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ABSTRACT 15 

Perfluorooctanesulfonic acid (PFOS) is a ubiquitous environmental contaminant, previously 16 

utilized as a non-stick application for consumer products and firefighting foam. It can cross the 17 

placenta, and has been repeatedly associated with increased risk for diabetes in epidemiological 18 

studies. Here, we sought to establish the hazard posed by embryonic PFOS exposures on the 19 

developing pancreas in a model vertebrate embryo, and develop criteria for an adverse outcome 20 

pathway (AOP) framework to study the developmental origins of metabolic dysfunction. 21 

Zebrafish (Danio rerio) embryos were exposed to 16, 32, or 64 µM PFOS beginning at the mid-22 

blastula transition. We assessed embryo health, size, and islet morphology in Tg(insulin-GFP) 23 

embryos at 48, 96 and 168 hpf, and pancreas length in Tg(ptf1a-GFP) embryos at 96 and 168 24 

hpf. QPCR was used to measure gene expression of endocrine and exocrine hormones, digestive 25 

peptides, and transcription factors to determine whether these could be used as a predictive 26 

measure in an AOP. Embryos exposed to PFOS showed anomalous islet morphology and 27 

decreased islet size and pancreas length in a U-shaped dose-response curve, which resemble 28 

congenital defects associated with increased risk for diabetes in humans. Expression of genes 29 

encoding islet hormones and exocrine digestive peptides followed a similar pattern, as did total 30 

larval growth. Our results demonstrate that embryonic PFOS exposures can disrupt pancreatic 31 

organogenesis in ways that mimic human congenital defects known to predispose individuals to 32 

diabetes; however, future study of the association between these defects and metabolic 33 

dysfunction are needed to establish an improved AOP framework. 34 

 35 

Keywords: pancreas development, insulin, islets, β cells, embryo, exocrine pancreas 36 

 37 

Capsule: Aberrant pancreas development is a novel hazard of embryonic PFOS exposures  38 



 39 

Highlights: 40 

• Developmental PFOS exposures decreased the size of beta cell mass in the primary Islet of 41 
Langerhans in the zebrafish embryo. 42 

• PFOS exposures increased the incidence of islet malformations and shortened pancreas length, 43 
which recapitulate congenital defects known to increase risk for diabetes in humans.  44 

• Abnormal pancreas development is a previously unidentified hazard of developmental PFOS 45 
exposures. 46 

 47 

 48 

 49 

  50 



INTRODUCTION 51 

The global prevalence of diabetes has been rapidly increasing in recent decades (National 52 

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 2014). Both Type 1 and Type 53 

2 diabetes manifest as hyperglycemia related to reduced beta cell mass, either due to 54 

autoimmune destruction of the insulin-producing beta cells in Type 1, or insulin resistance with 55 

loss of beta cell mass in Type 2 diabetes. Recent studies have demonstrated that chemical 56 

exposures are capable of reducing beta cell mass. However, the consequences of developmental 57 

exposures on the rapidly growing and maturing islets require identification.  58 

While genetic sources of metabolic dysregulation are known to contribute to diabetic 59 

etiology in the adult, there is a growing body of evidence supporting the link between 60 

developmental environmental exposures and occurrence of diabetes later in life (Inadera, 2013; 61 

Simmons, 2006; Simmons, 2007). Numerous studies have investigated how physiological and 62 

pharmacological conditions influence beta cell health in adolescents and adults; however, very 63 

little is known about how these conditions may impact the sensitive developing pancreas, and 64 

whether these developmental consequences may manifest as metabolic dysfunction in adulthood. 65 

These gaps in our knowledge warrant investigation to produce a robust, predictive adverse 66 

outcome pathway (AOP) to study the developmental origins of diabetes and metabolic disease. 67 

Islet architecture plays an important role in the governance of islet physiology and 68 

endocrinology, and variant morphologies can be observed concurrent with diabetic phenotypes 69 

and hyperglycemia (Bosco et al., 2010; Cabrera et al., 2006; Kilimnik et al., 2011; Kim et al., 70 

2009). An increased risk of metabolic disease and pancreatitis has been associated with four 71 

congenital pancreatic malformations found in the human population: pancreas divisum, ectopic 72 

pancreatic tissue, dorsal pancreatic agenesis, and annular pancreas. Pancreas divisum and ectopic 73 



pancreatic tissue are predicted to occur in approximately 10% of the population (Prasad et al., 74 

2001; Varshney and Johnson, 1999; Vaughn et al., 1998), while the other two anomalies are 75 

considered rare. Unlike most congenital defects which manifest as life-threatening or debilitating 76 

conditions, these pancreatic defects result in largely mild phenotypic outcomes and thus often go 77 

undetected, although they have been associated with increased risk for diabetes and pancreatitis 78 

in adulthood (Balakrishnan et al., 2006; Concepcion et al., 2014; Gentile and Fiorente, 1999; 79 

Gilinsky et al., 1987; Lindstrom et al., 1990; Mitchell et al., 2004; Shoji et al., 2013). The causes 80 

of these malformations are largely unknown, but do not appear to be genetic in nature. This 81 

suggests that these congenital pancreatic defects occur in response to environmental stimuli. 82 

Pancreas development is difficult to observe during embryonic development in 83 

mammalian models, as it requires highly invasive procedures. Building upon an understanding of 84 

highly conserved vertebrate developmental processes, the zebrafish embryo is a well-established 85 

model for studying pancreas development (reviewed in (Kinkel and Prince, 2009; Tiso et al., 86 

2009)). Because zebrafish embryos are transparent and fertilized externally, this allows for direct 87 

visualization of developing pancreas structures throughout the developmental timecourse. 88 

