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Abstract
We simulated multistate capture histories (CHs) by varying state survival (ϕ), detection (p)
and transition (ψ), number of total capture occasions and releases per capture occasion

and then modified these scenarios to mimic false rejection error (FRE), a common misiden-

tification error, resulting from the failure to match samples of the same individual. We then fit

a multistate model and estimated accuracy, bias and precision of state-specific ϕ, p and ψ

to better understand the effects of FRE on different simulation scenarios. As expected, ϕ,

and p, decreased in accuracy with FRE, with lower accuracy when CHs were simulated

under a shorter-term study and a lower number of releases per capture occasion (lower

sample size). Accuracy of ψ estimates were robust to FRE except in those CH scenarios

simulated using low sample size. The effect of FRE on bias was not consistent among

parameters and differed by CH scenario. As expected, ϕ was negatively biased with

increased FRE (except for the low ϕ low p CH scenario simulated with a low sample size),

but we found that the magnitude of bias differed by scenario (high p CH scenarios were

more negatively biased). State transition was relatively unbiased, except for the low p CH

scenarios simulated with a low sample size, which were positively biased with FRE, and

high p CH scenarios simulated with a low sample size. The effect of FRE on precision was

not consistent among parameters and differed by scenario and sample size. Precision of ϕ

decreased with FRE and was lowest with the low ϕ low p CH scenarios. Precision of p esti-

mates also decreased with FRE under all scenarios, except the low ϕ high p CH scenarios.

However, precision of ψ increased with FRE, except for those CH scenarios simulated with

a low sample size. Our results demonstrate how FRE leads to loss of accuracy in parameter

estimates in a multistate model with the exception of ψ when estimated using an adequate

sample size.
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Introduction
Knowledge of wildlife population dynamics is a crucial step towards species conservation and
necessary if we wish to improve our understanding of the potential effects of climate change
and future land use change. Accurate and precise parameter estimates of population vital rates
(e.g., adult and juvenile survival rates, fecundity, etc.) are necessary for deciphering population
dynamics and in forecasting future population projections. Survival (ϕ) can be estimated using
capture-mark-recapture (CMR) models, but accuracy of the estimates relies on meeting model
assumptions, which include: 1) individuals in a population all have an equal probability of
being marked and recaptured; and 2) marks are permanent and they are observed, identified
and recorded accurately at recaptures [1–3]. Traditional CMR techniques depend on physical
capture, tagging and subsequent recapture, resighting or recovery. Photo and genotype-based
CMR are less invasive, not requiring physical capture, but, photo-based CMR depends on focal
species having unique visual markings [4–5] and genotype-based CMR relies on the presence
of highly polymorphic molecular markers [6–8].

Photo and genotype-based CMR are nowmore feasible due to readily available software pack-
ages, which match large libraries of photo or genetic samples [4, 9–13]. With photo-based CMR
software, the matching process is typically not completely automated (although see [14–15]), but
relies on the user manually reviewing each photo with the most similar photos in the dataset to
identify matches, with the specific measure of similarity being the major differences among soft-
ware [4, 12–13]. Once photos are reviewed, individual capture histories (CHs) can be inferred
from photo matches, which is required data input for CMRmodels. Unlike photo-based CMR,
genotype-based CMR is not limited to species with distinct individual markings, as DNA samples
can be collected without physical capture from hair samples or feces and with physical capture
from saliva or tissues [6, 8, 16–17]. Individual identification is possible with polymorphic molec-
ular markers, such as microsatellite loci or single nucleotide polymorphisms [8,18].

Advances with these techniques (e.g., digital photo quality for photo-based CMR and labo-
ratory protocols for genotype-based CMR) have led to improvements in photo- and genotype-
based CMR, but like the more traditional CMR approaches, they are not without error [19].
One particularly important source of error in these non-invasive CMRmethods is the misiden-
tification of true matches; i.e., failure to match a new photo or genetic sample with an existing
photo or genetic sample of the same individual, leading to incorrectly concluding that it is a dif-
ferent individual. These "false rejections" are typically due to poor photo quality or image pro-
cessing issues (e.g., significant photo glare) in the case of photo-based identification, or DNA
degradation leading to false alleles or allelic dropout error in the case of genotype-based identi-
fication [8, 20]. False rejection error (FRE) is measured by estimating the percentage of known
match photos or genetic samples (from the same individual) that are not identified as matches
by the respective software. For photo-based CMR, FRE is a consequence of low similarity
scores between matching and non-matching pairs of photos, and can differ depending on the
number of top ranking photos reviewed per photo and the overall photo library size [4, 5]. For
genotype-based CMR, FRE is driven by the proper selection and number of loci, PCR errors
due to poor DNA quality and allele-shifting artifacts [20].

