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Raman scattering and anomalous 
Stokes–anti-Stokes ratio in MoTe2 
atomic layers
Thomas Goldstein1,*, Shao-Yu Chen1,*, Jiayue Tong1,  Di Xiao2, Ashwin Ramasubramaniam3 & 
Jun Yan1

Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum 
ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data 
reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, 
which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity 
of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain 
experimental conditions, and find the effect to be tunable by excitation frequency and number of 
atomic layers. These observations are interpreted as a result of resonance effects arising from the C 
excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process.

The coupling between photons, electrons, and phonons is central to understanding fundamental properties of 
condensed matter systems. In layered transition metal dichalcogenide (TMDC) semiconductors, electron-photon 
coupling enables investigation of the under-screened strong Coulomb interaction in reduced dimensions1 as well 
as the manipulation of spins and pseudo-spins2,3. The interaction of chiral phonons with electrons and circularly 
polarized photons is linked to pseudo-spin flip, and may lead to a novel valley phonon Hall effect, as predicted 
by a recent theory4. Despite much recent experimental progress2,5, the coupled photon-electron-phonon system 
in TMDCs is still not fully understood, and continues to be a focus of two dimensional (2D) materials research.

In this work we study such interaction effects in molybdenum ditelluride (MoTe2), a prototypical TMDC sem-
iconductor, which has recently attracted a great deal of interest. Investigations of multi- and mono-layer MoTe2 
transistor devices6–8 have probed the semiconductor’s band gap and transport properties, revealing ambipolar 
charge conduction channels, and a stable metallic T’ phase which is potentially a type-II Weyl semimetal9,10, and 
can be used to make Ohmic homojunction contacts6. Optically, monolayer MoTe2 features strong photolumines-
cence similar to other TMDCs, but it has by far the smallest optical bandgap at the K points, lying in the infrared 
around 1 eV11,12. As a result, the C excitons located near the Brillouin zone center (Γ )13 are in the visible range 
around 2.5 eV11, which we take advantage of to investigate the resonance effects reported here.

We use Raman Spectroscopy to probe the photon-electron-phonon coupling in MoTe2, revealing hard 
to access Raman modes and mode splitting in detail. We also observe a peculiar phenomenon in which the 
anti-Stokes Raman peak becomes more intense than the Stokes peak, which is contrary to the usual intuition from 
Boson statistics, and could potentially serve as a laser cooling channel for the atomically thin 2D crystals. Our 
further investigation into how the photon-electron-phonon coupling affects the anti-Stokes intensity reveals that 
the phenomenon is tunable according to laser wavelength and MoTe2 layer number. These experimental observa-
tions highlight the role of the C excitons, and provide insights into the lattice dynamics and electronic structures 
of molybdenum ditelluride.

Results and Discussion
The MoTe2 atomic layers used in this work are exfoliated from bulk crystals grown via chemical vapor transport 
with chlorine as the transport agent, as illustrated in Fig. 1a (more details in Methods). Typical sizes of the crystals 
(Fig. 1b) range from a few mm to 1 cm. Atomic layers of MoTe2 are exfoliated with Scotch tape and deposited 
on silicon with a 300 nm oxide layer or on fused silica substrates. Figure 1c,d show optical microscope images of 
typical atomic flakes of MoTe2.
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We use several different methods to determine the atomic layer number. The atomic force microscope (AFM) 
characterization in Fig. 1c,d shows that the step height from substrate to monolayer in these two samples is 1.0 nm 
and 1.1 nm respectively, and that the step height from monolayer to bilayer and from bilayer to trilayer is about 
0.7 nm, consistent with previous measurements11. The larger step height between monolayer and SiO2 substrate 
than between adjacent layers is frequently seen in AFM characterization. Supplementary Fig. S1 shows data on 
10 monolayer samples; the AFM step height varies significantly from one sample to another, including five sam-
ples with step heights close to or above 1.4 nm, giving those samples an ambiguous layer number by AFM alone. 
However, despite having different step heights between the substrate and monolayer, optical contrast remains the 
same across different crystals with the same layer number. We confirmed the monolayer nature of those samples 
using Raman spectroscopy (details below), and combined this with the 0.7 nm interlayer step height to quan-
tify multi-layer samples. We also performed further characterization with scanning electron microscopic (SEM) 
imaging of the MoTe2 flakes, as shown in Fig. 1e (taken at 5 KV). The mono-, bi-, and tri-layers are distinguishable 
under SEM, with the image becoming brighter with an increase in layer number, indicating that more secondary 
electrons are emitted from thicker samples.