Both the endocrine and exocrine pancreas can be easily visualized during organogenesis 89 

using transgenic zebrafish models (Tiso et al., 2009). The pancreas is formed from two anlages 90 

that emerge from the endoderm and fuse together and extend dorsally during organogenesis. The 91 

endocrine pancreas houses the islets of Langerhans, which largely consist of the insulin-92 

producing beta cells, but also include other cell types that secrete hormones that regulate nutrient 93 

metabolism and comprise the glucose homeostasis feedback system. These include alpha cells 94 

that produce glucagon, delta cells that produce somatostatin, epsilon cells that produce ghrelin, 95 

and gamma cells (also called pancreatic polypeptide cells) that produce pancreatic polypeptide. 96 



The islets are embedded in the exocrine pancreas tissue, which functions to produce digestive 97 

enzymes that drain into ducts feeding into the duodenum. Transgenic zebrafish, such as those 98 

engineered to express fluorescent proteins in beta cells (Tg(ins:GFP)) and in the exocrine 99 

pancreas tissue (Tg(ptf1a:GFP)) (diIorio et al., 2002; Lin et al., 2004), present a unique 100 

opportunity to study the effects of toxicant exposures on this sensitive target tissue in a live 101 

vertebrate embryo in real time, and determine the relationship between toxicant exposures and 102 

pancreatic defects.   103 

One anthropogenic contaminant that might contribute to pancreatic malformations is 104 

perfluorooctanesulfonic acid (PFOS), which has been repeatedly associated with metabolic 105 

dysfunction. PFOS is a surfactant previously found in non-stick application products, such as 106 

Teflon and Scotchgard, until it was phased out of production in the United States in 2002. It is 107 

highly persistent in the environment and in the body, with a half-life of approximately 5 years in 108 

human serum (Olsen et al., 2007), though estimated to be roughly 12 days in the blood of 109 

rainbow trout (Martin et al., 2003). Humans are almost ubiquitously exposed to PFOS, which has 110 

been detected in >98% of human serum samples (Calafat et al., 2007) and also found in human 111 

pancreas tissue (Maestri et al., 2006). Detection in both cord blood and amniotic fluid samples 112 

demonstrates that PFOS can also cross the placental barrier, indicating an exposure risk to the 113 

developing fetus (Inoue et al., 2004; Toft et al., 2016). Numerous studies have  associated PFOS 114 

exposures with markers for metabolic syndrome and diabetes, such as elevated insulin and 115 

cholesterol, insulin resistance, and altered beta cell function (Lin et al., 2009; Lv et al., 2013; 116 

Nelson et al., 2010; Wan et al., 2014). However, the pathological consequences of PFOS 117 

exposure for the fetal pancreas, as well as the underlying mechanism of PFOS-induced metabolic 118 

dysfunction, remain unknown. 119 



Our study objective was to identify whether embryonic exposure to PFOS may alter the 120 

structure and function of the developing pancreas.  We hypothesized that embryonic PFOS 121 

exposures would reduce β cell mass and disrupt the glucoregulatory axis. Here, we utilize the 122 

zebrafish embryo model to visualize malformations of the developing pancreas, and develop 123 

criteria for use in an AOP to interrogate the developmental origins of metabolic dysfunction.  124 

 125 

MATERIALS & METHODS 126 

CHEMICALS 127 

Heptadecafluorooctanesulfonic acid (PFOS) was purchased from Sigma-Aldrich (St. 128 

Louis, MO). Dimethyl sulfoxide (DMSO) was purchased from Fisher Scientific (Pittsburgh, PA). 129 

Stock solutions [160-640 mM] for embryo exposures were prepared by dissolving PFOS into 130 

DMSO, and stored at room temperature in glass bottles inside of light-prohibitive containers 131 

until use. All experimental procedures involving PFOS were performed using appropriate safety 132 

precautions.  133 

 134 

ANIMALS AND HUSBANDRY 135 

 Transgenic zebrafish of the Tg(ins:GFP) (diIorio et al., 2002) and Tg(ptf1a:GFP) strains 136 

were each obtained as a heterozygous population from Dr. Philip diIorio at the University of 137 

Massachusetts Medical School (Worchester, MA) and bred in house to homozygosity. The 138 

Tg(ins-GFP) strain expresses green fluorescence in the insulin-producing beta cells, allowing for 139 

visualization of pancreatic islets. The Tg(ptf1a:GFP) strain expresses green fluorescence in the 140 

exocrine pancreas tissues, and also in the retina and parts of the brain (Godinho et al., 2005; Lin 141 

et al., 2004). 142 



 Adult fish were housed in an Aquaneering zebrafish system maintained at 28.5°C in 143 

accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals 144 

of the National Institutes of Health and with approval from the University of Massachusetts 145 

Amherst Institutional Animal Care and Use Committee (Animal Welfare Assurance Number 146 

A3551-01). Fish were maintained on a 14 h light:10 h dark daily cycle, and provided the 147 

recommended amount of GEMMA Micro 300 (Skretting; Westbrook, ME) once daily. Breeding 148 

populations were housed in tanks containing roughly 15 males and 30 females.  149 

 Embryos were collected from breeding tanks 0-1 hour post fertilization (hpf), washed, 150 

and housed with no more than 25 other embryos in glass 100 mm petri dishes containing 0.3X 151 

Danieau’s medium (17 mM NaCl, 2 mM KCl, 0.12mM MgSO4, 1.8mM Ca(NO3)2, 1.5mM 152 

HEPES, pH 7.6) throughout the experiments.  153 

 154 

EXPOSURES 155 

 At 3 hours post fertilization (hpf), embryos staged at the mid-blastula transition were 156 

exposed to PFOS solutions with a total of 0.01% DMSO v/v in a total of 20 ml of 0.3X 157 