False rejection error can be as high as 25% for photo-based CMR, but is typically signifi-
cantly lower for genotype-based CMR datasets [20]. Unfortunately, FRE is not usually inte-
grated into open CMR models under the assumption that if FRE is relatively low it will not
significantly bias CMRmodel parameter estimates, even with a number of available statistical
approaches recently developed [7, 21– 24]. This is in spite of simulation findings that even low
FRE will bias estimates of ϕ [5, 25]. Negative bias occurs because false rejections cause errone-
ous CHs resulting in a capture history with a non-detection estimate instead of a detection
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estimate and the creation of an additional ‘ghost history’ comprised of a single detection. Cap-
ture histories of both types contribute to lower estimates of ϕ and detection (p). False rejection
error has previously been found to bias estimates of ϕ and p using simulated data, but has not
been evaluated within a multistate modeling framework. Multistate models allow for estima-
tion of an additional state transition parameter, which estimates the probability of individuals
transitioning among pre-defined “states”.

Here, we simulate the effects of FRE on parameter estimation in a multistate model frame-
work by generating multistate CHs under a gradient of realistic FRE rates. We use different sce-
narios of high and low ϕ and p, and different combinations of number of capture occasions
and releases per capture occasion. Multistate models are an important class of CMRmodels
and have been described as a unifying CMRmodeling approach due to the fact that “states”
can describe multiple aspects including age, geographic location, breeder or non-breeder, etc.
making them applicable to a range of applications [26].

Material and Methods
To determine the effects of photo- and genotype-based CMR FRE on accuracy, bias and preci-
sion of estimates of ϕ, p and ψ, we simulated multistate (two states) CHs under four different
CH scenarios (Table 1) and numerous sample sizes (number of capture occasions and number
of releases per capture occasion) using available R code [27–28] (S1 File). All CH scenarios had
constant and relatively low transition probabilities between states, but the transition probability
from state A to B (0.3) was set slightly higher than the transition probability from B to A (0.2)
(Table 1). We simulated CHs under a scenario of 3 total capture occasions (to represent a
shorter term research study) and under a scenario of 10 total capture occasions (to represent a
longer term research study) along with a varying number of releases per capture occasion (25,
50, 100, 500 or 1,000) for each unique CH scenario. For each simulated CH, each individual
capture had a probability of being misidentified (i.e., falsely rejected) following a Bernoulli pro-
cess (0.00, 0.01, 0.05, 0.10, 0.15, 0.20 or 0.25) with estimates spanning the range of values
reported in empirical studies [13]. When an error occurred, the CH was modified to reflect the
error and a ‘ghost’ history was created (S1 File). For example, if we had a CH of AAAB000000,
and the 2nd capture was deemed to be a “false rejection” based on the Bernoulli process, then
the initial CH was modified to A0AB00000 and a new ‘ghost’ capture history was also created
0A00000000. It is important to note that our simulation assumed that an individual could only
be captured once and that it was not possible for a ‘ghost’ to be recaptured (S1 File).

For each unique simulation (4 combinations of ϕ and p x 7 FRE rates x 5 release per capture
occasion x 2 study durations = 280 unique simulations total; Table 1), we ran 1,000 iterations.
Each iteration, we fit a time invariant mulitstate model (ϕ., p., ψ.) with an identity link function
in program MARK [29] using the RMark package [30] for model parameterization in R [28].
Our simulation code discarded iterations where the Hessian was not positive singular or when

Table 1. Summarized parameter values used for simulating capture histories used to evaluate effects of false rejection error onmultistate model
parameters.

