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We investigate the nonlinear wave dynamics of origami-basetamaterials composed of Tachi-Miura poly-
hedron (TMP) unit cells. These cells exhibit strain softgnbehavior under compression, which can be tuned
by modifying their geometrical configurations or initialded conditions. We assemble these TMP cells into a
cluster of origami-based metamaterials, and we theotlticeodel and numerically analyze their wave trans-
mission mechanism under external impact. Numerical sitiia show that origami-based metamaterials can
provide a prototypical platform for the formation of nordar coherent structures in the form of rarefaction
waves, which feature a tensile wavefront upon the apptinadif compression to the system. We also demon-
strate the existence of numerically exact traveling ratéfa waves. Origami-based metamaterials can be highly
useful for mitigating shock waves, potentially enablingidewariety of engineering applications.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

I. INTRODUCTION origami, in which the deformation takes place only along
crease lines while origami facets remain rigid in dynamias-co
ditions. The rigid origami features single-DOF motions-ide

Recently, origami has attracted a significant amount of athlly, and thus, the studies on their wave dynamics have been

tention from researchers due to its unique mechanical progyare or less absent under this rigid foldability assumption
erties. The most evident one is its compactness and deploya-

bility, which enables various types of expandable enginger  In this study, we use a single-DOF rigid origami structure
structures, e.g., space solar sail$ [1, 2] and solar afBlyBf ~ as a building block to assemble multi-DOF mechanical meta-
ological systems also exploit such compact origami pastern materials, and analyze their nonlinear wave dynamics tjtrou
such as foldable tree leaves for metabolic purpases [4] an@nalytical and numerical approaches. Specifically, we eynpl
stent grafts [5]. Another useful aspect of origami-basaetst ~ the Tachi-Miura polyhedron (TMP) [1.8, 14] as a unit cell of
tures is that origami patterns can enhance static mechanicéie metamaterial as shown in Hg. 1. The TMP cell is made
properties of structures. For instance, structural bepdgid- ~ Of two adjoined sheets (Figl 1(a)), and changes its shape fro
ity for thin-walled cylindrical structures can be signifity @ vertically standing planar body to a horizontally flatténe
improved by imposing origami-patterrid [6]. These origamione while taking up a finite volume between the two phases
patterns are used not only for space structures, but also ifFig.[i(b)). This volumetric behavior is in contrast to cenv
commercial products (e.g., beverage cans) in order to eedudional origami-patterns that feature planar architeciured

the thickness of thin-walled structures without sacrifigineir  in-plane motions (e.g., Miura-ori sheets [15]). In thisdstu
buckling strength [7]. we first characterize the kinematics of the TMP cell, show-

Within the considerable proaress made in the mechan'csoi g that it exhibits controllable strain-softening belmaviBy
't ! prog : ' ross-linking these TMP unit cells in a horizontal layer and

origami-based structures, h‘?WGV?“ the primary fOCl.JS bap b stacking them up vertically with separators, we form a multi
placed on the static or quasi-static properties of origdrar. DOF metamaterial as shown in Fig. 1(c). We then conduct an-

example, recent §tudies attempted to fabr!cat_e origasgda alytical and numerical studies to verify that these mul@®b
metamaterials with an eye towards investigating the deploy

: . ; : origami structures can support a nonlinear stress waveein th
able, auxetic, and bistable nature of origami structurbs [8 9 PP

o . form of a so-called rarefaction wave, owing to the strain-sof
[11]. Limited work has been reported on the impact respons g

of origami-based structureE[lZ], and their wave dynamicsgnlng nature of the assembled structure.