Danieau’s medium. Final concentrations of PFOS were 0 (DMSO control), 16, 32, or 64 µM, 158 

and were refreshed daily to mimic subchronic developmental exposures. These concentrations 159 

were chosen based upon exposures used in other zebrafish studies (Chen et al., 2014; Wang et 160 

al., 2011; Zheng et al., 2011), and to optimize islet effects while minimizing effects on gross 161 

anatomy and embryo survival. All embryos were manually dechorionated using watchmaker’s 162 

forceps at 24 hpf and debris removed from dishes prior to refreshing exposures. Experiments 163 

were replicated 3-4 times on groups of 8-12 embryos per concentration. 164 



 165 

MICROSCOPY 166 

 Tg(ins-GFP) embryos and larvae were imaged at 48, 96, and 168 hpf to observe 167 

morphogenesis of the primary islet, and later formation of the secondary islets. Tg(ptf1a-GFP) 168 

larvae were imaged at 96 and 168 hpf to observe the extension of the exocrine pancreas, 169 

indicative of total pancreas length. All imaging was performed using an inverted fluorescence 170 

microscope (EVOS FL Auto, Life Technologies, Pittsburgh, PA) equipped with a GFP filter. 171 

Embryos and larvae were washed thoroughly and briefly anaesthetized in 2% v/v MS-222 172 

solution (prepared as 4 mg/ml tricaine powder in water, pH buffered, and stored at -20°C until 173 

use). Embryos and larvae were mounted in drops of 3% methylcellulose for imaging, and 174 

oriented for optimal pancreas visualization. Images were acquired using 10X and 20X objectives 175 

for magnification of islets, and 4X magnification for exocrine pancreas visualization. Because 176 

images were obtained on an inverted microscope, images presented in figures have been mirror-177 

flipped to reflect the actual orientation. 178 

 179 

RNA ISOLATION AND REVERSE TRANSCRIPTION 180 

RNA was collected from embryos at 48 hpf and 96 hpf for targeted examination of 181 

pancreas-relevant gene expression. Embryos were collected into RNAlater (Fisher Scientific) 182 

and stored at -80°F until RNA isolation. At 48 hpf, 8-10 embryos were pooled per sample for a 183 

total of 6-9 samples per exposure group; at 96 hpf, 5-7 eleutheroembryos were pooled per sample 184 

for a total of 4-5 samples per exposure group. Eleutheroembryos are those that have hatched, but 185 

are not yet independently feeding and are still dependent on their yolk for nutrition. 186 



Samples were processed with the GeneJET RNA Purification Kit (Fisher Scientific; 187 

Waltham, MA) according to manufacturer instructions. RNA concentrations were determined 188 

using a BioDrop µLITE spectrophotometer (BioDrop; Cambridge, UK). For 48 hpf samples, 500 189 

ng RNA underwent reverse transcription for cDNA conversion using the iScript cDNA Synthesis 190 

Kit (Bio-Rad). For 96 hpf samples, 1 µg of RNA was reverse transcribed into cDNA. Upon 191 

completion, cDNA was stored at -20°C until use. 192 

 193 

QUANTITATIVE PCR 194 

 Prior to qPCR, cDNA was diluted to a working stock of 0.25 ng/µl for use in reactions. 195 

Quantitative PCR was performed using a Bio-Rad CFX Connect Real-Time PCR Detection 196 

System in a 20 µl reaction mixture containing 10 µl 2x iQ SYBR Green Supermix (Bio-Rad), 5 197 

pM of each primer, 5 µl water, and 1 ng (4 µl) of cDNA template. Primers used in this study 198 

have been previously published (Timme-Laragy et al., 2015). Previously designed and optimized 199 

primers for β-actin (actb), beta-2-macroglobulin (b2m), and preproinsulin a (insa) are provided 200 

in Supplementary Table 1. Endocrine pancreas gene expression was investigated at 48 and 96 201 

hpf using commercially available PrimePCR primers (Bio-Rad) for pancreatic and duodenal 202 

homeobox 1 (pdx1), somatostatin 2 (sst2), glucagon a (gcga), and ghrelin (ghrl). Exocrine 203 

pancreas gene expression was examined at 96 hpf using PrimePCR primers for pancreas specific 204 

transcription factor 1a (ptf1a), trypsin (try), chymotrypsinogen B1 (ctrb1), and pancreatic 205 

amylase 2a (amy2a). Data was visualized and analyzed using the Bio-Rad CFX Manager 206 

software, and fold-changes were calculated using the ΔΔCT method (Livak and Schmittgen, 207 

2001). Treatment did not significantly affect the expression the housekeeping genes, actb or 208 

b2m, and all fold changes were standardized relative to actb expression. 209 



 210 

STATISTICAL ANALYSIS 211 

 All data is presented as the mean ± SEM. Independent t-tests and ANOVAs were used to 212 

test for statistical significance using IBM SPSS software. Fisher’s Exact Test was used to test for 213 

significant differences in the prevalence of secondary islets and islet morphological variants. A 214 

confidence level of 95% (α=0.05) was used. 215 

 216 

RESULTS 217 

ISLET SIZE 218 
 Diabetic phenotypes are often characterized by decreased beta cell mass [reviewed in 219 

(Akirav et al., 2008; Karaca et al., 2009; Matveyenko and Butler, 2008)]. To assess whether 220 

PFOS exposures could reduce beta cell mass during development, we measured area of the beta 221 

cells labeled with GFP driven by the insulin promoter. Primary islet size was quantified for 222 

embryos at 48 hpf and eleutheroembryos at 96 hpf, a time point previously shown to be sensitive 223 

to toxicological perturbation of pancreatic organogenesis (Timme-Laragy et al., 2015). At 48 224 

hpf, islet area decreased following a non-monotonic response (Fig. 1). A decrease of islet area 225 

was observed for 16 and 32 µM PFOS exposures compared to controls, though there was a 226 

moderate attenuation of this effect at the highest concentration of 64 µM (p<0.01, p=0.03, and 227 

p=0.04, respectively). For islet size in 96 hpf eleutheroembryos, a similar non-monotonic, U-228 

shaped response was observed. As at the earlier developmental stage, the most severe decrease of 229 

islet area was observed in the eleutheroembryos exposed to 32 µM PFOS (p<0.01).  230 