Atomic layers of hexagonal TMDCs host six prototypical zone-center optical phonons, shown in the bilayer 
dispersion (see Supporting Information for details of DFT calculation) and atomic displacement drawings of 
Fig. 2a,b, respectively. These include the shear mode (S), the breathing mode (B), the in-plane chalcogen vibration 
(IC), the out-of-plane chalcogen vibration (OC), the in-plane metal-chalcogen vibration (IMC), and the 
out-of-plane metal-chalcogen vibration (OMC)14. We measure the in-plane S, IC and IMC modes with cross 
polarization z xy z( )  and the out-of-plane B, OC and OMC modes in parallel polarization z xx z( )  (see Methods for 
details of Raman set-up). Figure 2c shows the Raman spectra excited with the 532 nm (2.33 eV) laser light. The 
mode energies, in cm−1 (1 meV ≈  8.06 cm−1), are given in Table 1; for the bilayer, values derived from DFT are 
given in parenthesis for comparison.

The occurrence and splitting of the observed Raman peaks can be compared with group theoretical predic-
tions: Table 2 lists the symmetries and expected number of modes for the six types of zone-center optical phonons 
in one to five layers and in the bulk as derived from ref. 14. Except for the bulk B and OMC modes of B2g symme-
try15, all modes that are even under inversion/mirror-reflection operation (i/σ h) are Raman active (bold text in 
Table 2). For 1L-MoTe2 the S and B modes are absent since interlayer vibrations only occur in multi-layers, and 
the odd IC and OMC modes are not Raman active; this is in agreement with the observation of only the OC and 
IMC modes in the monolayer (black) spectra in Fig. 2c. Bilayer MoTe2 has one Raman active mode for each of the 
six types of zone center optical phonons, consistent with the six peaks observed in bilayer (red) spectra.

For samples thicker than bilayer the Raman spectra display Davydov splitting due to interlayer interactions. 
We observe two B and two S modes in 4L and 5L samples; two OC modes in 3L and 4L samples; and three OC 
modes in 5L samples, in perfect agreement with the theoretical expectations in Table 2. The small additional peaks 
present in Fig. 2c 2nd panel are the same breathing mode peaks as in the 1st panel; they are present under both 
the z(xy)z and z(xx)z configuration, though their intensity is much less than that of the breathing mode, which 
is only present under the z(xx)z configuration. The IC mode appears to display non-monotonic dependence on 

Figure 1. (a) Schematic illustration of the chemical vapor transport crystal growth process. (b) Image of grown 
MoTe2 crystals. (c,d) Optical microscope image and AFM trace [along the red dashed lines)] of mechanically 
exfoliated MoTe2 flakes. (e) SEM image of (d). All the scale bars are 5 μ m.
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layer numbers, and develops an asymmetric shape for 4L and 5L samples. This indicates that the IC spectra in 
4L and 5L samples are composed of two peaks as suggested by the theory in Table 2. With this interpretation 
(dashed fitting curves of Fig. 2c), the IC vibrations are composed of two sets of modes consistently red-shifting 
with increasing number of layers. The IMC is expected to split in a manner similar to OC, and OMC similar to IC, 
but neither were observed experimentally: IMC and OMC display a single symmetric peak in multi-layer MoTe2 
in Fig. 2c. This might be due to either the splitting being small compared with the linewidth or the split modes 
having too small Raman cross-section. We note that the former interpretation is in agreement with the theoretical 
phonon dispersion calculation in Fig. 2a where the even (A1g) and odd (A2u) OC vibrations in 2L-MoTe2 have the 
largest Davydov splitting.

In the other four hexagonal TMDCs, (Mo,W)(S,Se)2, the OC and IMC modes are the dominant Raman fea-
tures, and the B and S modes become observable if low-energy stray light is cut, but the IC and OMC modes 
tend to evade most Raman scattering measurements14,16–22 unless less-common ultraviolet lasers are used17. 