is relatively unexplored. Plausibly, this lack of studies o  The rarefaction wave, which can be viewed as an acoustic
the dynamics of origami-based structures can be attributedariant of a depression wave [16], has been studied in variou
to the intrinsic characteristic of typical origami struas,  settings, including systems of conservation laws [17]. &lor
which exhibit limited degrees of freedom (DOF) during their recently, it was proposed in the context of discrete systems
folding/unfolding motions. This is particularly true foigid ~ with strain-softening behaviof [18,119]. Interestinglyese
rarefaction waves feature tensile wavefronts despite fhe a
plication of compressive stresses upon external impaet (se
the conceptual illustrations in Figl 1(c)). In that lighhey
*Email: jkyang@aa.washington.edu are fundamentally different from the commonly encountered


http://arxiv.org/abs/1505.03752v2

Front Rear teristics, which does not rely on material damping or ptasti
) R 4 —— Mountain deformation. This study also offers a platform for excitihg
______ Valley rarefaction pu_lse —-a far less gxplored type of travelingeyvav
— and examining its characteristics in considerable detalil
(a) The Manuscript is structured as follows: In Set. II, we de-

scribe the two simple models of origami-based metamaserial

the multi-bar linkage model and the lumped mass model. In
@ % — Sec[TIl, we conduct numerical simulations of wave propaga-

tion upon impact on the chain boundary and compare the wave

(b) dynamics obtained from these two models. Then, in B&c. IV
we find numerically exact rarefaction waves of the lumped
. Impact force Incident . mass model. Lastly, concluding remarks and future work are
compression given in Seﬂ
< wave
& 7
TMP-based II. MODELING OF ORIGAMI-BASED STRUCTURES
metamaterials : .
. A. Multi-bar Linkage M odel
Separator _ Leading
- D tensile We begin by modeling a single TMP cell as shown in Elg. 2.
> % component For the sake of simplicity, we focus on the folding motion of
_— two adjacent facets along the horizontal crease line asedark
i Rarefaction by the red line in Fig-12(a). Preserving the key features ef th
wave TMP, such as rigid foldability and single-DOF mobility, we
(© can model the folding/unfolding motion of the origami fexet

into a simple 1D linkage model as shown in Hig. 2(b). Here,
FIG. 1: (CO'OT online)(a) Flat front and rear sheets of the TMP the unit cell consists of two r|g|d bars (maBs and |ength
\'/:vitllzjmounta_in (5‘]3”2 “r%e,v?%)anq vallltzy)(gashed lines) ngmfsil'(l\b;l)P 2L), and the center-of-mass coordinates of those two bars are

olding motion of the unit cell(c ystem conS|st|ng (0] - H

based metamaterils and rigd separaors sacked voishch - ol ELC e To) AT T8 ONEER S
ayer consists of nine inter-linked TMP unit cells. Conaggptillus- _ . .
trations of incident compressive waves and transmitteeffaation coefficientky. Th? !eft enq Of. the linkage structure is sup-
waves are also shown. ported t_)y a roller joint, wh|ch is allowed to move only along

the z-axis up on the application of external foré&*. The

right end is fixed by a pin joint. Therefore, the inclined angl

dynamical response of nonlinear elastic chains which supof the linkage ¢:, is the only parameter required to describe

port weakly or even strongly nonlinear traveling compressi the motion of this unit-cell system. This corresponds to the

waves|[10-22]. Recently, in a quite different setting ofegr  Single-DOF nature of the TMP cell.

rity structures, rarefaction waves have been identifiedmem By using the principle of virtual power [24], we derive the

tationally in the elastic softening regime [23]. following equation of motion (see Supplemental Material fo
Our main scope within the present work is to verify the details [25]):

formation and propagation of rarefaction waves in origami- . .

based metamaterials via two simplified models: a multi-bar (mL?/2 + J/2 + 2mL?cos*61) 61 — mL?67 sin 26, 1)

linkage model and a lumped mass model. In both cases, we +ke (01 — 610) = —F“Lcos ;.

confirm that the origami structure disintegrates strongaatp

excitations by forming rarefaction waves, followed by athe ere 7 is the bar's moment of inertia/( = ™L%), andé: o

dispersive wave patterns to be discussed in more detaiMbelo js ihe injtial folding angle (i.e., no torque applied at thede