 231 



ISLET MORPHOLOGY 232 
 To observe whether PFOS exposures could produce anomalous islet morphology in 233 

addition to decreased islet areas, embryos and larvae were examined for morphological variants 234 

of the primary islet at 48, 96, and 168 hpf. Normally, islets are spherical, compact, and located 235 

near the 4th somite after 24 hpf. We previously identified several examples of anomalous islet 236 

morphology from toxicological perturbation with PCB-126, including islet fragmentation, 237 

ectopic beta cells, and hypomorphic islets (Timme-Laragy et al., 2015). Here, we also observed 238 

these morphologies as well as several newly identified variants due to PFOS exposures. The 239 

prevalence of total islet malformations was elevated in embryos and larvae at all time points for 240 

all PFOS exposure concentrations respective to controls (Fig. 2A). The distribution of 241 

morphologies was also time sensitive (Fig. 2B). At 48 hpf, 16, 32, and 64 µM PFOS significantly 242 

increased the incidence of anomalous morphologies (p=0.05, p<0.01, and p<0.01, respectively), 243 

primarily due to an increased number of stunted islets, which appear as a thin row of beta cells 244 

rather than a spherical mass. At 96 hpf, the frequency of total islet variants more than doubled 245 

for all PFOS exposures due to increased incidence of islets that appeared hollow/ring-shaped or 246 

fragmented, though these changes were not statistically significant (p>0.05). At 168 hpf, PFOS 247 

increased islet variant frequency for 16 (p>0.05), and especially 32 and 64 µM exposures 248 

(p=0.01 and p=0.04), and hollow islet morphology was the most commonly observed variant. 249 

 250 

SECONDARY ISLETS 251 
The mature pancreas has many secondary islets throughout the length of its entire tissue, 252 

which begin to appear in zebrafish between 5-7 dpf. The number of secondary islets in the 253 

pancreas and timing of their development can be sensitive to pharmacological stimuli (Wang et 254 

al., 2015). To assess whether PFOS alters the timing of secondary islet formation, the number of 255 



larvae with secondary islets was quantified for all PFOS exposures (Fig. 3). Approximately 40% 256 

of control larvae developed at least one secondary islet at 168 hpf. Compared to controls, the 257 

number of PFOS-exposed larvae with secondary islets decreased following the same U-shaped, 258 

non-monotonic response as observed with islet area. Larvae exposed to 32 µM were more than 259 

59% less likely to have begun developing secondary islets than controls (p=0.04), though there 260 

were no significant differences between controls and 16 or 64 µM PFOS exposed larvae.  261 

FISH GROWTH 262 
Endocrine disruption is often coupled with perturbations in developmental growth and 263 

metabolic programming. Therefore, fish length at 168 hpf was measured to determine whether 264 

the concentrations of PFOS exposure used in this study altered the overall growth of the embryos 265 

and larvae (Fig. S1). Total fish length was unchanged in larvae exposed to 16 µM PFOS. Larvae 266 

exposed to 32 µM (p=0.07) and 64 µM PFOS were 2% (p<0.01) and 1.5% (p=0.07) smaller, 267 

respectively. We observed no mortality. Because several other studies examined embryotoxicity 268 

of PFOS in zebrafish and observed increased incidence of delayed swim bladder inflation and 269 

spinal lordosis, we assessed these outcomes at 96 and 168 hpf respectively (Supplemental Table 270 

2). There was a slight decrease in the percent of eleutheroembryos with inflated swim bladders at 271 

96 hpf and an increase in the number of eleutheroembryos with lordosis at 168 hpf, though none 272 

of these differences were statistically significant. 273 

 274 
PANCREAS LENGTH 275 

The pancreas is predominantly composed of exocrine tissue, which lengthens in the 276 

posterior direction between 48-96 hpf during zebrafish development. Though primary islets form 277 

in the region proximal to the gut (pancreas head), greater concentrations of secondary islets 278 

develop throughout the distal body and tail regions of the pancreas once exocrine extension has 279 



completed (Elayat et al., 1995; Wang et al., 2013; Wittingen and Frey, 1974). Pancreas length 280 

has been inversely associated with incidence of diabetes in adulthood (Agabi and Akhigbe, 281 

2016), likely due to the shortening of the islet-dense regions. Here, we wanted to observe 282 

whether these shortened pancreases could be observed during development and whether 283 

toxicological perturbation may contribute to this phenotype. Pancreas extension was observed at 284 

96 and 168 hpf, and the length from the center of the primary islet to the posterior tip of the 285 

exocrine pancreas was measured in ptf1a transgenic fish (Fig. 4A). Pancreas length was 286 

decreased by 7-20% at 96 hpf and by 1-7% at 168 hpf, both following the characteristic U-287 

shaped non-monotonic dose-response curve observed in our other measures (Fig. 4B). Pancreas 288 

length was significantly decreased in 96 hpf eleutheroembryos exposed to 32 and 64 µM PFOS, 289 

with the greatest decrease occurring with exposure to 32 µM (p=0.01 and p=0.04, respectively). 290 

At 168 hpf, only larvae exposed to 32 µM PFOS showed significant reduction of pancreas length 291 

compared to controls compared to controls (p=0.04). The relative pancreas length was calculated 292 

for each fish (pancreas length/fish length) to identify any associations between pancreas and total 293 

body growth (Fig. S2). There were no significant changes in relative pancreas length due to 294 

PFOS exposures, though there was a subtle, linear, dose-dependent decrease. 295 

 296 

 297 

ENDOCRINE GENE EXPRESSION 298 
Because PFOS produced structural changes of the developing pancreas in our embryos 299 

and larvae, gene expression of endocrine pancreatic hormones and transcription factors was 300 

quantified to observe whether any functional changes were produced by PFOS exposures. Here, 301 

we quantified gene expression of several major hormones and endocrine transcription factors. 302 



