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Formation of rarefaction waves in origami-based metamaterials
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We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura poly-
hedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned
by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a
cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave trans-
mission mechanism under external impact. Numerical simulations show that origami-based metamaterials can
provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction
waves, which feature a tensile wavefront upon the application of compression to the system. We also demon-
strate the existence of numerically exact traveling rarefaction waves. Origami-based metamaterials can be highly
useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

I. INTRODUCTION

Recently, origami has attracted a significant amount of at-
tention from researchers due to its unique mechanical prop-
erties. The most evident one is its compactness and deploya-
bility, which enables various types of expandable engineering
structures, e.g., space solar sails [1, 2] and solar arrays [3]. Bi-
ological systems also exploit such compact origami patterns,
such as foldable tree leaves for metabolic purposes [4] and
stent grafts [5]. Another useful aspect of origami-based struc-
tures is that origami patterns can enhance static mechanical
properties of structures. For instance, structural bending rigid-
ity for thin-walled cylindrical structures can be significantly
improved by imposing origami-patterns [6]. These origami
patterns are used not only for space structures, but also in
commercial products (e.g., beverage cans) in order to reduce
the thickness of thin-walled structures without sacrificing their
buckling strength [7].

Within the considerable progress made in the mechanics of
origami-based structures, however, the primary focus has been
placed on the static or quasi-static properties of origami.For
example, recent studies attempted to fabricate origami-based
metamaterials with an eye towards investigating the deploy-
able, auxetic, and bistable nature of origami structures [8–
11]. Limited work has been reported on the impact response
of origami-based structures [12], and their wave dynamics
is relatively unexplored. Plausibly, this lack of studies on
the dynamics of origami-based structures can be attributed
to the intrinsic characteristic of typical origami structures,
which exhibit limited degrees of freedom (DOF) during their
folding/unfolding motions. This is particularly true for rigid

∗Email: jkyang@aa.washington.edu

origami, in which the deformation takes place only along
crease lines while origami facets remain rigid in dynamic con-
ditions. The rigid origami features single-DOF motions ide-
ally, and thus, the studies on their wave dynamics have been
more or less absent under this rigid foldability assumption.

In this study, we use a single-DOF rigid origami structure
as a building block to assemble multi-DOF mechanical meta-
materials, and analyze their nonlinear wave dynamics through
analytical and numerical approaches. Specifically, we employ
the Tachi-Miura polyhedron (TMP) [13, 14] as a unit cell of
the metamaterial as shown in Fig. 1. The TMP cell is made
of two adjoined sheets (Fig. 1(a)), and changes its shape from
a vertically standing planar body to a horizontally flattened
one while taking up a finite volume between the two phases
(Fig. 1(b)). This volumetric behavior is in contrast to conven-
tional origami-patterns that feature planar architectures and
in-plane motions (e.g., Miura-ori sheets [15]). In this study,
we first characterize the kinematics of the TMP cell, show-
ing that it exhibits controllable strain-softening behavior. By
cross-linking these TMP unit cells in a horizontal layer and
stacking them up vertically with separators, we form a multi-
DOF metamaterial as shown in Fig. 1(c). We then conduct an-
alytical and numerical studies to verify that these multi-DOF
origami structures can support a nonlinear stress wave in the
form of a so-called rarefaction wave, owing to the strain soft-
ening nature of the assembled structure.

The rarefaction wave, which can be viewed as an acoustic
variant of a depression wave [16], has been studied in various
settings, including systems of conservation laws [17]. More
recently, it was proposed in the context of discrete systems
with strain-softening behavior [18, 19]. Interestingly, these
rarefaction waves feature tensile wavefronts despite the ap-
plication of compressive stresses upon external impact (see
the conceptual illustrations in Fig. 1(c)). In that light, they
are fundamentally different from the commonly encountered

http://arxiv.org/abs/1505.03752v2
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FIG. 1: (Color online)(a) Flat front and rear sheets of the TMP
with mountain (solid lines) and valley (dashed lines) crease lines.(b)
Folding motion of the TMP unit cell.(c) System consisting of TMP-
based metamaterials and rigid separators stacked vertically. Each
layer consists of nine inter-linked TMP unit cells. Conceptual illus-
trations of incident compressive waves and transmitted rarefaction
waves are also shown.

dynamical response of nonlinear elastic chains which sup-
port weakly or even strongly nonlinear traveling compression
waves [19–22]. Recently, in a quite different setting of tenseg-
rity structures, rarefaction waves have been identified compu-
tationally in the elastic softening regime [23].