We also validate the nonlinear nature of the stress waves by, thjs initial angle). In the quasi-static case (i.e., decion

calculating the variations of wave speed as a function of exanq velocity terms are much smaller compared to the exter-
ternal force amplitude. Notably, we observe the reduction op g excitation and spring force terms), we obtain the force-
wave speed as the excitation amplitude increases, which is bisplacement relationship as follows:

sharp contrast to conventional nonlinear waves seen inaatu

or engineered systers [19]. In the case of the lumped mass o ko (61 — 010)

model, we find numerically exact traveling waves. We pro- B = —W- (2)

vide a precise characterization of the wave speed and ampli-

tude relationship and a way to evaluate the robustness of tHdsing Eq. [2) and the axial displacement expression=
rarefaction waves through dynamical stability computagio 4 L(sin 6, o —sin 6, ), we can calculate the force-displacement
The findings in this study provide a foundation for building aresponse as shown in F[g. 2(c). We observe that the system

new type of impact mitigating structure with tunable charac exhibits strain softening behavior in the compressiveargi
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FIG. 2: (Color online)(@) TMP unit cell. (b) Two-bar linkage model representing the folding motion af tivo facets as marked in red
lines in(a). (c) Force-displacement relationship of the TMP unit cell with= 5 mm, ks = 1.0 Nm/rad, and different initial folding angles:
01,0 = 30°, 45°, and60°. Dashed line indicates a power law approximatiod0f = 45° case.

whereas the system shows strain hardening response in thdere
tensile domain. Also, it is interesting to find that this stra . ) . .
softening/hardening behavior can be tuned by controllireg t M = diag [M1 MN} 5

initial folding angle,f; . L — ciogm v m ]
h h h —G? Ol><6 Ol><6 cee e e 01><6_
1 ‘ 2 ‘ 14—N,1 g2T Gg Oixg -+ -+ wn- O1x6
GT _ . . . : : : : |
gl gl - GT gl ... Oy
_g% g% g% e e GIJ\"[ |

G;F = [-3Lcost; —Lsinf; 1 —Lcost; —Lsinf; —1],

g, = [~4Lcost; 0 0 —4Lcosf; 0 0],
Oix6 = [0 000 0 0].

Uy
Also, f¢* is an external force vector defined as follows

=iy )" wt] @

z where

(b)
[Fem’ O7 —2/€9 (91 — 6‘170) — F* L cos 6‘1,

FIG. 3: Schematic illustrations ¢&) Multi-bar linkage model and ox 0, 0, —2kg (010 — 91)]T if j=1
(b) Lumped mass model. fi* = [0, 0, —2kg(6; —0;0),
0, 0, —2kg (00— 0;)]" if j=2...N

Based on the kinematics of the single unit cell as ex- . . . .
pressed in Eq[J1), we model a chain SETMP cells as tsigr?ll%ipplemental Material for the details of this deriva

shown in Fig.[B(a). In this model, each unit cell is con-
nected by pin joints, which are allowed to move along the

z-axis. Let the general coordinate of th\&DOF system be
9 o ) s y B. Lumped MassModel
q=[06i --- 6; --- On] .Giventhe identical initial angles
imposed on the unit cells, the equation of motion for this sys | this section. we introduce a lumped mass model, in
tem can be expressed as which a chain of origami cells is modeled as lumped masses

) . connected by nonlinear springs (see Elg. 3(b)). The stodtn s
GTMGH + GTMGq = GTfe* (3)  ening behavior of the TMP unit cell considered herein leads
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to the following power-law relationship: order to examine the speed of both compressive and tensile
strain waves, especially focusing on the dominant tragelin
P = A" (5)  wave.

where/ is the compressive displacement, and the coefficient
A and the exponent are the constant values determined by A. Waveform analysis
curve fitting of Eq.[(2).