Multi-State Model Parameters

Scenario ϕA ϕB pA pB ψAB ψBA

high ϕ high p 0.90 0.90 0.90 0.90 0.30 0.20

high ϕ low p 0.90 0.40 0.90 0.40 0.30 0.20

low ϕ high p 0.40 0.90 0.40 0.90 0.30 0.20

low ϕ low p 0.40 0.40 0.40 0.40 0.30 0.20

doi:10.1371/journal.pone.0145640.t001
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programMARK gave a warning in respect to model convergence. We derived estimates of
model parameters (ϕA, ϕB, pA, pB, ψAB, ψBA; A = state A, B = state B) using maximum likeli-
hood [29]. We then calculated root mean square error (RMSE), a common measure of accu-
racy, as,

RMSEð�̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ð�̂ i � �Þ2

n� 1

vuuut
;

where ϕ̂i is a survival estimate from a singe iteration, ϕ represents the true ϕ and n is the num-
ber of iterations. We calculated relative bias (hereafter, simply "bias") as

Rbiâsð�̂Þ ¼
X

ð�̂i � �Þ=�
n

:

Standard error (a measure of precision) was calculated as,

SÊð�̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ð�̂i � �̂�Þ2

n� 1

vuuut
;

where �̂� is the mean of the n survival estimates. We computed the RMSE, mean bias and mean
standard error across the 1,000 iterations for each multistate model parameter (ϕA, ϕB, pA, pB,
ψAB, ψBA) for each unique CH scenario (Table 1).

Results

Survival
As expected, ϕ decreased in accuracy with increased FRE, with lower accuracy when CHs were
simulated using only 3 capture occasions and a lower number of releases per capture occasion
(Fig 1; left panels). Survival of CHs simulated with 10 capture occasions decreased in accuracy
with increased FRE and was lowest in those CH scenarios simulated with high p (Fig 1; left
panels). Survival estimates were more negatively biased (with the exception of the low ϕ low p
scenario) with increased FRE, but we found that the magnitude of bias differed by the CH sce-
nario simulated (e.g., high p vs. low p) (Fig 1; center panels). Negative bias in ϕ was greatest
with the high p CH scenarios (>-15% at 25% FRE) and showed a linear relationship with FRE
(Fig 1; center panels). Precision of ϕ decreased with increased FRE and was lowest with the low
ϕ low p CH scenario (Fig 1; right panels). Accuracy, bias, and precision were similar for esti-
mates of ϕB (S1 Fig).

Detection
Similar to ϕ, accuracy of p decreased with increased FRE and was lower with the CH scenarios
simulated using only 3 capture occasions and a lower number of releases per capture occasion
(Fig 2; left panels). Detection of CHs simulated with 10 capture occasions decreased in accu-
racy with increased FRE and was lowest in those scenarios simulated with high p (Fig 2; left
panels). Negative bias in p was greatest with the low p CH scenarios with bias increasing with
FRE (> -35% at a 25% FRE) (Fig 2; center panels). Bias in p was positive with the low ϕ low p
CH scenarios simulated with low overall sample size and did not show a strong relationship
with FRE (Fig 2; center panels). Detection estimates were least precise with CH scenarios with
low ϕ low p, with precision decreasing with increased FRE under all CH scenarios, except
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Fig 1. Root mean square error (left panels), residual bias (center panels) and standard error (right panels) of ϕA estimates with the four different
CH simulation scenarios. False rejection rate ranged from 0% to 25%. Lines represent mean values of the 1,000 simulated iterations. Line style represents
number of releases per capture occasion and line color represents number of capture occasions simulated (3 or 10 capture occasions).

doi:10.1371/journal.pone.0145640.g001
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Fig 2. Root mean square error (left panels), residual bias (center panels) and standard error (right panels) of pA estimates with the four different
CH simulation scenarios. False rejection rate ranged from 0% to 25%. Lines represent mean values of the 1,000 simulated iterations. Line style represents
number of releases per capture occasion and line color represents number of capture occasions simulated (3 or 10 capture occasions).

doi:10.1371/journal.pone.0145640.g002
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under the CH scenario of low ϕ high p, where precision increased with increased FRE (Fig 2;
right panels). Accuracy, bias, and precision were similar for estimates of pB (S2 Fig).

State-Transition
Accuracy of ψ did not significantly decrease with increased FRE with CH scenarios that repre-
sented a longer-term study and had an adequate number of releases per capture occasion (Fig
3; left panels). This finding was not consistent with scenarios representing a shorter-term study
simulated with a lower number of releases per capture occasion where accuracy decreased with
FRE. As predicted, ψ was relatively unbiased, except with CH scenarios with low overall sample
size (Fig 3; center panels). Precision of ψ was low with the high ϕ CH scenarios in comparison
to the low ϕ CH scenarios and decreased with FRE (Fig 3; right panels). Accuracy, bias, and
precision estimates were similar for estimates of ψBA (S3 Fig).