Our main scope within the present work is to verify the
formation and propagation of rarefaction waves in origami-
based metamaterials via two simplified models: a multi-bar
linkage model and a lumped mass model. In both cases, we
confirm that the origami structure disintegrates strong impact
excitations by forming rarefaction waves, followed by other
dispersive wave patterns to be discussed in more detail below.
We also validate the nonlinear nature of the stress waves by
calculating the variations of wave speed as a function of ex-
ternal force amplitude. Notably, we observe the reduction of
wave speed as the excitation amplitude increases, which is in
sharp contrast to conventional nonlinear waves seen in nature
or engineered systems [19]. In the case of the lumped mass
model, we find numerically exact traveling waves. We pro-
vide a precise characterization of the wave speed and ampli-
tude relationship and a way to evaluate the robustness of the
rarefaction waves through dynamical stability computations.
The findings in this study provide a foundation for building a
new type of impact mitigating structure with tunable charac-

teristics, which does not rely on material damping or plastic
deformation. This study also offers a platform for excitingthe
rarefaction pulse – a far less explored type of traveling wave
– and examining its characteristics in considerable detail.

The Manuscript is structured as follows: In Sec. II, we de-
scribe the two simple models of origami-based metamaterials:
the multi-bar linkage model and the lumped mass model. In
Sec. III, we conduct numerical simulations of wave propaga-
tion upon impact on the chain boundary and compare the wave
dynamics obtained from these two models. Then, in Sec. IV
we find numerically exact rarefaction waves of the lumped
mass model. Lastly, concluding remarks and future work are
given in Sec. V.

II. MODELING OF ORIGAMI-BASED STRUCTURES

A. Multi-bar Linkage Model

We begin by modeling a single TMP cell as shown in Fig. 2.
For the sake of simplicity, we focus on the folding motion of
two adjacent facets along the horizontal crease line as marked
by the red line in Fig. 2(a). Preserving the key features of the
TMP, such as rigid foldability and single-DOF mobility, we
can model the folding/unfolding motion of the origami facets
into a simple 1D linkage model as shown in Fig. 2(b). Here,
the unit cell consists of two rigid bars (massm and length
2L), and the center-of-mass coordinates of those two bars are
(z1, y1, θ1) and (z2, y2, θ2). The hinge that connects the two
bars is equipped with a linear torsional spring with the torsion
coefficientkθ. The left end of the linkage structure is sup-
ported by a roller joint, which is allowed to move only along
the z-axis up on the application of external forceF ex. The
right end is fixed by a pin joint. Therefore, the inclined angle
of the linkage,θ1, is the only parameter required to describe
the motion of this unit-cell system. This corresponds to the
single-DOF nature of the TMP cell.

By using the principle of virtual power [24], we derive the
following equation of motion (see Supplemental Material for
details [25]):

(

mL2/2 + J/2 + 2mL2cos2θ1
)

θ̈1 −mL2θ̇21 sin 2θ1

+kθ (θ1 − θ1,0) = −F exL cos θ1.
(1)

HereJ is the bar’s moment of inertia (J = mL2

3
), andθ1,0

is the initial folding angle (i.e., no torque applied at the hinge
in this initial angle). In the quasi-static case (i.e., acceleration
and velocity terms are much smaller compared to the exter-
nal excitation and spring force terms), we obtain the force-
displacement relationship as follows:

F ex = −
kθ (θ1 − θ1,0)

L cos θ1
. (2)