Since the power-law relationship in Eg] (5) assumes only \ve nerform numerical computations where a compressive

a positive displacement as an argument, we need to applyiﬁmact is applied to the first unit cell with the right end oéth
displacement offsetdf)) towards the tension side, so that the N-th unit cell kept fixed as shown in Fig] 3(a). The strain

lumped mass mO(_jeI can approximate the force_—displaceme ves propagating in a uniform chain &f = 400 unit cells

curve of the multi-bar linkage model not only in the com- 5o eyamined numerically. In the case of the multi-bar lij&a

pressive region, but also in the tensile domain. In Eg.,Z(c)mOdel the relative strain is defined as

the dashed curve shows the fitted power-law relationship for '

the multi-bar linkage model, where the black circle repnése _hjo—hy 7

(along the horizontal axis) the displacement offgget i = hio )
By using this simple force-displacement relationship, we ’

can derive a general expression of the equation of motion aghereh; = 4Lsinf; andh;o = 4Lsinb;, (see FiglR(b)).
follows: The numerical constants used in the calculation are theviell

ing: L = 5mm, m = 0.399, ky = 1.0Nm/rad, andd; o =
Miiy = Aldo + 8515 — Aldo + 8;541]} (6)  45°. To apply impact excitation, we impog$&* = 100 N for
the first 1 ms and™“* = 0N after the first 1 ms in our sim-
where M is the lumped mass corresponding2ia, n € R, ulations. From the force-displacement curve based on these
and the[+] sign outside of the brackets indicates that we takeconstants, we obtain = 0.64 and A = 2,938 N/m”, given
only positive values of the straify ;.1 = u; — u;4+1. Note  an initial displacement offset af; = 2.1 mm for the power-
that this form of equation has been used widely for analyzingaw approximation. In the case of the lumped mass model, the
nonlinear waves propagating in discrete systems in the cagselative strain is defined as
of strain-hardening interactions (i.e.,> 1 in Eq. (8), e.g., Ut —
granular crystals). Therein, the formation and propagatifo n; = g (8)
nonlinear wave structures, such as solitary w 9,120] a do
discrete breatherﬂlZDZZ], have been well studied. The in- Figure§%(a) and (b) show space-time contour plots of strain
terpretation of origami dynamics via this nonlinear lumpedwave propagation under compressive impact, while Eig3. 4(c
mass system opens up a broad, novel potential vein of stuénd (d) show the strain waveforms corresponding+o3, 40,
ies. Indeed, one advantage of modeling the origami lattice i and70 ms. After the impact force is applied to the system, the
this way is that many tools and results obtained in the confirst compressive impact attenuates quickly as the straresia
text of granular crystals can be applied in our setting. &er e propagate through the system, and then a rarefaction wave ap
ample, the recent work of [18] examined a one-dimensionapears in front of the first compressive wave (see the insets as
discrete system under the power-law relationship of strainwell as the arrows (1) and (2) in Figl 4). It should be also
softening springs (i.en < 1in Eq. (8)). This study reported noted that due to the strain-softening behavior, the amgsit
the propagation of rarefaction waves through dynamic simof the compressive force is reduced drastically as the wave
ulations and a long wavelength approximation, where it wapropagates along the chain. Since both the multi-bar liekag
shown that the width of the rarefaction wave is independent omodel and the lumped mass model have this strain-softening
the wave speed. Likewise, the analysis of nonlinear waves iﬁature, the same type of rarefaction waves is observed.
post-buckled structures has been also attempted using-a sim |n addition, the inset of Fig]4(c) shows the magnified view
ilar discrete system [26]. In this article, we extend theothe of the leading edge of the propagating strain wave. This-lead
retical results in such nonlinear-spring systems by inilsd ing wave is created due to the effect of inertia in the mui-b
ing a systematic tool for the computation of numerically&xa linkage model. That is, when the first unit cell folds right
traveling waves, which will be discussed in Sed IV. We alsoafter the compressive impact, the second unit cell is pulled
address the subject of their dynamical stability in the $&pp by the first unit cell before the compressive force propagate
mental Materiall[25]. to the next unit cell. Therefore, the tensile strain app@ars
front of the first compressive wave in the multi-bar linkage
model. Comparing the numerical results of the two mod-
1. NUMERICAL SIMULATIONS els, the lumped mass model captures the multi-bar linkage
model dynamics even quantitatively at short times, whik th
To examine the dynamic characteristics of the origami-agreement between the two becomes qualitative at longer tim
based structure and compare the results from the two reducesdales.
models, we conduct numerical computations of wave propa- Let us also note in passing that in the wake of this primary
gation under a compressive impact. Also, we apply variousarefaction pulse, we observe radiative dispersive waskepa
amplitudes of impact force to the multi-bar linkage model inets both in the multi-bar linkage model and in the lumped mass