Discussion
Our simulations confirmed that misidentification error, specifically, FRE, can lead to bias and
reduced accuracy and precision in both state-specific ϕ and p (confirming results found in past
simulations). False rejection error did not bias estimates of ψ (only when simulations were per-
formed using inadequate sample sizes). Overall, the magnitude of the effect of FRE depended on
the absolute value of the parameter being estimated (i.e., ϕ, p, or ψ), FRE rate, and the number
of simulated capture occasions and number of releases per capture occasion (overall sample
size). Effects of FRE and overall sample size on the accuracy, bias and precision of ϕ and p are of
particular concern given the implications for population modeling (see below). Fortunately, pre-
cision in ϕ estimates do not appear to be overly sensitive to FRE, although is lower in those CH
scenarios representing a shorter term study and a lower number of releases per capture occa-
sions and may introduce additional uncertainty into subsequent population models (see below).

Estimates of ψ were unbiased and insensitive to FRE with the exception of CH scenarios
simulated with a low number of capture occasions and number of releases per capture occasion
(particularly those CH scenarios simulated with low p). Accuracy of ψ was also insensitive to
FRE when simulated with an adequate sample size, with inaccuracy of estimates likely due to a
higher number of iterations estimating ψ at the boundary and not a result of model conver-
gence issues. To our surprise, precision of p and ψ estimates sometimes increased with FRE,
which was counterintuitive to our initial predictions and needs to be further investigated. Our
finding that ψ estimates were unbiased and relatively robust to FRE was not surprising, as
‘ghosts’ could not be recaptured in our simulation framework (transition probabilities are con-
ditioned on individuals being captured multiple times in defined “states”). In reality, recaptur-
ing of ‘ghosts’ is likely to be extremely rare as it would be a result of false acceptance error
(FAE), which is the probability of samples (e.g., photos) from different individuals being falsely
matched during manual review. False acceptance error rates have previously been found to be
very low and this rate will be even lower with ‘ghosts’[13].

Reducing False Rejection Error
Our results highlight that unbiased, and more precise and accurate CMR parameters, particu-
larly ϕ, can be achieved if FRE is relatively low (<5%) or eliminated. For photo-based CMR,
FRE can be reduced by increasing processing effort per image (e.g., more precise cropping to
only include relevant pattern), reducing overall photo library size and comparing results
between available photo recognition software which use different techniques and algorithms
for photo matching [4, 5, 12]. Although, if the difference in similarity measure between match-
ing photos and non-matching photos is relatively high, reducing library size may not
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Fig 3. Root mean square error (left panels), residual bias (center panels) and standard error (right panels) ofψAB estimates with the four different
CH simulation scenarios. False rejection rate ranged from 0% to 25%. Lines represent mean values of the 1,000 simulated iterations. Line style represents
number of releases per capture occasion and line color represents number of capture occasions simulated (3 or 10 capture occasions).

doi:10.1371/journal.pone.0145640.g003
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significantly decrease FRE (and may not be a practical alternative regardless) and an alternate
approach may be to filter and remove low-quality photos (e.g., debris on pattern, heavy glare)
to reduce overall FRE.

False rejection error with genotype-based CMR has been significantly reduced due to
improvements in field protocols, laboratory procedures, and advancements with software [18,
31]. Selecting the proper and adequate number of loci is also crucial for obtaining highly confi-
dent exclusion probabilities, to ensure individuals are correctly classified. Knowledge of these
loci is species-specific and better understood for some species than others. If feasible, and if a
high error rate is a concern, using multiple CMR techniques (photo and genotype-based CMR)
instead of just a single CMR technique may be a feasible option to reduce FRE [20].

Incorporating False Rejection Error into CMRModels
Recently, both ad-hoc and post-hoc approaches have been developed to deal with FRE. Ad-hoc
approaches include the ‘conditioning approach’, which involves filtering and discarding initial
captures of non-ghosts. This approach was found to produce better estimates (in terms of
RMSE) compared with ‘unconditioned’ data when FRE was>5% [5]. Unfortunately, this leads
to a loss of overall data, as it requires removing CH information and results in lower precision
with parameter estimates.