Figure 2. (a) Phonon dispersion of bilayer MoTe2 calculated with density functional theory (DFT). (b) Atomic 
displacements of the six prototypical TMDC Γ  point optical phonons. The arrows between (a,b) connect the 
calculated Γ  point optical phonons with the names we use to identify the lattice vibrations. (c) Experimental 
Raman spectra for all six phonon branches in 1L to 5L MoTe2; the spectra have been vertically shifted for clarity. 
The black dashed curves are guides to the eye. The small peaks in the 2nd panel (* ) are the shear mode peaks 
shown in more detail in the 1st panel.

Mode 1L 2L 3L 4L 5L

S 19.6 (17.9) 24 10.4/25.3 16.7/26.2

B 28.6 (26.5) 20.9 16.2/37.9 12.6/32.9

IC 118.1 (116.5) 117.6 118.1 117.8

OC 171.5 172.4 (172.3) 172.9/169.6 173.1/170.5 173.2/171.1/169.0

IMC 236.0 235.2 (231.7) 234.9 234.7 234.5

OMC 290.7 (287.2) 290.6 290.4 290.3

Table 1.  Energy (cm−1) of the observed zone-center optical phonon modes from 1L to 5L MoTe2. For the 
bilayer, DFT results are included in the parentheses.
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However, because of MoTe2’s small optical band gap11, the visible lasers used here can access the C excitons 
arising from electron states in the vicinity of the Γ  point23. Recent theoretical calculations13 show that the C 
exciton is composed of six nearly degenerate states involving the topmost valence band and the three lowest 
conduction bands, in contrast to the A and B excitons where only one conduction and one valence band near the 
K points are involved. The availability of multiple bands and states provides more electronic degrees of freedom 
for electron-phonon interaction, which in turn assist the excitation of all of the zone-center optical phonons in 
MoTe2. In capturing all six zone center modes, our Raman spectra in Fig. 2c and Table 1 constitute a comprehen-
sive data set for TMDC lattice dynamics, in agreement with other recent works on MoTe2

24,25.
In addition to enabling observation of all six branches of zone center lattice vibrations, the C excitons in the 

photon-electron-phonon interaction Raman process have interesting impacts on Raman intensity. In particular 
we have found that the resonances have dramatic effects on the Stokes and anti-Stokes Raman signatures of the 
low energy breathing modes. Figure 3a shows the breathing mode Stokes and anti-Stokes peaks for 2 through 5 
layers, using the 2.41 eV laser excitation. (The Raman intensities in Figs 3 and 4 are calibrated; see Supporting 
Information.) As expected, the anti-Stokes peaks are distributed symmetrically in Raman shift about zero with 
respect to the Stokes peaks. However we also observe that the anti-Stokes peaks are more intense than the Stokes 
peaks, an unusual occurrence not present in most systems.

In a typical, lowest-order Raman scattering process for zone-center optical phonons, there are three steps 
involved as shown in Fig. 3b:

1. The electronic system absorbs a photon and creates an electron-hole pair;
2. The electron-hole pair creates (Stokes) or absorbs (anti-Stokes) a phonon;
3. The electron-hole pair recombines and emits the scattered photon.

The first and the third steps are linked to electron-photon interaction while the second step is determined by 
electron-phonon interaction. The rate of step 2 is proportional to the phonon creation or destruction operator 

# of 
Layers

Sym. 
Grp.

σh/i 
Sym. S B IC OC IMC OMC

1 D3h
+ − − − 1 A’1 1 E’ − 

− − − 1 E” − − 1 A”2

2 D3d
+ 1 Eg 1 A1g 1 Eg 1 A1g 1 Eg 1 A1g

− − − 1 Eu 1 A2u 1 Eu 1 A2u

3 D3h
+ 1 E’ 1 A’1 1 E’ 2 A’1 2 E’ 1 A’1

− 1 E” 1 A”2 2 E” 1 A”2 1 E” 2 A”2

4 D3d
+ 2 Eg 2 A1g 2 Eg 2 A1g 2 Eg 2 A1g

− 1 Eu 1 A2u 2Eu 2 A2u 1 Eu 2 A2u

5 D3h
+ 2 E’ 2 A’1 2 E’ 3 A’1 3 E’ 2 A’1

− 2 E” 2 A”2 3 E” 2 A”2 2 E” 3 A”2

bulk D4
6h

+ 1 E2g 1 B2g 1 E1g 1 A1g 1 E2g 1 B2g

− − − 1 E2u 1 B1u 1 E1u 1 A2u

Table 2.  Symmetry representation for phonon modes in bulk and few layer TMDCs14. The third column 
specifies whether the mode is even or odd under horizontal mirror plane reflection/inversion. Raman active 
modes (in back scattering geometry) are colored in bold red.