(a) Multi-bar linkage model (b) Lumped mass model 5%

Inset view 0.25

Inset view

=40.2

-10.15

0.04 0.04

Strain [-]

-q0.1

0.03

100 ‘ Y 0.03

150 (1)
Unit S i 0.02 Unit

j 200 i N 3 0.03
number , j 004 Time Time [sec] number ,j 200 44, Time

0.02 0.05

Time [sec]
0.01

0.01
200 200
100

100 50 0 50 0 ©

Unit number, j Unit number, j _0.05
(©) - (d)
1.5 0.5 ] 1.5
/ t =3 ms
— 1o Li=3ms = 1.0F
.g .8
£ s t =40 ms
2] t =40 ms 72
O'SW\ 0.5 ' "Ilmw '
A\ ™)
0.0 0.0¢ ' | ' |
P.‘ “‘ .m“‘ “""" S ‘ I‘\(‘1) N
1 50 100 150 200 250 300 350 400 1 50 100 150 200 250 300 350 400
Unit Number, j Unit Number, j

FIG. 4: (Color online) Space-time contour plots of strairvevaropagation based ¢a) the Multi-bar linkage model angb) the Lumped mass
model. Insets show the magnified view of rarefaction wavesngoral plots of strain waves usiiig) the Multi-bar linkage model an¢tl)
the Lumped mass model. The insef{@) shows the magnified view of the leading edge. The arrows (@)Y2npoint to the rarefaction wave
present in the dynamics.

model. These wavepackets apparently travel maximally with B. Wave speed analysis

the speed of sound in the medium, while the rarefaction pulse

outrunning them is apparently supersonic. We will return to The propagation speed of strain waves is now investigated
this point to corroborate it further by our numerical bifation  nymerically under various amplitudes of impact force. The
analysis in the next section. Additionally, it should beewt \yave speed is approximated as follows

that in the lumped mass model, highly localized structures

with a clear envelope can be discerned (see e.g., the vicin- V. — Nho )

ity of unit number 150 of th&0 ms panel of Fig.J4(d)), which N

seem to have the form of breather excitations, which are e)VvherehO is the initial height of the unit cell, and is the

ﬁonlentiall_y Iocalti_zed i][' Fs.pac4€t;';1nd| periodic inttirJ(El [@"tzfﬂ time span in which the strain wave propagates from the first
closer inspection of Fid.14(b) also seems to sugges init cell to theN-th unit cell (see Fidl5(a)). The propagating

SUCh. coher_en_t wavepackets travgl more slowly than thg (.j'%'vave speeds calculated are depicted in [Hig. 5(b) under three
persive radiation. The multi-bar linkage model also exkibi different initial folding angles®, , = 35°, 45°, and55°. It
. . . A . Y7, - ) 1 .

suc? t:Te'pl.emt).d'C R/?/E?mti’ but the{_e IS no clearts:g;amr is evident that the wave speed is altered by the impact force,

spatia’localization. Vhile tnese noniinéar wave SIESWAre . nien js one of characteristics of nonlinear waves. However

worth investigating, this topic is beyond the scope of tfis p it should be noted that in the compressive regime, the wave

per, and we do not explore them further here. speed decreases as the compressive impact increasess This i
in sharp contrast to conventional nonlinear waves formed in
the system of strain-hardening lattices|[1L9, 20]. A differe
trend is observed in the tensile regime, where the wave speed
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FIG. 5: (Color online)a) Surface map of strain field to calculate wave spgbjlWave speed of strain waves as a function of external force
ranging from—150 N to +150 N. Numerical simulations are based bn= 25 mm, m; = 19.79, N = 20 andky = 1.0 Nm/rad.