Using Eq. (2) and the axial displacement expressionu =
4L(sin θ1,0− sin θ1), we can calculate the force-displacement
response as shown in Fig. 2(c). We observe that the system
exhibits strain softening behavior in the compressive region,
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FIG. 2: (Color online)(a) TMP unit cell. (b) Two-bar linkage model representing the folding motion of the two facets as marked in red
lines in (a). (c) Force-displacement relationship of the TMP unit cell withL = 5mm,kθ = 1.0Nm/rad, and different initial folding angles:
θ1,0 = 30

◦, 45◦, and60◦. Dashed line indicates a power law approximation ofθ1,0 = 45
◦ case.

whereas the system shows strain hardening response in the
tensile domain. Also, it is interesting to find that this strain
softening/hardening behavior can be tuned by controlling the
initial folding angle,θ1,0.
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FIG. 3: Schematic illustrations of(a) Multi-bar linkage model and
(b) Lumped mass model.

Based on the kinematics of the single unit cell as ex-
pressed in Eq. (1), we model a chain ofN -TMP cells as
shown in Fig. 3(a). In this model, each unit cell is con-
nected by pin joints, which are allowed to move along the
z-axis. Let the general coordinate of thisN -DOF system be

q =
[

θ1 · · · θj · · · θN
]T

. Given the identical initial angles
imposed on the unit cells, the equation of motion for this sys-
tem can be expressed as

GT M̂Gq̈+GTM̂Ġq̇ = GT fex (3)

where

M̂ = diag
[

M̂1 · · · M̂N

]

,

M̂j = diag
[

m m J m m J
]

,

GT =





















GT
1 O1×6 O1×6 · · · · · · · · · O1×6

gT
2 GT

2 O1×6 · · · · · · · · · O1×6

...
...

...
...

...
...

...
gT
j gT

j · · · GT
j gT

j · · · O1×6

...
...

...
...

...
...

...
gT
N gT

N gT
N · · · · · · · · · GT

N





















,

GT
j =

[

−3L cosθj −L sin θj 1 −L cos θj −L sin θj −1
]

,

gT
j =

[

−4L cosθj 0 0 −4L cos θj 0 0
]

,

O1×6 =
[

0 0 0 0 0 0
]

.

Also, fex is an external force vector defined as follows

fex =
[

(fex1 )
T

· · ·
(

fexj
)T

· · · (fexN )
T
]T

(4)

where

fexj =















[F ex, 0, −2kθ (θ1 − θ1,0)− F exL cos θ1,
0, 0, −2kθ (θ1,0 − θ1)]T if j = 1

[0, 0, −2kθ (θj − θj,0) ,
0, 0, −2kθ (θj,0 − θj)]T if j = 2. . .N

See Supplemental Material for the details of this deriva-
tion [25].

B. Lumped Mass Model

In this section, we introduce a lumped mass model, in
which a chain of origami cells is modeled as lumped masses
connected by nonlinear springs (see Fig. 3(b)). The strain soft-
ening behavior of the TMP unit cell considered herein leads
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to the following power-law relationship:

F ex = Aδn (5)

whereδ is the compressive displacement, and the coefficient
A and the exponentn are the constant values determined by
curve fitting of Eq. (2).

Since the power-law relationship in Eq. (5) assumes only
a positive displacement as an argument, we need to apply a
displacement offset (d0) towards the tension side, so that the
lumped mass model can approximate the force-displacement
curve of the multi-bar linkage model not only in the com-
pressive region, but also in the tensile domain. In Fig. 2(c),
the dashed curve shows the fitted power-law relationship for
the multi-bar linkage model, where the black circle represents
(along the horizontal axis) the displacement offsetd0.

