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The design of Flow Injection manifolds to give the 

best detection limits for methods involving on-line 

chemical derivatisation 
Part 1. Theoretical basis for high sensitivity 

J. F. Tyson 
Department of Chemistry University of Technology, Loughborough Leicestershire, LEI I 
3TU, U.K. 

The criteria to be considered when designing a flow-injection mani
fold for the highest sensitivity for a method based on measurement 
of the peak height corresponding to a derivative formed on-line be
tween the injectate and a reagent. These criteria include the ratio 
of reagent concentration to determinand concentration at the peak 
maximum, the concentration of the top standard and the reagent 
composition. These three parameters can be combined to give a 
single parameter referred to as the a-value being the ratio of the 
determinand to reagent dispersion coefficients at the peak maximum 
for the top standard. It is shown, on the basis of the single, well
stirred tank model that the required dispersion coefficient is (1 + 
a) for both a single-line and a double-line manifold. It is further
shown that the throughput for the former manifold would be 
higher than that of the latter.

Keywords: Flow injection analysis, manifold design, dispersion coef

ficient, sensitivity, throughput, well-stirred tank model. 

In any analytical procedure there are two factors which significantly 

affect the detection limit. These are the magnitude of the analytical signal and 
lhe magnitude of the noise. The procedure to be adopted to obtain the best 
limit of detection is therefore, to maximise the signal and minimise the noise. 
In the case of flow injection analysis (FIA), the magnitude of the signal de
pends on the dispersion in the system, this is in turn dependent on the choice 
of manifold design and operating conditions. 

Many flow injection methods are based on monitoring the extent to which 

an on-line chemical derivatisation reaction has proceeded as the dispersed 
injectate zone passes the downstream flow-through detector. Of such methods, 
lhe use of the measurement of a reaction product peak maximum by molecu
lar absorptiometry in solution is the most widely reported. 



For measurements based on peak height, it is important to ensure that 
mixing to produce a sufficient concentration excess of reagent over determinand 

across the entire sample profile to give the desired degree of reaction at the 
·peak maximum occurs.

Thus the requirement is to design a manifold which allows such mixing 
without introducing an undue amount of dispersion or dilution. This paper 

describes a method of comparing flow-injection (Fl) manifold types on the basis 

of achieving maximum sensitivity. A simple model for dispersion is used 
based on the well-stirred mixing chamber concept. A theoretical treatment of 

the various sources of noise is not possible and this aspect of the design requi
rements for low detection limits will be discussed in a subsequent paper 1

• 

Manifold Design 

Two types of FI manifold (see Fig. 1) may be distinguished based on the 

mechanisms by which reagent and determinand are mixed. In the first type, 

mixing occurs primarily as a result of the inter-dispersion of injectate and 
carrier stream. This inter-dispersion is due to the various hydrodynamic re
gimes produced in the particular manifold. In the case of open tubular reac

tors (OTRs), the predominant hydrodynamic process is convection and this is 
accompanied by diffusion across the radial concentration gradients so gener

ated to an extent governed by the magnitude of the gradient, the diffusion coef

ficient of the species concerned and the residence time. Provided that the dif
fusion coefficients of species in the carrier stream and in the injectate solution 

are similar, the concentration gradients of reagent and determinand due to physi

cal dispersion processes may be considered to be «mirror» images of each 
other. Obviously, the concentration gradients are greatly affected by chemical 
reaction. 
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Figure L Conventional representation of Lhe Lwo basic types of flow injection manifolds, (a) single
line manifold and (b) double-line manifold; c determinand carrier stream, d detector, i injection 

point, me manifold components, p pump and r reagent stream. 



Manifolds of this type are those in which a single line connects the injec
tion valve to the detector. Prior to the injection valve there may be, of course, 
a number of merging streams in which, for example, an unstable reagent may 

be synthesised. 
In the second type of manifold, in addition to convection and diffusion, 

the extent of mixing is governed by the relative flow rates of streams merging 
at confluence points. The simplest form of this manifold is the two-line mani
fold in which the sample is injected into a non-reactive carrier stream which 
is subsequently merged with the reagent stream. In general, such manifolds 
may have several confluence points and are referred to as multi-line manifolds. 
In practice both types of manifold may contain additional components, which 
will produce a variety of hydrodynamic regimes, such as packed bed reactors 
(PBRs), contorted OTRs, mixing chambers, right-angle bends, step changes 
in diameter etc. 