Figure 3. (a) Experimental Raman data of MoTe2 under a 2.41 eV excitation, showing the evolution of the 
breathing mode peak position and intensity with layer number. The anti-Stokes intensity is anomalously greater 
than the Stokes intensity. (b) Illustration of the zone-center optical-phonon Raman scattering process.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:28024 | DOI: 10.1038/srep28024

acting on the system squared, giving a factor of (n +  1) or n, respectively, where n is the phonon occupation num-
ber. As phonons are bosonic excitations with zero chemical potential, = ω

−

n 1

ekBT 1


 where ω  is the phonon energy 

and k TB  is the thermal energy. For step 3, the recombining electron-hole pair acts similarly to a radiating dipole, 
whose emission rate carries a factor of ω4 according to classical field theory26. Thus, the anti-Stokes to Stokes 
intensity ratio is predicted to be

ω
ω

ω
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− ω
e kBT  thus Ias is 

expected to be less intense than Is, a condition which is ubiquitously observed in most material systems.
The anomalously intense anti-Stokes peaks suggest that some other factor not included in Equation (1) plays 

an important role in determining the Raman cross section. Step 1 in Fig. 3b is shared by the Stokes and anti-Stokes 
process, and the differences of step 2 are purely in occupation number, so neither can explain the anti-Stokes 
intensity. This leaves elements of step 3 not included in the classical theory of radiating dipoles; in particular any 
resonances between the final emitted Stokes and anti-Stokes photons and the electronic structure of the crystal. 
For our frequency ranges this is, as mentioned above, the C exciton, which will have a different resonance effect 
on the Stokes and anti-Stokes emitted photons due to their different energies.

The resonance effect becomes even clearer when we systematically measure the calibrated breathing mode 
intensities using different laser lines. Figure 4a shows Raman data (normalized by Stokes intensities) for 5L-MoTe2 
excited by 488 nm (2.54 eV), 514 nm (2.41 eV), and 532 nm (2.33 eV) respectively. The anti-Stokes to Stokes inten-
sity ratio depends sensitively on the incident laser excitation: at 2.33 eV, the anti-Stokes peak has about the same 
intensity as the Stokes peak; at 2.41 eV and 2.54 eV, the anti-Stokes intensity is above and below the Stokes, respec-
tively. From these observations, we introduce a resonance correction factor, R, into Equation (1), such that

ω
ω

ω
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In Fig. 4b we plot 
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4
  as a function of the breathing mode phonon energy for 2 through 5 

layer MoTe2 with all three excitation wavelengths. In the absence of any correction, i.e. R =  1 in Equation (2), the 
experimental data are expected to fall within the gray band, where the two bounding dotted black lines specify the 
temperature uncertainty during our experiment (see Supporting Information). The experimental data show sig-
nificant deviation from R =  1, with the enhancement and suppression of the anti-Stokes to Stokes ratio mostly 
consistent across layer number.

To further establish the connection between the C exciton and the laser-wavelength/atomic-layer-number 
dependent R factor, we collected differential reflection data, presented in Fig. 4c, showing the C exciton resonance 
for 2 through 5 layer MoTe2 (see Methods). The data strongly imply that the observed deviations of the R factor 
from unity are correlated with the overall shape and evolution of the C exciton: the measured 
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Figure 4. (a) Experimental Raman data for the breathing mode of 5 layer MoTe2 using 2.33, 2.41, and 2.54 eV 
excitations. Stokes intensities have been normalized, showing the difference in anti-Stokes intensity between 
different excitation energies. (b) 
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 as a function phonon mode energy in cm−1. Each breathing mode 

energy corresponds to a different layer number: 5 layer to 2 layer, from low to high energy. The grey band shows 
the expected value if there were no resonance effects, with the bounding black dotted lines determined by the 
experimental temperature uncertainty in our measurements (see Supporting Information). (c) Differential 
reflectance data for 2 layer to 5 layer MoTe2 in the energy region of the C exciton. Dashed lines indicate the 
energy of the laser excitations used for Raman measurements in panels (a,b).
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samples has the largest variations at different laser excitations, consistent with the fact that its exciton resonance 
is the most sharply peaked. For 3L to 5L samples, 2.54 eV lies on the opposite side of the exciton peak from 2.41 
and 2.33 eV; this corresponds to the swapping from resonance suppression to resonance enhancement of the 
anti-Stokes intensity. The slopes of the differential reflection for 2.33 and 2.41 eV are roughly constant; this corre-
sponds to the roughly constant R value across different numbers of layers for these energies. In contrast the slopes 
for 2.54 eV excitations have significant variations, as do the resonance effects in different numbers of layers.