By using this simple force-displacement relationship, we
can derive a general expression of the equation of motion as
follows:

Müj = A [d0 + δj−1,j ]
n

+
−A [d0 + δj,j+1]

n

+
(6)

whereM is the lumped mass corresponding to2m, n ∈ R,
and the[+] sign outside of the brackets indicates that we take
only positive values of the strainδj,j+1 = uj − uj+1. Note
that this form of equation has been used widely for analyzing
nonlinear waves propagating in discrete systems in the case
of strain-hardening interactions (i.e.,n > 1 in Eq. (6), e.g.,
granular crystals). Therein, the formation and propagation of
nonlinear wave structures, such as solitary waves [19, 20] and
discrete breathers [21, 22], have been well studied. The in-
terpretation of origami dynamics via this nonlinear lumped
mass system opens up a broad, novel potential vein of stud-
ies. Indeed, one advantage of modeling the origami lattice in
this way is that many tools and results obtained in the con-
text of granular crystals can be applied in our setting. For ex-
ample, the recent work of [18] examined a one-dimensional
discrete system under the power-law relationship of strain-
softening springs (i.e.,n < 1 in Eq. (6)). This study reported
the propagation of rarefaction waves through dynamic sim-
ulations and a long wavelength approximation, where it was
shown that the width of the rarefaction wave is independent of
the wave speed. Likewise, the analysis of nonlinear waves in
post-buckled structures has been also attempted using a sim-
ilar discrete system [26]. In this article, we extend the theo-
retical results in such nonlinear-spring systems by introduc-
ing a systematic tool for the computation of numerically exact
traveling waves, which will be discussed in Sec. IV. We also
address the subject of their dynamical stability in the Supple-
mental Material [25].

III. NUMERICAL SIMULATIONS

To examine the dynamic characteristics of the origami-
based structure and compare the results from the two reduced
models, we conduct numerical computations of wave propa-
gation under a compressive impact. Also, we apply various
amplitudes of impact force to the multi-bar linkage model in

order to examine the speed of both compressive and tensile
strain waves, especially focusing on the dominant traveling
wave.

A. Waveform analysis

We perform numerical computations where a compressive
impact is applied to the first unit cell with the right end of the
N -th unit cell kept fixed as shown in Fig. 3(a). The strain
waves propagating in a uniform chain ofN = 400 unit cells
are examined numerically. In the case of the multi-bar linkage
model, the relative strain is defined as

ηj =
hj,0 − hj

hj,0

(7)

wherehj = 4L sin θj andhj,0 = 4L sin θj,0 (see Fig. 2(b)).
The numerical constants used in the calculation are the follow-
ing: L = 5mm,m = 0.39 g, kθ = 1.0Nm/rad, andθj,0 =
45◦. To apply impact excitation, we imposeF ex = 100N for
the first 1 ms andF ex = 0N after the first 1 ms in our sim-
ulations. From the force-displacement curve based on these
constants, we obtainn = 0.64 andA = 2, 938N/mn, given
an initial displacement offset ofd0 = 2.1mm for the power-
law approximation. In the case of the lumped mass model, the
relative strain is defined as

ηj =
uj+1 − uj

d0
. (8)

Figures 4(a) and (b) show space-time contour plots of strain
wave propagation under compressive impact, while Figs. 4(c)
and (d) show the strain waveforms corresponding tot = 3, 40,
and70ms. After the impact force is applied to the system, the
first compressive impact attenuates quickly as the strain waves
propagate through the system, and then a rarefaction wave ap-
pears in front of the first compressive wave (see the insets as
well as the arrows (1) and (2) in Fig. 4). It should be also
noted that due to the strain-softening behavior, the amplitude
of the compressive force is reduced drastically as the wave
propagates along the chain. Since both the multi-bar linkage
model and the lumped mass model have this strain-softening
nature, the same type of rarefaction waves is observed.

In addition, the inset of Fig. 4(c) shows the magnified view
of the leading edge of the propagating strain wave. This lead-
ing wave is created due to the effect of inertia in the multi-bar
linkage model. That is, when the first unit cell folds right
after the compressive impact, the second unit cell is pulled
by the first unit cell before the compressive force propagates
to the next unit cell. Therefore, the tensile strain appearsin
front of the first compressive wave in the multi-bar linkage
model. Comparing the numerical results of the two mod-
els, the lumped mass model captures the multi-bar linkage
model dynamics even quantitatively at short times, while the
agreement between the two becomes qualitative at longer time
scales.