Post-hoc solutions to the bias caused by ghost histories seem analogous to issues caused by
transients [32], although transients and residents have independent p probabilities, whereas
ghosts and non-ghosts produced from misidentification do not [4]. Traditional CMR models
for transients that assume data are drawn from multinomial distributions are inappropriate,
preventing the derivation of a multinomial likelihood function [5, 33]. Recently, statistical
approaches have been developed to incorporate misidentification with Bayesian, unweighted
least squares and chi-square statistical approaches that perform well under certain scenarios
(e.g., those where capture probabilities are high). Although potentially flexible, many existing
statistical approaches incorporating FRE focus on estimating population size, rather than ϕ,
with closed population models (although see [34] for an example estimating ϕ while account-
ing for misidentification with the robust design CMR model), but are not yet incorporated into
existing CMR software packages.

Implications for Population Modeling
Slight changes in survival rate (<5%), especially adult survival, can significantly change esti-
mates of population growth, particularly for species with high adult survival, late maturation
and few offspring [35, 36]. Bias in p can also have negative implications with estimating popu-
lation size, which was not simulated in this study, but complements past studies looking at the
effects of FRE on estimating population sizes in closed population models [7, 21, 22, 25, 34]. If
ignored, bias in both ϕ and p can potentially lead to management decisions and actions that are
based on wrong estimates. The fact that bias in ψ was relatively insensitive to FRE (except in
scenarios with inadequate sample sizes) suggests that ψmay be more robust to FRE and adds
to the overall broad applicability of this class of CMR models.

Future Directions
Our simulation results are most relevant to those situations where only one sample (photo or
genetic) per individual is collected per capture occasion. Multiple samples of individuals per
capture occasion could theoretically lead to more accurate CHs depending on the matching
protocols used. For example, allowing any new sample from the current capture occasion that
matches an existing individual in the library to result in a "recapture" for that occasion (i.e.,
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allowing multiple opportunities to confirm a match) could reduce overall FRE. Conversely,
having multiple samples of the same individual that do not match individuals in the library
due to poor sample characteristics could lead to higher numbers of ‘ghosts’ created per capture
occasion. Exploring FRE in this context of having multiple samples from the same individual
per capture occasion is important as it may lead to different levels of accuracy, bias and preci-
sion in parameter estimates and will require different statistical methods to incorporate into
CMRmodels (although see [5, 34] for relevant examples).

Improvements also need to be made in better understanding the mechanisms behind FRE.
For photo-based CMR, FRE is currently based on the percentage of known pair matches (e.g.,
photos matched by “eye”) that are not found to be matches by the respective matching soft-
ware. In reality, the photo-recognition software outputs a relational database with photo
matches (e.g., photo A and photo B do not match, but photo A and photo B match photo C,
thus photo A and B match). Thus, FRE may decrease with an increased overall number of pho-
tos of the same individual or an increased number of capture occasions, where misidentifica-
tion error is not necessarily due to a “bad” photo that will not rank highly with any other
photos of the same individual in the dataset (as our multistate CH code simulates), but is a
photo that will rank highly with other photos of the same individual and thus eventually match
with a photo that it does not directly match with due to the nature of the relational database.
Testing known match photos that are not constrained to just being pairwise matches (e.g., mul-
tiple photos of the same individual) could provide insight into how this error changes with
overall number of photos by individual. In theory, FRE could significantly decline if there are
more than a couple of photos per individual.

Supporting Information
S1 Fig. Root mean square error (left panels), residual bias (center panels) and standard
error (right panels) of ϕA estimates with the four different CH simulation scenarios. False
rejection rate ranged from 0% to 25%. Lines represent mean values of the 1,000 simulated itera-
tions. Line style represents number of releases per capture occasion and line color represents
number of capture occasions simulated (3 or 10 capture occasions).
(EPS)

S2 Fig. Root mean square error (left panels), residual bias (center panels) and standard
error (right panels) of pA estimates with the four different CH simulation scenarios. False
rejection rate ranged from 0% to 25%. Lines represent mean values of the 1,000 simulated itera-
tions. Line style represents number of releases per capture occasion and line color represents
number of capture occasions simulated (3 or 10 capture occasions).
(EPS)

S3 Fig. Root mean square error (left panels), residual bias (center panels) and standard
error (right panels) of ψAB estimates with the four different CH simulation scenarios.
False rejection rate ranged from 0% to 25%. Lines represent mean values of the 1,000 simulated
iterations. Line style represents number of releases per capture occasion and line color repre-
sents number of capture occasions simulated (3 or 10 capture occasions).
(EPS)

S1 File. R code for simulating capture history data, applying false rejection error and fitting
multistate survival model using RMark.
(PDF)
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