Previous discussion 2-4 of the relative merits of the single-line manifold 
and the double (or multi-line) manifold have indicated that the latter type allows 
a high sensitivity version of the former because to increase the sensitivity the 
most obvious approach is to increase the volume injected. However with a single
line manifold, increasing the volume injected eventually leads to the forma

tion of double peaks. Provided that the flow rate ratio of the injectate carrier 
stream and the reagent carrier stream was not too large, conventional peak 
shapes would be obtained with a multi-line manifold. There is, of course, no 
inherent reason why flat-topped peaks (the multi-line manifold equivalent of 
the double peak) should not be obtained with this manifold. Their appearance 
depends on the concentration ratio of determinand and reagent and the relati
ve flow rates. 

Basis for Comparison 

As the intention is to examine the relative sensitivities produced by the 
two types of manifold, a simple model for dispersion may be used and applied 
to each manifold. The model used is based on the passage of step concentra
tion changes through a single well-stirred tank 5• This model has been applied 
to the dispersion produced in single-line manifolds for solution spectrophoto
metry and atomic absorption spectrometry and the relevant equations for the 
relationship between peak height 6•

7
, peak width 7•

8 and peak area 9 have been 

derived. The peak width relationship has also been derived for a merging-stream 
manifold in which the injectate passes through mixing chamber before mer
ging with the reagent at the confluence point 7• The model manifolds are 
shown in Fig. 2, from which it can be seen that the merging stream manifold 
is modelled by mixing at the confluence point before passage through the tank. 

A key concept in comparison is the the ratio of the reagent to determin
and concentration at the peak maximum, Rid. Many spectrophotometric
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Figure 2. Model manifolds, (a) single-line manifold, (b) double-line manifold. Plug flow is 
assumed between the point of injection and the single-well stirred mixing chamber and between 
the mixing chamber and the detector. The volume injected is Vi, the volumetric flow rate is Q, 
the tank volume is V, D is the detector, r is the reagent stream and ct is the determinand carrier 
stream (flow rate ud). The flow rate of the reagent stream in the double-line manifold is ur . 

methods are based on the use of reaction conditions in which a large excess 
of reagent is used, so that even if the equilibrium constant for the reaction of 
interest is not very large the concentration of the product formed is directly 
proportional to the concentration of the determinand. This ratio has a mini
mum value at the peak maximum for any flow injection manifold in which 
the determinand is injected. Thus it is necessary as part of the method design 
to specify a value for this ratio appropriate for the top standard in the calibra
tion sequence. 

Single-Line Manifold 

The dispersion coefficient at the peak maximum is given by 

D = [I - exp(-V/V)i-1 (]) 

where Vi is the injected volume and Vis the volume of the hypothetical well
stirred tank. The ratio of the concentration of the reagent stream to that at 
the peak maximum may be referred to as the reagent dispersion coefficient, 
D'. For a single-line manifold the determinand and reagent dispersion coeffi
cients are related by the equation 7 

D = D' I (D' - I) 

The ratio of reagent to determinand at the peak maximum i� thus given by 

(2)



where R�d is the ratio of pumped reagent concentration to injected deter
minand concentration 7• 

Merging-Stream Manifold 

To derive the equation for the concentration at the peak maximum and 
hence the dispersion coefficient, it is necessary to derive the equation for the 
concentration rise as the diluted injected plug flows into the mixing chamber 
and to substitute into this the expression for the time taken for the rear of the 
diluted injection volume to enter the tank. If the flow rate of the injectate 
carrier stream and the reagent stream are ud and ur , them the determinand con
centration injected, cg, is diluted to cg,cud/(ud + u')] ie cg,rct where fd is 
the fraction of the total flow, Q, due to the determinand stream. The change 
in concentration with time for the well-stirred tank is given by 

dC/dt = cg,rctQ/V - CQ/V 

Separating the variables and integrating gives 

ln(Cg,rct - C) = -Qt/V + k 

where k is a constant of integration which is evaluated by substituting the boun
dary conditions C = 0, t = 0. This gives k = lncg,rct . Therefore 

(3) 

This can be rearranged to give 

c = cg, fd [ 1 - exp(-Qt/V) J (4) 

The trailing edge of the diluted sample plug enters the tank at time tp
given by tp = V/ud when the concentration in the tank is cg. Substituting
in equation 4 gives 

cg = cg,rct[l - exp (-V/Vfd)] (5) 

and thus 

D = [fd[! - exp(-V/Vfd)J]"l (6) 

The reagent concentration remains at a constant value after the step change 
at the confluence point at c:;/'. Where f' is the fraction of the total flow due 
to the reagent stream. Thus the ratio of the reagent concentration to the the 
determinand concentration at the peak maximum is given by 