Insulin (Insa) is secreted by beta cells and stimulates the uptake of glucose from the blood into 303 

tissues. Glucagon a (Gcga), the hormone stimulating breakdown of glucose stores into free 304 

glucose, is secreted from islet alpha cells and often has an inverse relationship with insulin. 305 

Somatostatin 2 (Sst2) belongs to a family of genes with a myriad of endocrinology roles, 306 

including inhibition of insa expression, and is secreted from delta cells. Ghrelin (Ghrl), also an 307 

inhibitor of insa expression, is produced in hunger conditions by the islet epsilon cells and 308 

functions to counteract the action of the anorexic hormone leptin (produced by fat cells) in the 309 

brain. Pancreatic and duodenal homeobox 1 (Pdx1) is an endocrine pancreas-specific 310 

transcription factor that governs the expression of glucoregulatory genes, including insa. 311 

Together, these hormones and factors help govern endocrine function and glucose homeostasis 312 

for the entire organism. 313 

Exposure to PFOS disrupted expression of genes which govern the glucoregulatory 314 

hormone axis in islet cells. At 48 hpf, islet sizes and insa expression were not concordant, since 315 

gene expression was unchanged by treatment. However, at 96 hpf, eleutheroembryos exposed to 316 

32 and 64 µM PFOS had reduced insa expression compared to controls at 96 hpf (p<0.01 and 317 

p=0.05, respectively), which was concordant with islet size data (Fig. 5A). Expression of gcga 318 

was relatively stable at both 48 and 96 hpf (Fig. 5B), but exposure to 64 µM PFOS nearly 319 

doubled expression (p=0.01) at 96 hpf. Expression of transcription factor pdx1 also nearly 320 

doubled following 64 µM PFOS exposure in 96 hpf eleutheroembryos (p<0.01) compared to 321 

controls (Fig. 5C), and was also significantly decreased by 32 µM PFOS exposure in 48 hpf 322 

embryos (p=0.04).  323 

Expression of sst2 was decreased by more than 20% in 48 hpf embryos exposed to 32 324 

µM PFOS (p=0.05; Fig. 5D). All PFOS exposures significantly decreased sst2 expression in 96 325 



hpf eleutheroembryos compared to controls (p<0.01 for all concentrations), and followed a non-326 

monotonic U-shaped response curve. Ghrelin expression was sensitive to PFOS exposures at 327 

both 48 and 96 hpf (Fig. 5E). Exposures of 16, 32, or 64 µM PFOS significantly decreased ghrl 328 

expression in embryos by nearly 50% (p=0.03, p<0.01 and p<0.01, respectively). This same 329 

response was observed at 96 hpf, with the 16 and 64 µM exposures halving ghrl expression 330 

(p<0.01) and the 32 µM exposure decreasing expression by over 70% (p<0.01). 331 

 332 

EXOCRINE GENE EXPRESSION 333 
 Both the endocrine and exocrine pancreas play important roles in glucose homeostasis, 334 

either through the secretion of glucoregulatory hormones into the vasculature or of digestive 335 

peptides. Since pancreas length was shortened, as quantified by measuring the length of the 336 

exocrine pancreas, we wanted to assess whether these structural changes co-occurred with gene 337 

expression alterations that may be crucial for exocrine pancreas development and function. 338 

Likewise, this would allow us to examine whether the effects of PFOS are specific to only the 339 

endocrine pancreas. Expression of these genes was only characterized at 96 hpf, due to the lack 340 

of exocrine architecture in the embryonic pancreas at 48 hpf. First, expression of transcription 341 

factor ptf1a was assessed to determine whether the altered exocrine pancreas structure, as 342 

visualized by using the Tg(ptf1a-GFP) transgenic line, is correlated with ptf1a gene expression 343 

(Fig. 6A). While an increasing trend was observed, there was no significant change in ptf1a 344 

expression.  345 

We also measured expression of several digestive enzymes synthesized in the exocrine 346 

pancreas. The dose-dependent expression profiles of the proteases trypsin (try, Fig. 6B) and 347 

chymotrypsinogen B1 (ctrb1, Fig. 6C) were similar. Expression of try decreased at the 16 µM 348 

(p=0.06) and 32 µM concentrations, though was only statistically significant for the 32 µM 349 



concentration (p<0.01). Expression of ctrb1 was significantly decreased at both the 16 and 32 350 

µM PFOS concentrations (p=0.02 and p=0.01, respectively). For both proteases, the effect was 351 

attenuated for the 64 µM treated eleutheroembryos. We also examined the expression of the 352 

carbohydrate digestive enzyme amy2a, the form of amylase produced by the exocrine pancreas 353 

(Fig. 6D). Expression of amy2a was also decreased by both the 16 µM (p=0.06) and 32 µM 354 

PFOS exposures, though only significantly for the 32 µM concentration (p<0.01). Also similar to 355 

the other proteases, this effect was attenuated in the embryos exposed to 64 µM. 356 

 357 

DISCUSSION 358 

Incidence of diabetes and metabolic syndrome, especially among children, has been 359 

rapidly increasing in the United States, presenting an emerging public health and economic crisis 360 

(D’Adamo and Caprio, 2011; Dabelea et al., 2014; Li et al., 2009; Silverstein et al., 2005). 361 