Let us also note in passing that in the wake of this primary
rarefaction pulse, we observe radiative dispersive wavepack-
ets both in the multi-bar linkage model and in the lumped mass
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Multi-bar linkage model Lumped mass model(a)

(1)

(1)

(2)
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FIG. 4: (Color online) Space-time contour plots of strain wave propagation based on(a) the Multi-bar linkage model and(b) the Lumped mass
model. Insets show the magnified view of rarefaction waves. Temporal plots of strain waves using(c) the Multi-bar linkage model and(d)
the Lumped mass model. The inset in(c) shows the magnified view of the leading edge. The arrows (1) and (2) point to the rarefaction wave
present in the dynamics.

model. These wavepackets apparently travel maximally with
the speed of sound in the medium, while the rarefaction pulse
outrunning them is apparently supersonic. We will return to
this point to corroborate it further by our numerical bifurcation
analysis in the next section. Additionally, it should be noted
that in the lumped mass model, highly localized structures
with a clear envelope can be discerned (see e.g., the vicin-
ity of unit number 150 of the70 ms panel of Fig. 4(d)), which
seem to have the form of breather excitations, which are ex-
ponentially localized in space and periodic in time [27, 28].
A closer inspection of Fig. 4(b) also seems to suggest that
such coherent wavepackets travel more slowly than the dis-
persive radiation. The multi-bar linkage model also exhibits
such time-periodic patterns, but there is no clear signature of
spatial localization. While these nonlinear wave structures are
worth investigating, this topic is beyond the scope of this pa-
per, and we do not explore them further here.

B. Wave speed analysis

The propagation speed of strain waves is now investigated
numerically under various amplitudes of impact force. The
wave speed is approximated as follows

Vε =
Nh0

∆t
(9)

whereh0 is the initial height of the unit cell, and∆t is the
time span in which the strain wave propagates from the first
unit cell to theN -th unit cell (see Fig. 5(a)). The propagating
wave speeds calculated are depicted in Fig. 5(b) under three
different initial folding angles:θj,0 = 35◦, 45◦, and55◦. It
is evident that the wave speed is altered by the impact force,
which is one of characteristics of nonlinear waves. However,
it should be noted that in the compressive regime, the wave
speed decreases as the compressive impact increases. This is
in sharp contrast to conventional nonlinear waves formed in
the system of strain-hardening lattices [19, 20]. A different
trend is observed in the tensile regime, where the wave speed
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N h0

Δt

Maximum compressive (or tensile) strain(a) (b)

FIG. 5: (Color online)(a) Surface map of strain field to calculate wave speed.(b) Wave speed of strain waves as a function of external force
ranging from−150N to+150N. Numerical simulations are based onL = 25mm,mj = 19.7 g,N = 20 andkθ = 1.0Nm/rad.

increases as the tensile impact increases. It is also notewor-
thy that the wave speed curve can be shifted by changing the
initial folding angle. Therefore, we can control the speed of
the waves propagating through the origami-based metamateri-
als by altering their geometrical configurations, implyingtheir
inherent dynamical tunability.

IV. EXACT RAREFACTION WAVES OF THE LUMPED
MASS MODEL

We now turn our attention to a more systematic analysis and
understanding of the rarefaction waves in the simpler lumped
mass model; notably, our conclusions here in that regard areof
broader interest to previously discussed settings such as those
of [18, 23]. Based on the previous analysis, we numerically

investigate the existence and dynamical stability of exactrar-
efaction waves of the lumped mass model [cf. Eq. (6)]. In
particular, we consider the model in the strain variableδj,j+1

written as

Mδ̈j,j+1 = A{[d0 + δj−1,j ]
n

+
− 2[d0 + δj,j+1]

n
+

+ [d0 + δj+1,j+2]
n

+
}. (10)