(7)



The relationship between concentration and time for the fall curve is 
obtained in exactly the same fashion as was done for the single-line manifold 7 

and is given by: 

C = cg exp[-Q(t - t
p
)IV] (8) 

Design for Highest Sensitivity 

The requirement is to obtain the smallest value of D for a given value of 
the reagent to determinand concentration ratio at the peak maximum, Rid. 
This value will be a minimum for a given reagent composition when the most

concentrated standard in the calibration sequence is considered. Thus the 
reagent composition and top standard fix the value of R::/d. The ratio, a, of 
these values is, therefore, also fixed and is given by 

a (9) 

For the single-line manifold, the a-value fixes the D value. From equa
tion 2, 

a = D - I 
and 

D= a +I 

However, for the double-line manifold, the situation is not so immedia
tely obvious as the corresponding relationship for the single-line manifold is. 
From equation 7,

a = Of' 
ie 

a (10) 

As can be seen from equation 6 the 0-value for a double line manifold 
is a function of the fractional flow-rate (as well as the volume injected and 
the volume of the tank). Substitution in equation 6 gives 

(I - fd)la = fd - fdexp(V/fdV) 

In(] + Ila - llfda) = -V/fdV 

For this equation to be solved for realistic values of the variables concerned, 
the logarithmic term on the left hand side must be negative, ie 

O < (I + Ila - I!fda) < I 

ll(a + I) < fd < 1 



From equation 10, it can be seen that the smallest value of Dis obtained 
when the smallest allowable value of fd is selected. From the inequality above, 
this value is 1/(o + I) and thus the D-value for the double-line manifold is 
given by 

This value is the same as for the single-line manifold and thus regardless 
of which manifold type is selected, the same sensitivity will be obtained for 
the same chemistry. 

For a given manifold (ie value of V), the experimental variable in this 
model is the volume injected. For the single-line manifold the required volume 
is given by, 

V; = Vln[(o + 1)/o] 

Whereas for the double-line manifold, the required volume is given by 

V; = Vln(infinity) 

Thus the required volume is infinite. To minimise the value of D with this 
type of manifold the approach should be to inject a sufficiently large volume 
so that there are essentially no dispersion effects due to passage through the 
thank and all the dispersion is due to dilution at the confluence point. Under 
these operating conditions, D is equal to 1/fd. As fd is given by 1/(o + I), 
the relative flow rates are governed by the a-value required. In practice it is 
possible to calculate a value for the volume injected which will give any desired 
fraction of the D-value corresponding to infinite volume. For example the 
volume injected giving 0.99 of the infinite-volume value is 4.605V /(I + o). 

This result (that the single-line and double-line manifolds give the same 
maximum sensitivity) is perhaps not so surprising when the factors controlling 
the dispersion coefficient of a double-line manifold are considered. Regard
less of the volume injected, the dispersion coefficient can never be smaller than 
the value set by the flow rate ratio and thus the approach to minimising the 
D-value must be based on the injection of an infinite volume.

The manifold designs may be further compared on the basis of through
put. It is possible calculate a parameter related to the through-put for each 
manifold. One of the simplest of such peak width values is the half-width, t

v,. 
For the single-line manifold. 

t v, = (V /Q)ln[exp(V/V) + I] 

and thus when V; = Vln[(o + 1)/o], I
v
, = (V /Q)ln[(2o + 1)/o]. 

For the double-line manifold, the half-width is given by 

I
v, 

= V /Qln[exp(V/Vf<l) + I] 



Thus if the volume injected is that required to give 0.99 of the infini1c 
volume D-value and fd is equal to 1/(a + I), t

,1 
� 4.605V IQ (assuming I 

may be neglected compared with exp 4.605). 
It is only in cases where a is very small (of the order of 0.01) that the peal 

widths would be comparable. Under other, more usual, circumstances the single
line manifold would give a higher through-put for the same a-value. 

Conclusion 

In the design of a manifold for a flow injection method of analysis in which 
the peak height, corresponding to the product formed on-line by the interdis
persion of injectate and reagent, is monitored as the analytical parameter the 
same maximum sensitivity may be obtained from either a single-line manifold 
or a double-line manifold. For the double-line manifold a sufficiently large 
volume must be injected to obtain essentially infinite volume conditions and 
the desired dispersion coefficient is obtained by a suitable selection of flow 
rate ratio. This means, in general, that the single-line manifold will have a hig
her through-put than the double-line manifold giving the same dispersion 
coefficient. 
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