Though genetics and lifestyle are well known to increase risk for these disorders, the 362 

contribution of the chemical environment is not well understood. To better understand the 363 

contributions of environmental toxicant exposures to the developmental origins of diabetes, we 364 

investigated the health consequences of PFOS on organogenesis of the pancreas, an organ central 365 

to digestive function and glucoregulation. We also propose new developmental criteria to 366 

contribute to an AOP framework for the developmental origins of metabolic dysfunction using 367 

the zebrafish model. Pancreatic organogenesis is a highly conserved process across vertebrates; 368 

zebrafish are an ideal model for these studies due to the rapid development of transparent 369 

embryos and availability of transgenic models which enable in vivo observation of the 370 

developing pancreas in real time. Thus, we are able to quantify the effect of contaminants 371 



directly in the pancreas of living vertebrate embryos. In this study, we investigated whether 372 

embryonic exposure to the ubiquitous contaminant PFOS may disrupt pancreas development.  373 

We observed increased incidence of hypomorphic and defective islets in PFOS-exposed 374 

embryos and larvae compared to controls (Figs. 1 and 2). Since islet size and architecture have 375 

been associated with both Type 1 and Type 2 diabetes, this data suggests that developmental 376 

PFOS could increase risk for diabetes later in life. These observed morphologies, coupled with a 377 

matching dose-response for hormone gene expression, suggest that the acute effects of PFOS 378 

exposures during early development are likely to result in insulin deficiency. In this study, 379 

Tg(ins:gfp) zebrafish were used to visualize islet architecture, specifically beta cells. We 380 

observed altered size and morphology, but we cannot attribute this decrease to fewer beta cells. 381 

In future work we will quantify whether the perturbations observed in this study translate to 382 

decreased numbers of beta cells and/or impact the architecture, or influence other islet cell types 383 

such as alpha cells. 384 

With respect to the endocrine pancreas, we observed a similar dose response for many of 385 

our morphological and gene expression endpoints. The high degree of concordance between 386 

these endpoints suggests that pancreas morphologies and hormones might be predictive of each 387 

other during embryonic development. If so, these measures could be utilized in an AOP 388 

framework for understanding embryonic contributions to diabetes. Further, exocrine pancreas 389 

endpoints such as pancreas length and digestive peptide expression also followed a U-shaped 390 

dose-response when exposed to the same PFOS concentrations. This also suggests that 391 

developmentally susceptible windows of the endocrine and exocrine pancreas tissues may be 392 

similar. 393 



Expression of insa was intially lowered by PFOS exposures, but attenuated by the highest 394 

concentration (Fig. 5). This attenuation was complemented by nearly doubled expression of pdx1 395 

and gcga at 96 hpf. These data suggest that this increased pdx1 expression might directly 396 

increase the expression of insa and gcga since pdx1 serves as a transcription factor for the two 397 

hormones. It is possible that this increase of pdx1 expression causes the attenuation of islet 398 

effects at the highest PFOS concentration for all of the islet morphology and gene expression 399 

data, and future study of causality is necessary. The mechanism by which pdx1 is induced by 400 

PFOS exposure warrants further research, though it has been shown to be sensitive to oxidative 401 

stress (Harmon et al., 2005; Hoarau et al., 2014; Kaneto et al., 1999). PFOS has been repeatedly 402 

demonstrated to induce oxidative stress across a variety of tissues and model organisms, 403 

including the zebrafish embryo (Chen et al., 2012; Hu et al., 2005; Liu et al., 2007; Shi and 404 

Zhou, 2010). More work is required to explore the mechanisms by which oxidative stress may 405 

influence these signaling pathways. 406 

PFOS exposures increased the incidence of variant islets throughout development. 407 

Exposures produced the greatest percentage of islet variants at 48 hpf, and these percentages 408 

decreased until 7 dpf (Fig. 2). The decreasing percentage of islet variants suggests that either 409 

these morphologies are not completely persistent or that compensation may occur. In particular, 410 

the zebrafish has a greater regenerative capacity compared to humans. In this study, we utilized a 411 

repeated daily PFOS exposure in order to minimize regenerative time and more closely mimic a 412 

constant exposure produced by the human in utero environment. The incidence of variants 413 

observed in the same population decreased between 2-7 dpf by 50-80%. Juvenile and adult 414 

zebrafish could be used to study the resilience and sensitivity of beta cells during specific 415 

windows of the lifecourse. 416 



We have identified specific morphological islet variants during development. Because 417 

pancreatic malformations have been associated with increased risk for diabetes, understanding 418 

the causes and consequences of these anomalies could help us to improve and expand an AOP 419 

for developmental contributions to diabetes and other pancreatic diseases (Balakrishnan et al., 420 

2006; Concepcion et al., 2014; Gentile and Fiorente, 1999; Gilinsky et al., 1987; Lindstrom et 421 

al., 1990; Mitchell et al., 2004; Shoji et al., 2013). The prevalence of these morphological 422 

variants within the control group suggests that there is some innate variability in these 423 

developmental processes regardless of exposures, as we have recently shown (Sant et al., 2016). 424 

The background prevalence of these variants in our controls of 3-8% falls within the estimated 425 

background rate for humans based upon clinical data (Prasad et al., 2001; Varshney and Johnson, 426 

1999; Vaughn et al., 1998). The variants observed in this study appear to be morphologically 427 

congruent to developmental anomalies observed in humans, suggesting that the zebrafish may be 428 

an appropriate model organism for studying and understanding human congenital pancreatic 429 

defects.  430 

We have shown that PFOS exposures during organogenesis may alter the length of the 431 

pancreas (Fig. 4), a measure associated with diabetic phenotypes in humans. To our knowledge, 432 

this is the first study to causally link embryonic exposures with congenitally shortened pancreas. 433 