The existence and the spectral stability of traveling wavesof
Eq. (10) with wave speedc must be examined through the
ansatzδj,j+1(t) = δ(j − c t) := Φ(ξ, t), i.e., going to the co-
traveling wave frame where the relevant solution appears to
be steady and hence amenable to a spectral stability analysis.
Then,Φ solves the advance-delay differential equation

Φtt(ξ, t) = −c2Φξξ(ξ, t) + 2cΦξt(ξ, t) +
A

M

{

[d0 +Φ(ξ − 1, t)]
n

+
− 2 [d0 +Φ(ξ, t)]

n

+
+ [d0 + Φ(ξ + 1, t)]

n

+

}

. (11)

Traveling waves of Eq. (10) correspond to stationary (time
independent) solutionsΦ(ξ, t) = φ(ξ) of Eq. (11), satisfying

0 = −c2φξξ +
A

M
{[d0 + φ(ξ − 1)]

n

+
− 2 [d0 + φ(ξ)]

n

+

+ [d0 + φ(ξ + 1)]
n

+
}. (12)

To obtain numerical solutions of Eq. (12), we employ a uni-
form spatial discretization ofξ consisting ofl pointsξk (k =
− l−1

2
, . . . , 0, . . . , l−1

2
) with lattice spacing∆ξ chosen such

thatq = 1/∆ξ is an integer. Then, the fieldφ(ξ) is replaced
by its discrete counterpart, i.e.,φk := φ(ξk) = φ(k∆ξ).
The second-order spatial derivative appearing in Eq. (12)
is replaced by a modified central difference approximation
(φk−2 − 2φk + φk+2)/(4∆ξ2). The reason for this choice of

central difference is connected to the stability calculation to be
discussed in the Supplemental Material [25]. Using this dis-
cretization, Eq. (12) becomes the following root-finding prob-
lem,

0 = −c2
φk−2 − 2φk + φk+2

4∆ξ2
+

A

M
{[d0 + φk−q ]

n

+

− 2 [d0 + φk]
n

+
+ [d0 + φk+q ]

n

+
} (13)

which is solved via Newton iterations. We employ periodic
boundary conditions at the edges of the spatial grid. We are in-
terested specifically in rarefaction waves, and thus we use the
profiles obtained via the numerical simulations of Sec. III A
to initialize the Newton solver, see e.g. arrow (2) of Fig. 4(d).
Herein, we consider an origami lattice withL = 25mm,
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kθ = 1.0Nm/rad andθ = 55◦. The corresponding best-
fit values of the parameters of the lumped-mass model are
A = 280N/mn, n = 0.53, m = 19.7 g with M = 2m and
d0 = 12mm.

In Fig. 6, numerically exact rarefaction waves (i.e., solu-
tions of Eq. (13) with a prescribed tolerance) are presented
for various values of the wave speedc. In particular, Fig. 6(a)
shows the rarefaction waves in terms of the relative strain vari-
ableφ/d0, while Fig. 6(b) shows the corresponding relative
momentaφ′/d0. Note that the tails decay to zero monoton-
ically, implying that the traveling structure does not resonate
with the linear modes of the system, as the wave is super-
sonic. It is not surprising then that our parametric continu-
ation in the wave speedc reveals a critical minimum value

cs =
√

nAdn−1

0 /M = 173.5 m/s, which is the sound speed
of the chain (see the vertical dashed-dot gray line of Fig. 6(c)).
This is consistent with the long-wavelength analysis of [18]
and also with our observations of the previous section indicat-
ing that the wave outruns the small amplitude radiation tails
behind it. Thus, similarly to systems withn > 1 [19, 29],
the rarefaction waves of the origami lattice are traveling faster
than any linear waves of the system. However, in contrast
to solitary waves in systems withn > 1, the amplitude of
the rarefaction waves in the origami system have a natural
bound determined by the precompressiond0 of the system,
in which case the particles come out of contact (see the hor-
izontal dashed black line of Fig. 6(c)). Although waves with
amplitude exceeding this value are in principle possible, we
were unable to identify any ones such numerically. An inter-
esting open problem would be to prove rigorously if such a
bound exists. Another interesting related problem is if there
is a critical maximum value ofc. Our numerical continuation
algorithm did indeed terminate due to lack of convergence at
c ≈ 201.6 m/s, but this could have been a result of the ill-
conditioned nature of the Jacobian matrix as the amplitude
approached the critical limit ofd0.