increases as the tensile impact increases. It is also notewdnvestigate the existence and dynamical stability of exaict
thy that the wave speed curve can be shifted by changing thefaction waves of the lumped mass model [cf. Edl. (6)]. In
initial folding angle. Therefore, we can control the speéd o particular, we consider the model in the strain variab)e,

the waves propagating through the origami-based metamatefvritten as

als by altering their geometrical configurations, implythgir

inherent dynamical tunability.
Mbj 1 = A{[do + 6;-1,]7 — 2[do + 6;,j41]%F
+ [do + 8014 . 10
IV. EXACT RAREFACTION WAVES OF THE LUM PED [do + 05415421} (10
MASS MODEL

The existence and the spectral stability of traveling wafes
We now turn our attention to a more systematic analysis an&q. {10) with wave speed must be examined through the
understanding of the rarefaction waves in the simpler luinpeansatz; ;1 (t) = §(j — ct) := ®(¢, ), i.e., going to the co-
mass model; notably, our conclusions here in that regaradfare traveling wave frame where the relevant solution appears to
broader interest to previously discussed settings sudioast be steady and hence amenable to a spectral stability analysi
of [18,[23]. Based on the previous analysis, we numericallyThen,® solves the advance-delay differential equation

Dua(€1) = (€, 1) + 20 (€, 1) + ] [do -+ (E 1, 0]~ 20do + B(E O]+ do + B(E+ L)} (AD)

Traveling waves of Eq[{10) correspond to stationary (timecentral difference is connected to the stability calcolatd be
independent) solutionB(¢, ¢) = ¢(€) of Eq. (I1), satisfying  discussed in the Supplemental Material [25]. Using this dis
cretization, Eq.[(112) becomes the following root-findinglpr

A n n lem,
0 = _C2¢££ + M{[do + ¢(§ - 1)]+ -2 [dO + ¢(€)]+
n Pr—2 — 201 + ¢ A n
+ [do+ G+ D)1} (12) 0= == + gp{ldo+ ol
To obtain numerical solutions of Ed._{12), we employ a uni- — 2[do + ¢x]y + [do + drrql’y } (13)
form spatial discretization of consisting ofl points¢ (k =
—=L 1 .0, 5 1) with lattice spacingA¢ chosen such  which is solved via Newton iterations. We employ periodic
thatq = 1/A§ |s an integer. Then, the field(¢) is replaced boundary conditions at the edges of the spatial grid. Wemare i
by its discrete counterpart, i.ef. = (&) = P(EAE). terested specifically in rarefaction waves, and thus wehsse t

The second-order spatial derivative appearing in Eql (12profiles obtained via the numerical simulations of $ec. 11l A
is replaced by a modified central difference approximatiorto initialize the Newton solver, see e.g. arrow (2) of Eigd)}4(
(br—2 — 201 + dri2)/(4AE?). The reason for this choice of Herein, we consider an origami lattice with = 25mm,



ke = 1.0Nm/rad andd = 55°. The corresponding best- V. CONCLUSIONS& FUTURE CHALLENGES

fit values of the parameters of the lumped-mass model are

A = 280N/m", n = 0.53, m = 19.7g with M = 2m and In the present work, we investigated nonlinear wave dy-
dp = 12mm. namics in origami-based metamaterials consisting of mgld

. ) ] ] blocks based on Tachi-Miura polyhedron (TMP) cells. We
_In Fig.[8, numerically exact rarefaction waves (i.e., solu-analyzed the kinematics of the TMP unit cell using a sim-
tions of Eq. [IB) with a prescribed tolerance) are presentegje multi-bar linkage model and found that it exhibits tun-
for various values of the wave speedn particular, Figl6(8)  able strain-softening behavior under compression duesto it
shows the rarefaction waves in terms of the relative straiiz v geometric nonlinearity. We observed that upon impact, this
able ¢/dy, while Fig.[6(b) shows the corresponding relative grigami-based structure supports the formation and prapag
momentay’/do. Note that the tails decay to zero monoton-jon of rarefaction waves. The resulting evolution feasuze
ically, implying that the traveling structure does not leat®  tensjle wavefront despite the application of compressive i
with the linear modes of the system, as the wave is supefact. A further reduction was also offered based on the fitted
sonic. It is not surprising then that our pal’ametl’lc corttinu force_disp|acement formula for a Sing'e Ce”’ in the form of
ation in the wave speed reveals a critical minimum value 3 |ymped mass model. In the latter case we obtained numeri-
Cs = nAdgfl/M = 173.5 m/s, which is the sound speed cally exactrarefaction waves and studied their spectidiban

of the chain (see the vertical dashed-dot gray line offFigl)6( peciglly dynamicgl stability. The dynamical features oled