We finally remark that while other materials with exciton effects may also exhibit an anomalous Stokes–
anti-Stoke ratio, it is quite rare to have the anti-Stokes peak to actually be more intense than the Stokes peak. 
Also we take note that the Stokes–anti-Stokes photon energy difference for the 5L-MoTe2 breathing mode is only 
about 3 meV, corresponding to about 0.15% of the total photon energy. It is quite remarkable that the C exciton 
resonance at room temperature can amplify this minute change in energy to switch the relative Stokes–anti-Stokes 
Raman cross-section. The reversed intensity ratio in fact indicates that more phonons are removed from, rather 
than created in, the crystal, potentially forming a laser-cooling channel in the system. Indeed, the observation of 
intense anti-Stokes in another semiconductor system (CdS nanoribbons) is accompanied with strong laser cool-
ing effects27. We thus surmise that our observations point to the uncharted field of laser cooling of atomically thin 
2D crystals, corroborating a recent study of luminescence upconversion in WSe2

28.

Conclusion
We have exfoliated few layer MoTe2 from chemical vapor transport grown crystals. Using polarization-resolved 
Raman scattering we have unambiguously identified all six types of zone-center optical phonons. Splitting of 
these phonons, where observed, has the correct theoretically predicted number of branches. We discovered that 
the anti-Stokes intensities deviate from their expected values, to the point of being more intense than the Stokes 
intensities, with the intensity ratio tunable via resonance with the C exciton. A stronger anti-Stokes peak implies 
that more phonons are annihilated than created in the crystal suggesting that, from the electron-photon-phonon 
interaction process, anti-Stokes Raman scattering could provide a cooling channel in atomically thin TMDC 
crystals.

Methods
Bulk MoTe2 crystal growth. We grew bulk MoTe2 crystals using chemical vapor transport with chlorine as 
the transport agent, as illustrated in Fig. 1a. A horizontal three-zone Carbolite furnace provides a high tempera-
ture reaction zone and a low temperature growth zone. Following the work of Ubaldini et al.29, Mo, Te, and MoCl5 
powders are placed in a fused silica tube, 18 mm in diameter and 300 mm in length. The purity of the source 
materials are Mo 99.9%, Te 99.997%, and MoCl5 95% (Sigma Aldrich). Total Mo and Te are kept in a stoichiomet-
ric 2:1 ratio with sufficient MoCl5 to achieve a Cl density of 2 mg/cm3. The tube is pump-purged with ultra-high 
purity argon gas and sealed at low pressure prior to growth. The reaction and growth zones were kept at 830 °C 
and 730 °C respectively for 100 hours. During cooling the temperature profile is inverted with the growth zone 
being roughly 100 °C hotter than the reaction zone so that chloride contaminants preferentially precipitate in the 
hot zone, away from the MoTe2 crystals.

Raman Scattering and Differential Reflection. We collect Raman data using linearly-polarized light 
from an Argon laser or a frequency doubled Nd:YAG solid state laser to excite the samples in a back scattering 
geometry. The scattered light is collected with a 100x objective lens, dispersed by a triple stage spectrometer, and 
detected by a liquid nitrogen cooled CCD. In the collection path, a broadband polarization rotator and a linear 
polarizer are used to selectively detect scattered light with polarization either parallel z xx z( )  or perpendicular 
z xy z( )  to that of the incident light. With a combination of a Bragg diffraction grating (OptiGrate) and a Horiba 
T64000 triple stage spectrometer operating in the subtractive mode, we were able to observe low energy phonon 
modes down to less than 10 cm−1. Data for 488 and 514 nm excitations were taken at 100 μ W for 120 s; data for 
514 nm excitations were taken at 70 μ W for 120 s. The heating effects of these powers were accounted in Fig. 4 (see 
Supporting Information).

We obtain differential reflection data by exfoliating MoTe2 atomic layers onto fused silica. We then shine a 
white laser (NKT Photonics) on the samples and collect the reflection spectrum, which is subtracted from and 
normalized by the substrate reflection.
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