Because the majority of islets are eventually concentrated in the distal body and tail regions of 434 

the pancreas, it is possible that a shortened pancreas could reduce the number of total islets due 435 

to loss of habitable area. Dorsal pancreatic agenesis, the partial or complete lack of a pancreatic 436 

tail, is uncommon, but rarely diagnosed due to the mild phenotypic consequences. The zebrafish 437 

provides an excellent model to test for the relationship between pancreas length and metabolic 438 

dysfunction, as the pancreas can be easily imaged in the living organism. Because of the novelty 439 



of this finding, more work is necessary to understand the types of compounds that could affect 440 

pancreas length, and the mechanisms by which they may act. 441 

In this study, pancreas length was observed using ptf1a transgenic zebrafish, where green 442 

fluorescence is present throughout their exocrine pancreas. To validate these findings, we also 443 

analyzed ptf1a gene expression. Unexpectedly, ptf1a expression was not significantly changed 444 

and did not follow the same U-shaped response observed for pancreas length. Instead, there is an 445 

increasing trend for ptf1a gene expression (Fig. 6). Though this data did not confirm the exocrine 446 

pancreas length dose-response, ptf1a is not a pancreas-restricted transcription factor, and isan 447 

important transcription factor in the central nervous system (Aldinger and Elsen, 2008; Kani et 448 

al.; Pashos et al., 2013; Sellick et al., 2004). The hindbrain expression of ptf1a was visible in our 449 

embryo model (Fig. 4A). Because gene expression was quantified using whole embryos instead 450 

of pancreas tissue alone, the contribution of these other tissues may be confounding this data and 451 

therefore, ptf1a may not be a good candidate for an AOP framework. 452 

Though the pancreas length decreased, we also characterized gene expression of several 453 

digestive enzymes to better understand whether the observed exocrine pancreas structure was 454 

associated with altered exocrine function. Expression of proteases try and ctrb1 as well as of the 455 

glycolytic enzyme amy2a was decreased by 16 and 32 µM PFOS exposures; however, this effect 456 

was attenuated by 64 µM PFOS exposure (Fig. 6). Though this dose-response does follow along 457 

with pancreas length, it was interesting that the high-dose PFOS exposure was unable to produce 458 

the structural and expression changes observed at lower concentrations. Further work should 459 

investigate whether PFOS alters the uptake, distribution, and utilization of nutrients during 460 

organogenesis, since these factors have been implicated in the developmental origins of diseases 461 

such as diabetes. 462 



This work provides several developmental outcomes of PFOS exposure in the pancreas. 463 

However, the contributions of these pancreatic variants to overall developmental progress and 464 

growth remain unknown. Here, a modest decrease of total larval length was measured due to 465 

PFOS exposure. Though a 2% decrease of fish length is a mild phenotypic change, it is not 466 

insignificant. In the United States, there is only a modest 4-6% difference in fetal length between 467 

the median infant length and fetuses small for gestational age, defined as the lowest 10th 468 

percentile for fetal growth (Fenton and Kim, 2013). A longitudinal study should be performed to 469 

observe whether these pancreas morphologies and physiological consequences persist beyond 470 

early developmental stages, or whether juvenile or adult fish are able to “catch up” and correct 471 

for previous deficiencies. It is important to identify whether these developmental consequences 472 

will ultimately manifest as metabolic dysfunction throughout the lifecourse in order to better 473 

define prenatal parameters for interrogation in a developmental origins of diabetes AOP.  474 

There are many gaps in our understanding of an AOP for the development of diabetes 475 

produced by early life exposures. Numerous studies have examined epidemiological associations 476 

between developmental exposures and metabolic dysfunction, or the pathological consequences 477 

of toxicant exposures on adult beta cells. However, pancreas teratogenesis has rarely been 478 

studied, but may provide a link between the embryonic biochemical and molecular changes and 479 

the pathological outcomes later in life. In this study, we have addressed several of these gaps by 480 

elucidating changes in gene expression and signaling, as well as structural anomalies in the 481 

embryonic pancreas (Fig. 7, shown in bold). Future studies will further investigate the 482 

mechanistic basis of these structural changes, and how they manifest as metabolic dysfunction 483 

throughout the lifecourse. 484 

 485 



CONCLUSION 486 
 In conclusion, we have identified specific morphological and likely functional 487 

consequences of PFOS-induced perturbation of pancreatic organogenesis in both endocrine and 488 

exocrine tissues for the purpose of expanding and improving an AOP. This work establishes a 489 

foundation for future toxicology studies of the developing pancreas. We seek to establish a 490 

predictive AOP framework for understanding the embryonic contributions to diabetes risk 491 

through studying the mechanisms by which these morphological consequences may increase risk 492 

for diabetes later in the lifecourse. In the future, we will continue to pursue the coordinated 493 

characterization of the pancreatic biochemical, molecular, and morphological consequences of 494 

toxicological perturbations during these newly identified key windows of developmental 495 

susceptibility.  496 

 497 
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FIGURE CAPTIONS 700 

Fig 1. PFOS decreases islet area at 48 and 96 hpf. Islet area was measured in Tg(insulin-GFP) 701 

embryos using EVOS software. Islet area was decreased along a U-shaped curve. Asterisks (*) 702 

indicate a difference between designated treatment group and the controls (p<0.05); n=30-45 703 

embryos at 48 hpf; n=20-25 eleutheroembryos at 96 hpf 704 

 705 

Fig 2. PFOS exposure increases the frequency of anomalous pancreas morphologies during 706 

development. (A) Islet morphology was examined in Tg(insulin-GFP) transgenic fish at 48, 96, 707 

and 168 hpf after subchronic PFOS exposure beginning at 3 hpf. Islets were screened for 708 

fragmentation, hollowness, and severely stunted growth (shown in B at 20x magnification). 709 

Numbers presented are the percent of embryos/larvae with variant islets. Italicized numbers are 710 

the number of embryos/larvae sampled, cumulative across several study replicates. Fewer than 711 