The robustness of a solutionφ0 of Eq. (12) can be inves-
tigated through a spectral stability analysis. To that end,we
substitute the linearization ansatzΦ(ξ, t) = φ0 + εa(ξ)eλt

into Eq. (11), which yields an eigenvalue problem at order
ε (see the Supplemental Material [25]). We considered so-
lutions at various wave speedsc and found in each case at
least one eigenvalue with a small real part, indicating a (very
weak) instability. However, the eigenvalues are highly sensi-
tive to e.g. lattice size and choice of discretization, suggesting
that these instabilities may be “spurious”. To check this, we
performed dynamical simulations of the perturbed rarefaction
waves at the level of Eq. (10) and found that they are all robust
against small perturbations (see Fig. 8 of the Supplemental
Material [25]). This suggests that the very weak instabilities
predicted via the spectral stability analysis are indeed spuri-
ous. While a heuristic argument for the presence of spurious
instabilities is provided in the Supplemental Material [25], the
construction of a mathematically consistent algorithm forthe
computation of eigenvalues in this context remains an impor-
tant open problem.

V. CONCLUSIONS & FUTURE CHALLENGES

In the present work, we investigated nonlinear wave dy-
namics in origami-based metamaterials consisting of building
blocks based on Tachi-Miura polyhedron (TMP) cells. We
analyzed the kinematics of the TMP unit cell using a sim-
ple multi-bar linkage model and found that it exhibits tun-
able strain-softening behavior under compression due to its
geometric nonlinearity. We observed that upon impact, this
origami-based structure supports the formation and propaga-
tion of rarefaction waves. The resulting evolution features a
tensile wavefront despite the application of compressive im-
pact. A further reduction was also offered based on the fitted
force-displacement formula for a single cell, in the form of
a lumped mass model. In the latter case we obtained numeri-
cally exact rarefaction waves and studied their spectral and es-
pecially dynamical stability. The dynamical features observed
herein may constitute a highly useful feature towards the ef-
ficient mitigation of impact by converting compressive waves
into rarefaction waves and disintegrating high-amplitudeim-
pulses into small-amplitude oscillatory wave patterns. We
also demonstrated the potential tunability of the wave speed
by altering initial folding conditions of the origami-based
structure, which naturally opens up the feasibility of control-
ling stress wave propagation in an efficient manner.

The rather unique nonlinear wave dynamics of origami
structures can lead to a wide range of applications, such as
tunable wave transmission channels and deployable impact
mitigating layers for space and other engineering applications.
On the theoretical/computational side, there is also a large
number of intriguing questions that are emerging. For one,
a more detailed comparison of the coherent structure propa-
gation in the multi-bar linkage model vs. that of the lumped-
mass model would be an interesting topic for further consider-
ation. This would help uncover the dynamical features leading
to the apparent weak amplitude decay in the former, while the
latter contains robust solutions and sustained long-time propa-
gation. Still at the single wave level, an exploration of thedel-
icate issues of spectral stability by means of different numeri-
cal methods and of the corresponding dynamical implications
would be of particular interest. Subsequently, understanding
further the dynamics and interactions of multiple rarefaction
wave patterns would also be a relevant theme for future inves-
tigations. These topics are currently under active considera-
tion and will be reported in future publications.
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FIG. 6: (Color online) Summary of numerical results on continuations of rarefaction waves over wave speedc with l = 4001 points and
∆ξ = 1/13: (a) Relative strain profiles for various values of the wave speedc. (b) Relative momenta corresponding to (a).(c) Maximum of
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