This is consistent with the long-wavelength analysis of [18 Nerein may constitute a highly useful feature towards the ef
and also with our observations of the previous section ateic ficient mitigation of impact by converting compressive wave
ing that the wave outruns the small amplitude radiatiorstail INt0 rarefaction waves and disintegrating high-amplitirde
behind it. Thus, similarly to systems with > 1 [19, [29] pulses into small-amplitude oscillatory wave patterns. We
the rarefaction waves of the origami lattice are travelaggér ~ @/S0 demonstrated the potential tunability of the wave dpee
than any linear waves of the system. However, in contraspy altering initial folding conditions of the origami-babe

to solitary waves in systems with > 1, the amplitude of ~Structure, which naturally opens up the_ feasibility of coht

the rarefaction waves in the origami system have a naturdind Stress wave propagation in an efficientmanner.
bound determined by the precompressiinof the system, The rather unique nonll_near wave dynar_mcs_, of origami
in which case the particles come out of contact (see the hogtructures can lead to a wide range of applications, such as
izontal dashed black line of Fifl_6]c)). Although waves with tunable wave transmission channels and deployable impact
amplitude exceeding this value are in principle possible, w Mitigating layers for space and other engineering apptinat
were unable to identify any ones such numerically. An inter-On the theoretical/computational side, there is also aelarg
esting open problem would be to prove rigorously if such atumber of intriguing questions that are emerging. For one,
bound exists. Another interesting related problem is iféhe @ more detailed comparison of the coherent structure propa-
is a critical maximum value of. Our numerical continuation 9ation in the multi-bar linkage model vs. that of the lumped-
algorithm did indeed terminate due to lack of convergence af’@ss model would be an interesting topic for further conside

¢ ~ 201.6 m/s, but this could have been a result of the ill- ation. This would help uncover the dynamical features legdi

conditioned nature of the Jacobian matrix as the amplitudd® the apparent weak amplitude decay in the former, while the
approached the critical limit af;. latter contains robust solutions and sustained long-tiropg

gation. Still at the single wave level, an exploration of de¢

The robustness of a solutia#f of Eq. (12) can be inves- icate issues of spectral stability by means of d_iffer_ent (_a[jm
tigated through a spectral stability analysis. To that evel, cal methods andl of the_ corresponding dynamical |mpI!cat|on
substitute the linearization ansab£¢,t) = ¢° + ca(€)e would be of paruc_ular interest. Sgbsequently, undergmyd
into Eq. (11), which yields an eigenvalue problem at ordeffurther the dynamics and interactions of multiple rareta_ct
¢ (see the Supplemental Material [25]). We considered soWave patterns Would_also be a relevant theme fqrfuture inves
lutions at various wave speedsand found in each case at tigations. These topics are currently under active conaide
least one eigenvalue with a small real part, indicating ay(ve tion and will be reported in future publications.
weak) instability. However, the eigenvalues are highlyssen
tive to e.g. lattice size and choice of discretization, ®sigg
that these instabilities may be “spurious”. To check thie, w Acknowledgments
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FIG. 6: (Color online) Summary of numerical results on condtions of rarefaction waves over wave speesith [ = 4001 points and
A¢ = 1/13: (a) Relative strain profiles for various values of the wave spedd)) Relative momenta corresponding to (&) Maximum of
the absolute value of the relative strain variable as a foncif the wave speed. Note that the horizontal dashed biaelcbrresponds to the
value of pre-compression in normalized units (or, equivdyed, in physical units), while the vertical dashed-dot gray lioeresponds to the
value of the speed of sounrd of the medium.
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