5% of embryos and larvae were severely deformed at the time of sampling, and were excluded 712 

from pancreas imaging. The distribution of islet morphologies are shown in pie charts under each 713 

respective time point, indicating a difference in the types of variants observed throughout 714 

development. No significant temporal differences were observed. The position of the islet within 715 

the zebrafish is shown (B, left). Asterisks (*) indicate a difference between designated treatment 716 

group and the controls (p<0.05); n=30-45 embryos at 48 hpf; n=20-25 eleutheroembryos at 96 717 

hpf; n=24-29 larvae at 168 hpf 718 

 719 

Fig 3. PFOS exposure delays formation of secondary islets. (A) Secondary islets are 720 

characterized by one or more beta cells developing after the primary islet (arrow), typically after 721 

120 hpf. (B) The number of secondary islets at 7 dpf was quantified in Tg(insulin-GFP) larvae. 722 



Incidence of islet defects was 19/47 (40%) in controls, 9/36 (25%) in the 16 µM group, 6/36 723 

(17%) in the 32 µM group, and 13/43 (30%) in the 64 µM group. Bars represent the percent of 724 

larvae with secondary islets. Asterisks (*) indicate a difference between designated treatment 725 

group and the controls (p<0.05); n=36-47 larvae per group.  726 

 727 

Fig 4. PFOS exposure decreases exocrine pancreas length at 96 and 168 hpf. (A) Pancreas length 728 

was measured in Tg(ptf1a-GFP) transgenic fish, shown at 168 hpf. Pancreas length was 729 

measured by quantifying the distance from the center of the islet (arrow) to the posterior tail of 730 

the pancreas. A control pancreas of normal length is shown at left, and a PFOS-exposed and 731 

shortened pancreas is shown at right. (B) Pancreas length is significantly decreased in fish 732 

exposed to 32 and 64 µM PFOS at 96 hpf, and to 32 µM PFOS at 168 hpf.  Asterisks (*) indicate 733 

a difference between designated treatment group and the controls (p<0.05); n=22-28 larvae 734 

 735 

Fig 5. Embryonic PFOS exposure alters pancreas endocrine gene expression. RNA was isolated 736 

from embryos collected at 48 and 96 hpf, following subchronic PFOS exposure since 3 hpf. 737 

Expression of insa (A), gcga (B), pdx1 (C), sst2 (D), and ghrl (E) was analyzed using qPCR and 738 

the ΔΔCT method. Bars represent the average fold change (relative to beta actin; shown on y-739 

axis) and the control group, and stars represent a PFOS-associated statistically significant change 740 

of expression from the control group. Age of the embryos and eleutheroembryos is shown on the 741 

x-axis in hpf. Asterisks (*) indicate a difference between designated treatment group and the 742 

controls (p<0.05); n=7-9 samples of 9 pooled embryos at 48 hpf; n=4-5 samples of 5 pooled 743 

eleutheroembryos at 96 hpf 744 

 745 



Fig 6. Embryonic PFOS exposure alters pancreas exocrine gene expression. RNA was isolated 746 

from 96 hpf following subchronic PFOS exposure since 3 hpf. Expression of ptf1a (A), try (B), 747 

ctrb1 (C), and amy2a (D) was analyzed using qPCR and the ΔΔCT method. Bars represent the 748 

average fold change (relative to beta actin; shown on y-axis) and the control group, and stars 749 

represent a PFOS-associated statistically significant change of expression from the control group. 750 

Asterisks (*) indicate a difference between designated treatment group and the controls (p<0.05); 751 

n=4-5 samples of 5 pooled eleutheroembryos at 96 hpf 752 

 753 

Fig 7. This study helps to expand an AOP framework for the developmental origins of metabolic 754 

dysfunction and diabetes. Findings of this study (highlighted in black boxes) provide new criteria 755 

for use in an AOP framework for the association between developmental exposures and 756 

metabolic dysfunction. This framework (flowing from left to right) has guided the identification 757 

of several key biochemical, molecular, cellular, and organ changes that lead to these disorders; 758 

however, the effects of exposures such as PFOS on pancreas structure had not been studied. In 759 

the future, we seek to elucidate a mechanism by which these exposures may cause 760 

dysmorphogenesis of the endocrine and exocrine pancreas, and further how these structural 761 

anomalies are associated with the development of metabolic dysfunction later in the lifecourse. 762 

 763 

Supplemental Figure 1. Embryonic PFOS exposures affect overall fish growth. Fish length at 764 

168 hpf was not affected in the 16 or 64 µM exposure groups, though a significant decrease in 765 

fish length was observed in those exposed to 32 µM PFOS (p<0.01). Asterisks (*) indicate a 766 

difference between designated treatment group and the controls (p<0.05); n=24-30 larvae 767 

 768 



 769 

Supplemental Figure 2. Embryonic PFOS exposures produce only a modest change in the 770 

relative lengths of the pancreas. There is a linear, dose-dependent decrease in the relative length 771 

of the pancreas (pancreas length/total larval length), though this change is not statistically 772 

significant. n=24-30 larvae 773 
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 776 

Supplemental Table 1. Quantitative PCR primer sequences. 777 

Gene 
Forward primer (5’-3’) 

Tm Reference 
Reverse primer (5’-3’) 

actb 
CAACAGAGAGAAGATGACACAGATCA 

65 Evans et al., 2005 
GTCACACCATCACCAGAGTCCATCAC 

b2m 
CTGAAGAACGGACAGGTTATGT 

58   
ACGCTGCAGGTATATTCATCTC 

insa 
GCCCAACAGGCTTCTTCTACAAC 

63 Wilfinger et al., 2013 
GCAGATTTAGGAGGAAGGAAACCC 

 778 

 779 

Supplemental Table 2. Observed embryo deformities following PFOS exposures. 780 

Exposure 
 

% Inflated Swim Bladder 
 (96 hpf) 

% Spinal Deformities 
(168 hpf) 

Control (DMSO) 83% 4% 
PFOS (16 µM) 77% 22% 
PFOS (32 µM) 75% 28% 
PFOS (64 µM) 78% 28% 
 781 

 782 
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