictions were made for the
depicted points A, B, C, obtaining the outputs in column 1, 2 and 3 in fig. 4(b)
(each row corresponds to one modality). In other words, given specific areas in
the compressed representation, the SAM model generated outputs in the origi-
nal space of the signal. As can be seen, all three modalities are consistent in the
rotation, that is, the memory associated with the concept “rotation” was recog-
nised (chunking) and compressed for all three faces into the two-dimensional
space of fig. 4(a). Finally, fig. 4(c) depicts outputs obtained by conditioning on
latent space dimensions that were a) deemed important for only the first of the
modalities and b) encoded signal which was very weak in the original output
space (images). This signal evidently corresponds to blinking, and the fact that
this weak signal is not overwhelmed by the stronger signal is a demonstration of
successful pattern separation achieved by the SAM system.

4.2 Light Angle and Morphing Experiment

The second experiment used slightly larger face images, 269×186 pixels each. One
image was recorded for each of the 6 considered subjects and then processed to
simulate illumination under one out of 42 different light source positions around
the face, similarly to [15]. The total set of 6 × 42 images was then split into

two groups Y(1) and Y(2) where: a) each row y
(m)
n corresponds to an image in

modality m; b) group Y(1) contains images only from subjects 1,2,3 and Y(2)

only from 4,5,6; c) the rows of the two matrices were aligned, such that y
(1)
n

and y
(2)
n are matched in the angle of the light source (but the ordering of the

subjects is arbitrary, i.e. not matched). In other words, the two modalities were
created such that the illumination condition is a common signal and the face
identity is signal private to each of the two modalities. The challenge is for the
SAM system to compress the data by also encapsulating this information.

Fig. 5 depicts the results. Fig. 5(a) depicts a bar graph of the relevance
weights corresponding to each of the two modalities and are of the same dimen-
sionality as the latent space (Q = 14). Thick/blue bars correspond to modality
1 and red/thinner bars to modality 2. Dimensions 1,2,5 encode information for
both modalities. To verify this, fig. 5(b) plots dimension 1 versus 2. As can be
seen, the SAM system successfully mapped the information for the light source
position from the original 50, 034 dimensional space to only two dimensions.
Indeed, by conditioning on the latent space locations indicated by A, B, C we
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a)

A

B

C

(b)
(c)

Fig. 5. Second experiment: (a) depicts the relevance weights optimised for the two
modalities; (b) shows the compressed representation of the common signal; (c) depicts
the outputs obtained by conditioning on the locations depicted as A,B,C in (b).

obtain the outputs in columns 1,2,3 respectively of fig. 5(c), which depict faces
under the same illumination condition with no other features changed.

On the other hand, one can also perform the same procedure for dimensions
taken from the sets (3, 4, 6) or (9, 10, 11) which, from fig. 5(a), is obvious that
they are relevant to only one of the modalities. In particular, fig. 6(a) depicts the
corresponding internal representation of dimensions 3, 4, which encode signal rel-
evant only to the first modality. This plot demonstrates the successful chunking
achieved by the SAM system, since the three clusters which were automatically
discovered correspond to each of the three faces contained in modality 1. Again,
the inducing points (blue circles) nicely cover each cluster and do not fall in
between clusters, thereby using the full compressing capacity of the model. To
verify these intuitions, 8 locations were selected from this space (the rest of the
dimensions were kept fixed) along the path depicted as a black dotted line in
fig. 6(a). Notice that this scenario is different than the procedure followed so
far in the experiments, in that the selected latent locations are interpolations
between those corresponding to training points. This procedure results in the
images depicted in fig. 6(c). The morphing effect verifies the intuition that this
part of the compressed space is responsible for encoding face characteristics, and
manifests pattern completion by producing novel outputs. Finally, fig. 6(b)
depicts the “fantasy” memories used as a compressed basis, computed as eigen-
faces [16] from the inducing output posterior. For example, large variance is
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observed around the eye area (reflecting the changes in the images of fig. 6(c))
for the two male faces, and around the eyebrows and nose for the female face.

(a) (b)

(c)

Fig. 6. Morphing effect obtained by sampling outside of the training compressed rep-
resentations’ region (black line, fig. (a)) to obtain novel outputs (c). Figure (b) depicts
“fantasy” memories used as a compressed basis (inducing outputs’ eigenfaces). Bot-
tom row is just the color-inverted version of the top row. This reveals that the plotted
eigenvectors define the tangent direction for interpolating between faces.

5 Discussion and Future Work

Previous work in psychology and bio-inspired robotics has resulted in extracting
high-level descriptions of the organisation of modules in a SAM system. This pa-
per discussed a top-down approach to SAM where the aforementioned high-level
descriptions are guiding the system architecture while the specific (unknown)
details of each component are abstracted. This is made possible through a flexi-
ble representation of memories, based on Bayesian latent variable models [1, 10]
which filter all functionality through a smaller set of learned variables (inducing
points). Experiments on “noisy”, real-world faces data revealed the robustness of
the method in learning powerful representation of the data (simulating memory
formation), while structured interaction with the framework allowed for examin-
ing its properties with respect to requirements for a biologically inspired SAM.

Future work will aim at integrating the SAM system into the cognitive com-
ponent of a robot, such as the iCub. Although preliminary experiments with
regards to handling auditory streams have been performed, a more complete
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solution which handles heterogeneous sensory data is planned for the future. Fi-
nally, we will work towards achieving stronger connections with biology, by incor-
porating more detailed bio-inspired structure in the lowest levels of the top-down
architecture (e.g. through priors and constraints on the inducing points).
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